Vishay IRFP27N60KPBF Power mosfet Datasheet

IRFP27N60K, SiHFP27N60K
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
600
RDS(on) (Ω)
VGS = 10 V
0.18
Qg (Max.) (nC)
180
Qgs (nC)
56
Qgd (nC)
86
Configuration
Available
• Improved Gate, Avalanche and Dynamic dV/dt RoHS*
COMPLIANT
Ruggedness
• Fully Characterized Capacitance and Avalanche Voltage
and Current
Single
• Enhanced Body Diode dV/dt Capability
D
• Lead (Pb)-free Available
TO-247
APPLICATIONS
• Hard Switching Primary or PFC Switch
G
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
S
D
• High Speed Power Switching
S
G
• Motor Drive
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-247
IRFP27N60KPbF
Lead (Pb)-free
SiHFP27N60K-E3
IRFP27N60K
SnPb
SiHFP27N60K
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
600
Gate-Source Voltage
VGS
± 30
VGS at 10 V
Continuous Drain Current
Pulsed Drain
TC = 25 °C
ID
TC = 100 °C
Currenta
UNIT
V
27
18
A
IDM
110
4.0
W/°C
EAS
530
mJ
Currenta
IAR
27
A
Repetitive Avalanche Energya
EAR
50
mJ
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche
TC = 25 °C
Maximum Power Dissipation
PD
500
W
dV/dt
13
V/ns
TJ, Tstg
- 55 to + 150
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 1.4 mH, RG = 25 Ω, IAS = 27 A, dV/dt = 13 V/ns (see fig. 12).
c. ISD ≤ 27 A, dI/dt ≤ 390 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.29
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 µA
600
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
640
-
mV/°C
VGS(th)
VDS = VGS, ID = 250 µA
3.0
-
5.0
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 600 V, VGS = 0 V
-
-
50
VDS = 480 V, VGS = 0 V, TJ = 125 °C
-
-
250
µA
-
0.18
0.22
Ω
gfs
VDS = 50 V, ID = 16 A
14
-
-
S
Input Capacitance
Ciss
VGS = 0 V
-
4660
-
Output Capacitance
Coss
VDS = 25 V
-
460
-
Reverse Transfer Capacitance
Crss
f = 1.0 MHz, see fig. 5
-
41
-
-
5490
-
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
ID = 16 Ab
VGS = 10 V
Dynamic
Output Capacitance
Effective Output Capacitance
Total Gate Charge
Coss
Coss eff.
VGS = 0 V
VDS = 1.0 V , f = 1.0 MHz
VGS = 0 V
VDS = 480 V , f = 1.0 MHz
-
120
-
VGS = 0 V
VDS = 0 V to 480 V
-
250
-
-
-
180
-
-
56
Qg
VGS = 10 V
ID = 27 A, VDS = 480 V
pF
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
-
86
Turn-On Delay Time
td(on)
-
27
-
-
110
-
-
43
-
-
38
-
-
-
27
-
-
110
-
-
1.5
-
620
920
ns
-
11
16
µC
-
36
53
A
Rise Time
Turn-Off Delay Time
Fall Time
tr
td(off)
see fig. 6 and 13b
VDD = 300 V, ID = 27 A
RG = 4.3 Ω, VGS = 10 V, see fig.
10b
tf
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Reverse Recovery Current
Forward Turn-On Time
IRRM
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 27 A, VGS = 0 Vb
TJ = 25 °C, IF = 27 A, dI/dt = 100 A/µsb
V
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDS.
www.vishay.com
2
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1000
1000.00
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
10
ID, Drain-to-Source Current (Α )
ID, Drain-to-Source Current (A)
TOP
T J = 150°C
100.00
1
0.1
5.0V
0.01
10.00
1.00
T J = 25°C
0.10
VDS = 100V
20µs PULSE WIDTH
20µs PULSE WIDTH
Tj = 25°C
0.01
0.001
0.1
1
10
5.0
100
9.0
11.0
13.0
15.0
VGS, Gate-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
7.0
Fig. 3 - Typical Transfer Characteristics
3.5
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
I D = 28A
5.0V
1
0.1
20µs PULSE WIDTH
Tj = 150°C
0.01
0.1
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
100
2.5
(Normalized)
10
3.0
R DS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
TOP
2.0
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
TJ , Junction Temperature
80
100
120
140
160
( ° C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
100000
Coss = Cds + Cgd
100
I SD , Reverse Drain Current (A)
10000
C, Capacitance(pF)
1000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Ciss
1000
Coss
100
Crss
10
T J= 150 ° C
T J= 25 ° C
1
V GS = 0 V
10
1
10
100
0.1
1000
0.2
ID = 28A
0.8
1.1
1.4
V SD,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
1000
VDS = 480V
VDS = 300V
VDS = 120V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
12
0.5
10
VGS , Gate-to-Source Voltage (V)
100
7
5
2
10
100µsec
1msec
1
0.1
0
0
30
60
90
120
150
QG, Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
Tc = 25°C
Tj = 150°C
Single Pulse
10
10msec
100
1000
10000
VDS , Drain-toSource Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
RD
30
VDS
VGS
25
20
ID , Drain Current (A)
D.U.T.
RG
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
15
Fig. 10a - Switching Time Test Circuit
10
VDS
90 %
5
0
25
50
75
100
TC , Case Temperature
125
150
10 %
VGS
( ° C)
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
(Z thJC )
1
D = 0.50
0.1
Thermal Response
0.20
0.10
0.05
P DM
0.01
SINGLE PULSE
(THERMAL RESPONSE)
0.02
0.01
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.001
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+TC
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
tp
15 V
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
A
- VDD
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
A
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
950
ID
13A
18A
28A
TOP
EAS , Single Pulse Avalanche Energy (mJ)
760
BOTTOM
570
380
190
0
25
50
75
100
Starting Tj, Junction Temperature
125
150
( ° C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
VGS
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
IRFP27N60K, SiHFP27N60K
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Body diode
VDD
forward drop
Inductor curent
Ripple ≤ 5%
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91219.
Document Number: 91219
S-Pending-Rev. B, 12-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages