Sample & Buy Product Folder Support & Community Tools & Software Technical Documents ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 ISO722x Dual Channel Digital Isolators 1 Features • 1 • • • • • • • • • 1, 5, 25, and 150-Mbps Signaling Rate Options – Low Channel-to-Channel Output Skew; 1-ns Max – Low Pulse-Width Distortion (PWD); 1-ns Max – Low Jitter Content; 1 ns Typ at 150 Mbps 50 kV/μs Typical Transient Immunity Operates with 2.8-V (C-Grade), 3.3-V, or 5-V Supplies 4-kV ESD Protection High Electromagnetic Immunity –40°C to 125°C Operating Range Typical 28-Year Life at Rated Voltage (see application report High-Voltage Lifetime of the ISO72x Family of Digital Isolators (SLLA197) and Figure 22) VDE Basic Insulation with 4000-VPK VIOTM, 560 VPK VIORM per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1) 2500 VRMS Isolation per UL 1577 CSA Approved for Component Acceptance Notice 5A and IEC 60950-1 2 Applications • • • • Industrial Fieldbus – Modbus – Profibus™ – DeviceNet™ Data Buses Computer Peripheral Interface Servo Control Interface Data Acquisition A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets or resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received every 4 μs, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. The small capacitance and resulting time constant provide fast operation with signaling rates available from 0 Mbps (DC) to 150 Mbps (The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps). The Aoption, B-option, and C-option devices have TTL input thresholds and a noise filter at the input that prevents transient pulses from being passed to the output of the device. The M-option devices have CMOS VCC/2 input thresholds and do not have the input noise filter and the additional propagation delay. The ISO7220x and ISO7221x devices require two supply voltages of 2.8 V (C-Grade), 3.3 V, 5 V, or any combination. All inputs are 5-V tolerant when supplied from a 2.8-V or 3.3-V supply and all outputs are 4-mA CMOS. The ISO7220x and ISO7221x devices are characterized for operation over the ambient temperature range of –40°C to 125°C. Device Information(1) PART NUMBER ISO7220x SOIC (8) ISO7221x BODY SIZE (NOM) 4.90 mm × 3.91 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. 3 Description The ISO7220x and ISO7221x devices are dualchannel digital isolators. To facilitate PCB layout, the channels are oriented in the same direction in the ISO7220x and in opposite directions in the ISO7221x. These devices have a logic input and output buffer separated by TI’s silicon-dioxide (SiO2) isolation barrier, providing galvanic isolation of up to 4000 VPK per VDE. Used in conjunction with isolated power supplies, these devices block high voltage and isolate grounds, as well as prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. PACKAGE Simplified Schematic VCCO VCCI Isolation Capacitor INx OUTx GNDI GNDO VCCI and GNDI are supply and ground connections respectively for the input channels. VCCO and GNDO are supply and ground connections respectively for the output channels. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 1 1 1 2 5 5 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 6 Thermal Information .................................................. 6 Electrical Characteristics, 5 V ................................... 7 Electrical Characteristics, 5 V, 3.3 V ........................ 8 Electrical Characteristics: 3.3 V, 5 V......................... 9 Electrical Characteristics, 3.3 V .............................. 10 Electrical Characteristics, 2.8 V ............................. 10 Dissipation Characteristics.................................... 11 Switching Characteristics, 5 V ............................. 11 Switching Characteristics, 5 V, 3.3 V.................... 12 Switching Characteristics, 3.3 V, 5 V ................... 12 Switching Characteristics, 3.3 V ........................... 13 Switching Characteristics, 2.8 V .......................... 14 Typical Characteristics .......................................... 15 7 8 Parameter Measurement Information ................ 17 Detailed Description ............................................ 18 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 18 18 19 21 Application and Implementation ........................ 22 9.1 Application Information............................................ 22 9.2 Typical Application .................................................. 22 10 Power Supply Recommendations ..................... 24 11 Layout................................................................... 24 11.1 Layout Guidelines ................................................. 24 11.2 Layout Example .................................................... 24 12 Device and Documentation Support ................. 25 12.1 12.2 12.3 12.4 12.5 12.6 Documentation Support ........................................ Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 25 25 25 25 25 25 13 Mechanical, Packaging, and Orderable Information ........................................................... 26 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision M (October 2014) to Revision N Page • Changed the VDE Cerification from: DIN EN 60747-5-5 (VDE 0884-5) to: DIN V VDE V 0884-10 (VDE V 088410):2006-12 throughout the document ................................................................................................................................... 1 • Updated the Simplified Schematic to a higher quality version. .............................................................................................. 1 • Changed the max value of the IN and OUT voltage from 6 to VCC + 0.5 in the Absolute Maximum Ratings table............... 5 • Added = 150°C to insulation resistance test condition in the DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics table. ........................................................................................................................................... 19 • Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table. ........................................................... 19 • Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table. ........................................................... 19 • Added the JEDEC package dimensions note in the IEC Package Characteristics table..................................................... 19 • Changed the DTI test condition From: IEC 60112 / VDE 0303 Part 1 To: DIN EN 60112 (VDE 0303-11); IEC 60112 ...... 20 • Added the DTI parameter to the IEC Package Characteristics table. .................................................................................. 20 • Added table row with input side VCC = X to the ISO7220x or ISO7221x Function table...................................................... 21 Changes from Revision L (January 2012) to Revision M Page • Changed the title of this data sheet to ISO722x Dual Channel Digital Isolators ................................................................... 1 • Added Pin Configuration and Functions section, Handling Rating table, Dissipation Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section, changed Thermal Information table ........................................................... 1 • Updated the Features section ............................................................................................................................................... 1 • Added per VDE to 4000 VPK in second sentence of Description .......................................................................................... 1 • Updated the Regulatory Information Table............................................................................................................................. 5 2 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 • Added the min and max values to the Storage temperature parameter in the Absolute Maximum Ratings table. ............... 5 • Changed in ROC table Max col, VIH row from VCC to 5.5 .................................................................................................... 6 • Changed the Device Options table, Input Threshold column from ≠ symbol to ~ symbol 6 places .................................... 19 • Changed the 7.4 title from IEC 60747 ~2 Insulation Characteristics to DIN EN ~ 5 Insulation Characteristics ................. 19 • Changed Isolation Glossary ................................................................................................................................................ 25 Changes from Revision K (January 2010) to Revision L Page • Changed Feature From: Operates with 3.3-V or 5-V Supplies To: Operates with 2.8-V (C-Grade), 3.3-V or 5-V Supplies . 1 • Changed Feature From: 4000-Vpeak Isolation, 560 Vpeak VIORM To: 4000-VPK VIOTM, 560 VPK VIORM per IEC 60747-5-2 (VDE 0884, Rev2) ................................................................................................................................................................. 1 • Added device options to VCC in the RECOMMENDED OPERATING CONDITIONS table ................................................... 6 • Changed Note: (1) in the RECOMMENDED OPERATING CONDITIONS table ................................................................... 6 • Changed ICC1 and ICC2 test conditions in the 5-V table........................................................................................................... 7 • Changed ICC1 and ICC2 test conditions in the VCC1 at 5 V, VCC2 at 3.3 V table........................................................................ 8 • Changed ICC1 and ICC2 test conditions in the VCC1 at 3.3 V, VCC2 at 5 V table........................................................................ 9 • Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 3.3 V table .......................................................................... 10 • Changed Table Note (1) ....................................................................................................................................................... 10 • Added ELECTRICAL and Switching CHARACTERISTICS table for VCC1 and VCC2 at 2.8 V (ISO722xC-Only) ................. 10 • Changed Figure 9................................................................................................................................................................. 15 • Changed Figure 14............................................................................................................................................................... 17 • Changed the CTI MIN value From: ≥175 V To: ≥400 V ....................................................................................................... 20 • Updated the Regulatory Information table............................................................................................................................ 20 Changes from Revision J (May 2009) to Revision K Page • Changed the RECOMMENDED OPERATING CONDITIONS so that Note (2) is associated with all device options in the Input pulse width and Signaling rate ................................................................................................................................ 6 • Changed Note (2) From: Typical signaling rate under ideal conditions at 25°C. To: Typical signaling rate and Input pulse width are measured at ideal conditions at 25°C. .......................................................................................................... 