BFQ790 High Linearity High Gain 1/2 Watt RF Driver Amplifier Data Sheet Revision 2.0, 2014-08-26 Preliminary RF & Protection Devices Edition 2014-08-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BFQ790 BFQ790, High Linearity High Gain 1/2 Watt RF Driver Amplifier Revision History: 2014-08-26, Revision 2.0 Page Subjects (major changes since last revision) Preliminary datasheet based on measurements of engineering samples, replaces target datasheet. Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Preliminary Data Sheet 3 Revision 2.0, 2014-08-26 BFQ790 Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 Electrical Performance in Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 7.1 7.2 7.3 7.4 Electrical Performance in Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameter Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristic DC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristic AC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 Package Information SOT89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Preliminary Data Sheet 4 13 13 14 17 19 Revision 2.0, 2014-08-26 BFQ790 List of Figures List of Figures Figure 5-1 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5 Figure 7-6 Figure 7-7 Figure 7-8 Figure 7-9 Figure 7-10 Figure 7-11 Figure 7-12 Figure 7-13 Figure 7-14 Figure 7-15 Figure 7-16 Figure 7-17 Figure 7-18 Figure 7-19 Figure 7-20 Figure 7-21 Figure 7-22 Figure 9-1 Figure 9-2 Figure 9-3 Figure 9-4 Absolute Maximum Power Dissipation Pdiss,max vs. Ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BFQ790 Testing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector Current IC vs. VCE, IB = Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Current Gain hFE vs. IC at VCE = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector Emitter Breakdown Voltage BVCER vs. Resistor R_B/GND . . . . . . . . . . . . . . . . . . . . . . Transition Frequency fT vs. IC, VCE = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector Base Capacitance CCB vs. IC at f = 30 MHz, VCB = Parameter . . . . . . . . . . . . . . . . . . . Gain Gms, Gma, IS21I² vs. f at VCE = 5 V, IC = 250 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Power Gain Gmax vs. IC at VCE = 5 V, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Power Gain Gmax vs. VCE at IC = 250 mA, f = Parameter . . . . . . . . . . . . . . . . . . . . . . Output Reflection Coefficient S22 vs. f at VCE = 5 V, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . . Input Reflection Coefficient S11 vs. f at VCE = 5 V, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . Source Impedance ZSopt for Minimum Noise Figure vs. f at VCE = 5V, IC = Parameter . . . . . . . . . Noise Figure NFmin vs. f at VCE = 5 V, ZS = ZSopt, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . Noise Figure NFmin vs. IC at VCE = 5 V, ZS = ZSopt, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . . Noise Figure NF50 vs. IC at VCE = 5 V, ZS = 50 Ω, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . Load Pull Contour OP1dB [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . Load Pull Contour OIP3 [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . Load Pull Contour Gain G [dB] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt. . . . . . . . . . . . . . Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 155 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . . . . Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . . . . Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 2.6 GHz, ZI = Zopt . . . . . . . . . . . . . . . . OIP3 vs. IC at VCE = 5 V, f = 0.9 GHz, ZL = ZLopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marking Example (Marking BFQ790: R3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preliminary Data Sheet 5 11 14 17 17 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 29 29 29 29 Revision 2.0, 2014-08-26 BFQ790 List of Tables List of Tables Table 3-1 Table 4-1 Table 5-1 Table 6-1 Table 7-1 Table 7-2 Table 7-3 Table 7-4 Table 7-5 Table 7-6 Absolute Maximum Ratings at TA = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . 9 Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 General AC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AC Characteristics, VCE = 5 V, f = 0.9 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC Characteristics, VCE = 5 V, f = 1.8 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC Characteristics, VCE = 5 V, f = 2.6 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC Characteristics, VCE = 5 V, f = 3.5 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Preliminary Data Sheet 6 Revision 2.0, 2014-08-26 BFQ790 Product Brief 1 Product Brief The BFQ790 is a single stage high linearity high gain driver amplifier. The device is not internally matched and hence provides flexibility to be used for any application where high linearity is key. There are several application notes available, most of them for LTE frequencies, a summary can be found in chapter 6. The device is based on Infineon's reliable and cost effective NPN silicon germanium technology running in very high volume. The technology comprises lowohmic substrate contacts so that emitter bond wires can be omitted. Thereby the emitter inductance is minimized and the power gain optimized. For example one of the circuits provides an OIP3 of 41 dBm at 2650 MHz, with a power gain of 14 dB. The datasheet describes the device mainly at 250 mA collector current IC, operated in Class A mode. Under these conditions the BFQ790 provides ½ Watt RF power and highest linearity. If energy efficiency is in the focus it is recommended to operate the device in class AB mode. That means to adjust a quiescent current ICq lower than 250 mA and use the self biasing effect to get high linearity and efficiency when the input RF power is high. Please refer to figure 7-19, where as an example an ICq of 155 mA is adjusted. OIP3 vs. IC is shown in figure 7-22. For the BFQ790 an advanced large signal compact model is available. Further information please find in chapter 8. The BFQ790 is very rugged. A special collector design prevents from thermal runaway respectively 2nd breakdown. This leads to a high ruggedness against mismatch at the output. The collector design allows safe operation with a single 5 V supply. The special design of the emitter-base diode makes the input robust and yields a high maximum RF input power. The chip is housed in a halogen free industry standard package SOT89. The high thermal conductivity of the silicon substrate and the low thermal resistance of the package add up to a thermal resistance of only 35 K/W, what leads to moderate junction temperatures even at high dissipated DC power values. Recommended operating conditions can be found in chapter 4. The proper die attach with good thermal contact is tested 100%, so that there is a minimum variation of thermal properties. The devices are 100% DC and RF tested. Preliminary Data Sheet 7 Revision 2.0, 2014-08-26 BFQ790 Features 2 • • • • • • • • • • • • • Features High 3rd order intercept point OIP3 of 41 dBm @ 5 V, 250 mA in 1850 MHz and 2650 MHz Class A application circuits High compression point OP1dB of 27 dBm @ 5 V, 250 mA corresponding to 40% collector efficiency High power gain of 17 dB @ 5V, 250 mA in 1850 MHz Class A application circuit Low minimum noise figure of 2.6 dB @ 1800 MHz, 5 V, 70 mA Single stage, intended for external matching Exceptional ruggedness up to VSWR 10:1 at output High maximum RF input power PRFinmax of 18 dBm Safe operation with single 5 V supply 100% test of proper die attach for reproducible thermal contact 100% DC and RF tested Easy to use large signal compact (VBIC) model available Cost effective NPN SiGe technology running in very high volume Easy to use Pb-free (RoHS compliant) and halogen-free industry standard package SOT89, low RTHJS of 35 K/W 1 2 3 2 Applications As • • • High linearity driver or pre-driver in the transmit chain 2nd or 3rd stage LNA in the receive chain IF or LO buffer amplifier In • • • Commercial / industrial wireless infrastructure / basestations Repeaters Automated test equipment For • • • • Cellular, PCS, DCS, UMTS, LTE, CDMA, WCDMA, GSM, GPRS WLAN, WiMAX, WLL and MMDS ISM, AMR UHF television, CATV, DBS Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions Product Name Package BFQ790 SOT89 Preliminary Data Sheet Pin Configuration 1=B 2=E 8 3=C Marking R3 Revision 2.0, 2014-08-26 BFQ790 Absolute Maximum Ratings 3 Absolute Maximum Ratings Table 3-1 Absolute Maximum Ratings at TA = 25 °C (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition TA = 25 °C TA = -40 °C Max. Collector emitter voltage VCE 6.1 5.1 V Collector base voltage VCB 18 V Instantaneous total base emitter reverse voltage vBE -2.0 Instantaneous total collector current iC – DC collector current IC DC base current V DC + RF swing 600 mA DC + RF swing – 300 mA IB – 10 mA RF input power PRFin – 18 dBm Mismatch at output VSWR – 10:1 ESD stress pulse VESD -500 500 V HBM, all pins, acc. to ANSI / ESDA / JEDEC JS-001-2012 Dissipated power Pdiss – 1500 mW TS ≤ 97.5 °C1), regard In- and output matched In compression, over all phase angles derating curve in figure 5-1 Junction temperature TJ – 150 °C Operating case temperature TA -40 1052) °C Storage temperature TStg -55 150 °C 1) TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the pcb. 2) At the same time regard TJ,max. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Preliminary Data Sheet 9 Revision 2.0, 2014-08-26 BFQ790 Recommended Operating Conditions 4 Recommended Operating Conditions This following table shows examples of recommended operating conditions. As long as maximum ratings are regarded operation outside these conditions is permitted, but increases failure rate and reduces lifetime. For further information refer to the quality report available on the BFQ790 internet page. Table 4-1 Recommended Operating Conditions Operating Mode Ambient Collector DC RF Output 2) Tempera- Current Power Power 3) 1) ture Efficiency Dissipated Thermal Junction 4) 5) Power Resistance Temperaof pcb6) ture7) TA IC PDC RTHSA TJ [mA] [mW] η [mW] (dBm) [%] Pdiss [°C] [mW] [K/W] [°C] Compression 55 250 1250 500 (27) 40 750 35 110 Final stage 55 200 1000 250 (24) 25 750 35 110 High TA 85 120 600 50 (17) 8.5 550 10 110 Maximum TA 105 50 250 100 (20) 40 150 10 110 Linear 55 150 750 50 (17) 7 700 35 110 Very Linear 55 250 1250 50 (17) 4 1200 10 110 PRFout 1) 2) 3) 4) 5) Is the operating case temperature respectively of the heat sink. PDC = VCE * IC with VCE = 5V. RF power delivered to the load, PRFout = η * PDC. Efficiency of the conversion from DC power to RF power, η = PRFout / PDC (collector efficiency). Pdiss = PDC - PRFout. The RF output power PRFout delivered to the load reduces the power Pdiss to be dissipated by the device. This means a good output match is recommended. 6) RTHSA is the thermal resistance of the pcb including heat sink, that is between the soldering point S and the ambient A. Regard the impact of RTHSA on the junction temperature TJ, see below. The thermal design of the pcb, respectively RTHSA, has to be adjusted to the intended operating mode. 7) TJ = TA + Pdiss * RTHJA. RTHJA = RTHJS + RTHSA. RTHJA is the thermal resistance between the transistor junction J and the ambient A. RTHJS is the combined thermal resistance of die and package, which is 35 K/W for the BFQ790, see chapter 5. Preliminary Data Sheet 10 Revision 2.0, 2014-08-26 BFQ790 Thermal Characteristics 5 Thermal Characteristics Table 5-1 Thermal Resistance Parameter Symbol Junction - soldering point RTHJS Values Min. Typ. Max. – 35 – Unit Note / Test Condition K/W – 1600 1400 Pdiss,max [mW] 1200 1000 800 600 400 200 0 0 20 40 60 80 TS [°C] 100 120 140 160 Figure 5-1 Absolute Maximum Power Dissipation Pdiss,max vs. Ts Note: In the horizontal part of the derating curve the maximum power dissipation is given by Pdiss,max=VCE,max*IC,max. In this part the junction temperature TJ is lower than TJ,max. In the declining slope it is TJ=TJ,max, Pdiss,max has to be reduced according to the curve in order not to exceed TJ,max. It is TJ,max=TS+Pdiss,max*RTHJS. Preliminary Data Sheet 11 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Application 6 Electrical Performance in Application The table shows the most important results of the application notes available for the BFQ790. In all cases the matching is better 10 dB, the isolation ~20 dB, the stability factor > 1 and VCC = 5V. Fore more detailed informations please refer to the BFQ790 internet page. Application notes for Class AB operating mode respectively lower quiescent currents ICq are in development. Table 6-1 Application Notes Application Note Frequency OP1dB OIP3 Gain # [MHz] [dBm] [dBm] [dB] AN385 2620 - 2690 27 41 14 Class A 220 AN386 1805 - 1880 27 41 17 Class A 230 Preliminary Data Sheet 12 Operating Mode ICq [mA] Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 7 Electrical Performance in Test Fixture 7.1 DC Parameter Table Table 7-1 DC Characteristics at TA = 25 °C Parameter Collector emitter breakdown voltage Collector emitter leakage current Symbol V(BR)CEO ICES Values Min. Typ. Max. 6.1 6.7 – – 1 0.1 40 3 1) 40 1) 1) Unit Note / Test Condition V IC = 1 mA, open base nA µA VCE = 8 V, VBE = 0 VCE = 18 V, VBE = 0 E-B short circuited Collector base leakage current ICBO – 1 nA VCB = 8 V, IE = 0 Open emitter Emitter base leakage current IEBO – 1 40 DC current gain hFE 60 120 180 nA VEB = 0.5 V, IC = 0 Open collector VCE = 5 V, IC = 250 mA Pulse measured2) 1) Upper spec value limited by the cycle time of the 100% test. 2) Pulse width is 1 ms, duty cycle 10%. Regard that the current gain hFE depends on the junction temperature TJ and TJ amongst others from the thermal resistance RTHSA of the pcb, see notes to table 4-1. Hence the hFE specified in this datasheet must not be the same as in the application. It is highly recommended to apply circuit design techniques to make the collector current IC independent on the hFE production variation and temperature effects. Preliminary Data Sheet 13 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 7.2 AC Parameter Tables Table 7-2 General AC Characteristics at TA = 25 °C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Transition frequency fT – 20 – GHz VCE = 5 V, IC = 250 mA, f = 0.5 GHz Collector base capacitance CCB – 1.1 – pF VCB = 5 V, VBE = 0 f = 1 MHz Emitter grounded Collector emitter capacitance CCE – 2.2 – pF VCE = 5 V, VBE = 0 f = 1 MHz Base grounded Emitter base capacitance CEB – 9.4 – pF VEB = 0.5 V, VCB = 0 f = 1 MHz Collector grounded Measurement setup for the AC characteristics shown in tables 7-3 to 7-6 is a test fixture with Bias T’s and tuners to adjust the source and load impedances in a 50 Ω system, TA = 25 °C. Figure 7-1 BFQ790 Testing Circuit Preliminary Data Sheet 14 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture Table 7-3 AC Characteristics, VCE = 5 V, f = 0.9 GHz Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Power gain dB Maximum power gain Transducer gain Gma |S21| 2 – 23 – IC = 250 mA – 13 – IC = 250 mA Minimum Noise Figure Minimum noise figure dB NFmin – 2.5 – Linearity ZS = ZSopt IC = 70 mA dBm ZL = ZLopt 1 dB compression point at output OP1dB – 27 – IC = 250 mA 3rd order intercept point at output OIP3 – 38.5 – IC = 250 mA Table 7-4 AC Characteristics, VCE = 5 V, f = 1.8 GHz Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Power gain dB Maximum power gain Transducer gain Gma |S21| 2 – 18.5 – IC = 250 mA – 7.5 – IC = 250 mA Minimum Noise Figure Minimum noise figure dB NFmin – 2.6 – Linearity ZS = ZSopt IC = 70 mA dBm ZL = ZLopt 1 dB compression point at output OP1dB – 27 – IC = 250 mA 3rd order intercept point at output OIP3 – 38.5 – IC = 250 mA Table 7-5 AC Characteristics, VCE = 5 V, f = 2.6 GHz Parameter Symbol Values Min. Typ. Unit Max. Power gain Maximum power gain Transducer gain dB Gma |S21| 2 – 16 – IC = 250 mA – 5.5 – IC = 250 mA Minimum Noise Figure Minimum noise figure Note / Test Condition dB NFmin – 3.0 – Linearity ZS = ZSopt IC = 70 mA dBm ZL = ZLopt 1 dB compression point at output OP1dB – 27 – IC = 250 mA 3rd order intercept point at output OIP3 – 38.5 – IC = 250 mA Preliminary Data Sheet 15 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture Table 7-6 AC Characteristics, VCE = 5 V, f = 3.5 GHz Parameter Symbol Values Min. Typ. Unit Max. Power gain Maximum power gain Transducer gain dB Gma |S21| 2 – 13 – IC = 250 mA – 3 – IC = 250 mA Minimum Noise Figure Minimum noise figure Note / Test Condition dB NFmin – 3.4 – Linearity ZS = ZSopt IC = 70 mA dBm ZL = ZLopt 1 dB compression point at output OP1dB – 27 – IC = 250 mA 3rd order intercept point at output OIP3 – 38.5 – IC = 250 mA Preliminary Data Sheet 16 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 7.3 Characteristic DC Diagrams 500 6mA 450 5.25mA 400 4.5mA 350 3.75mA IC [mA] 300 3mA 250 2.25mA 200 1.5mA 150 0.75mA 100 50 0 0mA 0 1 2 3 4 5 6 7 VCE [V] Figure 7-2 Collector Current IC vs. VCE, IB = Parameter Note: Regard absolute maximum ratings for IC, VCE and Pdiss 3 hFE 10 2 10 1 10 0 10 1 2 10 10 3 10 Ic [mA] Figure 7-3 DC Current Gain hFE vs. IC at VCE = 5 V Preliminary Data Sheet 17 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 24 22 20 VCER[V] 18 16 14 12 10 8 6 1 10 2 10 3 10 4 10 RBE[Ohm] 5 10 6 10 Figure 7-4 Collector Emitter Breakdown Voltage BVCER vs. Resistor R_B/GND Note: The above figure shows the collector-emitter breakdown voltage BVCER with a resistor R_B/GND between base and emitter. Only for very high R_B/GND values ("open base") the breakdown voltage is as low as BVCEO (here 6.7 V). With decreasing R_B/GND values BVCER increases, e.g. at R_B/GND=10 kOhm to BVCER=10 V. In the application the biasing base resistance together with block capacitors take over the function of R_B/GND and allows the RF voltage amplitude to swing up to voltages much higher than BVCEO, no clipping occurs. Due to this effect the transistor can be biased at VCE=5 V and still high RF output powers achieved, see the OP1dB values reported in chapter 7.2. Preliminary Data Sheet 18 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 7.4 Characteristic AC Diagrams 25 fT [GHz] 20 3.00V 4.00V 5.00V 2.00V 15 10 5 1.00V 0.50V 0 0 100 200 300 IC [mA] 400 500 600 Figure 7-5 Transition Frequency fT vs. IC, VCE = Parameter 3 CCB [pF] 2.6 2.2 1.00V 1.8 2.00V 1.4 1 3.00V 4.00V 5.00V 0 100 200 300 IC [mA] 400 500 600 Figure 7-6 Collector Base Capacitance CCB vs. IC at f = 30 MHz, VCB = Parameter Preliminary Data Sheet 19 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 36 Gms 33 30 27 G [dB] 24 21 18 G ma 15 12 9 6 |S21|2 3 0 0 1 2 3 f [GHz] 4 5 6 Figure 7-7 Gain Gms, Gma, IS21I² vs. f at VCE = 5 V, IC = 250 mA 36 33 0.15GHz 30 Gmax [dB] 27 0.45GHz 24 0.90GHz 21 1.50GHz 1.80GHz 2.60GHz 18 15 3.50GHz 12 9 6 0 100 200 300 IC [mA] 400 500 600 Figure 7-8 Maximum Power Gain Gmax vs. IC at VCE = 5 V, f = Parameter Preliminary Data Sheet 20 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 36 33 0.15GHz 30 27 Gmax [dB] 0.45GHz 24 0.90GHz 21 1.50GHz 1.80GHz 18 2.60GHz 15 3.50GHz 12 9 6 0 1 2 3 4 V CE 5 6 7 [V] Figure 7-9 Maximum Power Gain Gmax vs. VCE at IC = 250 mA, f = Parameter 1 1.5 0.5 2 0.4 3 5.0 0.3 6.0 4.0 4 3.0 0.2 5 0.01 to 6 GHz 2.0 0.1 0.1 0 1.0 0.2 0.3 0.4 0.5 10 1 1.5 2 3 4 5 0.01 −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 70 mA 150 mA 200 mA 250 mA Figure 7-10 Output Reflection Coefficient S22 vs. f at VCE = 5 V, IC = Parameter Preliminary Data Sheet 21 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 1 1.5 0.5 2 4.0 5.0 0.4 3 3.0 0.3 6.0 4 0.2 5 0.01 to 6 GHz 2.0 0.1 10 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 0.01 1.0 −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 70 mA −2 150 mA −1.5 200 mA −1 250 mA Figure 7-11 Input Reflection Coefficient S11 vs. f at VCE = 5 V, IC = Parameter 1 1.5 0.5 2 0.4 3 0.3 4 0.2 5 0.45 0.45 to 3.5 GHz 0.1 10 0.9 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 1.5 −0.1 −10 1.8 −0.2 −5 −4 2.6 −0.3 −3 3.0 −0.4 3.5 −0.5 −2 −1.5 −1 70 mA 150 mA 200 mA 250 mA Figure 7-12 Source Impedance ZSopt for Minimum Noise Figure vs. f at VCE = 5V, IC = Parameter Preliminary Data Sheet 22 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 5 4.5 4 NFmin [dB] 3.5 3 2.5 IC = 250 mA IC = 200 mA 2 IC = 150 mA 1.5 1 IC = 70 mA 0 0.5 1 1.5 2 f [GHz] 2.5 3 3.5 4 Figure 7-13 Noise Figure NFmin vs. f at VCE = 5 V, ZS = ZSopt, IC = Parameter 5 4.5 4 NFmin [dB] 3.5 3 2.5 f = 3.5 GHz f = 2.6 GHz 2 f = 1.8 GHz f = 1.5 GHz 1.5 1 0 50 100 150 200 250 IC [mA] Figure 7-14 Noise Figure NFmin vs. IC at VCE = 5 V, ZS = ZSopt, f = Parameter Preliminary Data Sheet 23 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 8 7.5 7 6.5 NF50 [dB] 6 5.5 5 4.5 f = 3.5 GHz 4 f = 2.6 GHz 3.5 f = 1.8 GHz 3 f = 1.5 GHz 2.5 2 0 50 100 150 200 250 IC [mA] Figure 7-15 Noise Figure NF50 vs. IC at VCE = 5 V, ZS = 50 Ω, f = Parameter 1 1.5 0.5 2 0.4 3 0.3 4 21.3 0.2 5 23.4 24.3 0.1 0.1 0 26 0.2 26.5 0.3 0.4 0.5 10 1 25.2 23.9 1.5 2 3 4 5 27 −0.1 −10 25.6 24.7 −0.2 −5 23.4 −0.3 −4 21.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 7-16 Load Pull Contour OP1dB [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt Preliminary Data Sheet 24 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 1 1.5 0.5 2 0.4 3 0.3 32.5 0.2 4 0.1 10 35.7 0.1 0 5 34.7 0.2 0.3 0.4 0.5 37.9 −0.1 1 1.5 2 3 4 5 37.4 36.3 −10 38.5 36.8 −0.2 −5 −4 35.2 −0.3 −3 33 −0.4 −0.5 −2 −1.5 −1 Figure 7-17 Load Pull Contour OIP3 [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt 1 1.5 0.5 2 0.4 14.4 16 0.3 0.2 0.1 0.1 0.2 4 16.5 19 19.6 0 3 18 5 10 17 0.3 0.4 0.5 1 1.5 2 3 4 5 18.5 17.5 16.5 15.5 −0.1 −0.2 −10 −5 −4 −0.3 13.4 −3 −0.4 −0.5 −2 −1.5 −1 Figure 7-18 Load Pull Contour Gain G [dB] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt Preliminary Data Sheet 25 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 80 300 IP1dB 280 I C 60 260 PAE 50 240 40 220 30 200 IC [mA] Pout [dBm], Gain [dB], PAE [%] 70 G 20 180 Pout 10 0 −20 160 −15 −10 −5 0 5 Pin [dBm] 10 15 140 20 Figure 7-19 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 155 mA, f = 0.9 GHz, ZI = Zopt 60 290 IP1dB 40 280 30 G 20 270 PAE Pout 10 IC [mA] Pout [dBm], Gain [dB], PAE [%] 50 I C 0 260 −10 −20 −25 −20 −15 −10 −5 0 Pin [dBm] 5 10 250 15 Figure 7-20 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 0.9 GHz, ZI = Zopt Preliminary Data Sheet 26 Revision 2.0, 2014-08-26 BFQ790 Electrical Performance in Test Fixture 50 280 IP1dB Pout [dBm], Gain [dB], PAE [%] 40 275 I C 270 Pout 20 265 G 10 IC [mA] 30 260 PAE 0 −10 −25 255 −20 −15 −10 −5 0 Pin [dBm] 5 10 250 15 Figure 7-21 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 2.6 GHz, ZI = Zopt 39 38 OIP3 [dBm] 37 36 35 34 33 32 50 100 150 IC [mA] 200 250 Figure 7-22 OIP3 vs. IC at VCE = 5 V, f = 0.9 GHz, ZL = ZLopt Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves. TA = 25 °C. Preliminary Data Sheet 27 Revision 2.0, 2014-08-26 BFQ790 Simulation Data 8 Simulation Data For the BFQ790 a large signal model exists. It is a VBIC model, which is an advancement of the SPICE GummelPoon model. It covers properties of a power transistor which are not known by the standard SPICE Gummel-Poon model, such as self-heating, quasi-saturation and voltage breakdown. The VBIC model can be used in standard simulation tools such as ADS and MWO as easily as the SPICE Gummel-Poon model. On the BFQ790 internet page the VBIC model is provided as a netlist. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. Besides the DC characteristics all S-parameters in magnitude and phase, noise figure (including optimum source impedance and equivalent noise resistance), intermodulation and compression have been extracted. On the BFQ790 internet page you also find the S-parameters (including noise parameters) for linear simulation. In any case please consult our website and download the latest versions before actually starting your design. Preliminary Data Sheet 28 Revision 2.0, 2014-08-26 BFQ790 Package Information SOT89 9 Package Information SOT89 4.5 ±0.1 45˚ B 1.5 ±0.1 0.2 MAX. 2 2.75 +0.1 -0.15 1.6 ±0.2 1±0.2 1 1) 0.15 4 ±0.25 1±0.1 1) 2.5±0.1 0.25 ±0.05 3 1.5 0.35 ±0.1 0.45 +0.2 -0.1 3 0.15 M B x3 0.2 B 1) Ejector pin markings possible SOT89-PO V02 Figure 9-1 Package Outline 1.2 1.0 2.5 2.0 0.8 0.8 0.7 SOT89-FP V02 Figure 9-2 Package Footprint Figure 9-3 Marking Example (Marking BFQ790: R3) Pin 1 4.3 12 4.6 8 1.6 SOT89-TP V02 Figure 9-4 Tape Dimensions Preliminary Data Sheet 29 Revision 2.0, 2014-08-26 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG