Infineon BFQ790 High linearity high gain 1/2 watt rf driver amplifier Datasheet

BFQ790
High Linearity High Gain 1/2 Watt RF Driver Amplifier
Data Sheet
Revision 2.0, 2014-08-26
Preliminary
RF & Protection Devices
Edition 2014-08-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
BFQ790
BFQ790, High Linearity High Gain 1/2 Watt RF Driver Amplifier
Revision History: 2014-08-26, Revision 2.0
Page
Subjects (major changes since last revision)
Preliminary datasheet based on measurements of engineering samples, replaces target datasheet.
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Preliminary Data Sheet
3
Revision 2.0, 2014-08-26
BFQ790
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
Electrical Performance in Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7
7.1
7.2
7.3
7.4
Electrical Performance in Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Parameter Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristic DC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristic AC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9
Package Information SOT89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Preliminary Data Sheet
4
13
13
14
17
19
Revision 2.0, 2014-08-26
BFQ790
List of Figures
List of Figures
Figure 5-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Absolute Maximum Power Dissipation Pdiss,max vs. Ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BFQ790 Testing Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Current IC vs. VCE, IB = Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Current Gain hFE vs. IC at VCE = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Emitter Breakdown Voltage BVCER vs. Resistor R_B/GND . . . . . . . . . . . . . . . . . . . . . .
Transition Frequency fT vs. IC, VCE = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Base Capacitance CCB vs. IC at f = 30 MHz, VCB = Parameter . . . . . . . . . . . . . . . . . . .
Gain Gms, Gma, IS21I² vs. f at VCE = 5 V, IC = 250 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Power Gain Gmax vs. IC at VCE = 5 V, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Power Gain Gmax vs. VCE at IC = 250 mA, f = Parameter . . . . . . . . . . . . . . . . . . . . . .
Output Reflection Coefficient S22 vs. f at VCE = 5 V, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . .
Input Reflection Coefficient S11 vs. f at VCE = 5 V, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . . . .
Source Impedance ZSopt for Minimum Noise Figure vs. f at VCE = 5V, IC = Parameter . . . . . . . . .
Noise Figure NFmin vs. f at VCE = 5 V, ZS = ZSopt, IC = Parameter . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Figure NFmin vs. IC at VCE = 5 V, ZS = ZSopt, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . .
Noise Figure NF50 vs. IC at VCE = 5 V, ZS = 50 Ω, f = Parameter . . . . . . . . . . . . . . . . . . . . . . . . .
Load Pull Contour OP1dB [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . .
Load Pull Contour OIP3 [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . .
Load Pull Contour Gain G [dB] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt. . . . . . . . . . . . . .
Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 155 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . . . .
Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 0.9 GHz, ZI = Zopt . . . . . . . . . . . . . . . .
Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 2.6 GHz, ZI = Zopt . . . . . . . . . . . . . . . .
OIP3 vs. IC at VCE = 5 V, f = 0.9 GHz, ZL = ZLopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking Example (Marking BFQ790: R3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Preliminary Data Sheet
5
11
14
17
17
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
29
29
29
29
Revision 2.0, 2014-08-26
BFQ790
List of Tables
List of Tables
Table 3-1
Table 4-1
Table 5-1
Table 6-1
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Absolute Maximum Ratings at TA = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . 9
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
General AC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC Characteristics, VCE = 5 V, f = 0.9 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC Characteristics, VCE = 5 V, f = 1.8 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC Characteristics, VCE = 5 V, f = 2.6 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC Characteristics, VCE = 5 V, f = 3.5 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Preliminary Data Sheet
6
Revision 2.0, 2014-08-26
BFQ790
Product Brief
1
Product Brief
The BFQ790 is a single stage high linearity high gain driver amplifier. The device is not internally matched and
hence provides flexibility to be used for any application where high linearity is key. There are several application
notes available, most of them for LTE frequencies, a summary can be found in chapter 6. The device is based on
Infineon's reliable and cost effective NPN silicon germanium technology running in very high volume. The
technology comprises lowohmic substrate contacts so that emitter bond wires can be omitted. Thereby the emitter
inductance is minimized and the power gain optimized. For example one of the circuits provides an OIP3 of
41 dBm at 2650 MHz, with a power gain of 14 dB.
The datasheet describes the device mainly at 250 mA collector current IC, operated in Class A mode. Under these
conditions the BFQ790 provides ½ Watt RF power and highest linearity. If energy efficiency is in the focus it is
recommended to operate the device in class AB mode. That means to adjust a quiescent current ICq lower than
250 mA and use the self biasing effect to get high linearity and efficiency when the input RF power is high. Please
refer to figure 7-19, where as an example an ICq of 155 mA is adjusted. OIP3 vs. IC is shown in figure 7-22.
For the BFQ790 an advanced large signal compact model is available. Further information please find in chapter 8.
The BFQ790 is very rugged. A special collector design prevents from thermal runaway respectively 2nd
breakdown. This leads to a high ruggedness against mismatch at the output. The collector design allows safe
operation with a single 5 V supply. The special design of the emitter-base diode makes the input robust and yields
a high maximum RF input power.
The chip is housed in a halogen free industry standard package SOT89. The high thermal conductivity of the
silicon substrate and the low thermal resistance of the package add up to a thermal resistance of only 35 K/W,
what leads to moderate junction temperatures even at high dissipated DC power values. Recommended operating
conditions can be found in chapter 4. The proper die attach with good thermal contact is tested 100%, so that there
is a minimum variation of thermal properties. The devices are 100% DC and RF tested.
Preliminary Data Sheet
7
Revision 2.0, 2014-08-26
BFQ790
Features
2
•
•
•
•
•
•
•
•
•
•
•
•
•
Features
High 3rd order intercept point OIP3 of 41 dBm @ 5 V, 250 mA
in 1850 MHz and 2650 MHz Class A application circuits
High compression point OP1dB of 27 dBm @ 5 V, 250 mA
corresponding to 40% collector efficiency
High power gain of 17 dB @ 5V, 250 mA in 1850 MHz Class A
application circuit
Low minimum noise figure of 2.6 dB @ 1800 MHz, 5 V, 70 mA
Single stage, intended for external matching
Exceptional ruggedness up to VSWR 10:1 at output
High maximum RF input power PRFinmax of 18 dBm
Safe operation with single 5 V supply
100% test of proper die attach for reproducible thermal contact
100% DC and RF tested
Easy to use large signal compact (VBIC) model available
Cost effective NPN SiGe technology running in very high volume
Easy to use Pb-free (RoHS compliant) and halogen-free industry
standard package SOT89, low RTHJS of 35 K/W
1
2
3
2
Applications
As
•
•
•
High linearity driver or pre-driver in the transmit chain
2nd or 3rd stage LNA in the receive chain
IF or LO buffer amplifier
In
•
•
•
Commercial / industrial wireless infrastructure / basestations
Repeaters
Automated test equipment
For
•
•
•
•
Cellular, PCS, DCS, UMTS, LTE, CDMA, WCDMA, GSM, GPRS
WLAN, WiMAX, WLL and MMDS
ISM, AMR
UHF television, CATV, DBS
Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions
Product Name
Package
BFQ790
SOT89
Preliminary Data Sheet
Pin Configuration
1=B
2=E
8
3=C
Marking
R3
Revision 2.0, 2014-08-26
BFQ790
Absolute Maximum Ratings
3
Absolute Maximum Ratings
Table 3-1
Absolute Maximum Ratings at TA = 25 °C (unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
TA = 25 °C
TA = -40 °C
Max.
Collector emitter voltage
VCE
6.1
5.1
V
Collector base voltage
VCB
18
V
Instantaneous total base emitter
reverse voltage
vBE
-2.0
Instantaneous total collector current
iC
–
DC collector current
IC
DC base current
V
DC + RF swing
600
mA
DC + RF swing
–
300
mA
IB
–
10
mA
RF input power
PRFin
–
18
dBm
Mismatch at output
VSWR
–
10:1
ESD stress pulse
VESD
-500
500
V
HBM, all pins, acc. to
ANSI / ESDA /
JEDEC JS-001-2012
Dissipated power
Pdiss
–
1500
mW
TS ≤ 97.5 °C1), regard
In- and output matched
In compression, over all
phase angles
derating curve in figure
5-1
Junction temperature
TJ
–
150
°C
Operating case temperature
TA
-40
1052)
°C
Storage temperature
TStg
-55
150
°C
1) TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the pcb.
2) At the same time regard TJ,max.
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
Preliminary Data Sheet
9
Revision 2.0, 2014-08-26
BFQ790
Recommended Operating Conditions
4
Recommended Operating Conditions
This following table shows examples of recommended operating conditions. As long as maximum ratings are
regarded operation outside these conditions is permitted, but increases failure rate and reduces lifetime. For
further information refer to the quality report available on the BFQ790 internet page.
Table 4-1
Recommended Operating Conditions
Operating
Mode
Ambient Collector DC
RF Output
2)
Tempera- Current
Power Power 3)
1)
ture
Efficiency Dissipated Thermal
Junction
4)
5)
Power
Resistance Temperaof pcb6)
ture7)
TA
IC
PDC
RTHSA
TJ
[mA]
[mW]
η
[mW] (dBm) [%]
Pdiss
[°C]
[mW]
[K/W]
[°C]
Compression 55
250
1250
500 (27)
40
750
35
110
Final stage
55
200
1000
250 (24)
25
750
35
110
High TA
85
120
600
50 (17)
8.5
550
10
110
Maximum TA
105
50
250
100 (20)
40
150
10
110
Linear
55
150
750
50 (17)
7
700
35
110
Very Linear
55
250
1250
50 (17)
4
1200
10
110
PRFout
1)
2)
3)
4)
5)
Is the operating case temperature respectively of the heat sink.
PDC = VCE * IC with VCE = 5V.
RF power delivered to the load, PRFout = η * PDC.
Efficiency of the conversion from DC power to RF power, η = PRFout / PDC (collector efficiency).
Pdiss = PDC - PRFout. The RF output power PRFout delivered to the load reduces the power Pdiss to be dissipated by the
device. This means a good output match is recommended.
6) RTHSA is the thermal resistance of the pcb including heat sink, that is between the soldering point S and the ambient A.
Regard the impact of RTHSA on the junction temperature TJ, see below. The thermal design of the pcb, respectively RTHSA,
has to be adjusted to the intended operating mode.
7) TJ = TA + Pdiss * RTHJA. RTHJA = RTHJS + RTHSA.
RTHJA is the thermal resistance between the transistor junction J and the ambient A.
RTHJS is the combined thermal resistance of die and package, which is 35 K/W for the BFQ790, see chapter 5.
Preliminary Data Sheet
10
Revision 2.0, 2014-08-26
BFQ790
Thermal Characteristics
5
Thermal Characteristics
Table 5-1
Thermal Resistance
Parameter
Symbol
Junction - soldering point
RTHJS
Values
Min.
Typ.
Max.
–
35
–
Unit
Note / Test Condition
K/W
–
1600
1400
Pdiss,max [mW]
1200
1000
800
600
400
200
0
0
20
40
60
80
TS [°C]
100
120
140
160
Figure 5-1 Absolute Maximum Power Dissipation Pdiss,max vs. Ts
Note: In the horizontal part of the derating curve the maximum power dissipation is given by Pdiss,max=VCE,max*IC,max.
In this part the junction temperature TJ is lower than TJ,max. In the declining slope it is TJ=TJ,max, Pdiss,max has
to be reduced according to the curve in order not to exceed TJ,max. It is TJ,max=TS+Pdiss,max*RTHJS.
Preliminary Data Sheet
11
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Application
6
Electrical Performance in Application
The table shows the most important results of the application notes available for the BFQ790. In all cases the
matching is better 10 dB, the isolation ~20 dB, the stability factor > 1 and VCC = 5V. Fore more detailed informations
please refer to the BFQ790 internet page. Application notes for Class AB operating mode respectively lower
quiescent currents ICq are in development.
Table 6-1
Application Notes
Application
Note
Frequency
OP1dB
OIP3
Gain
#
[MHz]
[dBm]
[dBm]
[dB]
AN385
2620 - 2690
27
41
14
Class A
220
AN386
1805 - 1880
27
41
17
Class A
230
Preliminary Data Sheet
12
Operating
Mode
ICq
[mA]
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
7
Electrical Performance in Test Fixture
7.1
DC Parameter Table
Table 7-1
DC Characteristics at TA = 25 °C
Parameter
Collector emitter breakdown voltage
Collector emitter leakage current
Symbol
V(BR)CEO
ICES
Values
Min.
Typ.
Max.
6.1
6.7
–
–
1
0.1
40
3
1)
40
1)
1)
Unit
Note / Test Condition
V
IC = 1 mA, open base
nA
µA
VCE = 8 V, VBE = 0
VCE = 18 V, VBE = 0
E-B short circuited
Collector base leakage current
ICBO
–
1
nA
VCB = 8 V, IE = 0
Open emitter
Emitter base leakage current
IEBO
–
1
40
DC current gain
hFE
60
120
180
nA
VEB = 0.5 V, IC = 0
Open collector
VCE = 5 V, IC = 250 mA
Pulse measured2)
1) Upper spec value limited by the cycle time of the 100% test.
2) Pulse width is 1 ms, duty cycle 10%. Regard that the current gain hFE depends on the junction temperature TJ and TJ
amongst others from the thermal resistance RTHSA of the pcb, see notes to table 4-1. Hence the hFE specified in this
datasheet must not be the same as in the application. It is highly recommended to apply circuit design techniques to make
the collector current IC independent on the hFE production variation and temperature effects.
Preliminary Data Sheet
13
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
7.2
AC Parameter Tables
Table 7-2
General AC Characteristics at TA = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Transition frequency
fT
–
20
–
GHz
VCE = 5 V, IC = 250 mA,
f = 0.5 GHz
Collector base capacitance
CCB
–
1.1
–
pF
VCB = 5 V, VBE = 0
f = 1 MHz
Emitter grounded
Collector emitter capacitance
CCE
–
2.2
–
pF
VCE = 5 V, VBE = 0
f = 1 MHz
Base grounded
Emitter base capacitance
CEB
–
9.4
–
pF
VEB = 0.5 V, VCB = 0
f = 1 MHz
Collector grounded
Measurement setup for the AC characteristics shown in tables 7-3 to 7-6 is a test fixture with Bias T’s and tuners
to adjust the source and load impedances in a 50 Ω system, TA = 25 °C.
Figure 7-1 BFQ790 Testing Circuit
Preliminary Data Sheet
14
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
Table 7-3
AC Characteristics, VCE = 5 V, f = 0.9 GHz
Parameter
Symbol
Values
Min.
Typ.
Unit
Note / Test Condition
Max.
Power gain
dB
Maximum power gain
Transducer gain
Gma
|S21|
2
–
23
–
IC = 250 mA
–
13
–
IC = 250 mA
Minimum Noise Figure
Minimum noise figure
dB
NFmin
–
2.5
–
Linearity
ZS = ZSopt
IC = 70 mA
dBm
ZL = ZLopt
1 dB compression point at output
OP1dB
–
27
–
IC = 250 mA
3rd order intercept point at output
OIP3
–
38.5
–
IC = 250 mA
Table 7-4
AC Characteristics, VCE = 5 V, f = 1.8 GHz
Parameter
Symbol
Values
Min.
Typ.
Unit
Note / Test Condition
Max.
Power gain
dB
Maximum power gain
Transducer gain
Gma
|S21|
2
–
18.5
–
IC = 250 mA
–
7.5
–
IC = 250 mA
Minimum Noise Figure
Minimum noise figure
dB
NFmin
–
2.6
–
Linearity
ZS = ZSopt
IC = 70 mA
dBm
ZL = ZLopt
1 dB compression point at output
OP1dB
–
27
–
IC = 250 mA
3rd order intercept point at output
OIP3
–
38.5
–
IC = 250 mA
Table 7-5
AC Characteristics, VCE = 5 V, f = 2.6 GHz
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Power gain
Maximum power gain
Transducer gain
dB
Gma
|S21|
2
–
16
–
IC = 250 mA
–
5.5
–
IC = 250 mA
Minimum Noise Figure
Minimum noise figure
Note / Test Condition
dB
NFmin
–
3.0
–
Linearity
ZS = ZSopt
IC = 70 mA
dBm
ZL = ZLopt
1 dB compression point at output
OP1dB
–
27
–
IC = 250 mA
3rd order intercept point at output
OIP3
–
38.5
–
IC = 250 mA
Preliminary Data Sheet
15
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
Table 7-6
AC Characteristics, VCE = 5 V, f = 3.5 GHz
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Power gain
Maximum power gain
Transducer gain
dB
Gma
|S21|
2
–
13
–
IC = 250 mA
–
3
–
IC = 250 mA
Minimum Noise Figure
Minimum noise figure
Note / Test Condition
dB
NFmin
–
3.4
–
Linearity
ZS = ZSopt
IC = 70 mA
dBm
ZL = ZLopt
1 dB compression point at output
OP1dB
–
27
–
IC = 250 mA
3rd order intercept point at output
OIP3
–
38.5
–
IC = 250 mA
Preliminary Data Sheet
16
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
7.3
Characteristic DC Diagrams
500
6mA
450
5.25mA
400
4.5mA
350
3.75mA
IC [mA]
300
3mA
250
2.25mA
200
1.5mA
150
0.75mA
100
50
0
0mA
0
1
2
3
4
5
6
7
VCE [V]
Figure 7-2 Collector Current IC vs. VCE, IB = Parameter
Note: Regard absolute maximum ratings for IC, VCE and Pdiss
3
hFE
10
2
10
1
10
0
10
1
2
10
10
3
10
Ic [mA]
Figure 7-3 DC Current Gain hFE vs. IC at VCE = 5 V
Preliminary Data Sheet
17
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
24
22
20
VCER[V]
18
16
14
12
10
8
6
1
10
2
10
3
10
4
10
RBE[Ohm]
5
10
6
10
Figure 7-4 Collector Emitter Breakdown Voltage BVCER vs. Resistor R_B/GND
Note: The above figure shows the collector-emitter breakdown voltage BVCER with a resistor R_B/GND between
base and emitter. Only for very high R_B/GND values ("open base") the breakdown voltage is as low as
BVCEO (here 6.7 V). With decreasing R_B/GND values BVCER increases, e.g. at R_B/GND=10 kOhm to
BVCER=10 V. In the application the biasing base resistance together with block capacitors take over the
function of R_B/GND and allows the RF voltage amplitude to swing up to voltages much higher than BVCEO,
no clipping occurs. Due to this effect the transistor can be biased at VCE=5 V and still high RF output powers
achieved, see the OP1dB values reported in chapter 7.2.
Preliminary Data Sheet
18
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
7.4
Characteristic AC Diagrams
25
fT [GHz]
20
3.00V
4.00V
5.00V
2.00V
15
10
5
1.00V
0.50V
0
0
100
200
300
IC [mA]
400
500
600
Figure 7-5 Transition Frequency fT vs. IC, VCE = Parameter
3
CCB [pF]
2.6
2.2
1.00V
1.8
2.00V
1.4
1
3.00V
4.00V
5.00V
0
100
200
300
IC [mA]
400
500
600
Figure 7-6 Collector Base Capacitance CCB vs. IC at f = 30 MHz, VCB = Parameter
Preliminary Data Sheet
19
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
36
Gms
33
30
27
G [dB]
24
21
18
G
ma
15
12
9
6
|S21|2
3
0
0
1
2
3
f [GHz]
4
5
6
Figure 7-7 Gain Gms, Gma, IS21I² vs. f at VCE = 5 V, IC = 250 mA
36
33
0.15GHz
30
Gmax [dB]
27
0.45GHz
24
0.90GHz
21
1.50GHz
1.80GHz
2.60GHz
18
15
3.50GHz
12
9
6
0
100
200
300
IC [mA]
400
500
600
Figure 7-8 Maximum Power Gain Gmax vs. IC at VCE = 5 V, f = Parameter
Preliminary Data Sheet
20
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
36
33
0.15GHz
30
27
Gmax [dB]
0.45GHz
24
0.90GHz
21
1.50GHz
1.80GHz
18
2.60GHz
15
3.50GHz
12
9
6
0
1
2
3
4
V
CE
5
6
7
[V]
Figure 7-9 Maximum Power Gain Gmax vs. VCE at IC = 250 mA, f = Parameter
1
1.5
0.5
2
0.4
3
5.0
0.3
6.0
4.0
4
3.0
0.2
5
0.01 to 6 GHz
2.0
0.1
0.1
0
1.0
0.2 0.3 0.4 0.5
10
1
1.5
2
3
4 5
0.01
−0.1
−10
−0.2
−5
−4
−0.3
−3
−0.4
−0.5
−2
−1.5
−1
70 mA
150 mA
200 mA
250 mA
Figure 7-10 Output Reflection Coefficient S22 vs. f at VCE = 5 V, IC = Parameter
Preliminary Data Sheet
21
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
1
1.5
0.5
2
4.0
5.0
0.4
3
3.0
0.3
6.0
4
0.2
5
0.01 to 6 GHz
2.0
0.1
10
0.1
0
0.2 0.3 0.4 0.5
1
1.5
2
3
4 5
0.01
1.0
−0.1
−10
−0.2
−5
−4
−0.3
−3
−0.4
−0.5
70 mA
−2
150 mA
−1.5
200 mA
−1
250 mA
Figure 7-11 Input Reflection Coefficient S11 vs. f at VCE = 5 V, IC = Parameter
1
1.5
0.5
2
0.4
3
0.3
4
0.2
5
0.45
0.45 to 3.5 GHz
0.1
10
0.9
0.1
0
0.2 0.3 0.4 0.5
1
1.5
2
3
4 5
1.5
−0.1
−10
1.8
−0.2
−5
−4
2.6
−0.3
−3
3.0
−0.4
3.5
−0.5
−2
−1.5
−1
70 mA
150 mA
200 mA
250 mA
Figure 7-12 Source Impedance ZSopt for Minimum Noise Figure vs. f at VCE = 5V, IC = Parameter
Preliminary Data Sheet
22
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
5
4.5
4
NFmin [dB]
3.5
3
2.5
IC = 250 mA
IC = 200 mA
2
IC = 150 mA
1.5
1
IC = 70 mA
0
0.5
1
1.5
2
f [GHz]
2.5
3
3.5
4
Figure 7-13 Noise Figure NFmin vs. f at VCE = 5 V, ZS = ZSopt, IC = Parameter
5
4.5
4
NFmin [dB]
3.5
3
2.5
f = 3.5 GHz
f = 2.6 GHz
2
f = 1.8 GHz
f = 1.5 GHz
1.5
1
0
50
100
150
200
250
IC [mA]
Figure 7-14 Noise Figure NFmin vs. IC at VCE = 5 V, ZS = ZSopt, f = Parameter
Preliminary Data Sheet
23
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
8
7.5
7
6.5
NF50 [dB]
6
5.5
5
4.5
f = 3.5 GHz
4
f = 2.6 GHz
3.5
f = 1.8 GHz
3
f = 1.5 GHz
2.5
2
0
50
100
150
200
250
IC [mA]
Figure 7-15 Noise Figure NF50 vs. IC at VCE = 5 V, ZS = 50 Ω, f = Parameter
1
1.5
0.5
2
0.4
3
0.3
4
21.3
0.2
5
23.4
24.3
0.1
0.1
0
26
0.2 26.5
0.3 0.4 0.5
10
1
25.2 23.9
1.5
2
3
4 5
27
−0.1
−10
25.6 24.7
−0.2
−5
23.4
−0.3
−4
21.3
−3
−0.4
−0.5
−2
−1.5
−1
Figure 7-16 Load Pull Contour OP1dB [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt
Preliminary Data Sheet
24
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
1
1.5
0.5
2
0.4
3
0.3
32.5
0.2
4
0.1
10
35.7
0.1
0
5
34.7
0.2
0.3 0.4 0.5
37.9
−0.1
1
1.5
2
3
4 5
37.4 36.3
−10
38.5
36.8
−0.2
−5
−4
35.2
−0.3
−3
33
−0.4
−0.5
−2
−1.5
−1
Figure 7-17 Load Pull Contour OIP3 [dBm] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt
1
1.5
0.5
2
0.4
14.4
16
0.3
0.2
0.1
0.1
0.2
4
16.5
19
19.6
0
3
18
5
10
17
0.3 0.4 0.5
1
1.5
2
3
4 5
18.5
17.5
16.5
15.5
−0.1
−0.2
−10
−5
−4
−0.3
13.4
−3
−0.4
−0.5
−2
−1.5
−1
Figure 7-18 Load Pull Contour Gain G [dB] at VCE = 5 V, IC = 250 mA, f = 0.9 GHz, ZI = Zopt
Preliminary Data Sheet
25
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
80
300
IP1dB
280
I
C
60
260
PAE
50
240
40
220
30
200
IC [mA]
Pout [dBm], Gain [dB], PAE [%]
70
G
20
180
Pout
10
0
−20
160
−15
−10
−5
0
5
Pin [dBm]
10
15
140
20
Figure 7-19 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 155 mA, f = 0.9 GHz, ZI = Zopt
60
290
IP1dB
40
280
30
G
20
270
PAE
Pout
10
IC [mA]
Pout [dBm], Gain [dB], PAE [%]
50
I
C
0
260
−10
−20
−25
−20
−15
−10
−5
0
Pin [dBm]
5
10
250
15
Figure 7-20 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 0.9 GHz, ZI = Zopt
Preliminary Data Sheet
26
Revision 2.0, 2014-08-26
BFQ790
Electrical Performance in Test Fixture
50
280
IP1dB
Pout [dBm], Gain [dB], PAE [%]
40
275
I
C
270
Pout
20
265
G
10
IC [mA]
30
260
PAE
0
−10
−25
255
−20
−15
−10
−5
0
Pin [dBm]
5
10
250
15
Figure 7-21 Pout, Gain, IC, PAE vs. Pin at VCE = 5 V, ICq = 250 mA, f = 2.6 GHz, ZI = Zopt
39
38
OIP3 [dBm]
37
36
35
34
33
32
50
100
150
IC [mA]
200
250
Figure 7-22 OIP3 vs. IC at VCE = 5 V, f = 0.9 GHz, ZL = ZLopt
Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as
a guarantee that all devices have identical characteristic curves. TA = 25 °C.
Preliminary Data Sheet
27
Revision 2.0, 2014-08-26
BFQ790
Simulation Data
8
Simulation Data
For the BFQ790 a large signal model exists. It is a VBIC model, which is an advancement of the SPICE GummelPoon model. It covers properties of a power transistor which are not known by the standard SPICE Gummel-Poon
model, such as self-heating, quasi-saturation and voltage breakdown. The VBIC model can be used in standard
simulation tools such as ADS and MWO as easily as the SPICE Gummel-Poon model. On the BFQ790 internet
page the VBIC model is provided as a netlist. The model already contains the package parasitics and is ready to
use for DC and high frequency simulations. Besides the DC characteristics all S-parameters in magnitude and
phase, noise figure (including optimum source impedance and equivalent noise resistance), intermodulation and
compression have been extracted.
On the BFQ790 internet page you also find the S-parameters (including noise parameters) for linear simulation.
In any case please consult our website and download the latest versions before actually starting your design.
Preliminary Data Sheet
28
Revision 2.0, 2014-08-26
BFQ790
Package Information SOT89
9
Package Information SOT89
4.5 ±0.1
45˚
B
1.5 ±0.1
0.2 MAX.
2
2.75 +0.1
-0.15
1.6 ±0.2
1±0.2
1
1)
0.15
4 ±0.25
1±0.1
1)
2.5±0.1
0.25 ±0.05
3
1.5
0.35 ±0.1
0.45 +0.2
-0.1
3
0.15
M
B x3
0.2 B
1) Ejector pin markings possible
SOT89-PO V02
Figure 9-1 Package Outline
1.2
1.0
2.5
2.0
0.8
0.8
0.7
SOT89-FP V02
Figure 9-2 Package Footprint
Figure 9-3 Marking Example (Marking BFQ790: R3)
Pin 1
4.3
12
4.6
8
1.6
SOT89-TP V02
Figure 9-4 Tape Dimensions
Preliminary Data Sheet
29
Revision 2.0, 2014-08-26
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG
Similar pages