6 • Changed column 2 of the AVAILABLE OPTIONS table From: Signaling Rate To: Max Signaling Rate ............................. 19 Changes from Revision I (December 2008) to Revision J • Page Changed ISO7221C Marked As column From: TI7221C To: I7221C in the AVAILABLE OPTIONS table ......................... 19 Changes from Revision H (May 2008) to Revision I • Page Added "IEC 61010-1, IEC 60950-1 and CSA Approved" to the UL 1577 FEATURES bullet ................................................ 1 Changes from Revision G (March 2008) to Revision H Page • Added Note: (1) to the RECOMMENDED OPERATING CONDITIONS table ....................................................................... 6 • Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V.......................................................... 10 Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 3 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com Changes from Revision F (August 2007) to Revision G Page • Added Part Numbers ISO7220B and ISO7221B to the data sheet........................................................................................ 1 • Added 5-Mbps Signaling rate to the FEATURES list ............................................................................................................. 1 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V table ... 7 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V table..................................................................................................................................................................................... 8 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V table..................................................................................................................................................................................... 9 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V ....... 10 • Added PROPAGATION DELAY vs FREE-AIR TEMPERATURE, ISO722xB, Figure 4 ...................................................... 15 • Added Part Numbers ISO7220B and ISO7221B to the AVAILABLE OPTIONS table......................................................... 19 Changes from Revision E (July 2007) to Revision F Page • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table ....................... 11 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table......................... 11 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table................ 12 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table ................. 12 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table................ 12 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERTAION table ................. 13 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS table................................................................................. 13 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS table .................................................................................. 13 • Changed Figure 1 - Re-scaled the Y-axis ............................................................................................................................ 15 • Changed Figure 2 - New Curves.......................................................................................................................................... 15 Changes from Revision D (June 2007) to Revision E Page • Changed Figure 1 - New Curves.......................................................................................................................................... 15 • Changed Figure 2- Re-scaled the Y-axis ............................................................................................................................ 15 Changes from Revision C (May 2007) to Revision D • Page Changed Figure 20 - Pin 2 (INA) label From: OUTPUT to INPUT....................................................................................... 23 Changes from Revision B (May 2007) to Revision C Page • Added the Signaling rate values to the RECOMMENDED OPERATING CONDITIONS table.............................................. 6 • Added Figure 12 cross reference to the Peak-to-peak eye-pattern jitter of the SWITCHING CHARACTERISTICS table.. 11 • Added Figure 12 cross reference to the Peak-to-peak eye-pattern jitter of the SWITCHING CHARACTERISTICS table.. 12 • Added Figure 12 cross reference to the Peak-to-peak eye-pattern jitter of the SWITCHING CHARACTERISTICS table.. 13 • Added Figure 12 cross reference to the Peak-to-peak eye-pattern jitter of the SWITCHING CHARACTERISTICS table.. 13 • Changed the IEC 60664-1 RATINGS TABLE - Specification I-III test conditions From: Rated mains voltage ≤150 VRMS To: Rated mains voltage ≤300 VRMS. Added a row for the I-II specifications......................................................... 20 • Added Figure 22 - Time Dependent Dielectric Breakdown Test Results ............................................................................. 23 4 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 Changes from Revision A (August 2006) to Revision B Page • Added the TYPICAL CHARACTERISTIC CURVES to the data sheet. ............................................................................... 15 • Added the PARAMETER MEASUREMENT INFORMATION to the data sheet .................................................................. 17 • Added the ELECTRICAL CHARACTERISTICS tables to the data sheet ............................................................................ 20 • Added the APPLICATION INFORMATION section to the data sheet.................................................................................. 22 • Added the ISOLATION GLOSSARY section to the data sheet ........................................................................................... 25 Changes from Original (July 2006) to Revision A Page • Deleted "and CSA Apporved" from the UL 1577 FEATURES bullet...................................................................................... 1 • Added option A to the AVAILABLE OPTIONS table ............................................................................................................ 19 Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 5 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 Pin Configuration and Functions ISO7220x D Package 8-Pin SOIC Top View INA 2 INB 3 8 VCC2 ISOLATION VCC1 1 ISO7221x D Package 8-Pin SOIC Top View GND1 4 VCC1 1 7 OUTA OUTA 2 6 OUTB INB 3 5 GND2 GND1 4 8 VCC2 ISOLATION 5 www.ti.com 7 INA 6 OUTB 5 GND2 Pin Functions PIN NAME I/O DESCRIPTION ISO7220x ISO7221x INA 2 7 I Input, channel A INB 3 3 I Input, channel B GND1 4 4 — Ground connection for VCC1 GND2 5 5 — Ground connection for VCC2 OUTA 7 2 O Output, channel A OUTB 6 6 O Output, channel B VCC1 1 1 — Power supply, VCC1 VCC2 8 8 — Power supply, VCC2 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VCC Supply voltage (2), VCC1, VCC2 –0.5 6 V VI Voltage at IN, OUT –0.5 VCC + 0.5 (3) V IO Output current –15 15 mA TJ Maximum junction temperature 170 °C Tstg Storage temperature 150 °C (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These ratings are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability. All voltage values except differential I/O bus voltages are with respect to network ground pin and are peak voltage values. Maximum voltage must not exceed 6 V. 6.2 ESD Ratings Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins V(ESD) (1) (2) 6 Electrostatic discharge (1) VALUE UNIT ±4000 V Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±1000 V Machine Model, ANSI/ESDS5.2-1996 ±200 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 6.3 Recommended Operating Conditions MIN VCC Supply voltage (1), VCC1, VCC2 IOH High-level output current IOL Low-level output current tui Input pulse width ISO722xA, ISO722xB, ISO722xM ISO722xC 5.5 2.8 5.5 4 (2) 0.67 ISO722xB 200 100 ISO722xC 40 33 ISO722xM 6.67 5 ISO722xA 0 1500 1000 ISO722xB 0 10 5 ISO722xC 0 30 25 ISO722xM 0 200 150 High-level input voltage Low-level input voltage VIH High-level input voltage VIL Low-level input voltage TJ Junction temperature H External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification (1) For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V. For the 2.8-V operation, VCC1 or VCC2 is specified at 2.8 V. Typical signaling rate and Input pulse width are measured at ideal conditions at 25°C. ISO722xA, ISO722xB, ISO722xC ISO722xM V mA μs 1 VIL UNIT mA ISO722xA VIH (2) MAX –4 Signaling rate (2) 1/tui NOM 3 ns kbps Mbps 2 5.5 V 0 0.8 V 0.7 VCC VCC V 0 0.3 VCC V –40 150 °C 1000 A/m 6.4 Thermal Information THERMAL METRIC (1) ISO7220x ISO7221x D (SOIC) UNIT 8 PINS Low-K Thermal Resistance (2) 212 High-K Thermal Resistance 122 RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 69.1 °C/W RθJB Junction-to-board thermal resistance 47.7 °C/W ψJT Junction-to-top characterization parameter 15.2 °C/W ψJB Junction-to-board characterization parameter 47.2 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) (2) °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 7 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 6.5 Electrical Characteristics, 5 V VCC1 and V CC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY CURRENT ISO7220x ISO7221 ICC1 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M ISO7220x ISO7221x ICC2 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M VOH High-level output voltage VOL Low-level output voltage Quiescent VI = VCC or 0 V, no load 1 Mbps 0.5 MHz Input Clock Signal, no load 25 Mbps 12.5 MHz Input Clock Signal, no load Quiescent VI = VCC or 0 V, no load 1 Mbps 0.5 MHz Input Clock Signal, no load 25 Mbps 12.5 MHz Input Clock Signal, no load 2 3 10 18 4 9 12 22 16 31 8.5 17 17 32 10 18 20 34 12 22 VCC – 0.8 4.6 IOH = –20 μA, See Figure 13 VCC – 0.1 5 0.2 0.4 IOL = 20 μA, See Figure 13 0 0.1 150 High-level input current IN from 0 V to VCC IIL Low-level input current IN from 0 V to VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 mA mA mA mA mA V mV 10 μA μA –10 25 mA V IOL = 4 mA, See Figure 13 IIH Submit Documentation Feedback 2 17 IOH = –4 mA, See Figure 13 VI(HYS) Input voltage hysteresis 8 1 8.5 1 pF 50 kV/μs Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 6.6 Electrical Characteristics, 5 V, 3.3 V VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY CURRENT ISO7220x ISO7221x ICC1 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M ISO7220x ISO7221x ICC2 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M High-level output voltage 1 Mbps 0.5 MHz Input Clock Signal, no load 2 3 10 18 25 Mbps 12.5 MHz Input Clock Signal, no load 4 9 12 22 Quiescent VI = VCC or 0 V, no load 1 Mbps 0.5 MHz Input Clock Signal, no load 25 Mbps 12.5 MHz Input Clock Signal, no load IOH = –4 mA, See Figure 13 ISO7221x (5-V side) All devices 8 18 4.3 9.5 9 19 5 11 10 20 6 12 IOH = –20 μA, See Figure 13 0.4 0.1 Input voltage hysteresis IIH High-level input current IN from 0 V to VCC IIL Low-level input current IN from 0 V to VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 mA mA mA mA VCC – 0.1 IOL = 20 μA, See Figure 13 VI(HYS) mA V IOL = 4 mA, See Figure 13 Low-level output voltage mA VCC – 0.4 VCC – 0.8 VOL Copyright © 2006–2015, Texas Instruments Incorporated 2 17 VI = VCC or 0 V, no load ISO7220x, ISO7221x (3.3-V side) VOH 1 8.5 Quiescent 150 mV 10 μA μA –10 15 V 1 pF 40 kV/μs Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 9 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 6.7 Electrical Characteristics: 3.3 V, 5 V VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY CURRENT ISO7220x ISO7221x ICC1 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M ISO7220x ISO7221x ICC2 ISO7220A, ISO7220B ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M High-level output voltage 0.5 MHz Input Clock Signal, no load 1 2 5 11 25 Mbps 12.5 MHz Input Clock Signal, no load 2 4 6 12 Quiescent VI = VCC or 0 V, no load 1 Mbps 25 Mbps ISO7221x (3.3-V side) 16 31 8.5 17 0.5 MHz Input Clock Signal, no load 18 32 10 18 12.5 MHz Input Clock Signal, no load 20 34 12 22 mA mA mA mA mA mA VCC – 0.8 IOH = –4 mA, See Figure 13 VCC – 0.4 V IOH = –20 μA, See Figure 13 VCC – 0.1 IOL = 4 mA, See Figure 13 VOL Low-level output voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 Submit Documentation Feedback 9.5 1 Mbps All devices 10 1 4.3 VI = VCC or 0 V, no load ISO7220x, ISO7221x (5-V side) VOH 0.6 Quiescent 0.4 IOL = 20 μA, See Figure 13 0 0.1 150 mV 10 15 μA μA –10 1 pF 40 kV/μs Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 6.8 Electrical Characteristics, 3.3 V VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY CURRENT ISO7220x ISO7221x ISO7220A, ISO7220B ICC1 ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M ISO7220x ISO7221x ISO7220A, ISO7220B ICC2 ISO7221A, ISO7221B ISO7220C, ISO7220M ISO7221C, ISO7221M Quiescent VI = VCC or 0 V, no load 1 Mbps 0.5 MHz Input Clock Signal, no load 25 Mbps 12.5 MHz Input Clock Signal, no load Quiescent VI = VCC or 0 V, no load 1 Mbps 0.5 MHz Input Clock Signal, no load 25 Mbps 12.5 MHz Input Clock Signal, no load 1 4.3 9.5 1 2 5 11 2 4 6 12 8 18 4.3 9.5 9 19 5 11 10 20 6 12 IOH = –4 mA, See Figure 13 VCC – 0.4 3 IOH = –20 μA, See Figure 13 VCC – 0.1 3.3 VOH High-level output voltage VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 (1) 0.6 IOL = 4 mA, See Figure 13 IOL = 20 μA, See Figure 13 0.2 0.4 0 0.1 150 mA mA mA mA mA V mV 10 μA μA –10 15 mA 1 pF 40 kV/μs For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V. 6.9 Electrical Characteristics, 2.8 V VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only guaranteed for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4) written on top of each device can be used to identify year and month of production respectively. PARAMETER TEST CONDITIONS MIN TYP MAX 0.4 0.9 3.7 7.5 1.5 3.5 4.5 10 UNIT SUPPLY CURRENT ISO7220C ICC1 ISO7221C ISO7220C ISO7221C ISO7220C ICC2 ISO7221C ISO7220C ISO7221C VOH Quiescent VI = VCC or 0 V, no load 25 Mbps 12.5 MHz Input Clock Signal, no load Quiescent VI = VCC or 0 V, no load 25 Mbps 12.5 MHz Input Clock Signal, no load High-level output voltage IOH = –4 mA, See Figure 13 VCC – 0.6 IOH = –20 μA, See Figure 13 VCC – 0.1 IOL = 4 mA, See Figure 13 VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 Copyright © 2006–2015, Texas Instruments Incorporated IOL = 20 μA, See Figure 13 6.8 15 3.7 7.5 9 17 4.5 10 mA mA mA 2.55 2.8 0.25 0.6 0 0.1 150 V mV 10 μA μA –10 10 mA 1 pF 30 kV/μs Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 11 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 6.10 Dissipation Characteristics PARAMETER PD Device Power Dissipation TEST CONDITIONS ISO722xM MIN TYP MAX UNIT 390 mW VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 150 Mbps 50% duty cycle square wave 6.11 Switching Characteristics, 5 V VCC1 and VCC2 at 5 V (over recommended operating conditions unless otherwise noted.) PARAMETER tPLH, tPHL TEST CONDITIONS Propagation delay (1) PWD Pulse-width distortion |tPHL – tPLH| tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA ISO722xB See Figure 13 MIN TYP MAX UNIT 280 405 475 ns 1 14 ns 42 55 70 ns 1 3 ns 32 42 ns 1 2 ns 10 16 ns 0.5 1 ns 22 ISO722xC 6 ISO722xM ISO722xA 180 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss Peak-to-peak eye-pattern jitter tjit(pp) (1) (2) (3) 12 3 ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 1 See Figure 13 ISO722xM ns ns ns 1 ns See Figure 14 3 μs 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 16, Figure 12 1 150 Mbps unrestricted bit run length data input, both channels, See Figure 16 2 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 6.12 Switching Characteristics, 5 V, 3.3 V VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10%(over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew ISO722xA TYP MAX UNIT 285 410 480 ns 1 14 ns 58 75 ns 1 3 ns 36 48 ns 1 2 ns 12 20 ns 0.5 1 ns 45 ISO722xB See Figure 13 25 ISO722xC 7 ISO722xM (2) MIN ISO722xA 180 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss Peak-to-peak eye-pattern jitter tjit(pp) (1) (2) (3) 5 ISO722xA tr 2 See Figure 13 ISO722xM ns ns ns 2 ns See Figure 14 3 μs 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 16, Figure 12 1 150 Mbps unrestricted bit run length data input, both channels, See Figure 16 2 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. 6.13 Switching Characteristics, 3.3 V, 5 V VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) (1) (2) Part-to-part skew (2) TEST CONDITIONS ISO722xA See Figure 13 ISO722xM TYP MAX UNIT 285 395 480 ns 1 18 ns 58 75 ns 1 4 ns 36 48 ns 1 3 ns 12 21 ns 0.5 1 ns 45 ISO722xB ISO722xC MIN 25 7 ISO722xA 190 ISO722xB 17 ISO722xC 10 ISO722xM 5 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 13 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com Switching Characteristics, 3.3 V, 5 V (continued) VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER tsk(o) Channel-to-channel output skew TEST CONDITIONS (3) TYP MAX ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss Peak-to-peak eye-pattern jitter tjit(pp) (3) MIN 1 See Figure 13 ISO722xM UNIT ns ns 1 ns See Figure 14 3 μs 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 16, Figure 12 1 150 Mbps unrestricted bit run length data input, both channels, See Figure 16 2 ns tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. 6.14 Switching Characteristics, 3.3 V VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA MIN TYP MAX UNIT 290 400 485 ns 1 18 ns 62 78 ns 1 4 ns 40 52 ns 1 3 ns 16 25 ns 0.5 1 ns 46 ISO722xB See Figure 13 26 ISO722xC 8 ISO722xM ISO722xA 190 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss Peak-to-peak eye-pattern jitter tjit(pp) (1) (2) (3) 14 5 ISO722xA tr 2 See Figure 13 ISO722xM ns ns ns 2 ns See Figure 14 3 μs 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 16, Figure 12 1 150 Mbps unrestricted bit run length data input, both channels, See Figure 16 2 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 6.15 Switching Characteristics, 2.8 V VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss (1) (2) (3) ISO722xC See Figure 13 MIN TYP MAX 26 45 65 ns 1.5 5 ns 12 ns 5 ns ISO722xC (3) ISO722xC 0.2 See Figure 13 See Figure 14 2 UNIT ns 2 ns 4.6 μs Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 15 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 6.16 Typical Characteristics 20 30 TA = 25°C, 15 pF Load 18 26 16 ISO7220x ICC2 24 14 ICC - Supply Current - mA ICC - Supply Current - mA TA = 25°C, 15 pF Load 28 ISO7220x ICC2 12 10 ISO7221x ICC1&2 8 6 4 ISO7220x ICC1 22 20 ISO7221x ICC1&2 18 16 14 12 10 ISO7220x ICC1 8 6 4 2 2 0 0 0 25 50 75 100 Signaling Rate - Mbps 50 75 Signaling Rate - Mbps Figure 1. 3.3-V RMS Supply Current vs Signaling Rate (Mbps) Figure 2. 5-V RMS Supply Current vs Signaling Rate (Mbps) 450 25 100 70 TA = 25°C, 15 pF Load 15 pF Load 440 65 Propagation Delay - ns 430 Propagation Delay - ns 0 420 VCC = 3.3 V tpLH & tpHL 410 400 VCC = 5 V 390 tpLH & tpHL 380 370 tPLH & tPHL VCC = 3.3 V 60 VCC = 5 V 55 tPLH & tPHL 50 360 350 -40 -15 10 35 60 85 45 -40 110 125 25 Temperature - °C Temperature - °C Figure 3. Propagation Delay vs Free-Air Temperature, ISO722xA Figure 4. Propagation Delay vs Free-Air Temperature, ISO722xB 30 20 VCC = 3.3 V 25 VCC = 3.3 V tpLH & tpHL 15 Propagation Delay - ns Propagation Delay - ns 125 20 15 tpLH & tpHL VCC = 5 V 10 tpLH & tpHL 10 tpLH & tpHL VCC = 5 V 5 5 0 -40 15 pF Load -15 10 35 60 85 110 125 Temperature - °C Figure 5. Propagation Delay vs Free-Air Temperature, ISO722xC 16 Submit Documentation Feedback 15 pF Load 0 -40 -15 10 35 60 85 110 125 Temperature - °C Figure 6. Propagation Delay vs Free-Air Temperature, ISO722xM Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 Typical Characteristics (continued) 2.5 1.4 2.4 5-V Vth+ 1.35 5-V Vth+ 1.3 Input Voltage Threshold - V Input Voltage Threshold - V 2.3 3.3-V Vth+ 1.25 15 pF Load 1.2 1.15 5-V Vth1.1 2.2 5-V Vth- 2.1 2 15 pF Load 1.9 1.8 3.3-V Vth+ 1.7 1.6 1.05 1.5 3.3-V Vth-40 -25 -10 5 20 35 50 65 80 95 3.3-V Vth- 1.4 -40 -25 -10 1 110 125 5 20 35 50 65 80 95 110 125 Temperature - °C Temperature - °C Figure 7. ISO722xA, ISO722xB and ISO722xC Input Voltage Low-to-High Switching Threshold vs Free-Air Temperature Figure 8. ISO722xM Input Voltage High-to-Low vs Free-Air Temperature -80 15 pF Load TA = 25°C -70 2.64 -60 VCC = 5 V VCC Rising -50 2.6 IOUT - mA Power Supply Undervoltage Threshold - V 2.68 2.56 -40 -30 VCC Falling VCC = 3.3 V -20 2.52 -10 2.48 -40 -25 -10 0 5 20 35 50 65 80 95 110 125 0 2 4 6 Free-Air Temperature - °C VOUT - V Figure 9. VCC Undervoltage Threshold vs Free-Air Temperature Figure 10. High-Level Output Current vs High-Level Output Voltage 70 2000 15 pF Load TA = 25°C 60 VCC = 5 V 1600 50 1400 1200 40 Jitter − ps IOUT - mA 15 pF Load TA = 25°C 1800 VCC = 3.3 V 30 VCC1 = VCC2 = 5 V 1000 800 600 20 VCC1 = VCC2 = 3.3 V 400 10 200 0 0 0 1 2 3 4 5 VOUT - V Figure 11. Low-Level Output Current vs Low-Level Output Voltage Copyright © 2006–2015, Texas Instruments Incorporated 0 50 100 150 200 Signaling Rate - Mbps Figure 12. ISO722xM Jitter vs Signaling Rate Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 17 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com ISOLATION BARRIER 7 Parameter Measurement Information IN Input Generator VI 50 W NOTE A VCC VI VCC/2 VCC/2 OUT 0V tPHL tPLH CL NOTE B VO VO VOH 90% 50% 50% 10% tr VOL tf A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. B. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. Figure 13. Switching Characteristic Test Circuit and Voltage Waveforms VI ISOLATION BARRIER VCC IN = 0 V A. VCC OUT VI VO 2.7 V 0V VOH tfs CL NOTE A VO 50% FAILSAFE HIGH VOL CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. Figure 14. Failsafe Delay Time Test Circuit and Voltage Waveforms IN S1 C = 0.1 μ F ±1% VCCO Isolation Barrier VCCI GNDI C = 0.1 μ F ±1% Pass-fail criteria – output must remain stable. OUT + CL Note A GNDO VOH or VOL – + VCM – A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. Figure 15. Common-Mode Transient Immunity Test Circuit VCC DUT Tektronix HFS9009 IN OUT 0V Tektronix 784D PATTERN GENERATOR VCC/2 Jitter NOTE: PRBS bit pattern run length is 216 – 1. Transition time is 800 ps. Figure 16. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform 18 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 8 Detailed Description 8.1 Overview The isolator in the Functional Block Diagram is based on a capacitive isolation barrier technique. The I/O channel of the ISO7220x and ISO7221x devices consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a single-ended input signal entering the HF-channel is split into a differential signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to switch from the high-frequency to the low-frequency channel. Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer. 8.2 Functional Block Diagram Isolation Barrier OSC LPF Low t Frequency Channel (DC...100 kbps) PWM VREF 0 OUT 1 S IN DCL High t Frequency Channel (100 kbps...150 Mbps) Copyright © 2006–2015, Texas Instruments Incorporated VREF Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 19 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 8.3 Feature Description PRODUCT MAX SIGNALING RATE INPUT THRESHOLD CHANNEL DIRECTION ISO7220A 1 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7220B 5 Mbps ≈ 1.5 V (TTL) (CMOS compatible ISO7220C 25 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7220M 150 Mbps VCC/ 2 (CMOS) ISO7221A 1 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221B 5 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221C 25 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221M 150 Mbps VCC/ 2 (CMOS) Same direction Opposite directions 8.3.1 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics (1) PARAMETER VIORM VPR TEST CONDITIONS SPECIFICATION Maximum working insulation voltage Input to output test voltage 560 After Input/Output safety test subgroup 2/3, VPR = VIORM × 1.2, t = 10 s, Partial discharge < 5 pC 672 Method a, After environment tests subgroup 1, VPR = VIORM × 1.6, t = 10 s, Partial discharge < 5 pC 896 Method b1, VPR = VIORM × 1.875, 100% Production test with t = 1 s, Partial discharge < 5 pC 1050 VIOTM Transient overvoltage VTEST = VIOTM t = 60 s (qualification) t = 1 s (100% production) 4000 RS Insulation resistance VIO = 500 V at TS = 150°C >109 Pollution degree (1) UNIT VPK Ω 2 Climatic Classification 40/125/21 NOTE Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Take care to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance. Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary in the Related Documentation section. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications. 8.3.2 IEC Package Characteristics PARAMETER L(I01) L(I02) (1) 20 TEST CONDITIONS Minimum air gap (Clearance) (1) Shortest pin-to-pin distance through air Minimum external tracking (Creepage) Shortest pin-to-pin distance across the package surface (1) MIN SOIC-8 TYP MAX UNIT 4 mm 4 mm Per JEDEC package dimensions. Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 PARAMETER TEST CONDITIONS MIN TYP MAX UNIT CTI Tracking resistance (Comparative Tracking Index) DIN EN 60112 (VDE 0303-11); IEC 60112 400 DTI Distance through the insulation Minimum Internal Gap (Internal Clearance) 0.008 mm Isolation resistance Input to output, VIO = 500 V, all pins on each side of the barrier tied together creating a two-pin device, TA = 25°C 1012 Ω Input to output, VIO = 500 V, 100°C ≤ TA ≤ max 1011 RIO V Ω CIO Barrier capacitance Input to output VI = 0.4 sin (4E6πt) 1 pF CI Input capacitance to ground VI = 0.4 sin (4E6πt) 1 pF Table 1. IEC 60664-1 Ratings Table PARAMETER TEST CONDITIONS Basic isolation group SPECIFICATION Material group Installation classification II Rated mains voltage ≤150 VRMS I-IV Rated mains voltage ≤300 VRMS I-III Rated mains voltage ≤400 VRMS I-II 8.3.3 Regulatory Information VDE CSA UL Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 04111) Approved according to CSA Component Acceptance Notice 5A and IEC 60950-1 Recognized under UL 1577 Component Recognition Program Basic Insulation Maximum Transient Overvoltage, 4000 VPK Maximum Surge Voltage, 4000 VPK Maximum Working Voltage, 560 VPK Evaluated to CSA 60950-1-07 and IEC 60950-1 (2nd Ed.) with 2000 VRMS Isolation rating for products with working voltages ≤ 125 VRMS for reinforced insulation and ≤ 390 VRMS for basic insulation Single Protection, 2500 VRMS (1) Certificate Number: 40016131 Master Contract Number: 220991 File Number: E181974 (1) Production tested ≥3000 VRMS for 1 second in accordance with UL 1577. 8.3.4 Safety Limiting Values Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures. PARAMETER TEST CONDITIONS IS Safety input, output, or supply current SOIC-8 TS Maximum case temperature SOIC-8 MIN TYP MAX θJA = 212°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C 124 θJA = 212°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C 190 150 UNIT mA °C The safety-limiting constraint is the absolute maximum junction temperature specified in Absolute Maximum Ratings. The power dissipation and junction-to-air thermal impedance of the ISO7220x and ISO7221x devices installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in Thermal Information is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 21 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 250 Safety Limiting Current - mA 225 VCC1,2 at 3.6 V 200 175 150 125 VCC1,2 at 5.5 V 100 75 50 25 0 0 50 100 150 TC - Case Temperature - °C 200 Figure 17. θJC Thermal Derating Curve per VDE 8.4 Device Functional Modes The ISO7220x and ISO7221x family of devices functional modes are shown in Table 2. Table 2. ISO7220x or ISO7221x Function Table (1) (1) INPUT SIDE VCC OUTPUT SIDE VCC PU PU INPUT (IN) OUTPUT (OUT) H H L L Open H PD PU X H X PD X Undetermined PU = Powered Up (VCC ≥ 3.0 V), PD = Powered Down (VCC ≤ 2.5 V), X = Irrelevant, H = High Level, L = Low Level Input VCC1 VCC1 VCC1 Output VCC2 750 kW IN 500 W 8W OUT 13 W Figure 18. Device I/O Schematics 22 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO7220x and ISO7221x devices use single-ended TTL or CMOS-logic switching technology. The supply voltage range is from 3 V (2.8 V for C-grade) to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 9.2 Typical Application The ISO7221x device can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter, transformer driver, and voltage regulator to create an isolated 4-20 mA current loop. VCC1 VCC2 ISO7221 Figure 19. Isolated 4 to 20 mA Current Loop 9.2.1 Design Requirements Unlike optocouplers, which require external components to improve performance, provide bias (or limit current), the ISO7220x and ISO7221x devices require only two external bypass capacitors to operate. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 23 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com Typical Application (continued) 9.2.2 Detailed Design Procedure Figure 20 and Figure 21 show the hookup of a typical ISO7220x and ISO7221x circuit. The only external components are two bypass capacitors. V CC1 V CC 2 0.1mF 2 mm max . from Vcc 1 INPUT 1 INA 2 INB INPUT 3 4 8 OUTA 7 OUTB 6 5 2 mm max . from Vcc 2 0.1mF OUTPUT OUTPUT ISO7220 GND 1 GND 2 Figure 20. Typical ISO7220x Circuit Hook-Up V CC1 V CC2 0.1mF 2 mm max . from Vcc1 OUTPUT 1 OUTA 2 INB INPUT 3 4 8 INA 7 OUTB 6 5 2 mm max . from Vcc 2 0.1mF INPUT OUTPUT ISO7221 GND 1 GND 2 Figure 21. Typical ISO7221x Circuit Hook-Up 9.2.3 Application Curve At maximum working voltage, the isolation barrier of the ISO7220x and ISO7221x devices has more than 28 years of life. WORKING LIFE -- YEARS 100 VIORM at 560 VPK 28 10 0 120 250 500 750 880 1000 WORKING VOLTAGE (V IORM ) -- VPK Figure 22. Time-Dependent Dielectric Breakdown Test Results 24 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 10 Power Supply Recommendations To ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments SN6501 data sheet. For such applications, detailed power supply design and transformer selection recommendations are available in the data sheet, SN6501 Transformer Driver for Isolated Power Supplies (SLLSEA0). 11 Layout 11.1 Layout Guidelines A minimum of four layers are required to accomplish a low EMI PCB design (see Figure 23). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and lowfrequency signal layer. • Route the high-speed traces on the top layer to avoid the use of vias (and the introduction of the inductances) and allow for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Place a solid ground plane next to the high-speed signal layer to establish controlled impedance for transmission line interconnects and provide an excellent low-inductance path for the return current flow. • Place the power plane next to the ground plane to create additional high-frequency bypass capacitance of approximately 100 pF/in2. • Route the slower speed control signals on the bottom layer to allow for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. Adding a second plane system to the stack makes the stack mechanically stable and prevents it from warping. The power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, see Application Note Digital Isolator Design Guide (SLLA284). 11.1.1 PCB Material For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives because of its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and selfextinguishing flammability characteristics. 11.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 23. Recommended Layer Stack Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 25 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 www.ti.com 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • Transformer Driver for Isolated Power Supplies, SLLSEA0 • Digital Isolator Design Guide, SLLA284 • Isolation Glossary, SLLA353 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ISO7220A Click here Click here Click here Click here Click here ISO7220B Click here Click here Click here Click here Click here ISO7220C Click here Click here Click here Click here Click here ISO7220M Click here Click here Click here Click here Click here ISO7221A Click here Click here Click here Click here Click here ISO7221B Click here Click here Click here Click here Click here ISO7221C Click here Click here Click here Click here Click here ISO7221M Click here Click here Click here Click here Click here 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks E2E is a trademark of Texas Instruments. DeviceNet is a trademark of Open DeviceNet Vendors Association. Profibus is a trademark of Profibus. All other trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 26 Submit Documentation Feedback Copyright © 2006–2015, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755N – JULY 2006 – REVISED SEPTEMBER 2015 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 27 PACKAGE OPTION ADDENDUM www.ti.com 8-Sep-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) ISO7220AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220BD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220MD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7221AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 8-Sep-2015 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) ISO7221ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221BD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221MD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 8-Sep-2015 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF ISO7220A, ISO7221A, ISO7221C : • Automotive: ISO7220A-Q1, ISO7221A-Q1, ISO7221C-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 12-Dec-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant ISO7220ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 12-Dec-2015 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) ISO7220ADR SOIC D 8 2500 367.0 367.0 35.0 ISO7220BDR SOIC D 8 2500 367.0 367.0 35.0 ISO7220CDR SOIC D 8 2500 367.0 367.0 35.0 ISO7220MDR SOIC D 8 2500 367.0 367.0 35.0 ISO7221ADR SOIC D 8 2500 367.0 367.0 35.0 ISO7221BDR SOIC D 8 2500 367.0 367.0 35.0 ISO7221CDR SOIC D 8 2500 367.0 367.0 35.0 ISO7221MDR SOIC D 8 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated