Freescale Semiconductor Data Sheet: Technical Data Document Number: IMX6SDLCEC Rev. 3, 03/2014 MCIMX6SxExxxxxB MCIMX6SxExxxxxC MCIMX6UxExxxxxB MCIMX6UxExxxxxC MCIMX6SxDxxxxxB MCIMX6SxDxxxxxC MCIMX6UxDxxxxxB MCIMX6UxDxxxxxC i.MX 6Solo/6DualLite Applications Processors for Consumer Products Package Information Plastic Package BGA Case 2240 21 x 21 mm, 0.8 mm pitch Ordering Information See Table 1 on page 3 1 Introduction The i.MX 6Solo/6DualLite processors represent Freescale Semiconductor’s latest achievement in integrated multimedia-focused products offering high performance processing with lower cost, as well as optimization for low power consumption. The processors feature Freescale’s advanced implementation of single/dual ARM® Cortex®-A9 core, which operates at speeds of up to 1 GHz. They include 2D and 3D graphics processors, 1080p video processing, and integrated power management. Each processor provides a 32/64-bit DDR3/LVDDR3/LPDDR2-800 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth®, GPS, hard drive, displays, and camera sensors. The i.MX 6Solo/6DualLite processors are specifically useful for applications such as: • Web and multimedia tablets 1 2 3 4 5 6 7 © 2012-2014 Freescale Semiconductor, Inc. All rights reserved. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.3 Updated Signal Naming Convention . . . . . . . . . . . .8 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3.1 Special Signal Considerations . . . . . . . . . . . . . . . .20 3.2 Recommended Connections for Unused Analog Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .22 4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . .22 4.2 Power Supplies Requirements and Restrictions. . .32 4.3 Integrated LDO Voltage Regulator Parameters . . .34 4.4 PLL’s Electrical Characteristics. . . . . . . . . . . . . . . .36 4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . .37 4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . .38 4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . .43 4.8 Output Buffer Impedance Parameters . . . . . . . . . .47 4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . .50 4.10 General-Purpose Media Interface (GPMI) Timing .67 4.11 External Peripheral Interface Parameters. . . . . . . .75 Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . .137 5.1 Boot Mode Configuration Pins . . . . . . . . . . . . . . .137 5.2 Boot Device Interface Allocation. . . . . . . . . . . . . .139 Package Information and Contact Assignments . . . . . .140 6.1 Updated Signal Naming Convention . . . . . . . . . .140 6.2 21x21 mm Package Information . . . . . . . . . . . . . .140 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Introduction • • • • • • • Web and multimedia tablets Color eReaders IPTV Human Machine Interfaces (HMI) Portable medical IP phones Home energy management systems The i.MX 6Solo/6DualLite processors have some very exciting features, for example: • Applications processors—The processors enhance the capabilities of high-tier portable applications by fulfilling the ever increasing MIPS needs of operating systems and games. Freescale’s Dynamic Voltage and Frequency Scaling (DVFS) provides significant power reduction, allowing the device to run at lower voltage and frequency with sufficient MIPS for tasks, such as audio decode. • Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed NAND, including eMMC up to rev 4.4/4.41. • Smart speed technology—The processors have power management throughout the IC that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations. • Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance. • Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, NEON™ MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, an image processing unit (IPU), a programmable smart DMA (SDMA) controller, and an asynchronous sample rate converter. • Powerful graphics acceleration—Each processor provides two independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator with a shader and a 2D graphics accelerator. • Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to two displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller two CAN ports, ESAI audio interface, and a variety of other popular interfaces (such as UART, I2C, and I2S serial audio, and PCIe-II). • Eink Panel Display Controller—The processors integrate EPD controller that supports E-INK color and monochrome with up to 1650x2332 resolution and 5-bit grayscale (32-levels per color channel). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 2 Freescale Semiconductor Introduction • • 1.1 Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 6Solo/6DualLite Security Reference Manual (IMX6DQ6SDLSRM). Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure. Ordering Information Table 1 provides examples of orderable part numbers covered by this data sheet. Table 1 does not include all possible orderable part numbers. The latest part numbers are available on the web page freescale.com/imx6series. If the desired part number is not listed in Table 1, or there may be any questions about available parts, see the web page freescale.com/imx6series or contact a Freescale representative. Table 1. Example Orderable Part Numbers i.MX6 CPU Solo/ DualLite Part Number Options Speed Grade Temperature Grade Package MCIMX6U8DVM10AB DualLite With VPU, GPU, EPDC, MLB 2x ARM Cortex-A9 64-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6U8DVM10AC DualLite With VPU, GPU, EPDC, MLB 2x ARM Cortex-A9 64-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6U5DVM10AB DualLite With VPU, GPU, MLB, no EPDC 2x ARM Cortex-A9 64-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6U5DVM10AC DualLite With VPU, GPU, MLB, no EPDC 2x ARM Cortex-A9 64-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6U5EVM10AB DualLite With VPU, GPU, MLB, no EPDC 2x ARM Cortex-A9 64-bit DDR 1 GHz Extended 21 mm x 21 mm, Commercial 0.8 mm pitch, MAPBGA MCIMX6U5EVM10AC DualLite With VPU, GPU, MLB, no EPDC 2x ARM Cortex-A9 64-bit DDR 1 GHz Extended 21 mm x 21 mm, Commercial 0.8 mm pitch, MAPBGA MCIMX6S8DVM10AB Solo With VPU, GPU, MLB, EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6S8DVM10AC Solo With VPU, GPU, MLB, EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6S5DVM10AB Solo With VPU, GPU, MLB, no EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6S5DVM10AC Solo With VPU, GPU, MLB, no EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Commercial 21 mm x 21 mm, 0.8 mm pitch, MAPBGA MCIMX6S5EVM10AB Solo With VPU, GPU, MLB, no EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Extended 21 mm x 21 mm, Commercial 0.8 mm pitch, MAPBGA MCIMX6S5EVM10AC Solo With VPU, GPU, MLB, no EPDC 1x ARM Cortex-A9 32-bit DDR 1 GHz Extended 21 mm x 21 mm, Commercial 0.8 mm pitch, MAPBGA i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 3 Introduction Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. • The i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors data sheet (IMX6SDLAEC) covers parts listed with an “A (Automotive temp)” • The i.MX 6Solo/6DualLite Applications Processors for Consumer Products data sheet (IMX6SDLCEC) covers parts listed with a “D (Commercial temp)” or “E (Extended Commercial temp)” • The i.MX 6Solo/6DualLite Applications Processors for Industrial Products data sheet (IMX6SDLIEC) covers parts listed with “C (Industrial temp)” Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there will be any questions, visit see the web page freescale.com/imx6series or contact a Freescale representative for details. MC IMX6 X @ + VV $$ % A MC Silicon revision1 Prototype Samples PC Rev 1.1 B Mass Production MC Rev 1.2 C Special SC Fusing % Qualification level Part # series X i.MX 6DualLite 2x ARM Cortex-A9, 64-bit DDR U i.MX 6Solo 1x ARM Cortex-A9, 32-bit DDR S Part differentiator Default settings A HDCP enabled C Frequency $$ 800 MHz2 08 1 GHz3 10 RoHS @ Package type Consumer VPU GPU EPDC MLB 8 MAPBGA 21 x 21 0.8mm Industrial VPU GPU – – 7 Automotive VPU GPU – MLB 6 Temperature Tj A VM + Commercial: 0 to + 95C D Consumer VPU GPU – MLB 5 Extended commercial: -20 to + 105 C E Automotive – GPU – MLB 4 Industrial: -40 to +105C C Automotive – – – MLB 1 Automotive: -40 to + 125C A 1. See the freescale.com\imx6series Web page for latest information on the available silicon revision. 2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz. 3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz. Figure 1. Part Number Nomenclature—i.MX 6Solo and 6DualLite 1.2 Features The i.MX 6Solo/6DualLite processors are based on ARM Cortex-A9 MPCore™ Platform, which has the following features: • The i.MX 6Solo supports single ARM Cortex-A9 MPCore (with TrustZone) • The i.MX 6DualLite supports dual ARM Cortex-A9 MPCore (with TrustZone) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 4 Freescale Semiconductor Introduction • The core configuration is symmetric, where each core includes: — 32 KByte L1 Instruction Cache — 32 KByte L1 Data Cache — Private Timer and Watchdog — Cortex-A9 NEON MPE (Media Processing Engine) Co-processor The ARM Cortex-A9 MPCore™ complex includes: • General Interrupt Controller (GIC) with 128 interrupt support • Global Timer • Snoop Control Unit (SCU) • 512 KB unified I/D L2 cache: — Used by one core in i.MX 6Solo — Shared by two cores in i.MX 6DualLite • Two Master AXI bus interfaces output of L2 cache • Frequency of the core (including NEON and L1 cache), as per Table 9. • NEON MPE coprocessor — SIMD Media Processing Architecture — NEON register file with 32x64-bit general-purpose registers — NEON Integer execute pipeline (ALU, Shift, MAC) — NEON dual, single-precision floating point execute pipeline (FADD, FMUL) — NEON load/store and permute pipeline The SoC-level memory system consists of the following additional components: — Boot ROM, including HAB (96 KB) — Internal multimedia / shared, fast access RAM (OCRAM, 128 KB) — Secure/non-secure RAM (16 KB) • External memory interfaces: The i.MX 6Solo/6DualLite processors support latest, high volume, cost effective handheld DRAM, NOR, and NAND Flash memory standards. — 16/32-bit LP-DDR2-800, 16/32-bit DDR3-800 and LV-DDR3-800 in i.MX 6Solo; 16/32/64-bit LP-DDR2-800, 16/32/64-bit DDR3-800 and LV-DDR3-800, supporting DDR interleaving mode for 2x32 LPDDR2-800 in i.MX 6DualLite — 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit. — 16/32-bit NOR Flash. All WEIMv2 pins are muxed on other interfaces. — 16/32-bit PSRAM, Cellular RAM Each i.MX 6Solo/6DualLite processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450 Mpixels/sec, 24 bpp. Up to two interfaces may be active in parallel (excluding EPDC). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 5 Introduction • • • • • — One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual HD1080 and WXGA at 60 Hz) — LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example, WUXGA at 60 Hz) each — HDMI 1.4 port — MIPI/DSI, two lanes at 1 Gbps — EPDC, Color, and monochrome E-INK, up to 1650x2332 resolution and 5-bit grayscale Camera sensors: — Two parallel Camera ports (up to 20 bit and up to 240 MHz peak) — MIPI CSI-2 Serial port, supporting from 80 Mbps to 1 Gbps speed per data lane. The CSI-2 Receiver core can manage one clock lane and up to two data lanes. Each i.MX 6Solo/6DualLite processor has two lanes. Expansion cards: — Four MMC/SD/SDIO card ports all supporting: – 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) – 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) USB: — One high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy — Three USB 2.0 (480 Mbps) hosts: – One HS host with integrated High Speed Phy – Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) Phy Expansion PCI Express port (PCIe) v2.0 one lane — PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration. Miscellaneous IPs and interfaces: — SSI block is capable of supporting audio sample frequencies up to 192 kHz stereo inputs and outputs with I2S mode — ESAI is capable of supporting audio sample frequencies up to 260 kHz in I2S mode with 7.1 multi channel outputs — Five UARTs, up to 4.0 Mbps each: – Providing RS232 interface – Supporting 9-bit RS485 multidrop mode – One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is due to the SoC IOMUX limitation, since all UART IPs are identical. — Four eCSPI (Enhanced CSPI) — Four I2C, supporting 400 kbps — Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 6 Freescale Semiconductor Introduction — — — — — — — — — Four Pulse Width Modulators (PWM) System JTAG Controller (SJC) GPIO with interrupt capabilities 8x8 Key Pad Port (KPP) Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx Two Controller Area Network (FlexCAN), 1 Mbps each Two Watchdog timers (WDOG) Audio MUX (AUDMUX) MLB (MediaLB) provides interface to MOST Networks (MOST25, MOST50, MOST150) with the option of DTCP cipher accelerator The i.MX 6Solo/6DualLite processors integrate advanced power management unit and controllers: • Provide PMU, including LDO supplies, for on-chip resources • Use Temperature Sensor for monitoring the die temperature • Support DVFS techniques for low power modes • Use SW State Retention and Power Gating for ARM and MPE • Support various levels of system power modes • Use flexible clock gating control scheme The i.MX 6Solo/6DualLite processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks. The i.MX 6Solo/6DualLite processors incorporate the following hardware accelerators: • VPU—Video Processing Unit • IPUv3H—Image Processing Unit version 3H • GPU3Dv5—3D Graphics Processing Unit (OpenGL ES 2.0) version 5 • GPU2Dv2—2D Graphics Processing Unit (BitBlt) • PXP—PiXel Processing Pipeline. Off loading key pixel processing operations are required to support the EPD display applications. • ASRC—Asynchronous Sample Rate Converter Security functions are enabled and accelerated by the following hardware: • ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.) • SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. • CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash engines, 16 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified). • SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock 1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 7 Architectural Overview • • CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy. A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization. NOTE The actual feature set depends on the part numbers as described in Table 1, "Example Orderable Part Numbers," on page 3. Functions, such as video hardware acceleration, and 2D and 3D hardware graphics acceleration may not be enabled for specific part numbers. 1.3 Updated Signal Naming Convention The signal names of the i.MX6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows: • The names are unique within the scope of an SoC and within the series of products • Searches will return all occurrences of the named signal • The names are consistent between i.MX 6 series products implementing the same modules • The module instance is incorporated into the signal name This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc. Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions. 2 Architectural Overview The following subsections provide an architectural overview of the i.MX 6Solo/6DualLite processor system. 2.1 Block Diagram Figure 2 shows the functional modules in the i.MX 6Solo/6DualLite processor system. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 8 Freescale Semiconductor Architectural Overview Digital Audio LPDDR2/DDR3 400 MHz (DDR800) NOR Flash PSRAM Battery Ctrl 2x Camera Device Parallel/MIPI External Memory I/F GPMI MMDC WEIM Application Processor Domain (AP) Internal RAM 1 (144 KB) Smart DMA (SDMA) CTIs SJC Shared Peripherals eCSPI (4) SSI (3) Audio, Power Mngmnt. 5xFast-UART ESAI SPDIF Rx/Tx ASRC Security CAAM (16KB Ram) SNVS (SRTC) 512K L2 cache SCU, Timer PTM’s CTI’s EPDC AP Peripherals E-INK Display MMC/SD eMMC/eSD uSDHC (4) AUDMUX 2 MMC/SD SDXC I C(4) Video Proc. Unit (VPU + Cache) PWM (4) OCOTP_CTRL Modem IC IOMUXC 3D Graphics Proc. Unit (GPU3D) Fuse Box Unit (LDOs) DSI/MIPI 1x/2x A9-Core L1 I/D Cache Timer, WDOG CSU Power Management HDMI PxP TPIU SPBA LDB MIPI Display HDMI 1.4 Display ARM Cortex A9 MPCore Platform Debug DAP PCIe Bus CSI2/MIPI 1 / 2 LCD Displays Image Processing Subsystem IPUv3H Boot ROM (96 KB) 2xCAN i/f GPS 1 / 2 LVDS (WUXGA+) AXI and AHB Switch Fabric Raw / ONFI 2.2 NAND Flash KPP GPIO CAN(2) Clock and Reset Timers/Control PLL (8) CCM GPC SRC Crystals & Clock sources WDOG (2) GPT XTALOSC OSC32K Bluetooth 1 2 2D Graphics Proc. Unit (GPU2D) DTCP HSI/MIPI Temp Monitor USB OTG + 3 HS Ports Host PHY2 WLAN MLB 150 EPIT (2) OTG PHY1 JTAG (IEEE1149.6) 2xHSIC PHY USB OTG (dev/host) Keypad 1-Gbps ENET Ethernet 10/100/1000 Mbps MLB/Most Network 144 KB RAM including 16 KB RAM inside the CAAM. For i.MX 6Solo, there is only one A9-core platform in the chip; for i.MX 6DualLite, there are two A9-core platforms. Figure 2. i.MX 6Solo/6DualLite System Block Diagram NOTE The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 9 Modules List 3 Modules List The i.MX 6Solo/6DualLite processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX 6Solo/6DualLite Modules List Block Mnemonic Block Name Subsystem Brief Description ARM ARM Platform ARM The ARM Core Platform includes 1x (Solo) Cortex-A9 core for i.MX 6Solo and 2x (Dual) Cortex-A9 cores for i.MX 6DualLite. It also includes associated sub-blocks, such as the Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, watchdog, and CoreSight debug modules. APBH-DMA NAND Flash and BCH ECC DMA controller System Control Peripherals ASRC Asynchronous Sample Rate Converter Multimedia Peripherals The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. AUDMUX Digital Audio Mux Multimedia Peripherals The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports. BCH40 Binary-BCH ECC Processor System Control Peripherals The BCH40 module provides up to 40-bit ECC encryption/decryption for NAND Flash controller (GPMI) CAAM Cryptographic accelerator and assurance module Security CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6Solo/6DualLite processors, the security memory provided is 16 KB. CCM GPC SRC Clock Control Module, General Power Controller, System Reset Controller Clocks, Resets, and Power Control These modules are responsible for clock and reset distribution in the system, and also for the system power management. CSI MIPI CSI-2 i/f Multimedia Peripherals DMA controller used for GPMI2 operation The CSI IP provides MIPI CSI-2 standard camera interface port. The CSI-2 interface supports from 80 Mbps to 1 Gbps speed per data lane. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 10 Freescale Semiconductor Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 6Solo/6DualLite platform. CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 Cross Trigger Interfaces Debug / Trace Cross Trigger Interfaces allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A9 Core Platform. CTM Cross Trigger Matrix Debug / Trace Cross Trigger Matrix IP is used to route triggering events between CTIs. The CTM module is internal to the Cortex-A9 Core Platform. DAP Debug Access Port System Control Peripherals The DAP provides real-time access for the debugger without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-A9 Core Platform. DCIC-0 DCIC-1 Display Content Integrity Checker Automotive IP The DCIC provides integrity check on portion(s) of the display. Each i.MX 6Solo/6DualLite processor has two such modules. DSI MIPI DSI i/f Multimedia Peripherals The MIPI DSI IP provides DSI standard display port interface. The DSI interface support 80 Mbps to 1 Gbps speed per data lane. DTCP DTCP Multimedia Peripherals Provides encryption function according to Digital Transmission Content Protection standard for traffic over MLB150. eCSPI1-4 Configurable SPI Connectivity Peripherals Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals. ENET Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. Note: The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 11 Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description EPDC Electrophoretic Display Controller Peripherals The EPDC is a feature-rich, low power, and high-performance direct-drive, active matrix EPD controller. It is specifically designed to drive E-INK™ EPD panels, supporting a wide variety of TFT backplanes. It is available in both i.MX 6DualLite and i.MX 6Solo. EPIT-1 EPIT-2 Enhanced Periodic Interrupt Timer Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly. ESAI Enhanced Serial Audio Interface Connectivity Peripherals The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 12 Freescale Semiconductor Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description uSDHC-1 uSDHC-2 uSDHC-3 uSDHC-4 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX 6Solo/6DualLite specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB and SDXC cards up to 2 TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 All four ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC level integration and I/O muxing logic restrict the functionality to the following: • Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with “Card detection” and “Write Protection” pads and do not support hardware reset. • Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have “Card detection” and “Write Protection” pads and do support hardware reset. • All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power domain and port #4 shares power domain with some other interfaces. FlexCAN-1 FlexCAN-2 Flexible Controller Area Network Connectivity Peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 13 Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description 512x8 Fuse Box Electrical Fuse Array Security Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6Solo/6DualLite processors consist of 512x8-bit fuse fox accessible through OCOTP_CTRL interface GPIO-1 GPIO-2 GPIO-3 GPIO-4 GPIO-5 GPIO-6 GPIO-7 General Purpose I/O Modules System Control Peripherals Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O. GPMI General Purpose Media Interface Connectivity Peripherals The GPMI module supports up to 8x NAND devices. 40-bit ECC encryption/decryption for NAND Flash controller (GPMI2). The GPMI supports separate DMA channels per NAND device. GPT General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU3Dv5 Graphics Processing Unit, ver.5 Multimedia Peripherals The GPU3Dv5 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1 GPU2Dv2 Graphics Processing Unit-2D, ver 2 Multimedia Peripherals The GPU2Dv2 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions. HDMI Tx HDMI Tx i/f Multimedia Peripherals The HDMI module provides HDMI standard i/f port to an HDMI 1.4 compliant display. HSI MIPI HSI i/f Connectivity Peripherals The MIPI HSI provides a standard MIPI interface to the applications processor. I2C-1 I2C-2 I2C-3 I2C-4 I2C Interface Connectivity Peripherals I2C provide serial interface for external devices. Data rates of up to 400 kbps are supported. IOMUXC IOMUX Control System Control Peripherals This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 14 Freescale Semiconductor Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description IPUv3H Image Processing Unit, ver.3H Multimedia Peripherals IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: • Parallel Interfaces for both display and camera • Single/dual channel LVDS display interface • HDMI transmitter • MIPI/DSI transmitter • MIPI/CSI-2 receiver The processing includes: • Image conversions: resizing, rotation, inversion, and color space conversion • A high-quality de-interlacing filter • Video/graphics combining • Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement • Support for display backlight reduction KPP Key Pad Port Connectivity Peripherals KPP Supports 8x8 external key pad matrix. KPP features are: • Open drain design • Glitch suppression circuit design • Multiple keys detection • Standby key press detection LDB LVDS Display Bridge Connectivity Peripherals LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: • One clock pair • Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM). MLB150 MediaLB Connectivity / Multimedia Peripherals The MLB interface module provides a link to a MOST® data network, using the standardized MediaLB protocol (up to 6144 fs). The module is backward compatible to MLB-50. MMDC Multi-Mode DDR Controller Connectivity Peripherals DDR Controller has the following features: • Supports 16/32-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6Solo • Supports 16/32/64-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6DualLite • Supports 2x32 LPDDR2-800 in i.MX 6DualLite • Supports up to 4 GByte DDR memory space i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 15 Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility. OCRAM On-Chip Memory controller Data Path The On-Chip Memory controller (OCRAM) module is designed as an interface between system’s AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Solo/6DualLite processors, the OCRAM is used for controlling the 128 KB multimedia RAM through a 64-bit AXI bus. OSC32KHz OSC32KHz Clocking Generates 32.768 KHz clock from external crystal. PCIe PCI Express 2.0 Connectivity Peripherals PMU Power-Management functions Data Path PWM-1 PWM-2 PWM-3 PWM-4 Pulse Width Modulation Connectivity Peripherals The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. PXP PiXel Processing Pipeline Display Peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, gamma-mapping, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications, allowing it to interface with the integrated EPD. RAM 128 KB Internal RAM Internal Memory Internal RAM, which is accessed through OCRAM memory controller. RAM 16 KB Secure/non-secure RAM Secured Internal Memory Secure/non-secure Internal RAM, interfaced through the CAAM. ROM 96KB Boot ROM Internal Memory Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection. ROMCP ROM Controller with Patch Data Path The PCIe IP provides PCI Express Gen 2.0 functionality. Integrated power management unit. Used to provide power to various SoC domains. ROM Controller with ROM Patch support i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 16 Freescale Semiconductor Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description SDMA Smart Direct Memory Access System Control Peripherals The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between ARM and SDMA • Very fast Context-Switching with 2-level priority based preemptive multi-tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unit-directional and bi-directional flows (copy mode) • Up to 8-word buffer for configurable burst transfers • Support of byte-swapping and CRC calculations • Library of Scripts and API is available SJC System JTAG Controller System Control Peripherals The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Solo/6DualLite processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Solo/6DualLite SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SPDIF Sony Philips Digital Interconnect Format Multimedia Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 17 Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description SSI-1 SSI-2 SSI-3 I2S/SSI/AC97 Interface Connectivity Peripherals The SSI is a full-duplex synchronous interface, which is used on the AP to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller in order to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously. TEMPMON Temperature Monitor System Control Peripherals The Temperature sensor IP is used for detecting die temperature. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed, therefore the read out value may not be the reflection of the temperature value of the entire die. TZASC Trust-Zone Address Space Controller Security The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART-1 UART-2 UART-3 UART-4 UART-5 UART Interface Connectivity Peripherals Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 5 MHz. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud • IrDA 1.0 support (up to SIR speed of 115200 bps) • Option to operate as 8-pins full UART, DCE, or DTE USBOH3 USB 2.0 High Speed OTG and 3x HS Hosts Connectivity Peripherals USBOH3 contains: • One high-speed OTG module with integrated HS USB PHY • One high-speed Host module with integrated HS USB PHY • Two identical high-speed Host modules connected to HSIC USB ports. VDOA VDOA Multimedia Peripherals Video Data Order Adapter (VDOA): used to re-order video data from the “tiled” order used by the VPU to the conventional raster-scan order needed by the IPU. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 18 Freescale Semiconductor Modules List Table 3. i.MX 6Solo/6DualLite Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description VPU Video Processing Unit Multimedia Peripherals A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) for complete list of VPU’s decoding/encoding capabilities. WDOG-1 Watch Dog Timer Peripherals The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line. WDOG-2 (TZ) Watch Dog (TrustZone) Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system’s security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW. WEIM NOR-Flash /PSRAM interface Connectivity Peripherals The WEIM NOR-FLASH / PSRAM provides: • Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency • Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency • Multiple chip selects XTALOSC Crystal Oscillator I/F Clocks, Resets, and Power Control The XTALOSC module enables connectivity to external crystal oscillator device. In a typical application use-case, it is used for 24 MHz oscillator to provide USB required frequency. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 19 Modules List 3.1 Special Signal Considerations Table 4 lists special signal considerations for the i.MX 6Solo/6DualLite processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, “Package Information and Contact Assignments.” Signal descriptions are provided in the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM). Table 4. Special Signal Considerations Signal Name Remarks CLK1_P/CLK1_N CLK2_P/CLK2_N Two general purpose differential high speed clock Input/outputs are provided. Any or both of them could be used: • To feed external reference clock to the PLLs and further to the modules inside SoC, for example as alternate reference clock for PCIe, Video/Audio interfaces, etc. • To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals, for example it could be used as an output of the PCIe master clock (root complex use) See the i.MX 6Solo/6DualLite reference manual for details on the respective clock trees. The clock inputs/outputs are LVDS differential pairs compatible with TIA/EIA-644 standard, the maximum frequency range supported is 0...600 MHz. Alternatively one may use single ended signal to drive CLKx_P input. In this case corresponding CLKx_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. See LVDS pad electrical specification for further details. After initialization, the CLKx inputs/outputs could be disabled (if not used). If unused any or both of the CLKx_N/P pairs may be left floating. XTALOSC_RTC_XTALI/ RTC_XTALO If the user wishes to configure XTALOSC_RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between XTALOSC_RTC_XTALI and RTC_XTALO. Remember that the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from XTALOSC_RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically XTALOSC_RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into XTALOSC_RTC_XTALI the RTC_XTALO pin should be left floating or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical conditions. XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO. level and the frequency should be <32 MHz under typical conditions. The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series resistance) of typical 80 is recommended. Freescale BSP (board support package) software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTALI must be directly driven by the external oscillator and XTALO is floated. The XTALI signal level must swing from ~0.8 x NVCC_PLL_OUT to ~0.2 V. If this clock is used as a reference for USB and PCIe, then there are strict frequency tolerance and jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 20 Freescale Semiconductor Modules List Table 4. Special Signal Considerations (continued) Signal Name Remarks DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 k 0.5% resistor to GND and a 1 k 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 µF capacitor. To reduce supply current, a pair of 1.5 k 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor divider. It is recommended to use regulated power supply for “big” memory configurations (more that eight devices) DRAM calibration resistor 240 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND. ZQPAD NVCC_LVDS_2P5 The DDR pre-drivers share the NVCC_LVDS_2P5 ball with the LVDS interface. This ball can be shorted to VDD_HIGH_CAP on the circuit board. VDD_FA FA_ANA These signals are reserved for Freescale manufacturing use only. User must tie both connections to GND. GPANAIO This signal is reserved for Freescale manufacturing use only. User must leave this connection floating. JTAG_nnnn The JTAG interface is summarized in Table 5. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up. JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided. JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain. NC These signals are No Connect (NC) and should be floated by the user. SRC_POR_B This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low). ONOFF In normal mode may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes “forced” OFF. TEST_MODE TEST_MODE is for Freescale factory use. This signal is internally connected to an on-chip pull-down device. The user must either float this signal or tie it to GND. PCIE_REXT The impedance calibration process requires connection of reference resistor 200 1% precision resistor on PCIE_REXT pad to ground. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 21 Electrical Characteristics Table 4. Special Signal Considerations (continued) Signal Name Remarks CSI_REXT MIPI CSI PHY reference resistor. Use 6.04 K 1% resistor connected between this pad and GND DSI_REXT MIPI DSI PHY reference resistor. Use 6.04 K 1% resistor connected between this pad and GND Table 5. JTAG Controller Interface Summary 3.2 JTAG I/O Type On-chip Termination JTAG_TCK Input 47 kpull-up JTAG_TMS Input 47 kpull-up JTAG_TDI Input 47 kpull-up JTAG_TDO 3-state output Keeper JTAG_TRSTB Input 47 kpull-up JTAG_MOD Input 100 kpull-up Recommended Connections for Unused Analog Interfaces The recommended connections for unused analog interfaces can be found in the section, “Unused analog interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). 4 Electrical Characteristics This section provides the device and module-level electrical characteristics for the i.MX 6Solo/6DualLite processors. 4.1 Chip-Level Conditions This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections. Table 6. i.MX 6Solo/6DualLite Chip-Level Conditions For these characteristics, … Topic appears … Absolute Maximum Ratings on page 23 BGA Case 2240 Package Thermal Resistance on page 24 Operating Ranges on page 25 External Clock Sources on page 27 Maximum Supply Currents on page 28 Low Power Mode Supply Currents on page 29 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 22 Freescale Semiconductor Electrical Characteristics Table 6. i.MX 6Solo/6DualLite Chip-Level Conditions (continued) For these characteristics, … Topic appears … USB PHY Current Consumption on page 31 PCIe 2.0 Power Consumption on page 31 4.1.1 Absolute Maximum Ratings Table 7. Absolute Maximum Ratings Parameter Description Symbol Min Max Unit VDD_ARM_IN VDD_SOC_IN -0.3 1.5 V VDD_ARM_CAP VDD_SOC_CAP VDD_PU_CAP -0.3 1.3 V GPIO supply voltage Supplies denoted as I/O supply -0.5 3.6 V DDR I/O supply voltage Supplies denoted as I/O supply -0.4 1.975 V MLB I/O supply voltage Supplies denoted as I/O supply -0.3 2.8 V LVDS I/O supply voltage Supplies denoted as I/O supply -0.3 2.8 V VDD_SNVS_IN supply voltage VDD_SNVS_IN -0.3 3.3 V VDD_HIGH_IN supply voltage VDD_HIGH_IN -0.3 3.6 V USB VBUS USB_H1_VBUS USB_OTG_VBUS — 5.25 V Input voltage on USB_OTG_DP, USB_OTG_DN, USB_H1_DP, USB_H1_DN pins USB_DP/USB_DN -0.3 3.63 V Vin/Vout -0.5 OVDD1+0.3 V — — 2000 500 V -40 150 oC Core supply voltages Internal supply voltages Input/output voltage range ESD damage immunity: Vesd • Human Body Model (HBM) • Charge Device Model (CDM) Storage temperature range 1 TSTORAGE OVDD is the I/O supply voltage. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 23 Electrical Characteristics 4.1.2 4.1.2.1 Thermal Resistance BGA Case 2240 Package Thermal Resistance Table 8 displays the thermal resistance data. Table 8. Thermal Resistance Data Rating Test Conditions Junction to Ambient1 Symbol Value Unit Single-layer board (1s); natural convection2 Four-layer board (2s2p); natural convection2 RJA RJA 38 23 o Single-layer board (1s); airflow 200 ft/min2,3 Four-layer board (2s2p); airflow 200 ft/min2,3 RJA RJA 30 20 o Junction to Board1,4 RJB 14 o Junction to Case1,5 RJC 6 oC/W JT 2 oC/W Junction to Ambient1 Junction to Package Top1,6 1 2 3 4 5 6 Natural Convection C/W C/W o C/W C/W o C/W Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 24 Freescale Semiconductor Electrical Characteristics 4.1.3 Operating Ranges Table 9 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM). Table 9. Operating Ranges Parameter Description Run mode: LDO enabled Run mode: LDO bypassed Symbol Min Typ Max1 Unit Comment2 VDD_ARM_IN 1.3503 — 1.5 V LDO Output Set Point (VDD_ARM_CAP) = 1.225 V minimum for operation up to 996MHz. 1.2753 — 1.5 V LDO Output Set Point (VDD_ARM_CAP) = 1.150 V minimum for operation up to 792MHz. 1.1753 — 1.5 V LDO Output Set Point (VDD_ARM_CAP) = 1.05 V minimum for operation up to 396MHz. VDD_SOC_IN 1.2753,4 — 1.5 V VPU 328 MHz, VDD_SOC and VDD_PU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) = 1.225 V maximum and 1.15 V minimum. VDD_ARM_IN 1.250 — 1.3 V LDO bypassed for operation up to 996 MHz 1.150 — 1.3 V LDO bypassed for operation up to 792 MHz 1.05 — 1.3 V LDO bypassed for operation up to 396 MHz VDD_SOC_IN 1.155 — 1.2256 V LDO bypassed for operation VPU 328 MHz VDD_ARM_IN 0.9 — 1.3 V Refer to Table 12, "Stop Mode Current and Power Consumption," on page 29. VDD_SOC_IN 0.9 — 1.2256 V VDD_HIGH_IN 2.8 — 3.3 V Must match the range of voltages that the rechargeable backup battery supports. Backup battery supply range VDD_SNVS_IN7 2.9 — 3.3 V Should be supplied from the same supply as VDD_HIGH_IN if the system does not require keeping real time and other data on OFF state. USB supply voltages USB_OTG_VBUS 4.4 — 5.25 V — Standby/DSM mode VDD_HIGH internal regulator — USB_H1_VBUS 4.4 — 5.25 V NVCC_DRAM 1.14 1.2 1.3 V LPDDR2 1.425 1.5 1.575 V DDR3 1.283 1.35 1.45 V DDR3_L 1.15 — 2.625 V 1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RMGII 1.5 V mode 1.70 V – 1.90 V in RMGII 1.8 V mode 2.25 V – 2.625 V in RMGII 2.5 V mode DDR I/O supply voltage NVCC_RGMII Supply for RGMII I/O power group8 — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 25 Electrical Characteristics Table 9. Operating Ranges (continued) Parameter Description GPIO supply voltages8 HDMI supply voltages PCIe supply voltages Symbol Min Typ Max1 Unit Comment2 NVCC_CSI, NVCC_EIM, NVCC_ENET, NVCC_GPIO, NVCC_LCD, NVCC_NANDF, NVCC_SD1, NVCC_SD2, NVCC_SD3, NVCC_JTAG 1.65 1.8, 2.8, 3.3 3.6 V — NVCC_LVDS_2P59 NVCC_MIPI 2.25 2.5 2.75 V — HDMI_VP 0.99 1.1 1.3 V — HDMI_VPH 2.25 2.5 2.75 V — PCIE_VP 1.023 1.1 1.225 V — PCIE_VPH 2.325 2.5 2.75 V — PCIE_VPTX 1.023 1.1 1.225 V — See i.MX 6Solo/6DualLite Product Lifetime Usage Estimates Application Note, AN4725, for information on product lifetime for this processor. See i.MX 6Solo/6DualLite Product Lifetime Usage Estimates Application Note, AN4725, for information on product lifetime for this processor. Junction temperature Extended commercial T J -20 — 105 oC Junction temperature Standard commercial T J 0 — 95 oC 1 2 3 4 5 6 7 8 9 Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio. See the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG) for bypass capacitors requirements for each of the *_CAP supply outputs. VDD_ARM_IN and VDD_SOC_IN must be 125 mV higher than the LDO Output Set Point for correct regulator supply voltage. In LDO enabled mode, the internal LDO output set points must be configured such that the: VDD_ARM LDO output set point does not exceed the VDD_SOC LDO output set point by more than 100 mV. VDD_SOC LDO output set point is equal to the VDD_PU LDO output set point. The VDD_ARM LDO output set point can be lower than the VDD_SOC LDO output set point, however, the minimum output set points shown in this table must be maintained. In LDO bypassed mode, the external power supply must ensure that VDD_ARM_IN does not exceed VDD_SOC_IN by more than 100 mV. The VDD_ARM_IN supply voltage can be lower than the VDD_SOC_IN supply voltage. The minimum voltages shown in this table must be maintained. When VDD_SOC_IN does not supply PCIE_VP and PCIE_VPTX, or when the PCIe PHY is not used, then this maximum can be 1.3 V. While setting VDD_SNVS_IN voltage with respect to Charging Currents and RTC, refer to Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG). All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or not and associated IO pins need to have a Pull-up or Pull-down resistor applied to limit any floating gate current. This supply also powers the pre-drivers of the DDR IO pins, hence, it must be always provided, even when LVDS is not used. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 26 Freescale Semiconductor Electrical Characteristics 4.1.4 External Clock Sources Each i.MX 6Solo/6DualLite processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important. NOTE The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration should be given to the timing implications on all of the SoC modules dependent on this clock. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Table 10 shows the interface frequency requirements. Table 10. External Input Clock Frequency Parameter Description Symbol Min Typ Max Unit RTC_XTALI Oscillator1,2 fckil — 32.7683/32.0 — kHz XTALI Oscillator2,4 fxtal — 24 — MHz 1 External oscillator or a crystal with internal oscillator amplifier. The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG). 3 Recommended nominal frequency 32.768 kHz. 4 External oscillator or a fundamental frequency crystal with internal oscillator amplifier. 2 The typical values shown in Table 10 are required for use with Freescale BSPs to ensure precise time keeping and USB operation. For XTALOSC_RTC_XTALI operation, two clock sources are available. • On-chip 40 kHz ring oscillator—this clock source has the following characteristics: — Approximately 25 µA more Idd than crystal oscillator — Approximately ±50% tolerance — No external component required — Starts up quicker than 32 kHz crystal oscillator • External crystal oscillator with on-chip support circuit: — At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically. — Higher accuracy than ring oscillator i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 27 Electrical Characteristics — If no external crystal is present, then the ring oscillator is used The decision of choosing a clock source should be taken based on real-time clock use and precision timeout. 4.1.5 Maximum Supply Currents The Power Virus numbers shown in Table 11 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption. The Freescale power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor family, supports the power consumption shown in Table 11, however a robust thermal design is required for the increased system power dissipation. See the i.MX 6Solo/6DualLite Power Consumption Measurement Application Note (AN4576) for more details on typical power consumption under various use case definitions. Table 11. Maximum Supply Currents Power Line Conditions Max Current Unit VDD_ARM_IN 996 MHz ARM clock based on Power Virus operation 2200 mA VDD_SOC_IN 996 MHz ARM clock 1260 mA VDD_HIGH_IN — 1251 mA VDD_SNVS_IN — 2752 A USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0) — 253 mA Primary Interface (IO) Supplies NVCC_DRAM — —4 — NVCC_ENET N=10 Use maximum IO equation5 — NVCC_LCD N=29 Use maximum IO equation5 — NVCC_GPIO N=24 Use maximum IO equation5 — NVCC_CSI N=20 Use maximum IO equation5 — NVCC_EIM N=53 Use maximum IO equation5 — NVCC_JTAG N=6 Use maximum IO equation5 — NVCC_RGMII N=6 Use maximum IO equation5 — NVCC_SD1 N=6 Use maximum IO equation5 — NVCC_SD2 N=6 Use maximum IO equation5 — NVCC_SD3 N=11 Use maximum IO equation5 — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 28 Freescale Semiconductor Electrical Characteristics Table 11. Maximum Supply Currents (continued) Power Line NVCC_NANDF Conditions Max Current Unit N=26 Use maximum IO equation5 — — NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5. — — 1 mA NVCC_LVDS2P5 MISC DDR_VREF 1 The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies). 2 Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown in Table 11. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase. 3 This is the maximum current per active USB physical interface. 4 The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios. 5 General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F) In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. 4.1.6 Low Power Mode Supply Currents Table 12 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in selected low power modes. Table 12. Stop Mode Current and Power Consumption Mode Test Conditions WAIT • ARM, SoC, and PU LDOs are set to 1.225 • HIGH LDO set to 2.5 V • Clocks are gated. • DDR is in self refresh. • PLLs are active in bypass (24MHz) • Supply Voltages remain ON Supply Typical1 VDD_ARM_IN (1.4V) 4.5 VDD_SOC_IN (1.4V) 23 VDD_HIGH_IN (3.0V) 13.5 Total 79 Units mA mW i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 29 Electrical Characteristics Table 12. Stop Mode Current and Power Consumption (continued) Mode STOP_ON STOP_OFF STANDBY Deep Sleep Mode (DSM) SNVS only 1 Test Conditions • ARM LDO set to 0.9V • SoC and PU LDOs set to 1.225 V • HIGH LDO set to 2.5 V • PLLs disabled • DDR is in self refresh. Typical1 Supply VDD_ARM_IN (1.4V) 4 VDD_SOC_IN (1.4V) 22 VDD_HIGH_IN (3.0V) 8.5 Total 61.9 • ARM LDO set to 0.9V • SoC LDO set to: 1.225 V • PU LDO is power gated • HIGH LDO set to 2.5 V • PLLs disabled • DDR is in self refresh VDD_ARM_IN (1.4V) 4 VDD_SOC_IN (1.4V) 13.5 VDD_HIGH_IN (3.0V) 7.5 Total 47 • ARM and PU LDOs are power gated • SoC LDO is in bypass • HIGH LDO is set to 2.5V • PLLs are disabled • Low Voltage • Well Bias ON • Crystal oscillator is enabled VDD_ARM_IN (0.9V) 0.1 VDD_SOC_IN (0.9V) 5 VDD_HIGH_IN (3.0V) 5 Total 19.6 • ARM and PU LDOs are power gated • SoC LDO is in bypass • HIGH LDO is set to 2.5V • PLLs are disabled • Low Voltage • Well Bias ON • Crystal oscillator and bandgap are disabled VDD_ARM_IN (0.9V) 0.1 • VDD_SNVS_IN powered • All other supplies off • SRTC running VDDSoC_IN (0.9V) Units mA mW mA mW 2 mA mW mA VDD_HIGH_IN (3.0V) 0.5 Total 3.4 mW VDD_SNVS_IN (2.8V) 41 A Total 115 mW The typical values shown here are for information only and are not guaranteed. These values are average values measured on a typical wafer at 25°C. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 30 Freescale Semiconductor Electrical Characteristics 4.1.7 4.1.7.1 USB PHY Current Consumption Power Down Mode In power down mode, everything is powered down, including the USB_VBUS valid detectors in typical condition. Table 13 shows the USB interface current consumption in power down mode. Table 13. USB PHY Current Consumption in Power Down Mode Current VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL_OUT (1.1 V) 5.1 A 1.7 A <0.5 A NOTE The currents on the VDD_HIGH_CAP and VDD_USB_CAP were identified to be the voltage divider circuits in the USB-specific level shifters. 4.1.8 PCIe 2.0 Power Consumption Table 14 provides PCIe PHY currents under certain Tx operating modes. Table 14. PCIe PHY Current Drain Mode P0: Normal Operation Test Conditions Supply Max Current Unit 5G Operations PCIE_VP (1.1 V) 40 mA PCIE_VPTX (1.1 V) 20 PCIE_VPH (2.5 V) 21 PCIE_VP (1.1 V) 27 PCIE_VPTX (1.1 V) 20 PCIE_VPH (2.5 V) 20 PCIE_VP (1.1 V) 30 PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 18 PCIE_VP (1.1 V) 20 PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 18 PCIE_VP (1.1 V) 12 PCIE_VPTX (1.1 V) 2.4 PCIE_VPH (2.5 V) 12 2.5G Operations P0s: Low Recovery Time Latency, Power Saving State 5G Operations 2.5G Operations P1: Longer Recovery Time Latency, Lower Power State — mA mA i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 31 Electrical Characteristics Table 14. PCIe PHY Current Drain (continued) Mode Test Conditions Supply Max Current Unit — PCIE_VP (1.1 V) 1.3 mA PCIE_VPTX (1.1 V) 0.18 PCIE_VPH (2.5 V) 0.36 Power Down 4.1.9 HDMI Power Consumption Table 15 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data and power-down modes. Table 15. HDMI PHY Current Drain Mode Test Conditions Supply Max Current Unit Active Bit rate 251.75 Mbps HDMI_VPH 14 mA HDMI_VP 4.1 mA HDMI_VPH 14 mA HDMI_VP 4.2 mA HDMI_VPH 17 mA HDMI_VP 7.5 mA HDMI_VPH 17 mA HDMI_VP 12 mA HDMI_VPH 16 mA HDMI_VP 17 mA HDMI_VPH 19 mA HDMI_VP 22 mA HDMI_VPH 49 A HDMI_VP 1100 A Bit rate 279.27 Mbps Bit rate 742.5 Mbps Bit rate 1.485 Gbps Bit rate 2.275 Gbps Bit rate 2.97 Gbps Power-down 4.2 — Power Supplies Requirements and Restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor (worst-case scenario) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 32 Freescale Semiconductor Electrical Characteristics 4.2.1 Power-Up Sequence The below restrictions must be followed: • VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_HIGH_IN supply. • If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. • If the external SRC_POR_B signal is used to control the processor POR, then SRC_POR_B must be immediately asserted at power-up and remain asserted until the VDD_ARM_CAP, VDD_SOC_CAP, and VDD_PU_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no restrictions. In the absence of an external reset feeding the SRC_POR_B input, the internal POR module takes control. See the i.MX 6Solo/6DualLite reference manual (IMX6SDLRM) for further details and to ensure that all necessary requirements are being met. • If the external SRC_POR_B signal is used to control the processor POR, SRC_POR_B must remain low (asserted) until the VDD_ARM_CAP and VDD_SOC_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no restrictions. • If the external SRC_POR_B signal is not used (always held high or left unconnected), the processor defaults to the internal POR function (where the PMU controls generation of the POR based on the power supplies). If the internal POR function is used, the following power supply requirements must be met: — VDD_ARM_IN and VDD_SOC_IN may be supplied from the same source, or — VDD_SOC_IN can be supplied before VDD_ARM_IN with a maximum delay of 1 ms. — VDD_ARM_CAP must not exceed VDD_SOC_CAP by more than +100 mV. NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time. 4.2.2 Power-Down Sequence No special restrictions for i.MX 6Solo/6DualLite IC. 4.2.3 Power Supplies Usage All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package Information and Contact Assignments.” i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 33 Electrical Characteristics 4.3 Integrated LDO Voltage Regulator Parameters Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) for details on the power tree scheme. NOTE The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only. 4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC) There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for the on-chip logics. These regulators have three basic modes: • Bypass. The regulation FET is switched fully on passing the external voltage, to the load unaltered. The analog part of the regulator is powered down in this state, removing any loss other than the IR drop through the power grid and FET. • Power Gate. The regulation FET is switched fully off limiting the current draw from the supply. The analog part of the regulator is powered down here limiting the power consumption. • Analog regulation mode. The regulation FET is controlled such that the output voltage of the regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV steps. For additional information, see the i.MX 6Solo/6DualLite reference manual. 4.3.2 4.3.2.1 Regulators for Analog Modules LDO_1P1 The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, LVDS Phy, HDMI Phy, MIPI Phy, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6Solo/6DualLite reference manual. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 34 Freescale Semiconductor Electrical Characteristics 4.3.2.2 LDO_2P5 The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB Phy, LVDS Phy, HDMI Phy, MIPI Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 . For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6Solo/6DualLite reference manual. 4.3.2.3 LDO_USB The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either USB_VBUS supply, when both are present. If only one of the USB_VBUS voltages is present, then, the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). For additional information, see the i.MX 6Solo/6DualLite reference manual. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 35 Electrical Characteristics 4.4 4.4.1 PLL’s Electrical Characteristics Audio/Video PLL’s Electrical Parameters Table 16. Audio/Video PLL’s Electrical Parameters 4.4.2 Parameter Value Clock output range 650 MHz ~1.3 GHz Reference clock 24 MHz Lock time <11250 reference cycles 528 MHz PLL Table 17. 528 MHz PLL’s Electrical Parameters 4.4.3 Parameter Value Clock output range 528 MHz PLL output Reference clock 24 MHz Lock time <11250 reference cycles Ethernet PLL Table 18. Ethernet PLL’s Electrical Parameters 4.4.4 Parameter Value Clock output range 500 MHz Reference clock 24 MHz Lock time <11250 reference cycles 480 MHz PLL Table 19. 480 MHz PLL’s Electrical Parameters Parameter Value Clock output range 480 MHz PLL output Reference clock 24 MHz Lock time <383 reference cycles i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 36 Freescale Semiconductor Electrical Characteristics 4.4.5 MLB PLL The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1. Table 20. MLB PLL’s Electrical Parameters 4.4.6 Parameter Value Lock time <1 ms ARM PLL Table 21. ARM PLL’s Electrical Parameters 4.5 4.5.1 Parameter Value Clock output range 650 MHz ~ 1.3 GHz Reference clock 24 MHz Lock time <2250 reference cycles On-Chip Oscillators OSC24M This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT. The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. 4.5.2 OSC32K This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost. In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 37 Electrical Characteristics CAUTION The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. Freescale strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock. The OSC32k runs from VDD_SNVS_CAP supply, which comes from the VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621: • Average Discharge Voltage is 2.5 V • Maximum Charge Current is 0.6 mA For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k. Table 22. OSC32K Main Characteristics Characteristic Min Typ Max Comments Fosc — 32.768 KHz — This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well. Current consumption — 4 A — The 4 A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 A on vdd_rtc when the ring oscillator is not running. Bias resistor — 14 M — This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations. Crystal Properties 4.6 Cload — 10 pF ESR — 50 k — Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal. 100 k Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin. I/O DC Parameters This section includes the DC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes • LVDS I/O • MLB I/O i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 38 Freescale Semiconductor Electrical Characteristics NOTE The term ‘OVDD’ in this section refers to the associated supply rail of an input or output. ovdd pmos (Rpu) 1 or 0 pdat Voh min Vol max pad Predriver nmos (Rpd) ovss Figure 3. Circuit for Parameters Voh and Vol for I/O Cells 4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters Table 23 shows the DC parameters for the clock inputs. Table 23. XTALI and RTC_XTALI DC Parameters Parameter Symbol Test Conditions Min Max Unit XTALI high-level DC input voltage Vih — 0.8 x NVCC_PLL_OUT NVCC_PLL_ OUT V XTALI low-level DC input voltage Vil — 0 0.2V V RTC_XTALI high-level DC input voltage Vih — 0.8 1.1 V RTC_XTALI low-level DC input voltage Vil — 0 0.2V V i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 39 Electrical Characteristics 4.6.2 General Purpose I/O (GPIO) DC Parameters Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the operating ranges in Table 9, unless otherwise noted. Table 24. GPIO DC Parameters Parameter Symbol Max Units High-level output voltage1 VOH Ioh= -0.1mA (ipp_dse=001,010) OVDD-0.15 Ioh= -1mA (ipp_dse=011,100,101,110,111) — V Low-level output voltage1 VOL Iol= 0.1mA (ipp_dse=001,010) Iol= 1mA (ipp_dse=011,100,101,110,111) — 0.15 V High-Level input voltage1,2 VIH 1,2 — 0.7*OVDD OVDD V VIL — 0 0.3*OVDD V Input Hysteresis (OVDD= 1.8V) VHYS_LowVDD OVDD=1.8V 250 — mV Input Hysteresis (OVDD=3.3V VHYS_HighVDD OVDD=3.3V 250 — mV Schmitt trigger VT+2,3 VTH+ — 0.5*OVDD — mV VT-2,3 VTH- — — 0.5*OVDD mV Pull-up resistor (22_k PU) RPU_22K Vin=0V — 212 uA Pull-up resistor (22_k PU) RPU_22K Vin=OVDD — 1 uA Pull-up resistor (47_k PU) RPU_47K Vin=0V — 100 uA Pull-up resistor (47_k PU) RPU_47K Vin=OVDD — 1 uA Pull-up resistor (100_k PU) RPU_100K Vin=0V — 48 uA Pull-up resistor (100_k PU) RPU_100K Vin=OVDD — 1 uA Pull-down resistor (100_k PD) RPD_100K Vin=OVDD — 48 uA Pull-down resistor (100_k PD) RPD_100K Vin=0V — 1 uA Input current (no PU/PD) IIN VI = 0, VI = OVDD -1 1 uA Keeper Circuit Resistance R_Keeper VI =0.3*OVDD, VI = 0.7* OVDD 105 175 k Low-Level input voltage Schmitt trigger Test Conditions Min 1 Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device. 2 To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s. 3 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled. 4.6.3 DDR I/O DC Parameters The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 40 Freescale Semiconductor Electrical Characteristics 4.6.3.1 LPDDR2 Mode I/O DC Parameters The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. Table 25. LPDDR2 I/O DC Electrical Parameters1 Parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1mA 0.9*OVDD — V Low-level output voltage VOL Iol= 0.1mA — 0.1*OVDD V Input Reference Voltage Vref — 0.49*OVDD 0.51*OVDD V DC High-Level input voltage Vih_DC — Vref+0.13 OVDD V DC Low-Level input voltage Vil_DC — OVSS Vref-0.13 V Differential Input Logic High Vih_diff — 0.26 Note2 Differential Input Logic Low Vil_diff — Note3 -0.26 Pull-up/Pull-down Impedance Mismatch Mmpupd — -15 15 % 240 unit calibration resolution Rres — — 10 Keeper Circuit Resistance Rkeep — 110 175 k Input current (no pull-up/down) Iin VI = 0, VI = OVDD -2.5 2.5 A 1 Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 3 The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2 4.6.3.2 DDR3/DDR3L Mode I/O DC Parameters The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. The parameters in Table 26 are guaranteed per the operating ranges in Table 9, unless otherwise noted. Table 26. DDR3/DDR3L I/O DC Electrical Characteristics Parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1mA Voh (for ipp_dse=001) 0.8*OVDD1 — V Low-level output voltage VOL Iol= 0.1mA Vol (for ipp_dse=001) — 0.2*OVDD V High-level output voltage VOH Ioh= -1mA Voh (for all except ipp_dse=001) 0.8*OVDD — V Low-level output voltage VOL Iol= 1mA Vol (for all except ipp_dse=001) — 0.2*OVDD V Input Reference Voltage Vref — 0.49*ovdd 0.51*ovdd V DC High-Level input voltage Vih_DC — Vref2+0.1 OVDD V i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 41 Electrical Characteristics Table 26. DDR3/DDR3L I/O DC Electrical Characteristics (continued) Parameters Symbol Test Conditions Min Max Unit DC Low-Level input voltage Vil_DC — OVSS Vref-0.1 V Differential Input Logic High Vih_diff — 0.2 See Note3 V 3 Differential Input Logic Low Vil_diff — See Note -0.2 V Termination Voltage Vtt Vtt tracking OVDD/2 0.49*OVDD 0.51*OVDD V — -10 10 % Pull-up/Pull-down Impedance Mismatch Mmpupd 240 unit calibration resolution Rres — — 10 Keeper Circuit Resistance Rkeep — 105 165 k Input current (no pull-up/down) Iin VI = 0,VI = OVDD -2.9 2.9 A 1 OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L) Vref – DDR3/DDR3L external reference voltage 3 The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2 4.6.4 LVDS I/O DC Parameters The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details. Table 27 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters. Table 27. LVDS I/O DC Characteristics 4.6.5 Parameter Symbol Test Conditions Min Typ Max Unit Output Differential Voltage VOD Rload-100 Diff 250 350 450 mV Output High Voltage VOH IOH = 0 mA 1.25 1.375 1.6 V Output Low Voltage VOL IOL = 0 mA 0.9 1.025 1.25 V Offset Voltage VOS — 1.125 1.2 1.375 V MLB I/O DC Parameters The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, “MediaLB 6-pin interface Electrical Characteristics” for details. NOTE The MLB 6-pin interface does not support speed mode 8192 fs. Table 28 shows the Media Local Bus (MLB) I/O DC parameters. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 42 Freescale Semiconductor Electrical Characteristics Table 28. MLB I/O DC Characteristics 4.7 Parameter Symbol Test Conditions Min Max Unit Output Differential Voltage VOD Rload-50 Diff 300 500 mV Output High Voltage VOH Rload-50 Diff 1.25 1.75 V Output Low Voltage VOL Rload-50 Diff 0.75 1.25 V Common-mode output voltage ((Vpadp*+Vpadn*)/2) Vocm Rload-50 Diff 1 1.5 V Differential output impedance Zo — 1.6 — k I/O AC Parameters This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes • LVDS I/O • MLB I/O The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 4. Load Circuit for Output OVDD 80% 80% Output (at pad) 20% 0V 20% tr tf Figure 5. Output Transition Time Waveform 4.7.1 General Purpose I/O AC Parameters The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30, respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 43 Electrical Characteristics Table 29. General Purpose I/O AC Parameters 1.8 V Mode Parameter Symbol Test Condition Min Typ Max Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=111) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 2.72/2.79 1.51/1.54 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.20/3.36 1.96/2.07 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=100) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.64/3.88 2.27/2.53 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 4.32/4.50 3.16/3.17 Input Transition Times1 trm — — — 25 ns Unit 1 Unit ns Hysteresis mode is recommended for inputs with transition times greater than 25 ns. Table 30. General Purpose I/O AC Parameters 3.3 V Mode Parameter Symbol Test Condition Min Typ Max Output Pad Transition Times, rise/fall (Max Drive, ipp_dse=101) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 1.70/1.79 1.06/1.15 Output Pad Transition Times, rise/fall (High Drive, ipp_dse=011) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 2.35/2.43 1.74/1.77 Output Pad Transition Times, rise/fall (Medium Drive, ipp_dse=010) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 3.13/3.29 2.46/2.60 Output Pad Transition Times, rise/fall (Low Drive. ipp_dse=001) tr, tf 15 pF Cload, slow slew rate 15 pF Cload, fast slew rate — — 5.14/5.57 4.77/5.15 Input Transition Times1 trm — — — 25 1 ns ns Hysteresis mode is recommended for inputs with transition times greater than 25 ns. 4.7.2 DDR I/O AC Parameters The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode. Table 31. DDR I/O LPDDR2 Mode AC Parameters1 Parameter AC input logic high AC input logic low AC differential input high voltage2 AC differential input low voltage Input AC differential cross point voltage3 Symbol Test Condition Min Max Unit Vih(ac) — Vref + 0.22 OVDD V Vil(ac) — 0 Vref - 0.22 V Vidh(ac) — 0.44 — V Vidl(ac) — — 0.44 V Vix(ac) Relative to Vref -0.12 0.12 V i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 44 Freescale Semiconductor Electrical Characteristics Table 31. DDR I/O LPDDR2 Mode AC Parameters1 (continued) Parameter Symbol Test Condition Min Max Unit Over/undershoot peak Vpeak — — 0.35 V Over/undershoot area (above OVDD or below OVSS) Varea 400 MHz — 0.3 V-ns tsr 50 to Vref. 5 pF load. Drive impedance = 40 ± 30% 1.5 3.5 V/ns 50 to Vref. 5pF load.Drive impedance = 60 ± 30% 1 2.5 clk = 400 MHz — 0.1 Single output slew rate, measured between Vol(ac) and Voh(ac) Skew between pad rise/fall asymmetry + skew caused by SSN tSKD ns 1 Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document. Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode. Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters1 Parameter Symbol Test Condition Min Typ Max Unit Vih(ac) — Vref + 0.175 — OVDD V Vil(ac) — 0 — Vref - 0.175 V AC differential input voltage Vid(ac) — 0.35 — — V Input AC differential cross point voltage3 Vix(ac) Relative to Vref Vref - 0.15 — Vref + 0.15 V Over/undershoot peak Vpeak — — — 0.4 V Over/undershoot area (above OVDD or below OVSS) Varea 400 MHz — — 0.5 V-ns tsr Driver impedance = 34 2.5 — 5 V/ns tSKD clk = 400 MHz — — 0.1 ns AC input logic high AC input logic low 2 Single output slew rate, measured between Vol(ac) and Voh(ac) Skew between pad rise/fall asymmetry + skew caused by SSN 1 Note that the JEDEC JESD79_3C specification supersedes any specification in this document. Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac). 3 The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross. 2 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 45 Electrical Characteristics 4.7.3 LVDS I/O AC Parameters The differential output transition time waveform is shown in Figure 6. padp VOH 0V 0V (Differential) padn VOL 80% 80% 0V 0V VDIFF 20% VDIFF = {padp} - {padn} 20% tTHL tTLH Figure 6. Differential LVDS Driver Transition Time Waveform Table 33 shows the AC parameters for LVDS I/O. Table 33. I/O AC Parameters of LVDS Pad Parameter Symbol Differential pulse skew1 tSKD Time2 tTLH Transition High to Low Time2 tTHL Transition Low to High Operating Frequency Offset voltage imbalance Test Condition Rload = 100 , Cload = 2 pF Min Typ Max — — 0.25 — — 0.5 — — 0.5 Unit ns f — — 600 800 MHz Vos — — — 150 mV 1 tSKD = | tPHLD - tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. 2 Measurement levels are 20-80% from output voltage. 4.7.4 MLB I/O AC Parameters The differential output transition time waveform is shown in Figure 7. padp 0V 0V (Differential) padn VOH VOL 80% 80% 0V VDIFF 20% VDIFF = {padp} - {padn} tTLH 0V 20% tTHL Figure 7. Differential MLB Driver Transition Time Waveform i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 46 Freescale Semiconductor Electrical Characteristics A 4-stage pipeline is utilized in the MLB 6-pin implementation in order to facilitate design, maximize throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock from MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output delay of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of Signal/Data clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop. MLB 6-pin pipeline diagram is shown in Figure 8. Figure 8. MLB 6-Pin Pipeline Diagram Table 34 shows the AC parameters for MLB I/O. Table 34. I/O AC Parameters of MLB PHY Parameter Symbol Test Condition Differential pulse skew1 tSKD Transition Low to High Time2 tTLH Transition High to Low Time tTHL Min Typ Max Rload = 50 between padp and padn — — 0.1 — — 1 — — 1 Unit ns MLB external clock Operating Frequency fclk_ext — — — 102.4 MHz MLB PLL clock Operating Frequency fclk_pll — — — 307.2 MHz 1 tSKD = | tPHLD - tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. 2 Measurement levels are 20-80% from output voltage. 4.8 Output Buffer Impedance Parameters This section defines the I/O impedance parameters of the i.MX 6Solo/6DualLite processors for the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes • LVDS I/O • MLB I/O i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 47 Electrical Characteristics NOTE GPIO and DDR I/O output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 9). OVDD PMOS (Rpu) Ztl , L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Vovdd – Vref1 Rpu = Ztl Vref1 Rpd = Vref2 Ztl Vovdd – Vref2 Figure 9. Impedance Matching Load for Measurement i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 48 Freescale Semiconductor Electrical Characteristics 4.8.1 GPIO Output Buffer Impedance Table 35 shows the GPIO output buffer impedance (OVDD 1.8 V). Table 35. GPIO Output Buffer Average Impedance (OVDD 1.8 V) Parameter Output Driver Impedance Symbol Drive Strength (DSE) Typ Value Unit 001 010 011 100 101 110 111 260 130 90 60 50 40 33 Rdrv Table 36 shows the GPIO output buffer impedance (OVDD 3.3 V). Table 36. GPIO Output Buffer Average Impedance (OVDD 3.3 V) Parameter Output Driver Impedance 4.8.2 Symbol Drive Strength (DSE) Typ Value Unit 001 010 011 100 101 110 111 150 75 50 37 30 25 20 Rdrv DDR I/O Output Buffer Impedance The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008. Table 37 shows DDR I/O output buffer impedance of i.MX 6Solo/6DualLite processors. Table 37. DDR I/O Output Buffer Impedance Typical Parameter Output Driver Impedance Symbol Test Conditions DSE (Drive Strength) Rdrv 000 001 010 011 100 101 110 111 NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11 NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10 Hi-Z 240 120 80 60 48 40 34 Hi-Z 240 120 80 60 48 40 34 Unit Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240 external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 49 Electrical Characteristics 4.8.3 LVDS I/O Output Buffer Impedance The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details. 4.8.4 MLB I/O Differential Output Impedance Table 38 shows MLB I/O differential output impedance of the i.MX 6Solo/6DualLite processors. Table 38. MLB I/O Differential Output Impedance Parameter Differential Output Impedance 4.9 Symbol Test Conditions Min Typ Max Unit Zo — 1.6 K — — System Modules Timing This section contains the timing and electrical parameters for the modules in each i.MX 6Solo/6DualLite processor. 4.9.1 Reset Timings Parameters Figure 10 shows the reset timing and Table 39 lists the timing parameters. SRC_POR_B (Input) CC1 Figure 10. Reset Timing Diagram Table 39. Reset Timing Parameters ID CC1 1 Parameter Min Max Unit 1 — XTALOSC_RTC_XTALI cycle Duration of SRC_POR_B to be qualified as valid.1 SRC_POR_B rise and fall times must be 5 ns or less. 4.9.2 WDOG Reset Timing Parameters Figure 11 shows the WDOG reset timing and Table 40 lists the timing parameters. WDOG1_B (Output) CC3 Figure 11. WDOG1_B Timing Diagram Table 40. WDOG1_B Timing Parameters ID CC3 Parameter Duration of WDOG1_B Assertion Min Max Unit 1 — XTALOSC_RTC_XTALI cycle i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 50 Freescale Semiconductor Electrical Characteristics NOTE XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information. 4.9.3 External Interface Module (EIM) The following subsections provide information on the EIM. Maximum operating frequency for EIM data transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or clock periods are valid for the entire range of allowed frequencies (0–104 MHz). 4.9.3.1 EIM Interface Pads Allocation EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 41 provides EIM interface pads allocation in different modes. Table 41. EIM Internal Module Multiplexing1 Multiplexed Address/Data mode Non Multiplexed Address/Data Mode Setup 8 Bit 16 Bit 32 Bit 16 Bit 32 Bit MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 1, MUM = 1, DSZ = 100 DSZ = 101 DSZ = 110 DSZ = 111 DSZ = 001 DSZ = 010 DSZ = 011 DSZ = 001 DSZ = 011 EIM_ADDR EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD EIM_AD [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] [15:00] EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_DATA [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [25:16] [09:00] EIM_DATA EIM_DATA — — — EIM_DATA — EIM_DATA EIM_AD EIM_AD [07:00], [07:00] [07:00] [07:00] [07:00] [07:00] EIM_EB0_B EIM_DATA — EIM_DATA — — EIM_DATA — EIM_DATA EIM_AD EIM_AD [15:08], [15:08] [15:08] [15:08] [15:08] [15:08] EIM_EB1_B EIM_DATA — — EIM_DATA — — EIM_DATA EIM_DATA — EIM_DATA [07:00] [23:16], [23:16] [23:16] [23:16] EIM_EB2_B EIM_DATA — — — EIM_DATA — EIM_DATA EIM_DATA — EIM_DATA [31:24], [31:24] [31:24] [31:24] [15:08] EIM_EB3_B 1 For more information on configuration ports mentioned in this table, see the i.MX 6Solo/6DualLite reference manual. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 51 Electrical Characteristics 4.9.3.2 General EIM Timing-Synchronous Mode Figure 12, Figure 13, and Table 42 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields. , WE2 ... EIM_BCLK WE4 WE3 WE1 WE5 EIM_ADDRxx EIM_CSx_B EIM_WE_B WE6 WE7 WE8 WE9 WE10 WE11 WE12 WE13 WE14 WE15 WE16 WE17 EIM_OE_B EIM_EBx_B EIM_LBA_B Output Data Figure 12. EIM Outputs Timing Diagram EIM_BCLK WE18 Input Data WE19 WE20 EIM_WAIT_B WE21 Figure 13. EIM Inputs Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 52 Freescale Semiconductor Electrical Characteristics 4.9.3.3 Examples of EIM Synchronous Accesses Table 42. EIM Bus Timing Parameters 1 BCD = 0 ID BCD = 1 BCD = 2 BCD = 3 Parameter Min Max Min Max Min Max Min Max t — 2xt — 3xt — 4xt — WE2 EIM_BCLK Low Level Width 0.4 x t — 0.8 x t — 1.2 x t — 1.6 x t — WE3 EIM_BCLK High Level Width 0.4 x t — 0.8 x t — 1.2 x t — 1.6 x t — -t + 1.75 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 t - 1.25 t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE1 EIM_BCLK Cycle time2 WE4 Clock rise to address valid3 WE5 Clock rise to address invalid WE6 Clock rise to EIM_CSx_B valid -0.5 x t 1.25 -0.5 x t + 1.75 -t - 1.25 0.5 x t - 1.25 0.5 x t + 1.75 -0.5 x t 1.25 WE7 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_CSx_B invalid WE8 Clock rise to EIM_WE_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE9 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_WE_B Invalid WE10 Clock rise to EIM_OE_B Valid WE11 Clock rise to EIM_OE_B Invalid WE12 Clock rise to EIM_EBx_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 0.5 x t - 1.25 0.5 x t + 1.75 -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE13 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_EBx_B Invalid WE14 Clock rise to EIM_LBA_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE15 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_LBA_B Invalid WE16 Clock rise to Output Data Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE17 Clock rise to Output 0.5 x t - 1.25 0.5 x t + 1.75 Data Invalid t - 1.25 t + 1.75 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 WE18 Input Data setup time to Clock rise 2 — 4 — — — — — WE19 Input Data hold time from Clock rise 2 — 2 — — — — — WE20 EIM_WAIT_B setup time to Clock rise 2 — 4 — — — — — WE21 EIM_WAIT_B hold time from Clock rise 2 — 2 — — — — — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 53 Electrical Characteristics 1 t is the maximum EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed latency configuration, whereas the maximum allowed EIM_BCLK frequency is: —Fixed latency for both read and write is 104 MHz. —Variable latency for read only is 104 MHz. —Variable latency for write only is 52 MHz. In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz.Write BCD = 1 and 104 MHz axi_clk, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses are impacted which are clocked from this source. See the CCM chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) for a detailed clock tree description. 2 EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value. 3 For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value. Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings. EIM_BCLK EIM_ADDRxx EIM_CSx_B WE4 WE5 Address v1 Last Valid Address WE6 WE7 EIM_WE_B EIM_LBA_B EIM_OE_B EIM_EBx_B EIM_DATAxx WE14 WE15 WE10 WE11 WE12 WE13 WE18 D(v1) WE19 Figure 14. Synchronous Memory Read Access, WSC=1 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 54 Freescale Semiconductor Electrical Characteristics EIM_BCLK EIM_ADDRxx Last Valid Address EIM_CSx_B EIM_WE_B WE5 WE4 Address V1 WE6 WE7 WE8 WE9 WE14 EIM_LBA_B WE15 EIM_OE_B WE13 WE12 EIM_EBx_B WE16 EIM_DATAxx WE17 D(V1) Figure 15. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0 EIM_BCLK EIM_ADDRxx/ EIM_ADxx EIM_CSx_B EIM_WE_B WE4 Last Valid Address WE5 WE17 WE16 Write Data Address V1 WE6 WE7 WE8 WE9 WE14 WE15 EIM_LBA_B EIM_OE_B WE10 WE11 EIM_EBx_B Figure 16. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and ADH=1 NOTE In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 55 Electrical Characteristics EIM_BCLK EIM_ADDRxx/ EIM_ADxx WE4 WE5 Last Valid Address Address V1 WE6 WE19 Data WE18 EIM_CSx_B WE7 EIM_WE_B WE15 WE14 EIM_LBA_B WE10 WE11 EIM_OE_B WE12 WE13 EIM_EBx_B Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0 4.9.3.4 General EIM Timing-Asynchronous Mode Figure 18 through Figure 22, and Table 43 help you determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above. Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN and CSN is configured differently. See the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) for the EIM programming model. end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ WE31 EIM_ADxx Last Valid Address WE32 Next Address Address V1 EIM_WE_B EIM_LBA_B WE39 WE40 EIM_OE_B WE35 WE36 EIM_EBx_B WE37 WE38 EIM_DATAxx[7:0] WE44 MAXCO D(V1) WE43 MAXDI Figure 18. Asynchronous Memory Read Access (RWSC = 5) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 56 Freescale Semiconductor Electrical Characteristics end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ EIM_ADxx MAXDI WE31 D(V1) Addr. V1 WE32A WE44 EIM_WE_B WE39 EIM_LBA_B WE40A WE35A WE36 EIM_OE_B WE37 WE38 EIM_EBx_B MAXCO Figure 19. Asynchronous A/D Muxed Read Access (RWSC = 5) EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE33 EIM_WE_B WE39 EIM_LBA_B WE32 Address V1 Next Address WE34 WE40 EIM_OE_B WE45 WE46 EIM_EBx_B EIM_DATAxx WE42 WE41 D(V1) Figure 20. Asynchronous Memory Write Access i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 57 Electrical Characteristics EIM_CSx_B EIM_ADDRxx/ WE41 WE31 D(V1) Addr. V1 EIM_DATAxx WE32A WE33 WE34 WE42 EIM_WE_B WE39 EIM_LBA_B WE40A EIM_OE_B WE45 WE46 EIM_EBx_B WE42 Figure 21. Asynchronous A/D Muxed Write Access EIM_CSx_B EIM_ADDRxx WE31 Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE39 WE40 WE35 WE36 WE37 WE38 EIM_LBA_B EIM_OE_B EIM_EBx_B EIM_DATAxx[7:0] WE44 D(V1) WE43 WE48 EIM_DTACK_B WE47 Figure 22. DTACK Mode Read Access (DAP=0) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 58 Freescale Semiconductor Electrical Characteristics EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE33 WE34 EIM_LBA_B WE39 WE40 WE45 WE46 EIM_OE_B EIM_EBx_B WE42 EIM_DATAxx D(V1) WE41 WE48 EIM_DTACK_B WE47 Figure 23. DTACK Mode Write Access (DAP=0) Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select Ref No. Parameter Determination by Synchronous measured parameters1 Min Max Unit WE31 EIM_CSx_B valid to Address Valid WE4 - WE6 - CSA2 — 3 - CSA ns WE32 Address Invalid to EIM_CSx_B invalid WE7 - WE5 - CSN3 — 3 - CSN ns t4 + WE4 - WE7 + (ADVN5 + ADVA6 + 1 - CSA) -3 + (ADVN + ADVA + 1 - CSA) — ns WE32A(m EIM_CSx_B valid to Address uxed A/D Invalid WE33 EIM_CSx_B Valid to EIM_WE_B Valid WE8 - WE6 + (WEA - WCSA) — 3 + (WEA - WCSA) ns WE34 EIM_WE_B Invalid to EIM_CSx_B Invalid WE7 - WE9 + (WEN - WCSN) — 3 - (WEN_WCSN) ns WE35 EIM_CSx_B Valid to EIM_OE_B Valid WE10 - WE6 + (OEA - RCSA) — 3 + (OEA - RCSA) ns WE35A (muxed A/D) EIM_CSx_B Valid to EIM_OE_B Valid WE10 - WE6 + (OEA + RADVN -3 + (OEA + 3 + (OEA + + RADVA + ADH + 1 - RCSA) RADVN+RADVA+ RADVN+RADVA+AD ADH+1-RCSA) H+1-RCSA) ns WE36 EIM_OE_B Invalid to EIM_CSx_B Invalid WE7 - WE11 + (OEN - RCSN) — 3 - (OEN - RCSN) ns WE37 EIM_CSx_B Valid to EIM_EBx_B Valid (Read access) WE12 - WE6 + (RBEA - RCSA) — 3 + (RBEA - RCSA) ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 59 Electrical Characteristics Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select (continued) Ref No. Parameter WE38 EIM_EBx_B Invalid to EIM_CSx_B Invalid (Read access) WE39 EIM_CSx_B Valid to EIM_LBA_B Valid WE40 EIM_LBA_B Invalid to EIM_CSx_B Invalid (ADVL is asserted) WE40A (muxed A/D) EIM_CSx_B Valid to EIM_LBA_B Invalid Determination by Synchronous measured parameters1 Min Max Unit WE7 - WE13 + (RBEN - RCSN) — 3 - (RBEN- RCSN) ns WE14 - WE6 + (ADVA - CSA) — 3 + (ADVA - CSA) ns WE7 - WE15 - CSN — 3 - CSN ns WE14 - WE6 + (ADVN + ADVA + 1 - CSA) -3 + (ADVN + ADVA + 1 - CSA) 3 + (ADVN + ADVA + 1 - CSA) ns WE41 EIM_CSx_B Valid to Output Data Valid WE16 - WE6 - WCSA — 3 - WCSA ns WE41A (muxed A/D) EIM_CSx_B Valid to Output Data Valid WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA) — 3 + (WADVN + WADVA + ADH + 1 WCSA) ns WE17 - WE7 - CSN — 3 - CSN ns 10 — — ns 10 — — ns WE42 MAXCO Output Data Invalid to EIM_CSx_B Invalid Output maximum delay from internal driving EIM_ADDRxx/control FFs to chip outputs MAXCSO Output maximum delay from CSx internal driving FFs to CSx out MAXDI EIM_DATAxx maximum delay from chip input data to its internal FF 5 — — ns WE43 Input Data Valid to EIM_CSx_B Invalid MAXCO - MAXCSO + MAXDI MAXCO MAXCSO + MAXDI — ns WE44 EIM_CSx_B Invalid to Input Data invalid 0 0 — ns WE45 EIM_CSx_B Valid to EIM_EBx_B Valid (Write access) WE12 - WE6 + (WBEA WCSA) — 3 + (WBEA - WCSA) ns WE46 EIM_EBx_B Invalid to EIM_CSx_B Invalid (Write access) WE7 - WE13 + (WBEN WCSN) — -3 + (WBEN - WCSN) ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 60 Freescale Semiconductor Electrical Characteristics Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select (continued) Ref No. MAXDTI 1 2 3 4 5 6 Parameter MAXIMUM delay from EIM_DTACK_B to its internal FF + 2 cycles for synchronization WE47 EIM_DTACK_B Active to EIM_CSx_B Invalid WE48 EIM_CSx_B Invalid to EIM_DTACK_B Invalid Determination by Synchronous measured parameters1 Min Max Unit 10 — — — MAXCO - MAXCSO + MAXDTI MAXCO MAXCSO + MAXDTI — ns 0 0 — ns For more information on configuration parameters mentioned in this table, see the i.MX 6Solo/6DualLite reference manual. In this table, CSA means WCSA when write operation or RCSA when read operation. In this table, CSN means WCSN when write operation or RCSN when read operation. t is axi_clk cycle time. In this table, ADVN means WADVN when write operation or RADVN when read operation. In this table, ADVA means WADVA when write operation or RADVA when read operation. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 61 Electrical Characteristics 4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2) 4.9.4.1 DDR3/DDR3L Parameters Figure 24 shows the basic timing parameters. The timing parameters for this diagram appear in Table 44. DRAM_SDCLKx_N DDR1 DRAM_SDCLKx_P DDR2 DDR4 DRAM_CSx_B DDR5 DRAM_RAS_B DDR5 DDR4 DRAM_CAS_B DDR4 DDR5 DDR5 DRAM_SDWE_B DRAM_ODTx/ DRAM_SDCKEx DDR4 DDR6 DDR7 DRAM_ADDRxx ROW/BA COL/BA Figure 24. DDR3 Command and Address Timing Parameters Table 44. DDR3/DDR3L Timing Parameter Table CK = 400 MHz ID 1 2 Parameter Symbol Unit Min Max DDR1 DRAM_SDCLKx_P clock high-level width tCH 0.47 0.53 tCK DDR2 DRAM_SDCLKx_P clock low-level width tCL 0.47 0.53 tCK DDR4 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx setup time tIS 800 — ps DDR5 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx hold time tIH 580 — ps DDR6 Address output setup time tIS 800 — ps DDR7 Address output hold time tIH 580 — ps All measurements are in reference to Vref level. Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 62 Freescale Semiconductor Electrical Characteristics Figure 25shows the DDR3/DDR3L write timing parameters. The timing parameters for this diagram appear in Table 45. DRAM_SDCLKx_P DRAM_SDCLKx_N DDR21 DDR22 DRAM_SDQSx_P (output) DRAM_DATAxx (output) DDR18 DDR17 DDR23 DDR17 DDR18 Data Data Data Data Data Data Data Data DM DM DM DM DM DM DM DM DRAM_DQMx (output) DDR17 DDR18 DDR17 DDR18 Figure 25. DDR3/DDR3L Write Cycle Table 45. DDR3/DDR3L Write Cycle CK = 400 MHz ID Parameter Symbol Unit Min Max DDR17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 420 — ps DDR18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 345 — ps DDR21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK DDR22 DRAM_SDQSx_P high level width tDQSH 0.45 0.55 tCK DDR23 DRAM_SDQSx_P low level width tDQSL 0.45 0.55 tCK 1 To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 63 Electrical Characteristics Figure 26 shows the read DDR3/DDR3L timing parameters. The timing parameters for this diagram appear in Table 46. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P (input) DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA DDR26 Figure 26. DDR3/DDR3L Read Cycle Table 46. DDR3/DDR3L Read Cycle CK = 400 MHz ID DDR26 Parameter Minimum required DRAM_DATAxx valid window width Symbol — Unit Min Max 450 — ps 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 64 Freescale Semiconductor Electrical Characteristics 4.9.4.2 LPDDR2 Parameters Figure 27 shows the basic timing parameters. The timing parameters for this diagram appear in Table 47. DRAM_SDCLKx_P LP1 LP4 DRAM_CSx_B LP2 LP6 LP3 LP5 DRAM_SDCKEx LP3 LP4 DRAM_ADDRxx LP4 LP3 Figure 27. LPDDR2 Command and Address Timing Parameters Table 47. LPDDR2 Timing Parameter CK = 400 MHz ID 1 2 Parameter Symbol Unit Min Max LP1 DRAM_SDCLKx_P clock high-level width tCH 0.45 0.55 tCK LP2 DRAM_SDCLKx_P clock low-level width tCL 0.45 0.55 tCK LP3 DRAM_ADDRxx, DRAM_CSx_B setup time tIS 380 — ps LP4 DRAM_ADDRxx, DRAM_CSx_B hold time tIH 380 — ps LP5 DRAM_SDCKEx setup time tISCKE 770 — tck LP6 DRAM_SDCKEx hold time tIHCKE 770 — tck All measurements are in reference to Vref level. Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. Figure 28 shows the write timing parameters. The timing parameters for this diagram appear in Table 48. DRAM_SDCLKx_P DRAM_SDCLKx_N LP21 LP22 LP23 DRAM_SDQSx_P (output) DRAM_DATAxx(output) LP18 LP17 DRAM_DQMx (output) LP17 LP17 LP18 Data Data Data Data Data Data Data Data DM DM DM DM DM DM DM DM LP18 LP17 LP18 Figure 28. LPDDR2 Write Cycle i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 65 Electrical Characteristics Table 48. LPDDR2 Write Cycle CK = 400 MHz ID Parameter Symbol Unit Min Max LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 375 — ps LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 375 — ps LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK LP22 DRAM_SDQSx_P high level width tDQSH 0.4 — tCK LP23 DRAM_SDQSx_P low level width tDQSL 0.4 — tCK 1 To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. Figure 29 shows the read timing parameters. The timing parameters for this diagram appear in Table 49. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P (input) DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA LP26 Figure 29. LPDDR2 Read Cycle Table 49. LPDDR2 Read Cycle CK = 400 MHz ID LP26 Parameter Minimum required DRAM_DATAxx valid window width for LPDDR2 Symbol — Unit Min Max 270 — ps 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 resistor from outputs to DRAM_VREF. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 66 Freescale Semiconductor Electrical Characteristics 4.10 General-Purpose Media Interface (GPMI) Timing The i.MX 6Solo/6DualLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing mode separately described in the following subsections. 4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 30 through Figure 33 depicts the relative timing between GPMI signals at the module level for different operations under asynchronous mode. Table 50 describes the timing parameters (NF1–NF17) that are shown in the figures. .!.$?#,% .!.$?#%?" E&ϯ E&Ϯ E&ϭ .!.$?7%?" E&ϱ E&ϰ E&ϲ .!.$?!,% E&ϳ E&ϴ E&ϵ ŽŵŵĂŶĚ .!.$?$!4!XX Figure 30. Command Latch Cycle Timing Diagram E&ϭ .!.$?#,% .!.$?#%?" E&ϯ E&ϭϬ .!.$?7%?" .!.$?!,% E&ϭϭ E&ϳ E&ϲ E&ϴ EEͺddždž E&ϱ E&ϵ ĚĚƌĞƐƐ Figure 31. Address Latch Cycle Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 67 Electrical Characteristics E&ϭ .!.$?#,% E&ϯ .!.$?#%?" E&ϭϬ E&ϱ .!.$?7%?" E&ϲ .!.$?!,% E&ϭϭ E&ϵ E&ϴ .!.$?$!4!XX E&ϳ ĂƚĂƚŽE& Figure 32. Write Data Latch Cycle Timing Diagram .!.$?#,% .!.$?#%?" E&ϭϰ .!.$?2%?" .!.$?2%!$9?" E&ϭϯ E&ϭϱ E&ϭϮ E&ϭϲ .!.$?$!4!XX E&ϭϳ ĂƚĂĨƌŽŵE& Figure 33. Read Data Latch Cycle Timing Diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" E&ϭϰ E&ϭϯ .!.$?2%?" .!.$?2%!$9?" E&ϭϱ E&ϭϮ E&ϭϳ EEͺddždž E&ϭϲ ĂƚĂĨƌŽŵE& Figure 34. Read Data Latch Cycle Timing Diagram (EDO Mode) Table 50. Asynchronous Mode Timing Parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Min. Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS) T - 0.12 [see 2,3] ns NF2 NAND_CLE hold time tCLH DH T - 0.72 [see 2] ns NF3 NAND_CE0_B setup time tCS (AS + DS + 1) T [see 3,2] ns NF4 NAND_CE0_B hold time tCH (DH+1) T - 1 [see 2] ns NF5 NAND_WE_B pulse width tWP DS T [see 2] ns NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see 3,2] ns NF7 NAND_ALE hold time tALH (DH T - 0.42 [see 2] ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 68 Freescale Semiconductor Electrical Characteristics Table 50. Asynchronous Mode Timing Parameters1 (continued) ID Parameter Timing T = GPMI Clock Cycle Symbol Min. 2 3 4 5 6 Max. NF8 Data setup time tDS DS T - 0.26 [see ] ns NF9 Data hold time tDH DH T - 1.37 [see 2] ns NF10 Write cycle time tWC (DS + DH) T [see 2] ns DH T [see ] ns 2 2 NF11 NAND_WE_B hold time tWH NF12 Ready to NAND_RE_B low tRR4 NF13 NAND_RE_B pulse width tRP DS T [see 2] tRC (DS + DH) T [see ] ns DH T [see 2] ns NF14 READ cycle time NF15 NAND_RE_B high hold time tREH NF16 Data setup on read tDSR NF17 1 Unit Data hold on read tDHR (AS + 2) T [see 3,2] — ns 2 — 0.82/11.83 [see 5,6] ns (DS T -0.67)/18.38 [see 5,6] ns — ns GPMI’s Async Mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). In EDO mode (Figure 33), NF16/NF17 are different from the definition in non-EDO mode (Figure 32). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 69 Electrical Characteristics 4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible) Figure 35 to Figure 37 show the write and read timing of Source Synchronous Mode. .!.$?#%?" 1) 1) 1) 1$1'B&/( 1) 1) 1) 1$1'B$/( 1) 1) 1$1'B:(5(B% 1) 1$1'B&/. 1$1'B'46 1$1'B'46 2XWSXWHQDEOH 1) 1) 1) 1) 1$1'B'$7$>@ &0' $'' 1$1'B'$7$>@ 2XWSXWHQDEOH Figure 35. Source Synchronous Mode Command and Address Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 70 Freescale Semiconductor Electrical Characteristics 1) 1) .!.$?#%?" 1) .!.$?#,% 1) 1) 1) 1) 1) .!.$?!,% 1) 1) 1$1'B:(5(B% 1) .!.$?#,+ 1) 1) .!.$?$13 .!.$?$13 2XWSXWHQDEOH 1) 1) .!.$?$1;= 1) 1) .!.$?$1;= 2XWSXWHQDEOH Figure 36. Source Synchronous Mode Data Write Timing Diagram 1) .!.$?#%?" 1) 1) 1) .!.$?#,% 1) 1$1'B$/( .!.$?7%2% 1) 1) 1) 1) 1) 1) 1) 1) 1) .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUT ENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUT ENABLE Figure 37. Source Synchronous Mode Data Read Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 71 Electrical Characteristics .!.$?$13 E&ϯϬ .!.$?$!4!;= Ϭ E&ϯϬ ϭ Ϯ E&ϯϭ ϯ E&ϯϭ Figure 38. NAND_DQS/NAND_DQ Read Valid Window Table 51. Source Synchronous Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF18 NAND_CE0_B access time tCE CE_DELAY T - 0.79 [see 2] ns NF19 NAND_CE0_B hold time tCH 0.5 tCK - 0.63 [see 2] ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5 tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5 tCK - 1.23 ns tCK — ns NF23 preamble delay tPRE PRE_DELAY T - 0.29 [see 2] ns NF24 postamble delay tPOST POST_DELAY T - 0.78 [see 2] ns NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 tCK - 0.37 ns NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see 2] ns NF28 Data write setup — 0.25 tCK - 0.35 NF29 Data write hold — 0.25 tCK - 0.85 NF30 NAND_DQS/NAND_DQ read setup skew — — 2.06 NF31 NAND_DQS/NAND_DQ read hold skew — — 1.95 NF22 clock period 1 GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter). For DDR Source sync mode, Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 72 Freescale Semiconductor Electrical Characteristics 4.10.3 4.10.3.1 Samsung Toggle Mode AC Timing Command and Address Timing NOTE Samsung Toggle Mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.10.1, “Asynchronous Mode AC Timing (ONFI 1.0 Compatible),” for details. 4.10.3.2 Read and Write Timing DEV?CLK .!.$?#%X?" .!.$?#,% .!.$?!,% .!.$?7%?" .!.$?2%?" .& .& .!.$?$13 .!.$?$!4!;= T#+ T#+ Figure 39. Samsung Toggle Mode Data Write Timing i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 73 Electrical Characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T #+ .& T #+ .& .!.$?2%?" T #+ T #+ T #+ .!.$?$13 .!.$?$!4!;= Figure 40. Samsung Toggle Mode Data Read Timing Table 52. Samsung Toggle Mode Timing Parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Unit Min Max (AS + DS) T - 0.12 [see 2,3] NF1 NAND_CLE setup time tCLS NF2 NAND_CLE hold time tCLH DH T - 0.72 [see 2] NF3 NAND_CE0_B setup time tCS (AS + DS) T - 0.58 [see 3,2] NF4 NAND_CE0_B hold time tCH DH T - 1 [see 2] NF5 NAND_WE_B pulse width tWP DS T [see 2] NF6 NAND_ALE setup time tALS (AS + DS) T - 0.49 [see 3,2] NF7 NAND_ALE hold time tALH DH T - 0.42 [see 2] NF8 Command/address NAND_DATAxx setup time tCAS DS T - 0.26 [see 2] NF9 Command/address NAND_DATAxx hold time tCAH DH T - 1.37 [see 2] NF18 NAND_CEx_B access time tCE CE_DELAY T [see 4,2] — ns NF22 clock period tCK — — ns — ns — ns NF23 preamble delay NF24 postamble delay tPRE tPOST PRE_DELAY T [see 5,2] POST_DELAY T +0.43 [see ] 2 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 74 Freescale Semiconductor Electrical Characteristics Table 52. Samsung Toggle Mode Timing Parameters1 (continued) ID 1 2 3 4 5 6 7 Parameter Symbol Timing T = GPMI Clock Cycle Unit Min Max NF28 Data write setup 6 tDS 0.25 tCK - 0.32 — ns NF29 Data write hold tDH6 0.25 tCK - 0.79 — ns NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7 — 3.18 NF31 NAND_DQS/NAND_DQ read hold skew tQHS7 — 3.27 The GPMI toggle mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1) (AS+DS) Shown in Figure 39, Samsung Toggle Mode Data Write Timing diagram. Shown in Figure 38, NAND_DQS/NAND_DQ Read Valid Window. For DDR Toggle mode, Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 4.11 External Peripheral Interface Parameters The following subsections provide information on external peripheral interfaces. 4.11.1 AUDMUX Timing Parameters The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document. 4.11.2 ECSPI Timing Parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 75 Electrical Characteristics 4.11.2.1 ECSPI Master Mode Timing Figure 41 depicts the timing of ECSPI in master mode. Table 53 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS1 CS2 CS3 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 41. ECSPI Master Mode Timing Diagram Table 53. ECSPI Master Mode Timing Parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPIx_SCLK Cycle Time–Write tclk 43 15 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 21.5 7 — ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL — — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 — ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time • tSmiso 18 — ns CS9 ECSPIx_MISO Hold Time tHmiso 0 — ns tSDRY 5 — ns CS10 RDY to ECSPIx_SS_B Time2 1 2 See specific I/O AC parameters Section 4.7, “I/O AC Parameters.” SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 76 Freescale Semiconductor Electrical Characteristics 4.11.2.2 ECSPI Slave Mode Timing Figure 42 depicts the timing of ECSPI in slave mode. Table 54 lists the ECSPI slave mode timing characteristics. ECSPIx_SS_B CS5 CS6 CS2 CS1 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS8 CS7 ECSPIx_MOSI Figure 42. ECSPI Slave Mode Timing Diagram Table 54. ECSPI Slave Mode Timing Parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPIx_SCLK Cycle Time–Write tclk 43 15 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 21.5 7 — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 — ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 — ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 — ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns 4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 55 shows the interface timing values. The number field in the table refers to timing signals found in Figure 43 and Figure 44. Table 55. Enhanced Serial Audio Interface (ESAI) Timing Characteristics1,2 No. 62 Clock cycle4 63 Clock high period: • For internal clock • For external clock Symbol Expression2 Min Max Condition3 Unit tSSICC 4 Tc 4 Tc 30.0 30.0 — — i ck i ck — — 2 Tc 9.0 2 Tc 6 15 — — — — ns ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 77 Electrical Characteristics Table 55. Enhanced Serial Audio Interface (ESAI) Timing (continued) No. 64 Characteristics1,2 Clock low period: • For internal clock • For external clock Symbol Expression2 Min Max Condition3 Unit — — 2 Tc 9.0 2 Tc 6 15 — — — — ns 65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high — — — — — — 17.0 7.0 x ck i ck a ns 66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low — — — — — — 17.0 7.0 x ck i ck a ns 67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) high5 — — — — — — 19.0 9.0 x ck i ck a ns 68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5 — — — — — — 19.0 9.0 x ck i ck a ns 69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high — — — — — — 16.0 6.0 x ck i ck a ns 70 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low — — — — — — 17.0 7.0 x ck i ck a ns 71 Data in setup time before ESAI_RX_CLK (SCK in synchronous mode) falling edge — — — — 12.0 19.0 — — x ck i ck ns 72 Data in hold time after ESAI_RX_CLK falling edge — — — — 3.5 9.0 — — x ck i ck ns 73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK falling edge5 — — — — 2.0 12.0 — — x ck i ck a ns 74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK falling edge — — — — 2.0 12.0 — — x ck i ck a ns 75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling edge — — — — 2.5 8.5 — — x ck i ck a ns 78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high — — — — — — 18.0 8.0 x ck i ck ns 79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low — — — — — — 20.0 10.0 x ck i ck ns 80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) high5 — — — — — — 20.0 10.0 x ck i ck ns 81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5 — — — — — — 22.0 12.0 x ck i ck ns 82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high — — — — — — 19.0 9.0 x ck i ck ns 83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low — — — — — — 20.0 10.0 x ck i ck ns 84 ESAI_TX_CLK rising edge to data out enable from high impedance — — — — — — 22.0 17.0 x ck i ck ns 86 ESAI_TX_CLK rising edge to data out valid — — — — — — 18.0 13.0 x ck i ck ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 78 Freescale Semiconductor Electrical Characteristics Table 55. Enhanced Serial Audio Interface (ESAI) Timing (continued) 1 2 3 4 5 6 No. Characteristics1,2 Symbol Expression2 Min Max Condition3 Unit 87 ESAI_TX_CLK rising edge to data out high impedance 67 — — — — — — 21.0 16.0 x ck i ck ns 89 ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge5 — — — — 2.0 18.0 — — x ck i ck ns 90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge — — — — 2.0 18.0 — — x ck i ck ns 91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge — — — — 4.0 5.0 — — x ck i ck ns 95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle — 2 x TC 15 — — ns 96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK output — — — 18.0 — ns 97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK output — — — 18.0 — ns i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock) bl = bit length wl = word length wr = word length relative ESAI_TX_CLK(SCKT pin) = transmit clock ESAI_RX_CLK(SCKR pin) = receive clock ESAI_TX_FS(FST pin) = transmit frame sync ESAI_RX_FS(FSR pin) = receive frame sync ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame. Periodically sampled and not 100% tested. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 79 Electrical Characteristics 62 63 64 ESAI_TX_CLK (Input/Output) 78 ESAI_TX_FS (Bit) Out 79 82 ESAI_TX_FS (Word) Out 83 86 86 84 87 First Bit Data Out Last Bit 89 91 ESAI_TX_FS (Bit) In 90 91 ESAI_TX_FS (Word) In Figure 43. ESAI Transmitter Timing i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 80 Freescale Semiconductor Electrical Characteristics 62 63 64 ESAI_RX_CLK (Input/Output) 65 ESAI_RX_FS (Bit) Out 66 69 70 ESAI_RX_FS (Word) Out 72 71 Data In ESAI_RX_FS (Bit) In ESAI_RX_FS (Word) In First Bit Last Bit 75 73 74 75 Figure 44. ESAI Receiver Timing i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 81 Electrical Characteristics Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC 4.11.4 Timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41 (Dual Date Rate) timing and SDR104/50(SD3.0) timing. 4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing Figure 45 depicts the timing of SD/eMMC4.3, and Table 56 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 45. SD/eMMC4.3 Timing Table 56. SD/eMMC4.3 Interface Timing Specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 82 Freescale Semiconductor Electrical Characteristics Table 56. SD/eMMC4.3 Interface Timing Specification (continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time SD8 4 uSDHC Input Hold Time tISU 2.5 — ns tIH 1.5 — ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing Figure 46 depicts the timing of eMMC4.4/4.41. Table 57 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 46. eMMC4.4/4.41 Timing Table 57. eMMC4.4/4.41 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz uSDHC Output / Card Inputs SDx_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.5 7.1 ns uSDHC Input / Card Outputs SDx_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time tISU 2.6 — ns SD4 uSDHC Input Hold Time tIH 1.5 — ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 83 Electrical Characteristics 4.11.4.3 SDR50/SDR104 AC Timing Figure 47 depicts the timing of SDR50/SDR104, and Table 58 lists the SDR50/SDR104 timing characteristics. 3$ 3$ 3$ 3#+ 3$ 3$ /UTPUT &ROM U3$(# TO #ARD 3$ 3$ )NPUT FROM #ARD TO U3$(# 3$ Figure 47. SDR50/SDR104 Timing Table 58. SDR50/SDR104 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 4.8 — ns SD2 Clock Low Time tCL 0.3*tCLK 0.7*tCLK ns SD2 Clock High Time tCH 0.3*tCLK 0.7*tCLK ns uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD –3 1 ns uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.5 — ns SD7 uSDHC Input Hold Time tIH 1.5 — ns uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1 Card Output Data Window tODW 0.5*tCLK — ns Data window in SDR100 mode is variable. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 84 Freescale Semiconductor Electrical Characteristics 4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 24, "GPIO DC Parameters," on page 40.Ethernet Controller (ENET) AC Electrical Specifications 4.11.5 The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 4.11.5.1 ENET MII Mode Timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. Figure 48 shows MII receive signal timings. Table 59 describes the timing parameters (M1–M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 48. MII Receive Signal Timing Diagram Table 59. MII Receive Signal Timing Characteristic1 ID Min. Max. Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 — ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 — ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 85 Electrical Characteristics 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. Figure 49 shows MII transmit signal timings. Table 60 describes the timing parameters (M5–M8) shown in the figure. M7 ENET_TX_CLK (input) M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6 Figure 49. MII Transmit Signal Timing Diagram Table 60. MII Transmit Signal Timing Characteristic1 ID Min. Max. Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 — ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid — 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. 4.11.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL) Figure 50 shows MII asynchronous input timings. Table 61 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 50. MII Async Inputs Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 86 Freescale Semiconductor Electrical Characteristics Table 61. MII Asynchronous Inputs Signal Timing ID 1 M9 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. Max. Unit 1.5 — ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. 4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 51 shows MII asynchronous input timings. Table 62 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 51. MII Serial Management Channel Timing Diagram Table 62. MII Serial Management Channel Timing ID Characteristic Min. Max. Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) 0 — ns M11 ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) — 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 87 Electrical Characteristics 4.11.5.2 RMII Mode Timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER. Figure 52 shows RMII mode timings. Table 63 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 52. RMII Mode Signal Timing Diagram Table 63. RMII Signal Timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 15 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 4 — ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns 4.11.5.3 Signal Switching Specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 88 Freescale Semiconductor Electrical Characteristics Table 64. RGMII Signal Switching Specifications1 Symbol Tcyc 2 Description Clock cycle duration Min Max Unit 7.2 8.8 ns -500 500 ps TskewT3 Data to clock output skew at transmitter TskewR3 Data to clock input skew at receiver 1 2.6 ns Duty_G4 Duty cycle for Gigabit 45 55 % Duty_T4 Duty cycle for 10/100T 40 60 % Tr/Tf Rise/fall time (20–80%) — 0.75 ns 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. 2'-))?48# AT TRANSMITTER 4SKEW4 2'-))?48$N N TO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48# AT RECEIVER Figure 53. RGMII Transmit Signal Timing Diagram Original 2'-))?28# AT TRANSMITTER 4SKEW4 2'-))?28$N N TO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28# AT RECEIVER Figure 54. RGMII Receive Signal Timing Diagram Original i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 89 Electrical Characteristics 2'-))?28# SOURCE OF DATA )NTERNAL DELAY 4SETUP 4 4 HOLD 4 4 SETUP 2 4 HOLD 2 2'-))?28$N N TO 2'-))?28?#4, 28$6 28%22 2'-))?28# AT RECEIVER Figure 55. RGMII Receive Signal Timing Diagram with Internal Delay 4.11.6 Flexible Controller Area Network (FLEXCAN) AC Electrical Specifications The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively. 4.11.7 4.11.7.1 HDMI Module Timing Parameters Latencies and Timing Information Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms. Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported (340 MHz) is 133 s. 4.11.7.2 Electrical Characteristics The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures illustrate various definitions and measurement conditions specified in the table below. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 90 Freescale Semiconductor Electrical Characteristics Figure 56. Driver Measuring Conditions Figure 57. Driver Definitions 2 4%2- ($-)?48?$!4!;=?0 ($-)?48?#,+?0 2 4%2- ($-)?48?$!4!;=?. ($-)?48?#,+?. Figure 58. Source Termination Table 65. Electrical Characteristics Symbol Parameter Condition Min Typ Max Unit — 3.15 3.3 3.45 V — 45 50 55 Operating conditions for HDMI avddtmds Termination supply voltage RT Termination resistance i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 91 Electrical Characteristics Table 65. Electrical Characteristics (continued) Symbol Parameter Condition Min Typ Max Unit TMDS drivers DC specifications VOFF VSWING VH Single-ended standby voltage RT = 50 For measurement conditions Single-ended output swing and definitions, see the first voltage two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4. Single-ended output high If attached sink supports voltage TMDSCLK < or = 165 MHz For definition, see the second If attached sink supports figure above TMDSCLK > 165 MHz VL Single-ended output low If attached sink supports voltage TMDSCLK < or = 165 MHz For definition, see the second If attached sink supports figure above TMDSCLK > 165 MHz RTERM Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: RTERM can also be configured to be open and not present on TMDS channels. avddtmds ± 10 mV 400 — mV 600 avddtmds ± 10 mV mV mV avddtmds - 200 mV — avddtmds + 10 mV mV avddtmds - 600 mV — avddtmds - 400mV mV avddtmds - 700 mV — avddtmds - 400 mV mV 50 — 200 — Hot plug detect specifications HPDVH Hot plug detect high range — 2.0 — 5.3 V VHPD VL Hot plug detect low range — 0 — 0.8 V Z Hot plug detect input impedance — 10 — — k Hot plug detect time delay — — — 100 µs HPD HPD t 4.11.8 Switching Characteristics Table 66 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate various parameters specified in table. NOTE All dynamic parameters related to the TMDS line drivers’ performance imply the use of assembly guidelines. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 92 Freescale Semiconductor Electrical Characteristics 0PHDMI_TX_CLK T#0, T#0( Figure 59. TMDS Clock Signal Definitions Figure 60. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1 4-$3$!4!0 AVDDTMDS 637).' TYP 4-$3$!4!. T 3+ P )NTRA PAIR SKEW Figure 61. Intra-Pair Skew Definition 0REVIOUS CYCLE ;N = 4-$3$!4!;= 4-$3$!4!;= 4-$3$!4!;= B;N = B;N = B;N = T 3+ PP B;N = B;N = B;N = B;N = B;N = B;N = #URRENT CYCLE ;N= B;N= B;N= B;N= B;N= B;N= B;N= )NTER PAIR SKEW Figure 62. Inter-Pair Skew Definition i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 93 Electrical Characteristics Figure 63. TMDS Output Signals Rise and Fall Time Definition Table 66. Switching Characteristics Symbol Parameter Conditions Min Typ Max Unit TMDS Drivers Specifications — Maximum serial data rate — — — 3.4 Gbps F TMDSCLK TMDSCLK frequency On TMDSCLKP/N outputs 25 — 340 MHz P TMDSCLK TMDSCLK period RL = 50 See Figure 59. 2.94 — 40 ns 40 50 60 % t 1 2 t =t /P CDC TMDSCLK duty cycle t CPH TMDSCLK high time RL = 50 See Figure 59. 4 5 6 UI1 t CPL TMDSCLK low time RL = 50 See Figure 59. 4 5 6 UI1 — TMDSCLK jitter2 RL = 50 — — 0.25 UI1 t SK(p) Intra-pair (pulse) skew RL = 50 See Figure 61. — — 0.15 UI1 t SK(pp) Inter-pair skew RL = 50 See Figure 62. — — 1 UI1 tR Differential output signal rise time 20–80% RL = 50 See Figure 63. 75 — 0.4 UI ps tF Differential output signal fall time 20–80% RL = 50 See Figure 63. 75 — 0.4 UI ps — Differential signal overshoot Referred to 2x VSWING — — 15 % — Differential signal undershoot Referred to 2x VSWING — — 25 % CDC CPH TMDSCLK RL = 50 See Figure 59. UI means TMDS clock unit. Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 94 Freescale Semiconductor Electrical Characteristics 4.11.9 I2C Module Timing Parameters This section describes the timing parameters of the I2C module. Figure 64 depicts the timing of I2C module, and Table 67 lists the I2C module timing characteristics. IC11 IC10 I2Cx_SDA I2Cx_SCL IC2 START IC7 IC4 IC8 IC10 IC11 IC6 IC9 IC3 STOP START START IC5 IC1 Figure 64. I2C Bus Timing Table 67. I2C Module Timing Parameters Standard Mode ID Fast Mode Parameter Unit Min Max Min Max IC1 I2Cx_SCL cycle time 10 — 2.5 — µs IC2 Hold time (repeated) START condition 4.0 — 0.6 — µs IC3 Set-up time for STOP condition 4.0 — 0.6 — µs IC4 Data hold time 01 3.452 01 0.92 µs IC5 HIGH Period of I2Cx_SCL Clock 4.0 — 0.6 — µs IC6 LOW Period of the I2Cx_SCL Clock 4.7 — 1.3 — µs IC7 Set-up time for a repeated START condition 4.7 — 0.6 — µs IC8 Data set-up time 250 — 1003 — ns IC9 Bus free time between a STOP and START condition 4.7 — 1.3 — µs IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals — 1000 20 + 0.1Cb4 300 ns IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals — 300 20 + 0.1Cb4 300 ns IC12 Capacitive load for each bus line (Cb) — 400 — 400 pF 1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL. 2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 Cb = total capacitance of one bus line in pF. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 95 Electrical Characteristics 4.11.10 Image Processing Unit (IPU) Module Parameters The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities: • Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders. • Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions. • Synchronization and control capabilities, such as avoidance of tearing artifacts. 4.11.10.1 IPU Sensor Interface Signal Mapping The IPU supports a number of sensor input formats. Table 68 defines the mapping of the Sensor Interface Pins used for various supported interface formats. Table 68. Camera Input Signal Cross Reference, Format, and Bits Per Cycle RGB565 8 bits 2 cycles RGB5652 8 bits 3 cycles RGB6663 8 bits 3 cycles RGB888 8 bits 3 cycles YCbCr4 8 bits 2 cycles RGB5655 16 bits 2 cycles YCbCr6 16 bits 1 cycle YCbCr7 16 bits 1 cycle YCbCr8 20 bits 1 cycle IPUx_CSIx_ DATA00 — — — — — — — 0 C[0] IPUx_CSIx_ DATA01 — — — — — — — 0 C[1] IPUx_CSIx_ DATA02 — — — — — — — C[0] C[2] IPUx_CSIx_ DATA03 — — — — — — — C[1] C[3] IPUx_CSIx_ DATA04 — — — — — B[0] C[0] C[2] C[4] IPUx_CSIx_ DATA05 — — — — — B[1] C[1] C[3] C[5] IPUx_CSIx_ DATA06 — — — — — B[2] C[2] C[4] C[6] IPUx_CSIx_ DATA07 — — — — — B[3] C[3] C[5] C[7] IPUx_CSIx_ DATA08 — — — — — B[4] C[4] C[6] C[8] IPUx_CSIx_ DATA09 — — — — — G[0] C[5] C[7] C[9] IPUx_CSIx_ DATA10 — — — — — G[1] C[6] 0 Y[0] IPUx_CSIx_ DATA11 — — — — — G[2] C[7] 0 Y[1] IPUx_CSIx_ DATA12 B[0], G[3] R[2],G[4],B[2] R/G/B[4] R/G/B[0] Y/C[0] G[3] Y[0] Y[0] Y[2] Signal Name1 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 96 Freescale Semiconductor Electrical Characteristics Table 68. Camera Input Signal Cross Reference, Format, and Bits Per Cycle (continued) RGB565 8 bits 2 cycles RGB5652 8 bits 3 cycles RGB6663 8 bits 3 cycles RGB888 8 bits 3 cycles YCbCr4 8 bits 2 cycles RGB5655 16 bits 2 cycles YCbCr6 16 bits 1 cycle YCbCr7 16 bits 1 cycle YCbCr8 20 bits 1 cycle IPUx_CSIx_ DATA13 B[1], G[4] R[3],G[5],B[3] R/G/B[5] R/G/B[1] Y/C[1] G[4] Y[1] Y[1] Y[3] IPUx_CSIx_ DATA14 B[2], G[5] R[4],G[0],B[4] R/G/B[0] R/G/B[2] Y/C[2] G[5] Y[2] Y[2] Y[4] IPUx_CSIx_ DATA15 B[3], R[0] R[0],G[1],B[0] R/G/B[1] R/G/B[3] Y/C[3] R[0] Y[3] Y[3] Y[5] IPUx_CSIx_ DATA16 B[4], R[1] R[1],G[2],B[1] R/G/B[2] R/G/B[4] Y/C[4] R[1] Y[4] Y[4] Y[6] IPUx_CSIx_ DATA17 G[0], R[2] R[2],G[3],B[2] R/G/B[3] R/G/B[5] Y/C[5] R[2] Y[5] Y[5] Y[7] IPUx_CSIx_ DATA18 G[1], R[3] R[3],G[4],B[3] R/G/B[4] R/G/B[6] Y/C[6] R[3] Y[6] Y[6] Y[8] IPUx_CSIx_ DATA19 G[2], R[4] R[4],G[5],B[4] R/G/B[5] R/G/B[7] Y/C[7] R[4] Y[7] Y[7] Y[9] Signal Name1 1 2 3 4 5 6 7 8 IPUx_CSIx stands for IPUx_CSI0 or IPUx_CSI1 The MSB bits are duplicated on LSB bits implementing color extension The two MSB bits are duplicated on LSB bits implementing color extension YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream). RGB 16 bits— Supported in two ways: (1) As a “generic data” input, with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol. YCbCr 16 bits— Supported as a “generic-data” input, with no on-the-fly processing. YCbCr 16 bits— Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol). YCbCr, 20 bits, supported only within the BT.1120 protocol (syncs embedded within the data stream). 4.11.10.2 Sensor Interface Timings There are three camera timing modes supported by the IPU. 4.11.10.2.1 BT.656 and BT.1120 Video Mode Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards. This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPUx_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPUx_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPUx_CSIx_DATA_EN bus. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 97 Electrical Characteristics 4.11.10.2.2 Gated Clock Mode The IPUx_CSIx_VSYNC, IPUx_CSIx_HSYNC, and IPUx_CSIx_PIX_CLK signals are used in this mode. See Figure 65. 3TART OF &RAME NTH FRAME N TH FRAME !CTIVE ,INE )05X?#3)X??639.# )05X?#3)X??(39.# )05X?#3)X??0)8?#,+ )05X?#3)X??$!4!XX INVALID INVALID ST BYTE ST BYTE Figure 65. Gated Clock Mode Timing Diagram A frame starts with a rising edge on IPUx_CSIx_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then IPUx_CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as IPUx_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. IPUx_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For the next line, the IPUx_CSIx_HSYNC timing repeats. For the next frame, the IPUx_CSIx_VSYNC timing repeats. 4.11.10.2.3 Non-Gated Clock Mode The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, “Gated Clock Mode,”) except for the IPUx_CSIx_HSYNC signal, which is not used (see Figure 66). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The IPUx_CSIx_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus. Start of Frame nth frame n+1th frame IPUx_CSIx_VSYNC IPUx_CSIx_PIX_CLK IPUx_CSIx_DATA_EN[19:0] invalid invalid 1st byte 1st byte Figure 66. Non-Gated Clock Mode Timing Diagram The timing described in Figure 66 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered IPUx_CSIx_VSYNC; active-high/low IPUx_CSIx_HSYNC; and rising/falling-edge triggered IPUx_CSIx_PIX_CLK. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 98 Freescale Semiconductor Electrical Characteristics 4.11.10.3 Electrical Characteristics Figure 67 depicts the sensor interface timing. IPUx_CSIx_PIX_CLK signal described here is not generated by the IPU. Table 69 lists the sensor interface timing characteristics. IPUx_CSIx_PIX_CLK (Sensor Output) IP3 1/IP1 IP2 IPUx_CSIx_DATA_EN, IPUx_CSIx_VSYNC, IPUx_CSIx_HSYNC Figure 67. Sensor Interface Timing Diagram Table 69. Sensor Interface Timing Characteristics ID Parameter Symbol Min Max Unit IP1 Sensor output (pixel) clock frequency Fpck 0.01 180 MHz IP2 Data and control setup time Tsu 2 — ns IP3 Data and control holdup time Thd 1 — ns 4.11.10.4 IPU Display Interface Signal Mapping The IPU supports a number of display output video formats. Table 70 defines the mapping of the Display Interface Pins used during various supported video interface formats. Table 70. Video Signal Cross-Reference i.MX 6Solo/6DualLite LCD Port Name (x=0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 20-bit 16-bit 18-bit 24 Bit 8-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb Comment1,2 IPUx_DISPx_DAT00 DAT[0] B[0] B[0] B[0] Y/C[0] C[0] C[0] — IPUx_DISPx_DAT01 DAT[1] B[1] B[1] B[1] Y/C[1] C[1] C[1] — IPUx_DISPx_DAT02 DAT[2] B[2] B[2] B[2] Y/C[2] C[2] C[2] — IPUx_DISPx_DAT03 DAT[3] B[3] B[3] B[3] Y/C[3] C[3] C[3] — IPUx_DISPx_DAT04 DAT[4] B[4] B[4] B[4] Y/C[4] C[4] C[4] — IPUx_DISPx_DAT05 DAT[5] G[0] B[5] B[5] Y/C[5] C[5] C[5] — IPUx_DISPx_DAT06 DAT[6] G[1] G[0] B[6] Y/C[6] C[6] C[6] — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 99 Electrical Characteristics Table 70. Video Signal Cross-Reference (continued) i.MX 6Solo/6DualLite LCD Port Name (x=0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb Comment1,2 IPUx_DISPx_DAT07 DAT[7] G[2] G[1] B[7] Y/C[7] C[7] C[7] — IPUx_DISPx_DAT08 DAT[8] G[3] G[2] G[0] — Y[0] C[8] — IPUx_DISPx_DAT09 DAT[9] G[4] G[3] G[1] — Y[1] C[9] — IPUx_DISPx_DAT10 DAT[10] G[5] G[4] G[2] — Y[2] Y[0] — IPUx_DISPx_DAT11 DAT[11] R[0] G[5] G[3] — Y[3] Y[1] — IPUx_DISPx_DAT12 DAT[12] R[1] R[0] G[4] — Y[4] Y[2] — IPUx_DISPx_DAT13 DAT[13] R[2] R[1] G[5] — Y[5] Y[3] — IPUx_DISPx_DAT14 DAT[14] R[3] R[2] G[6] — Y[6] Y[4] — IPUx_DISPx_DAT15 DAT[15] R[4] R[3] G[7] — Y[7] Y[5] — IPUx_DISPx_DAT16 DAT[16] — R[4] R[0] — — Y[6] — IPUx_DISPx_DAT17 DAT[17] — R[5] R[1] — — Y[7] — IPUx_DISPx_DAT18 DAT[18] — — R[2] — — Y[8] — IPUx_DISPx_DAT19 DAT[19] — — R[3] — — Y[9] — IPUx_DISPx_DAT20 DAT[20] — — R[4] — — — — IPUx_DISPx_DAT21 DAT[21] — — R[5] — — — — IPUx_DISPx_DAT22 DAT[22] — — R[6] — — — — IPUx_DISPx_DAT23 DAT[23] — — R[7] — — — — DIx_DISP_CLK PixCLK — DIx_PIN1 — May be required for anti-tearing DIx_PIN2 HSYNC — DIx_PIN3 VSYNC VSYNC out i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 100 Freescale Semiconductor Electrical Characteristics Table 70. Video Signal Cross-Reference (continued) i.MX 6Solo/6DualLite LCD Comment1,2 Port Name (x=0, 1) RGB/TV Signal Allocation (Example) RGB, Signal 16-bit 18-bit 24 Bit 8-bit 16-bit 20-bit Name 3 (General) RGB RGB RGB YCrCb YCrCb YCrCb DIx_PIN4 — DIx_PIN5 — Additional frame/row synchronous signals with programmable timing DIx_PIN6 — DIx_PIN7 — DIx_PIN8 — DIx_D0_CS — — DIx_D1_CS — Alternate mode of PWM output for contrast or brightness control DIx_PIN11 — — DIx_PIN12 — — DIx_PIN13 — Register select signal DIx_PIN14 — Optional RS2 DIx_PIN15 DRDY/DV DIx_PIN16 — DIx_PIN17 Q Data validation/blank, data enable Additional data synchronous signals with programmable features/timing 1 Signal mapping (both data and control/synchronization) is flexible. The table provides examples. Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows: • A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap. • The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit. 3 This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported. 2 NOTE Table 70 provides information for both the DISP0 and DISP1 ports. However, DISP1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC table for details. 4.11.10.5 IPU Display Interface Timing The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls accordantly. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 101 Electrical Characteristics 4.11.10.5.1 Synchronous Controls The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent wave form. There are special physical outputs to provide synchronous controls: • The IPP_DISP_CLK is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display. • The IPUx_DIx_PIN01—IPUx_DIx_PIN07 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any other independent signal to a display. The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control’s changing points with half DI_CLK resolution. A full description of the counters system can be found in the IPU chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM). 4.11.10.5.2 Asynchronous Controls The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data. There are special physical outputs to provide asynchronous controls, as follows: • The IPUx_DIx_D0_CS and IPUx_DIx_D1_CS pins are dedicated to provide chip select signals to two displays. • The IPUx_DIx_PIN11—IPUx_DIx_PIN17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data oriented signal to display. NOTE The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data in the bus, a new internal start (local start point) is generated. The signals generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution. 4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels 4.11.10.6.1 IPU Display Operating Signals The IPU uses four control signals and data to operate a standard synchronous interface: • IPP_DISP_CLK—Clock to display • HSYNC—Horizontal synchronization • VSYNC—Vertical synchronization • DRDY—Active data All synchronous display controls are generated on the base of an internally generated “local start point”. The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 102 Freescale Semiconductor Electrical Characteristics The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only. 4.11.10.6.2 LCD Interface Functional Description Figure 68 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is: • DI_CLK internal DI clock is used for calculation of other controls. • IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously. • HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.) • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPUx_DIx_PIN03 is used as VSYNC.) • DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.) VSYNC HSYNC LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n HSYNC DRDY 1 IPP_DISP_CLK 2 3 m-1 m IPP_DATA Figure 68. Interface Timing Diagram for TFT (Active Matrix) Panels 4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams Figure 69 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 103 Electrical Characteristics corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals. IP13o IP7 IP5o IP8o IP5 IP8 DI clock IPP_DISP_ CLK VSYNC HSYNC DRDY IPP_DATA D0 IP10 IP6 local start point local start point Dn IP9o IP9 local start point D1 Figure 69. TFT Panels Timing Diagram—Horizontal Sync Pulse Figure 70 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable. Start of frame IP13 End of frame VSYNC HSYNC DRDY IP11 IP15 IP14 IP12 Figure 70. TFT Panels Timing Diagram—Vertical Sync Pulse i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 104 Freescale Semiconductor Electrical Characteristics Table 71 shows timing characteristics of signals presented in Figure 69 and Figure 70. Table 71. Synchronous Display Interface Timing Characteristics (Pixel Level) ID Parameter Symbol Value 1 IP5 Display interface clock period Tdicp ( ) IP6 Display pixel clock period Tdpcp IP7 Screen width time Tsw (SCREEN_WIDTH) Tdicp IP8 HSYNC width time Thsw (HSYNC_WIDTH) IP9 Horizontal blank interval 1 Thbi1 BGXP Tdicp IP10 Horizontal blank interval 2 Thbi2 IP12 Screen height IP13 Description Display interface clock. IPP_DISP_CLK DISP_CLK_PER_PIXEL Time of translation of one pixel to display, Tdicp DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define Display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components. Unit ns ns SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI’s counter2. ns HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter. ns BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI’s counter. ns (SCREEN_WIDTH BGXP - FW) Tdicp Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI’s counter. ns Tsh (SCREEN_HEIGHT) Tsw SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI’s counter. ns VSYNC width Tvsw VSYNC_WIDTH VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI’s counter ns IP14 Vertical blank interval 1 Tvbi1 BGYP Tsw BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI’s counter. ns IP15 Vertical blank interval 2 Tvbi2 (SCREEN_HEIGHT BGYP - FH) Tsw Width of second Vertical blanking interval in line. The FH should be built by suitable DI’s counter. ns IP5o Offset of IPP_DISP_CLK Todicp DISP_CLK_OFFSET Tdiclk DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK2 (0.5 DI_CLK Resolution). Defined by DISP_CLK counter ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 105 Electrical Characteristics Table 71. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued) ID Symbol Value Description Unit IP13o Offset of VSYNC Tovs VSYNC_OFFSET Tdiclk VSYNC_OFFSET—offset of Vsync edges from a local start point, when a Vsync should be active, in DI_CLK2 (0.5 DI_CLK Resolution). The VSYNC_OFFSET should be built by suitable DI’s counter. ns IP8o Offset of HSYNC Tohs HSYNC_OFFSET Tdiclk HSYNC_OFFSET—offset of Hsync edges from a local start point, when a Hsync should be active, in DI_CLK2 (0.5 DI_CLK Resolution). The HSYNC_OFFSET should be built by suitable DI’s counter. ns IP9o Offset of DRDY Todrdy DRDY_OFFSET Tdiclk DRDY_OFFSET—offset of DRDY edges from a suitable local start point, when a corresponding data has been set on the bus, in DI_CLK2 (0.5 DI_CLK Resolution). The DRDY_OFFSET should be built by suitable DI’s counter. ns 1 Parameter Display interface clock period immediate value. DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK. DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value. DISP_CLK_PERIOD Tdicp = T diclk ---------------------------------------------------DI_CLK_PERIOD 2 DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance between HSYNCs is a SCREEN_WIDTH. The maximum accuracy of UP/DOWN edge of controls is: Accuracy = 0.5 T diclk 0.62ns The maximum accuracy of UP/DOWN edge of IPP_DATA is: Accuracy = T diclk 0.62ns The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are programmed through the registers. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 106 Freescale Semiconductor Electrical Characteristics Figure 71 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are set through the Register. Table 72 lists the synchronous display interface timing characteristics. IP20o IP20 DRDY VSYNC HSYNC other controls IPP_DISP_CLK Tdicu Tdicd IPP_DATA IP16 IP17 IP19 IP18 local start point Figure 71. Synchronous Display Interface Timing Diagram—Access Level Table 72. Synchronous Display Interface Timing Characteristics (Access Level) ID Parameter Symbol Typ1 Min Max Unit IP16 Display interface clock low Tckl time Tdicd-Tdicu-1.24 Tdicd2-Tdicu3 IP17 Display interface clock high time Tckh Tdicp-Tdicd+Tdicu-1.24 Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2 ns IP18 Data setup time Tdsu Tdicd-1.24 Tdicu — ns IP19 Data holdup time Tdhd Tdicp-Tdicd-1.24 Tdicp-Tdicu — ns IP20o Control signals offset Tocsu times (defines for each pin) Tocsu-1.24 Tocsu IP20 Control signals setup time Tcsu to display interface clock (defines for each pin) Tdicd-1.24-Tocsu%Tdicp Tdicu Tdicd-Tdicu+1.24 Tocsu+1.24 — ns ns ns 1 The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific. 2 Display interface clock down time 2 DISP_CLK_DOWN Tdicd = 1--- T diclk ceil ----------------------------------------------------------- DI_CLK_PERIOD 2 3 Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity. 2 DISP_CLK_UP Tdicu = 1--- T diclk ceil ------------------------------------------------ DI_CLK_PERIOD 2 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 107 Electrical Characteristics 4.11.11 LVDS Display Bridge (LDB) Module Parameters The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits”. Table 73. LVDS Display Bridge (LDB) Electrical Specification Parameter Symbol Differential Voltage Output Voltage VOD Output Voltage High Test Condition Min Max Units 100 Differential load 250 450 mV Voh 100 differential load (0 V Diff—Output High Voltage static) 1.25 1.6 mV Output Voltage Low Vol 100 differential load (0 V Diff—Output Low Voltage static) 0.9 1.25 mV Offset Static Voltage VOS Two 49.9 resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors. 1.15 1.375 V VOS Differential VOSDIFF Difference in VOS between a One and a Zero state -50 50 mV Output short circuited to GND ISA ISB With the output common shorted to GND -24 24 mA VT Full Load Test VTLoad 100 Differential load with a 3.74 k load between GND and IO Supply Voltage 247 454 mV 4.11.12 MIPI D-PHY Timing Parameters This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x2 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes). 4.11.12.1 Electrical and Timing Information Table 74. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit Input DC Specifications - Apply to DSI_CLK_P/DSI_CLK_N and DSI_DATA_P/DSI_DATA_N inputs VI Input signal voltage range Transient voltage range is limited from -300 mV to 1600 mV -50 — 1350 mV VLEAK Input leakage current VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode -10 — 10 mA VGNDSH Ground Shift — -50 — 50 mV VOH(absmax) Maximum transient output voltage level — — — 1.45 V i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 108 Freescale Semiconductor Electrical Characteristics Table 74. Electrical and Timing Information (continued) Symbol tvoh(absmax) Parameters Maximum transient time above VOH(absmax) Test Conditions Min Typ Max Unit — — — 20 ns HS Line Drivers DC Specifications |VOD| HS Transmit Differential output voltage magnitude 80 = RL< = 125 140 200 270 mV |VOD| Change in Differential output voltage magnitude between logic states 80 = RL< = 125 — — 10 mV VCMTX Steady-state common-mode output voltage. 80 = RL< = 125 150 200 250 mV VCMTX(1,0) Changes in steady-state common-mode output voltage between logic states 80 = RL< = 125 — — 5 mV VOHHS HS output high voltage 80 = RL< = 125 — — 360 mV ZOS Single-ended output impedance. — 40 50 62.5 ZOS Single-ended output impedance mismatch. — — — 10 % 50 mV LP Line Drivers DC Specifications VOL Output low-level SE voltage — -50 VOH Output high-level SE voltage — 1.1 1.2 1.3 V ZOLP Single-ended output impedance. — 110 — — ZOLP(01-10) Single-ended output impedance mismatch driving opposite level — — — 20 % ZOLP(0-11) Single-ended output impedance mismatch driving same level — — — 5 % 70 mV HS Line Receiver DC Specifications VIDTH Differential input high voltage threshold — — — VIDTL Differential input low voltage threshold — -70 — VIHHS Single ended input high voltage — VILHS Single ended input low voltage — -40 — VCMRXDC Input common mode voltage — 70 — — mV 460 mV mV 330 mV i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 109 Electrical Characteristics Table 74. Electrical and Timing Information (continued) Symbol ZID Parameters Test Conditions Min Typ Max Unit — 80 — 125 550 mV Differential input impedance LP Line Receiver DC Specifications VIL Input low voltage — — — VIH Input high voltage — 920 — mV VHYST Input hysteresis — 25 — mV Contention Line Receiver DC Specifications Input low fault threshold VILF — 200 — 450 mV 4.11.12.2 MIPI D-PHY Signaling Levels The signal levels are different for differential HS mode and single-ended LP mode. Figure 72 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals. VOH,MAX LP VOL VOH,MIN LP VIH VIH LP Threshold Region VIL Max VOD HS Vout Range VOHHS VCMTX,MAX HS Vcm Range Min VOD HS Differential Signaling LP VIL VGNDSH,MA VCMTX,MIN VOLHS LP VOL X GND VGNDSH,MIN LP Single-ended Signaling Figure 72. D-PHY Signaling Levels i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 110 Freescale Semiconductor Electrical Characteristics 4.11.12.3 MIPI HS Line Driver Characteristics Ideal Single-Ended High Speed Signals VDN VCMTX = (VDP + VDN)/2 VOD(0) VOD(1) VDP Ideal Differential High Speed Signals VOD(1) 0V (Differential) VOD(0) VOD = VDP - VDN Figure 73. Ideal Single-ended and Resulting Differential HS Signals 4.11.12.4 Possible VCMTX and VOD Distortions of the Single-ended HS Signals VOD (SE HS Signals) VOD/2 V OD (1) VD N VCM TX VOD(0) VD P V OD /2 Static V CMT X (SE HS Signals) VD N VC MTX VOD(0) V DP DynamicVCMT X (SE HS Signals) VDN VCM TX VD P Figure 74. Possible VCMTX and VOD Distortions of the Single-ended HS Signals 4.11.12.5 MIPI D-PHY Switching Characteristics Table 75. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit 80 — 1000 Mbps HS Line Drivers AC Specifications — Maximum serial data rate (forward direction) On DATAP/N outputs. 80 <= RL <= 125 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 111 Electrical Characteristics Table 75. Electrical and Timing Information (continued) Symbol Parameters Test Conditions Min Typ Max Unit FDDRCLK DDR CLK frequency On DATAP/N outputs. 40 — 500 MHz PDDRCLK DDR CLK period 80 = RL< = 125 2 — 25 ns tCDC DDR CLK duty cycle tCDCtCPHPDDRCLK — 50 — % tCPH DDR CLK high time — — 1 — UI tCPL DDR CLK low time — — 1 — UI DDR CLK / DATA Jitter — — 75 — ps pk–pk tSKEW[PN] Intra-Pair (Pulse) skew — — 0.075 — UI tSKEW[TX] Data to Clock Skew — 0.350 — 0.650 UI tSETUP[RX] Data to Clock Receiver Setup time — 0.15 — — UI tHOLD[RX] Clock to Data Receiver Hold time — 0.15 — — UI tr Differential output signal rise time 20% to 80%, RL = 50 150 — 0.3UI ps tf Differential output signal fall time 20% to 80%, RL = 50 150 — 0.3UI ps VCMTX(HF) Common level variation above 450 MHz 80 <= RL< = 125 — — 15 mVrms VCMTX(LF) Common level variation between 50 MHz and 450 MHz. 80 <= RL< = 125 — — 25 mVp 15% to 85%, CL<70 pF — — 25 ns 30% to 85%, CL<70 pF — — 35 ns 15% to 85%, CL<70 pF — — 120 mV/ns 0 — 70 pF — 200 mVpp — 50 mVpp — 60 pF — 300 Vps — LP Line Drivers AC Specifications trlp,tflp Single ended output rise/fall time treo V/tSR Signal slew rate CL Load capacitance — HS Line Receiver AC Specifications VCMRX(HF) Common mode interference beyond 450 MHz — VCMRX(LF) Common mode interference between 50 MHz and 450 MHz. — CCM Common mode termination — -50 LP Line Receiver AC Specifications eSPIKE Input pulse rejection — TMIN Minimum pulse response — VINT Pk-to-Pk interference voltage — fINT Interference frequency — 50 450 — ns — 400 mV — — MHz Model Parameters used for Driver Load switching performance evaluation i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 112 Freescale Semiconductor Electrical Characteristics Table 75. Electrical and Timing Information (continued) Symbol Parameters Test Conditions Min Typ Max Unit CPAD Equivalent Single ended I/O PAD capacitance. — — — 1 pF CPIN Equivalent Single ended Package + PCB capacitance. — — — 2 pF LS Equivalent wire bond series inductance — — — 1.5 nH RS Equivalent wire bond series resistance — — — 0.15 RL Load resistance — 80 100 125 4.11.12.6 High-Speed Clock Timing #,+P #,+N $ATA "IT 4IME 5) 5) ).34 $ATA "IT 4IME 5) 5) ).34 $$2 #LOCK 0ERIOD 5) ).34 5) ).34 Figure 75. DDR Clock Definition 4.11.12.7 Forward High-Speed Data Transmission Timing The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 76: 2EFERENCE 4IME 4 3%450 4 (/,$ #,+P #,+N 5) ).34 43+%7 5) ).34 4#,+P Figure 76. Data to Clock Timing Definitions i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 113 Electrical Characteristics 4.11.12.8 Reverse High-Speed Data Transmission Timing 44$ .2: $ATA #,+?. #,+?0 #LOCK TO $ATA 3KEW 5) 5) Figure 77. Reverse High-Speed Data Transmission Timing at Slave Side 4.11.12.9 Low-Power Receiver Timing 2*TLPX eSPIKE 2*TLPX Input TMIN-RX TMIN-RX eSPIKE VIH VIL Output Figure 78. Input Glitch Rejection of Low-Power Receivers 4.11.13 HSI Host Controller Timing Parameters This section describes the timing parameters of the HSI Host Controller which are compliant with High-speed Synchronous Serial Interface (HSI) Physical Layer specification version1.01. 4.11.13.1 Synchronous Data Flow &IRST BIT OF FRAME ,AST BIT OF FRAME T .OM"IT ,AST BIT OF FRAME &IRST BIT OF FRAME (3)?$!4! (3)?&,!' . BITS &RAME . BITS &RAME (3)?2%!$9 2ECEIVER HAS DETECTED THE START OF THE &RAME 2ECEIVER HAS CAPTURED AND STORED A COMPLETE &RAME Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 114 Freescale Semiconductor Electrical Characteristics 4.11.13.2 Pipelined Data Flow &IRST BIT OF FRAME ,AST BIT OF &IRST BIT OF FRAME FRAME ,AST BIT OF FRAME ,AST BIT OF FRAME T .OM"IT $!4! &,!' . BITS &RAME . BITS &RAME 2%!$9 " 2EADY SHALL NOT CHANGE TO ZERO ! 2EADY CAN CHANGE $ 2EADY SHALL MAINTAIN ZERO IF RECEIVER DOES NOT HAVE FREE SPACE # 2EADY CAN CHANGE % 2EADY &2EADY CAN SHALL CHANGE MAINTAIN ITS VALUE '2EADY CAN CHANGE Figure 80. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode) 4.11.13.3 Receiver Real-Time Data Flow &IRST BIT OF FRAME ,AST BIT OF FRAME &IRST BIT OF FRAME ,AST BIT OF FRAME T .OM"IT $!4! &,!' . BITS &RAME . BITS &RAME 2%!$9 2ECEIVER HAS CAPTURED A COMPLETE &RAME 2ECEIVER HAS DETECTED THE START OF THE &RAME Figure 81. Receiver Real-Time Data Flow READY Signal Timing 4.11.13.4 Synchronized Data Flow Transmission with Wake 48 STATE ! " # 0(9 &RAME $ ! 0(9 &RAME $!4! &,!' &IRST BIT RECEIVED 2%!$9 7!+% ! 28 STATE ! 3LEEP STATE NON OPERATIONAL 2ECEIVED FRAME STORED 2ECEIVER IN ACTIVE START STATE " 4RANSMITTER HAS DATA TO TRANSMIT " 7AKE UP STATE 2ECEIVER CAN NO LONGER RECEIVE DATE TRANSMITTER HAS NO MORE DATA TO TRANSMIT # # !CTIVE STATE FULL OPERATIONAL $ ! $ $ISABLE 3TATE .O COMMUNICATION ABILITY Figure 82. Synchronized Data Flow Transmission with WAKE i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 115 Electrical Characteristics 4.11.13.5 Stream Transmission Mode Frame Transfer #HANNEL $ESCRIPTION BITS 0AYLOAD $ATA "ITS $!4! &,!' #OMPLETE . BITS &RAME #OMPLETE . BITS &RAME 2%!$9 Figure 83. Stream Transmission Mode Frame Transfer (Synchronized Data Flow) 4.11.13.6 Frame Transmission Mode (Synchronized Data Flow) &RAME START BIT #HANNEL $ESCRIPTION BITS 0AYLOAD $ATA "ITS $!4! &,!' #OMPLETE . BITS &RAME #OMPLETE . BITS &RAME 2%!$9 Figure 84. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow) 4.11.13.7 Frame Transmission Mode (Pipelined Data Flow) &RAME START BIT #HANNEL $ESCRIPTION BITS 0AYLOAD $ATA "ITS $!4! &,!' #OMPLETE . BITS &RAME #OMPLETE . BITS &RAME 2%!$9 Figure 85. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow) 4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load Table 76. DATA and FLAG Timing Parameter tBit, nom tRise, min and tFall, min tTxToRxSkew, maxfq Description 1 Mbit/s 100 Mbit/s 200 Mbit/s Nominal bit time 1000 ns 10.0 ns 5.00 ns Minimum allowed rise and fall time 2.00 ns 2.00 ns 1.00 ns Maximum skew between transmitter and receiver package pins 50.0 ns 0.5.0 ns 0.25 ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 116 Freescale Semiconductor Electrical Characteristics Table 76. DATA and FLAG Timing (continued) Parameter Description 1 Mbit/s 100 Mbit/s 200 Mbit/s tEageSepTx, min Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter. 400 ns 4.00 ns 2.00 ns tEageSepRx, min Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver. 350 ns 3.5 ns 1.75 ns T %DGE3EP4X $!4! 48 T 2ISE .OTE &,!' 48 T"IT T &ALL T %DGE3EP2X T 4X4O2X3KEW $!4! 28 .OTE .OTE .OTE &,!' 28 Figure 86. DATA and FLAG Signal Timing Note: 1 This case shows that the DATA signal has slowed down more compared to the FLAG signal 2 This case shows that the FLAG signal has slowed down more compared to the DATA signal. 4.11.14 MediaLB (MLB) Characteristics 4.11.14.1 MediaLB (MLB) DC Characteristics Table 77 lists the MediaLB 3-pin interface electrical characteristics. Table 77. MediaLB 3-Pin Interface Electrical DC Specifications Parameter Symbol Test Conditions Min Max Unit Maximum input voltage — — — 3.6 V Low level input threshold VIL — — 0.7 V High level input threshold VIH See Note1 1.8 — V Low level output threshold VOL IOL = 6 mA — 0.4 V High level output threshold VOH IOH = -6 mA 2.0 — V IL 0 < Vin < VDD — ±10 A Input leakage current 1 Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 117 Electrical Characteristics Table 78 lists the MediaLB 6-pin interface electrical characteristics. Table 78. MediaLB 6-Pin Interface Electrical DC Specifications Parameter Symbol Test Conditions Min Max Unit Driver Characteristics Differential output voltage (steady-state): I VO+ - VO- I VOD See Note1 300 500 mV Difference in differential output voltage between (high/low) steady-states: I VOD, high - VOD, low I VOD — -50 50 mV Common-mode output voltage: (VO+ - VO-) / 2 VOCM — 1.0 1.5 V Difference in common-mode output between (high/low) steady-states: I VOCM, high - VOCM, low I VOCM — -50 50 mV Variations on common-mode output during a logic state transitions VCMV See Note2 — 150 mVpp Short circuit current |IOS| See Note3 — 43 mA ZO — 1.6 — k — 50 -25 -50 — 25 mV mV mV — 50 -50 — mV mV 0.5 0.5 2.0 2.0 V V Differential output impedance Receiver Characteristics See Note4 Differential clock input: • logic low steady-state • logic high steady-state • hysteresis VILC VIHC VHSC Differential signal/data input: • logic low steady-state • logic high steady-state VILS VIHS Signal-ended input voltage (steady-state): • MLB_SIG_P, MLB_DATA_P • MLB_SIG_N, MLB_DATA_N — — VIN+ VIN- 1 The signal-ended output voltage of a driver is defined as VO+ on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The signal-ended output voltage of a driver is defined as VO- on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N. 2 Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of differences in the transition rate of VO+ and VO-. 3 Short circuit current is applicable when V O+ and VO- are shorted together and/or shorted to ground. 4 The logic state of the receiver is undefined when -50 mV < V < 50 mV. ID i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 118 Freescale Semiconductor Electrical Characteristics 4.11.14.2 MediaLB (MLB) Controller AC Timing Electrical Specifications This section describes the timing electrical information of the MediaLB module. Figure 87 show the timing of MediaLB 3-pin interface, and Table 79 and Table 80 lists the MediaLB 3-pin interface timing characteristics. -,"?3)' -,"?$!4! VALID RECEIVER T PROP T DHMCF T DSMCF T MCKR -,"?#,+ T MCKF T MCKH TMCKL T DELAY TMCFDZ -,"?3)' -,"?$!4! TRANSMITTER VALID T MDZH -,"?3)' -,"?$!4! BUS STATE VALID Figure 87. MediaLB 3-Pin Timing Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted. Table 79. MLB 256/512 Fs Timing Parameters Parameter MLB_CLK operating frequency1 Symbol Min fmck 11.264 Max Unit Comment MHz 256xFs at 44.0 kHz 512xFs at 50.0 kHz 25.6 MLB_CLK rise time tmckr — 3 ns VIL TO VIH MLB_CLK fall time tmckf — 3 ns VIH TO VIL time2 tmckl 30 14 — ns 256xFs 512xFs MLB_CLK high time tmckh 30 14 — ns 256xFs 512xFs MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling tdsmcf 1 — ns — MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low tdhmcf tmdzh — ns — MLB_SIG/MLB_DATA output high impedance from MLB_CLK low tmcfdz 0 tmckl ns 3 Bus Hold from MLB_CLK low tmdzh 4 — ns — MLB_CLK low i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 119 Electrical Characteristics Table 79. MLB 256/512 Fs Timing Parameters (continued) Parameter Symbol Min Max Unit Comment MLB_SIG/MLB_DATA output valid from transition of MLB_CLK (low to high) tdelay — 10 ns — Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high) tdelay — 10.75 ns — 1 The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK. 2 MLB_CLK low/high time includes the pulse width variation. 3 The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed in Table 80; unless otherwise noted. Table 80. MLB 1024 Fs Timing Parameters Parameter Symbol Min Max Unit Comment MLB_CLK Operating Frequency1 fmck 45.056 51.2 MHz 1024xfs at 44.0 kHz 1024xfs at 50.0 kHz MLB_CLK rise time tmckr — 1 ns VIL TO VIH MLB_CLK fall time tmckf — 1 ns VIH TO VIL MLB_CLK low time tmckl 6.1 — ns 2 MLB_CLK high time tmckh 9.3 — ns — MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling tdsmcf 1 — ns — MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low tdhmcf tmdzh — ns — MLB_SIG/MLB_DATA output high impedance from MLB_CLK low tmcfdz 0 tmckl ns 3 Bus Hold from MLB_CLK low tmdzh 2 — ns — MLB_SIG/MLB_DATA output valid from transition of MLB_CLK (low to high) tdelay — 7 ns — Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high) tdelay — 6 ns — 1 The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK. 2 MLB_CLK low/high time includes the pulse width variation. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 120 Freescale Semiconductor Electrical Characteristics 3 The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. Table 81 lists the MediaLB 6-pin interface timing characteristics, and Figure 88 shows the MLB 6-pin delay, setup, and hold times. Table 81. MLB 6-Pin Interface Timing Parameters Parameter Symbol Min Max Unit Comment Cycle-to-cycle system jitter tjitter — 600 ps — Transmitter MLB_SIG_P/_N (MLB_DATA_P/_N) output valid from transition of MLB_CLK_P/_N (low-to-high)1 tdelay 0.6 1.3 ns — Disable turnaround time from transition of MLB_CLK_P/_N (low-to-high) tphz 0.6 3.5 ns — Enable turnaround time from transition of MLB_CLK_P/_N (low-to-high) tplz 0.6 5.6 ns — MLB_SIG_P/_N (MLB_DATA_P/_N) valid to transition of MLB_CLK_P/_N (low-to-high) tsu 0.05 — ns — MLB_SIG_P/_N (MLB_DATA_P/_N) hold from transition of MLB_CLK_P/_N (low-to-high)2 thd 0.6 — 1 tdelay, tphz, tplz, tsu, and thd may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recovered-to-external clock ratios. 2 The transmitting device must ensure valid data on MLB_SIG_P/_N (MLB_DATA_P/_N) for at least thd(min) following the rising edge of MLB_CLK_P/N; receivers must latch MLB_SIG_P/_N (MLB_DATA_P/_N) data within thd(min) of the rising edge of MLB_CLK_P/_N. 0HYSICAL #HANNEL BOUNDARY -,"?#,+?0. 2ECOVERED CLOCK X4 X4 X4 T DELAY -,"?3)'?0. TRANSMITTER #!;= #ONTROLLER #HANNEL!DDRESS TRANSMITTER ENABLED $ATA NOT VALID -,"?3)'?0. RECEIVER #!;= #ONTROLLER #HANNEL!DDRESS #MD ;= TPROP 4 T DELAY #MD ;= TPROP T DELAY #MD ;= TPROP T DELAY T DELAY #MD ;= #MD ;= #MD ;= TPROP 4X $EVICE #OMMAND TSU THD TSU THD TSU THD TSU THD #MD ;= #MD ;= #MD ;= #MD ;= #MD ;= #MD ;= 4X $EVICE #OMMAND Figure 88. MLB 6-Pin Delay, Setup, and Hold Times i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 121 Electrical Characteristics 4.11.15 PCIe PHY Parameters The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard. 4.11.15.1 PCIE_REXT Reference Resistor Connection The impedance calibration process requires connection of reference resistor 200 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration. 4.11.16 Pulse Width Modulator (PWM) Timing Parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 89 depicts the timing of the PWM, and Table 82 lists the PWM timing parameters. 0 0 07-N?/54 Figure 89. PWM Timing Table 82. PWM Output Timing Parameters ID Parameter Min Max Unit PWM Module Clock Frequency 0 ipg_clk MHz P1 PWM output pulse width high 15 ns P2 PWM output pulse width low 15 ns 4.11.17 SCAN JTAG Controller (SJC) Timing Parameters Figure 90 depicts the SJC test clock input timing. Figure 91 depicts the SJC boundary scan timing. Figure 92 depicts the SJC test access port. Signal parameters are listed in Table 83. SJ1 SJ2 JTAG_TCK (Input) VIH SJ3 VM SJ2 VM VIL SJ3 Figure 90. Test Clock Input Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 122 Freescale Semiconductor Electrical Characteristics JTAG_TCK (Input) VIH VIL SJ5 SJ4 Data Inputs Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 91. Boundary Scan (JTAG) Timing Diagram JTAG_TCK (Input) VIH VIL SJ8 JTAG_TDI JTAG_TMS (Input) SJ9 Input Data Valid SJ10 JTAG_TDO (Output) Output Data Valid SJ11 JTAG_TDO (Output) SJ10 JTAG_TDO (Output) Output Data Valid Figure 92. Test Access Port Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 123 Electrical Characteristics JTAG_TCK (Input) SJ13 JTAG_TRST_B (Input) SJ12 Figure 93. JTAG_TRST_B Timing Diagram Table 83. JTAG Timing All Frequencies Parameter1,2 ID 1 2 Unit Min Max 0.001 22 MHz 45 — ns 22.5 — ns SJ0 JTAG_TCK frequency of operation 1/(3•TDC)1 SJ1 JTAG_TCK cycle time in crystal mode SJ2 JTAG_TCK clock pulse width measured at VM2 SJ3 JTAG_TCK rise and fall times — 3 ns SJ4 Boundary scan input data set-up time 5 — ns SJ5 Boundary scan input data hold time 24 — ns SJ6 JTAG_TCK low to output data valid — 40 ns SJ7 JTAG_TCK low to output high impedance — 40 ns SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 — ns SJ9 JTAG_TMS, JTAG_TDI data hold time 25 — ns SJ10 JTAG_TCK low to JTAG_TDO data valid — 44 ns SJ11 JTAG_TCK low to JTAG_TDO high impedance — 44 ns SJ12 JTAG_TRST_B assert time 100 — ns SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 — ns TDC = target frequency of SJC VM = mid-point voltage 4.11.18 SPDIF Timing Parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 84 and Figure 94 and Figure 95 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 124 Freescale Semiconductor Electrical Characteristics Table 84. SPDIF Timing Parameters Timing Parameter Range Characteristics Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 SPDIF_OUT output (Load = 30pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 13.6 18.0 ns Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 — ns SPDIF_SR_CLK high period srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns ns ns srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 94. SPDIF_SR_CLK Timing Diagram stclkp stclkpl SPDIF_ST_CLK VM stclkph VM (Input) Figure 95. SPDIF_ST_CLK Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 125 Electrical Characteristics 4.11.19 SSI Timing Parameters This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 85. Table 85. AUDMUX Port Allocation Port Signal Nomenclature Type and Access AUDMUX port 1 SSI 1 Internal AUDMUX port 2 SSI 2 Internal AUDMUX port 3 AUD3 External— AUD3 I/O AUDMUX port 4 AUD4 External— EIM or CSPI1 I/O through IOMUXC AUDMUX port 5 AUD5 External— EIM or SD1 I/O through IOMUXC AUDMUX port 6 AUD6 External— EIM or DISP2 through IOMUXC AUDMUX port 7 SSI 3 Internal NOTE The terms WL and BL used in the timing diagrams and tables see Word Length (WL) and Bit Length (BL). 4.11.19.1 SSI Transmitter Timing with Internal Clock Figure 96 depicts the SSI transmitter internal clock timing and Table 86 lists the timing parameters for the SSI transmitter internal clock. . SS1 SS3 SS5 SS2 SS4 AUDx_TXC (Output) SS6 SS8 AUDx_TXFS (bl) (Output) SS10 SS12 AUDx_TXFS (wl) (Output) SS14 SS15 SS16 AUDx_TXD (Output) SS43 SS42 SS18 SS17 SS19 AUDx_RXD (Input) Note: AUDx_RXD input in synchronous mode only Figure 96. SSI Transmitter Internal Clock Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 126 Freescale Semiconductor Electrical Characteristics Table 86. SSI Transmitter Timing with Internal Clock ID Parameter Min Max Unit Internal Clock Operation SS1 AUDx_TXC/AUDxRXC clock period 81.4 — ns SS2 AUDx_TXC/AUDxRXC clock high period 36.0 — ns SS4 AUDx_TXC/AUDxRXC clock low period 36.0 — ns SS6 AUDx_TXC high to AUDx_TXFS (bl) high — 15.0 ns SS8 AUDx_TXC high to AUDx_TXFS (bl) low — 15.0 ns SS10 AUDx_TXC high to AUDx_TXFS (wl) high — 15.0 ns SS12 AUDx_TXC high to AUDx_TXFS (wl) low — 15.0 ns SS14 AUDx_TXC/AUDxRXC Internal AUDx_TXFS rise time — 6.0 ns SS15 AUDx_TXC/AUDxRXC Internal AUDx_TXFS fall time — 6.0 ns SS16 AUDx_TXC high to AUDx_TXD valid from high impedance — 15.0 ns SS17 AUDx_TXC high to AUDx_TXD high/low — 15.0 ns SS18 AUDx_TXC high to AUDx_TXD high impedance — 15.0 ns Synchronous Internal Clock Operation SS42 AUDx_RXD setup before AUDx_TXC falling 10.0 — ns SS43 AUDx_RXD hold after AUDx_TXC falling 0.0 — ns • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 127 Electrical Characteristics 4.11.19.2 SSI Receiver Timing with Internal Clock Figure 97 depicts the SSI receiver internal clock timing and Table 87 lists the timing parameters for the receiver timing with the internal clock. SS1 SS3 SS5 SS2 SS4 AUDx_TXC (Output) SS9 SS7 AUDx_TXFS (bl) (Output) SS11 SS13 AUDx_TXFS (wl) (Output) SS20 SS21 AUDx_RXD (Input) SS47 SS48 SS51 SS49 SS50 AUDx_RXC (Output) Figure 97. SSI Receiver Internal Clock Timing Diagram Table 87. SSI Receiver Timing with Internal Clock ID Parameter Min Max Unit Internal Clock Operation SS1 AUDx_TXC/AUDx_RXC clock period 81.4 — ns SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 — ns SS3 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 — ns SS5 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS7 AUDx_RXC high to AUDx_TXFS (bl) high — 15.0 ns SS9 AUDx_RXC high to AUDx_TXFS (bl) low — 15.0 ns SS11 AUDx_RXC high to AUDx_TXFS (wl) high — 15.0 ns SS13 AUDx_RXC high to AUDx_TXFS (wl) low — 15.0 ns SS20 AUDx_RXD setup time before AUDx_RXC low 10.0 — ns SS21 AUDx_RXD hold time after AUDx_RXC low 0.0 — ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 128 Freescale Semiconductor Electrical Characteristics Table 87. SSI Receiver Timing with Internal Clock (continued) ID Parameter Min Max Unit 15.04 — ns Oversampling Clock Operation SS47 Oversampling clock period SS48 Oversampling clock high period 6.0 — ns SS49 Oversampling clock rise time — 3.0 ns SS50 Oversampling clock low period 6.0 — ns SS51 Oversampling clock fall time — 3.0 ns • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 129 Electrical Characteristics 4.11.19.3 SSI Transmitter Timing with External Clock Figure 98 depicts the SSI transmitter external clock timing and Table 88 lists the timing parameters for the transmitter timing with the external clock. SS22 SS23 SS25 SS26 SS24 AUDx_TXC (Input) SS27 SS29 AUDx_TXFS (bl) (Input) SS33 SS31 AUDx_TXFS (wl) (Input) SS39 SS37 SS38 AUDx_TXD (Output) SS45 SS44 AUDx_RXD (Input) SS46 Note: AUDx_RXD Input in Synchronous mode only Figure 98. SSI Transmitter External Clock Timing Diagram Table 88. SSI Transmitter Timing with External Clock ID Parameter Min Max Unit External Clock Operation SS22 AUDx_TXC/AUDx_RXC clock period 81.4 — ns SS23 AUDx_TXC/AUDx_RXC clock high period 36.0 — ns SS24 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS25 AUDx_TXC/AUDx_RXC clock low period 36.0 — ns SS26 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS27 AUDx_TXC high to AUDx_TXFS (bl) high -10.0 15.0 ns SS29 AUDx_TXC high to AUDx_TXFS (bl) low 10.0 — ns SS31 AUDx_TXC high to AUDx_TXFS (wl) high -10.0 15.0 ns SS33 AUDx_TXC high to AUDx_TXFS (wl) low 10.0 — ns SS37 AUDx_TXC high to AUDx_TXD valid from high impedance — 15.0 ns SS38 AUDx_TXC high to AUDx_TXD high/low — 15.0 ns SS39 AUDx_TXC high to AUDx_TXD high impedance — 15.0 ns i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 130 Freescale Semiconductor Electrical Characteristics Table 88. SSI Transmitter Timing with External Clock (continued) ID Parameter Min Max Unit Synchronous External Clock Operation SS44 AUDx_RXD setup before AUDx_TXC falling 10.0 — ns SS45 AUDx_RXD hold after AUDx_TXC falling 2.0 — ns SS46 AUDx_RXD rise/fall time — 6.0 ns • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms WL and BL refer to Word Length (WL) and Bit Length (BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). 4.11.19.4 SSI Receiver Timing with External Clock Figure 99 depicts the SSI receiver external clock timing and Table 89 lists the timing parameters for the receiver timing with the external clock. SS22 SS26 SS24 SS25 SS23 AUDx_TXC (Input) SS28 AUDx_TXFS (bl) (Input) AUDx_TXFS (wl) (Input) SS30 SS32 SS34 SS35 SS41 SS40 SS36 AUDx_RXD (Input) Figure 99. SSI Receiver External Clock Timing Diagram i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 131 Electrical Characteristics Table 89. SSI Receiver Timing with External Clock ID Parameter Min Max Unit 81.4 — ns External Clock Operation SS22 AUDx_TXC/AUDx_RXC clock period SS23 AUDx_TXC/AUDx_RXC clock high period 36 — ns SS24 AUDx_TXC/AUDx_RXC clock rise time — 6.0 ns SS25 AUDx_TXC/AUDx_RXC clock low period 36 — ns SS26 AUDx_TXC/AUDx_RXC clock fall time — 6.0 ns SS28 AUDx_RXC high to AUDx_TXFS (bl) high -10 15.0 ns SS30 AUDx_RXC high to AUDx_TXFS (bl) low 10 — ns SS32 AUDx_RXC high to AUDx_TXFS (wl) high -10 15.0 ns SS34 AUDx_RXC high to AUDx_TXFS (wl) low 10 — ns SS35 AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time — 6.0 ns SS36 AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time — 6.0 ns SS40 AUDx_RXD setup time before AUDx_RXC low 10 — ns SS41 AUDx_RXD hold time after AUDx_RXC low 2 — ns • • • • NOTE All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures. All timings are on Audiomux Pads when SSI is being used for data transfer. The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL). For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 132 Freescale Semiconductor Electrical Characteristics 4.11.20 UART I/O Configuration and Timing Parameters 4.11.20.1 UART RS-232 I/O Configuration in Different Modes The i.MX 6Solo/6DualLite UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 90 shows the UART I/O configuration based on the enabled mode. Table 90. UART I/O Configuration vs. Mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output RTS from DTE to DCE Input RTS from DTE to DCE UARTx_CTS_B Input CTS from DCE to DTE Output CTS from DCE to DTE UARTx_DTR_B Output DTR from DTE to DCE Input DTR from DTE to DCE UARTx_DSR_B Input DSR from DCE to DTE Output DSR from DCE to DTE UARTx_DCD_ B Input DCD from DCE to DTE Output DCD from DCE to DTE UARTx_RI_B Input RING from DCE to DTE Output RING from DCE to DTE UARTx_TX_DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE 4.11.20.2 UART RS-232 Serial Mode Timing The following sections describe the electrical information of the UART module in the RS-232 mode. 4.11.20.2.1 UART Transmitter Figure 100 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 91 lists the UART RS-232 serial mode transmit timing characteristics. UA1 UARTx_TX_DATA (output) Possible Parity Bit UA1 Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 100. UART RS-232 Serial Mode Transmit Timing Diagram Table 91. RS-232 Serial Mode Transmit Timing Parameters ID UA1 1 2 Parameter Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 133 Electrical Characteristics 4.11.20.2.2 UART Receiver Figure 101 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 92 lists serial mode receive timing characteristics. UA2 UARTx_RX_DATA (input) Possible Parity Bit UA2 Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Next Start Bit Par Bit STOP BIT UA2 UA2 Figure 101. UART RS-232 Serial Mode Receive Timing Diagram Table 92. RS-232 Serial Mode Receive Timing Parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.11.20.2.3 UART IrDA Mode Timing The following subsections give the UART transmit and receive timings in IrDA mode. UART IrDA Mode Transmitter Figure 102 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 93 lists the transmit timing characteristics. UA3 UA4 UA3 UA3 UA3 UARTx_TX_DATA (output) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Possible Parity Bit STOP BIT Figure 102. UART IrDA Mode Transmit Timing Diagram Table 93. IrDA Mode Transmit Timing Parameters 1 ID Parameter Symbol Min Max Unit UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 Tref_clk2 1/Fbaud_rate + Tref_clk — UA4 Transmit IR Pulse Duration tTIRpulse (3/16) x (1/Fbaud_rate) (3/16) x (1/Fbaud_rate) - Tref_clk + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 134 Freescale Semiconductor Electrical Characteristics 2 Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). UART IrDA Mode Receiver Figure 103 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 94 lists the receive timing characteristics. UA5 UA6 UA5 UA5 UA5 UARTx_RX_DATA (input) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Possible Parity Bit Bit 7 STOP BIT Figure 103. UART IrDA Mode Receive Timing Diagram Table 94. IrDA Mode Receive Timing Parameters ID Parameter UA5 Receive Bit Time1 in IrDA mode UA6 Receive IR Pulse Duration Symbol Min Max Unit tRIRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — tRIRpulse 1.41 s (5/16) x (1/Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.11.21 USB HSIC Timings This section describes the electrical information of the USB HSIC port. NOTE HSIC is DDR signal, following timing spec is for both rising and falling edge. 4.11.21.1 Transmit Timing Tstrobe USB_H_STROBE Todelay Todelay USB_H_DATA Figure 104. USB HSIC Transmit Waveform i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 135 Electrical Characteristics Table 95. USB HSIC Transmit Parameters Name Parameter Min Max Unit Comment 4.166 4.167 ns — Measured at 50% point Tstrobe strobe period Todelay data output delay time 550 1350 ps strobe/data rising/falling time 0.7 2 V/ns Tslew Averaged from 30% – 70% points 4.11.21.2 Receive Timing Tstrobe USB_H_STROBE Thold USB_H_DATA Tsetup Figure 105. USB HSIC Receive Waveform Table 96. USB HSIC Receive Parameters1 Name 1 Parameter Min Max Unit Comment 4.167 ns — Tstrobe strobe period 4.166 Thold data hold time 300 ps Measured at 50% point Tsetup data setup time 365 ps Measured at 50% point Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points The timings in the table are guaranteed when: —AC I/O voltage is between 0.9x to 1x of the I/O supply —DDR_SEL configuration bits of the I/O are set to (10)b 4.11.22 USB PHY Parameters This section describes the USB-OTG PHY and the USB Host port PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port). • • • • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 USB ENGINEERING CHANGE NOTICE i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 136 Freescale Semiconductor Boot Mode Configuration • • • 5 — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only Boot Mode Configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot Mode Configuration Pins Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6Solo/6DualLite Fuse Map document and the System Boot chapter in i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM). Table 97. Fuses and Associated Pins Used for Boot Pin Direction at Reset eFuse Name Boot Mode Selection BOOT_MODE1 Input N/A BOOT_MODE0 Input N/A Boot Options1 EIM_DA0 Input BOOT_CFG1[0] EIM_DA1 Input BOOT_CFG1[1] EIM_DA2 Input BOOT_CFG1[2] EIM_DA3 Input BOOT_CFG1[3] EIM_DA4 Input BOOT_CFG1[4] EIM_DA5 Input BOOT_CFG1[5] EIM_DA6 Input BOOT_CFG1[6] EIM_DA7 Input BOOT_CFG1[7] i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 137 Boot Mode Configuration Table 97. Fuses and Associated Pins Used for Boot (continued) 1 Pin Direction at Reset eFuse Name EIM_DA8 Input BOOT_CFG2[0] EIM_DA9 Input BOOT_CFG2[1] EIM_DA10 Input BOOT_CFG2[2] EIM_DA11 Input BOOT_CFG2[3] EIM_DA12 Input BOOT_CFG2[4] EIM_DA13 Input BOOT_CFG2[5] EIM_DA14 Input BOOT_CFG2[6] EIM_DA15 Input BOOT_CFG2[7] EIM_A16 Input BOOT_CFG3[0] EIM_A17 Input BOOT_CFG3[1] EIM_A18 Input BOOT_CFG3[2] EIM_A19 Input BOOT_CFG3[3] EIM_A20 Input BOOT_CFG3[4] EIM_A21 Input BOOT_CFG3[5] EIM_A22 Input BOOT_CFG3[6] EIM_A23 Input BOOT_CFG3[7] EIM_A24 Input BOOT_CFG4[0] EIM_WAIT Input BOOT_CFG4[1] EIM_LBA Input BOOT_CFG4[2] EIM_EB0 Input BOOT_CFG4[3] EIM_EB1 Input BOOT_CFG4[4] EIM_RW Input BOOT_CFG4[5] EIM_EB2 Input BOOT_CFG4[6] EIM_EB3 Input BOOT_CFG4[7] Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 138 Freescale Semiconductor Boot Mode Configuration 5.2 Boot Device Interface Allocation Table 98 lists the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 98. Interface Allocation During Boot Interface IP Instance Allocated Pads During Boot Comment SPI ECSPI-1 EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19, EIM_D24, EIM_D25 — SPI ECSPI-2 CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11, EIM_LBA, EIM_D24, EIM_D25 — SPI ECSPI-3 DISP0_DAT2, DISP0_DAT1, DISP0_DAT0, DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6 — SPI ECSPI-4 EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25, EIM_D24, EIM_D25 — EIM EIM NAND Flash GPMI SD/MMC EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4], CSI0_DATA_EN, CSI0_VSYNC Used for NOR, OneNAND boot Only CS0 is supported NANDF_CLE, NANDF_ALE, NANDF_WP_B, SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0, NANDF_CS0, NANDF_CS1, NANDF_CS2, NANDF_CS3, NANDF_D[7:0] 8 bit Only CS0 is supported USDHC-1 SD1_CLK, SD1_CMD, SD1_DAT0, SD1_DAT1, SD1_DAT2, SD1_DAT3, GPIO_1, NANDF_D0, NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1 1, 4, or 8 bit SD/MMC USDHC-2 SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1, SD2_DAT2, SD2_DAT3, GPIO_4, NANDF_D4, NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1 1, 4, or 8 bit SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, SD3_RST, GPIO_18 1, 4, or 8 bit SD/MMC USDHC-4 SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1, SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5, SD4_DAT6, SD4_DAT7, NANDF_ALE, NANDF_CS1 1, 4, or 8 bit I2C I2C-1 EIM_D28, EIM_D21 — I2C I2C-2 EIM_D16, EIM_EB2 — I2C I2C-3 EIM_D18, EIM_D17 — USB USB-OTG PHY USB_OTG_DP USB_OTG_DN USB_OTG_VBUS — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 139 Package Information and Contact Assignments 6 Package Information and Contact Assignments This section includes the contact assignment information and mechanical package drawing. 6.1 Updated Signal Naming Convention The signal names of the i.MX6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows: • The names are unique within the scope of an SoC and within the series of products • Searches will return all occurrences of the named signal • The names are consistent between i.MX 6 series products implementing the same modules • The module instance is incorporated into the signal name This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc. Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions. 6.2 6.2.1 21x21 mm Package Information Case 2240, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix Figure 106 shows the top, bottom, and side views of the 21×21 mm BGA package. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 140 Freescale Semiconductor Package Information and Contact Assignments Figure 106. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 141 Package Information and Contact Assignments Table 99 shows the 21 21 mm BGA package details. Table 99. 21 x 21, 0.8 mm BGA Package Details Common Dimensions Parameter Symbol Minimum Normal Maximum Total Thickness A — — 1.5 Stand Off A1 0.36 — 0.46 Substrate Thickness A2 0.26 REF Mold Thickness A3 0.7 REF Body Size D 21 BSC E 21 BSC Ball Diameter — 0.5 Ball Opening — 0.4 Ball Width b Ball Pitch e 0.8 BSC Ball Count n 624 Edge Ball Center to Center D1 19.2 BSC E1 19.2 BSC SD — SE — Package Edge Tolerance aaa 0.1 Mold Flatness bbb 0.2 Coplanarity ddd 0.15 Ball Offset (Package) eee 0.15 Ball Offset (Ball) fff 0.08 Body Center to Contact Ball 0.44 — 0.64 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 142 Freescale Semiconductor Package Information and Contact Assignments 6.2.2 21 x 21 mm Supplies Contact Assignments and Functional Contact Assignments Table 100 shows supplies contact assignments for the 21 x 21 mm package. Table 100. 21 x 21 mm Supplies Contact Assignments Supply Rail Name CSI_REXT Ball(s) Position(s) Remark D4 — DRAM_VREF AC2 — DSI_REXT G4 — A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5, E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15, H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2, L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18, N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12, R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12, U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11, W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7, AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4, AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25 — HDMI_REF J1 — HDMI_VP L7 — HDMI_VPH M7 — NVCC_CSI N7 GND NVCC_DRAM NVCC_EIM Supply of the camera sensor interface R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, Supply of the DDR interface V17, V18 K19, L19, M19 Supply of the EIM interface NVCC_ENET R19 Supply of the ENET interface NVCC_GPIO P7 Supply of the GPIO interface NVCC_JTAG J7 Supply of the JTAG tap controller interface NVCC_LCD P19 Supply of the LCD interface NVCC_LVDS2P5 V7 Supply of the LVDS display interface and DDR pre-drivers NVCC_MIPI K7 Supply of the MIPI interface G15 Supply of the raw NAND Flash memories interface NVCC_NANDF NVCC_PLL_OUT E8 — NVCC_RGMII G18 Supply of the ENET interface NVCC_SD1 G16 Supply of the SD card interface NVCC_SD2 G17 Supply of the SD card interface NVCC_SD3 G14 Supply of the SD card interface i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 143 Package Information and Contact Assignments Table 100. 21 x 21 mm Supplies Contact Assignments (continued) Supply Rail Name Ball(s) Position(s) Remark PCIE_REXT A2 — PCIE_VP H7 — PCIE_VPH G7 PCI PHY supply PCIE_VPTX G8 PCI PHY supply VDD_SNVS_CAP G9 Secondary supply for the SNVS (internal regulator output—requires capacitor if internal regulator is used) VDD_SNVS_IN G11 Primary supply for the SNVS regulator VDDARM_CAP H11, H13, J11, J13, K11, K13, L11, L13, M11, M13, N11, N13, P11, P13, R11, R13 Secondary supply for core (internal regulator output—requires capacitor if internal regulator is used) VDDARM_IN H14, J14, K9, K14, L9, L14, M9, M14, N9, N14, P9, P14, R9, R14, T9, U9 Primary supply for the ARM core’s regulator H10, J10 Secondary supply for the 2.5 V domain (internal regulator output—requires capacitor if internal regulator is used) VDDHIGH_IN H9, J9 Primary supply for the 2.5 V regulator VDDPU_CAP H17, J17, K17, L17, M17, N17, P17 Secondary supply for VPU and GPUs (internal regulator output—requires capacitor if internal regulator is used) VDDSOC_CAP R10, T10, T13, T14, U10, U13, U14 Secondary supply for SoC and PU regulators (internal regulator output—requires capacitor if internal regulator is used) H16, J16, K16, L16, M16, N16, P16, R16, T16, U16 Primary supply for SoC and PU regulators VDDUSB_CAP F9 Secondary supply for the 3 V Domain (internal regulator output—requires capacitor if internal regulator is used) USB_H1_VBUS D10 Primary supply for the 3 V regulator USB_OTG_VBUS E9 Primary supply for the 3 V regulator HDMI_DDCCEC K2 Analog Ground (Ground reference for the Hot Plug Detect signal) FA_ANA A5 — GPANAIO C8 — VDD_FA B5 — VDDHIGH_CAP VDDSOC_IN i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 144 Freescale Semiconductor Package Information and Contact Assignments Table 100. 21 x 21 mm Supplies Contact Assignments (continued) Supply Rail Name ZQPAD NC Ball(s) Position(s) Remark AE17 — For i.MX 6DualLite: A1, A12, A14, B12, B14, C14, E1, E2, F1, F2, G12, G13, N12 — For i.MX 6Solo: A1, A12, A14, B12, B14, C14, E1, E2, F1, F2, G12, G13, N12, W25, Y17, Y18, Y19, Y20, Y21, Y22, Y23, Y25, AA17, AA18, AA20, AA21, AA23, AA24, AA25, AB18, AB19, AB20, AB21, AB22, AB23, AB25, AC18, AC19, AC20, AC21, AC22, AC23, AC24, AC25, AD18, AD20, AD21, AD23, AD24, AD25, AE18, AE19, AE20, AE21, AE22, AE23, AE24 Table 101 shows an alpha-sorted list of functional contact assignments for the 21 x 21 mm package. Table 101. 21 x 21 mm Functional Contact Assignments Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 BOOT_MODE0 C12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE0 Input 100 k pull-down BOOT_MODE1 F12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE1 Input 100 k pull-down CLK1_N C7 VDDHIGH_CAP — — CLK1_N — — CLK1_P D7 VDDHIGH_CAP — — CLK1_P — — CLK2_N C5 VDDHIGH_CAP — — CLK2_N — — CLK2_P D5 VDDHIGH_CAP — — CLK2_P — — CSI_CLK0M F4 NVCC_MIPI ANALOG — CSI_CLK_N — — CSI_CLK0P F3 NVCC_MIPI ANALOG — CSI_CLK_P — — CSI_D0M E4 NVCC_MIPI ANALOG — CSI_DATA0_N — — CSI_D0P E3 NVCC_MIPI ANALOG — CSI_DATA0_P — — CSI_D1M D1 NVCC_MIPI ANALOG — CSI_DATA1_N — — CSI_D1P D2 NVCC_MIPI ANALOG — CSI_DATA1_P — — CSI0_DAT10 M1 NVCC_CSI GPIO ALT5 GPIO5_IO28 Input 100 k pull-up CSI0_DAT11 M3 NVCC_CSI GPIO ALT5 GPIO5_IO29 Input 100 k pull-up CSI0_DAT12 M2 NVCC_CSI GPIO ALT5 GPIO5_IO30 Input 100 k pull-up CSI0_DAT13 L1 NVCC_CSI GPIO ALT5 GPIO5_IO31 Input 100 k pull-up CSI0_DAT14 M4 NVCC_CSI GPIO ALT5 GPIO6_IO00 Input 100 k pull-up CSI0_DAT15 M5 NVCC_CSI GPIO ALT5 GPIO6_IO01 Input 100 k pull-up CSI0_DAT16 L4 NVCC_CSI GPIO ALT5 GPIO6_IO02 Input 100 k pull-up CSI0_DAT17 L3 NVCC_CSI GPIO ALT5 GPIO6_IO03 Input 100 k pull-up CSI0_DAT18 M6 NVCC_CSI GPIO ALT5 GPIO6_IO04 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 145 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 CSI0_DAT19 L6 NVCC_CSI GPIO ALT5 GPIO6_IO05 Input 100 k pull-up CSI0_DAT4 N1 NVCC_CSI GPIO ALT5 GPIO5_IO22 Input 100 k pull-up CSI0_DAT5 P2 NVCC_CSI GPIO ALT5 GPIO5_IO23 Input 100 k pull-up CSI0_DAT6 N4 NVCC_CSI GPIO ALT5 GPIO5_IO24 Input 100 k pull-up CSI0_DAT7 N3 NVCC_CSI GPIO ALT5 GPIO5_IO25 Input 100 k pull-up CSI0_DAT8 N6 NVCC_CSI GPIO ALT5 GPIO5_IO26 Input 100 k pull-up CSI0_DAT9 N5 NVCC_CSI GPIO ALT5 GPIO5_IO27 Input 100 k pull-up CSI0_DATA_EN P3 NVCC_CSI GPIO ALT5 GPIO5_IO20 Input 100 k pull-up CSI0_MCLK P4 NVCC_CSI GPIO ALT5 GPIO5_IO19 Input 100 k pull-up CSI0_PIXCLK P1 NVCC_CSI GPIO ALT5 GPIO5_IO18 Input 100 k pull-up CSI0_VSYNC N2 NVCC_CSI GPIO ALT5 GPIO5_IO21 Input 100 k pull-up DI0_DISP_CLK N19 NVCC_LCD GPIO ALT5 GPIO4_IO16 Input 100 k pull-up DI0_PIN15 N21 NVCC_LCD GPIO ALT5 GPIO4_IO17 Input 100 k pull-up DI0_PIN2 N25 NVCC_LCD GPIO ALT5 GPIO4_IO18 Input 100 k pull-up DI0_PIN3 N20 NVCC_LCD GPIO ALT5 GPIO4_IO19 Input 100 k pull-up DI0_PIN4 P25 NVCC_LCD GPIO ALT5 GPIO4_IO20 Input 100 k pull-up DISP0_DAT0 P24 NVCC_LCD GPIO ALT5 GPIO4_IO21 Input 100 k pull-up DISP0_DAT1 P22 NVCC_LCD GPIO ALT5 GPIO4_IO22 Input 100 k pull-up DISP0_DAT10 R21 NVCC_LCD GPIO ALT5 GPIO4_IO31 Input 100 k pull-up DISP0_DAT11 T23 NVCC_LCD GPIO ALT5 GPIO5_IO05 Input 100 k pull-up DISP0_DAT12 T24 NVCC_LCD GPIO ALT5 GPIO5_IO06 Input 100 k pull-up DISP0_DAT13 R20 NVCC_LCD GPIO ALT5 GPIO5_IO07 Input 100 k pull-up DISP0_DAT14 U25 NVCC_LCD GPIO ALT5 GPIO5_IO08 Input 100 k pull-up DISP0_DAT15 T22 NVCC_LCD GPIO ALT5 GPIO5_IO09 Input 100 k pull-up DISP0_DAT16 T21 NVCC_LCD GPIO ALT5 GPIO5_IO10 Input 100 k pull-up DISP0_DAT17 U24 NVCC_LCD GPIO ALT5 GPIO5_IO11 Input 100 k pull-up DISP0_DAT18 V25 NVCC_LCD GPIO ALT5 GPIO5_IO12 Input 100 k pull-up DISP0_DAT19 U23 NVCC_LCD GPIO ALT5 GPIO5_IO13 Input 100 k pull-up DISP0_DAT2 P23 NVCC_LCD GPIO ALT5 GPIO4_IO23 Input 100 k pull-up DISP0_DAT20 U22 NVCC_LCD GPIO ALT5 GPIO5_IO14 Input 100 k pull-up DISP0_DAT21 T20 NVCC_LCD GPIO ALT5 GPIO5_IO15 Input 100 k pull-up DISP0_DAT22 V24 NVCC_LCD GPIO ALT5 GPIO5_IO16 Input 100 k pull-up DISP0_DAT23 W24 NVCC_LCD GPIO ALT5 GPIO5_IO17 Input 100 k pull-up DISP0_DAT3 P21 NVCC_LCD GPIO ALT5 GPIO4_IO24 Input 100 k pull-up DISP0_DAT4 P20 NVCC_LCD GPIO ALT5 GPIO4_IO25 Input 100 k pull-up DISP0_DAT5 R25 NVCC_LCD GPIO ALT5 GPIO4_IO26 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 146 Freescale Semiconductor Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 DISP0_DAT6 R23 NVCC_LCD GPIO ALT5 GPIO4_IO27 Input 100 k pull-up DISP0_DAT7 R24 NVCC_LCD GPIO ALT5 GPIO4_IO28 Input 100 k pull-up DISP0_DAT8 R22 NVCC_LCD GPIO ALT5 GPIO4_IO29 Input 100 k pull-up DISP0_DAT9 T25 NVCC_LCD GPIO ALT5 GPIO4_IO30 Input 100 k pull-up DRAM_A0 AC14 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output Low DRAM_A1 AB14 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output Low DRAM_A10 AA15 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output Low DRAM_A11 AC12 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output Low DRAM_A12 AD12 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output Low DRAM_A13 AC17 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output Low DRAM_A14 AA12 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output Low DRAM_A15 Y12 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output Low DRAM_A2 AA14 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output Low DRAM_A3 Y14 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output Low DRAM_A4 W14 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output Low DRAM_A5 AE13 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output Low DRAM_A6 AC13 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output Low DRAM_A7 Y13 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output Low DRAM_A8 AB13 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output Low DRAM_A9 AE12 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output Low DRAM_CAS AE16 NVCC_DRAM DDR ALT0 DRAM_CAS Output Low DRAM_CS0 Y16 NVCC_DRAM DDR ALT0 DRAM_CS0 Output Low DRAM_CS1 AD17 NVCC_DRAM DDR ALT0 DRAM_CS1 Output Low DRAM_D0 AD2 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k pull-up DRAM_D1 AE2 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k pull-up DRAM_D10 AA6 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k pull-up DRAM_D11 AE7 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k pull-up DRAM_D12 AB5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k pull-up DRAM_D13 AC5 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k pull-up DRAM_D14 AB6 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k pull-up DRAM_D15 AC7 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k pull-up DRAM_D16 AB7 NVCC_DRAM DDR ALT0 DRAM_DATA16 Input 100 k pull-up DRAM_D17 AA8 NVCC_DRAM DDR ALT0 DRAM_DATA17 Input 100 k pull-up DRAM_D18 AB9 NVCC_DRAM DDR ALT0 DRAM_DATA18 Input 100 k pull-up DRAM_D19 Y9 NVCC_DRAM DDR ALT0 DRAM_DATA19 Input 100 k pull-up DRAM_D2 AC4 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 147 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 DRAM_D20 Y7 NVCC_DRAM DDR ALT0 DRAM_DATA20 Input 100 k pull-up DRAM_D21 Y8 NVCC_DRAM DDR ALT0 DRAM_DATA21 Input 100 k pull-up DRAM_D22 AC8 NVCC_DRAM DDR ALT0 DRAM_DATA22 Input 100 k pull-up DRAM_D23 AA9 NVCC_DRAM DDR ALT0 DRAM_DATA23 Input 100 k pull-up DRAM_D24 AE9 NVCC_DRAM DDR ALT0 DRAM_DATA24 Input 100 k pull-up DRAM_D25 Y10 NVCC_DRAM DDR ALT0 DRAM_DATA25 Input 100 k pull-up DRAM_D26 AE11 NVCC_DRAM DDR ALT0 DRAM_DATA26 Input 100 k pull-up DRAM_D27 AB11 NVCC_DRAM DDR ALT0 DRAM_DATA27 Input 100 k pull-up DRAM_D28 AC9 NVCC_DRAM DDR ALT0 DRAM_DATA28 Input 100 k pull-up DRAM_D29 AD9 NVCC_DRAM DDR ALT0 DRAM_DATA29 Input 100 k pull-up DRAM_D3 AA5 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k pull-up DRAM_D30 AD11 NVCC_DRAM DDR ALT0 DRAM_DATA30 Input 100 k pull-up DRAM_D31 AC11 NVCC_DRAM DDR ALT0 DRAM_DATA31 Input 100 k pull-up Note: DRAM_D32 to DRAM_D63 are only available for i.MX 6DualLite chip; for i.MX 6Solo chip, these pins are NC. DRAM_D32 AA17 NVCC_DRAM DDR ALT0 DRAM_DATA32 Input 100 k pull-up DRAM_D33 AA18 NVCC_DRAM DDR ALT0 DRAM_DATA33 Input 100 k pull-up DRAM_D34 AC18 NVCC_DRAM DDR ALT0 DRAM_DATA34 Input 100 k pull-up DRAM_D35 AE19 NVCC_DRAM DDR ALT0 DRAM_DATA35 Input 100 k pull-up DRAM_D36 Y17 NVCC_DRAM DDR ALT0 DRAM_DATA36 Input 100 k pull-up DRAM_D37 Y18 NVCC_DRAM DDR ALT0 DRAM_DATA37 Input 100 k pull-up DRAM_D38 AB19 NVCC_DRAM DDR ALT0 DRAM_DATA38 Input 100 k pull-up DRAM_D39 AC19 NVCC_DRAM DDR ALT0 DRAM_DATA39 Input 100 k pull-up DRAM_D4 AC1 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k pull-up DRAM_D40 Y19 NVCC_DRAM DDR ALT0 DRAM_DATA40 Input 100 k pull-up DRAM_D41 AB20 NVCC_DRAM DDR ALT0 DRAM_DATA41 Input 100 k pull-up DRAM_D42 AB21 NVCC_DRAM DDR ALT0 DRAM_DATA42 Input 100 k pull-up DRAM_D43 AD21 NVCC_DRAM DDR ALT0 DRAM_DATA43 Input 100 k pull-up DRAM_D44 Y20 NVCC_DRAM DDR ALT0 DRAM_DATA44 Input 100 k pull-up DRAM_D45 AA20 NVCC_DRAM DDR ALT0 DRAM_DATA45 Input 100 k pull-up DRAM_D46 AE21 NVCC_DRAM DDR ALT0 DRAM_DATA46 Input 100 k pull-up DRAM_D47 AC21 NVCC_DRAM DDR ALT0 DRAM_DATA47 Input 100 k pull-up DRAM_D48 AC22 NVCC_DRAM DDR ALT0 DRAM_DATA48 Input 100 k pull-up DRAM_D49 AE22 NVCC_DRAM DDR ALT0 DRAM_DATA49 Input 100 k pull-up DRAM_D5 AD1 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k pull-up DRAM_D50 AE24 NVCC_DRAM DDR ALT0 DRAM_DATA50 Input 100 k pull-up DRAM_D51 AC24 NVCC_DRAM DDR ALT0 DRAM_DATA51 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 148 Freescale Semiconductor Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 DRAM_D52 AB22 NVCC_DRAM DDR ALT0 DRAM_DATA52 Input 100 k pull-up DRAM_D53 AC23 NVCC_DRAM DDR ALT0 DRAM_DATA53 Input 100 k pull-up DRAM_D54 AD25 NVCC_DRAM DDR ALT0 DRAM_DATA54 Input 100 k pull-up DRAM_D55 AC25 NVCC_DRAM DDR ALT0 DRAM_DATA55 Input 100 k pull-up DRAM_D56 AB25 NVCC_DRAM DDR ALT0 DRAM_DATA56 Input 100 k pull-up DRAM_D57 AA21 NVCC_DRAM DDR ALT0 DRAM_DATA57 Input 100 k pull-up DRAM_D58 Y25 NVCC_DRAM DDR ALT0 DRAM_DATA58 Input 100 k pull-up DRAM_D59 Y22 NVCC_DRAM DDR ALT0 DRAM_DATA59 Input 100 k pull-up DRAM_D6 AB4 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k pull-up DRAM_D60 AB23 NVCC_DRAM DDR ALT0 DRAM_DATA60 Input 100 k pull-up DRAM_D61 AA23 NVCC_DRAM DDR ALT0 DRAM_DATA61 Input 100 k pull-up DRAM_D62 Y23 NVCC_DRAM DDR ALT0 DRAM_DATA62 Input 100 k pull-up DRAM_D63 W25 NVCC_DRAM DDR ALT0 DRAM_DATA63 Input 100 k pull-up DRAM_D7 AE4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k pull-up DRAM_D8 AD5 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k pull-up DRAM_D9 AE5 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k pull-up DRAM_DQM0 AC3 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output Low DRAM_DQM1 AC6 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output Low DRAM_DQM2 AB8 NVCC_DRAM DDR ALT0 DRAM_DQM2 Output Low DRAM_DQM3 AE10 NVCC_DRAM DDR ALT0 DRAM_DQM3 Output Low DRAM_DQM4 AB18 NVCC_DRAM DDR ALT0 DRAM_DQM4 Output Low DRAM_DQM5 AC20 NVCC_DRAM DDR ALT0 DRAM_DQM5 Output Low DRAM_DQM6 AD24 NVCC_DRAM DDR ALT0 DRAM_DQM6 Output Low DRAM_DQM7 Y21 NVCC_DRAM DDR ALT0 DRAM_DQM7 Output Low DRAM_RAS AB15 NVCC_DRAM DDR ALT0 DRAM_RAS Output Low DRAM_RESET Y6 NVCC_DRAM DDR ALT0 DRAM_RESET Output Low DRAM_SDBA0 AC15 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output Low DRAM_SDBA1 Y15 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output Low DRAM_SDBA2 AB12 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output Low DRAM_SDCKE0 Y11 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output Low DRAM_SDCKE1 AA11 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output Low DRAM_SDCLK_0 AD15 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Output Low DRAM_SDCLK_0_B AE15 NVCC_DRAM — — DRAM_SDCLK0_N — — AD14 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK1_P Output Low DRAM_SDCLK_1_B AE14 NVCC_DRAM — — DRAM_SDCLK1_N — — NVCC_DRAM DDR ALT0 DRAM_ODT0 Output Low DRAM_SDCLK_1 DRAM_SDODT0 AC16 i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 149 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 DRAM_SDODT1 AB17 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output Low DRAM_SDQS0 AE3 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input Hi-Z DRAM_SDQS0_B AD3 NVCC_DRAM — — DRAM_SDQS0_N — — DRAM_SDQS1 AD6 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input Hi-Z DRAM_SDQS1_B AE6 NVCC_DRAM — — DRAM_SDQS1_N — — DRAM_SDQS2 AD8 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS2_P Input Hi-Z DRAM_SDQS2_B AE8 NVCC_DRAM — — DRAM_SDQS2_N — — DRAM_SDQS3 AC10 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS3_P Input Hi-Z DRAM_SDQS3_B AB10 NVCC_DRAM — — DRAM_SDQS3_N — — DRAM_SDQS4 AD18 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS4_P Input Hi-Z DRAM_SDQS4_B AE18 NVCC_DRAM — — DRAM_SDQS4_N — — DRAM_SDQS5 AD20 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS5_P Input Hi-Z DRAM_SDQS5_B AE20 NVCC_DRAM — — DRAM_SDQS5_N — — DRAM_SDQS6 AD23 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS6_P Input Hi-Z DRAM_SDQS6_B AE23 NVCC_DRAM — — DRAM_SDQS6_N — — DRAM_SDQS7 AA25 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS7_P Input Hi-Z DRAM_SDQS7_B AA24 NVCC_DRAM — — DRAM_SDQS7_N — — DRAM_SDWE AB16 NVCC_DRAM DDR ALT0 DRAM_SDWE Output Low DSI_CLK0M H3 NVCC_MIPI ANALOG — DSI_CLK_N — — DSI_CLK0P H4 NVCC_MIPI ANALOG — DSI_CLK_P — — DSI_D0M G2 NVCC_MIPI ANALOG — DSI_DATA0_N — — DSI_D0P G1 NVCC_MIPI ANALOG — DSI_DATA0_P — — DSI_D1M H2 NVCC_MIPI ANALOG — DSI_DATA1_N — — DSI_D1P H1 NVCC_MIPI ANALOG — DSI_DATA1_P — — EIM_A16 H25 NVCC_EIM GPIO ALT0 EIM_ADDR16 Output Low EIM_A17 G24 NVCC_EIM GPIO ALT0 EIM_ADDR17 Output Low EIM_A18 J22 NVCC_EIM GPIO ALT0 EIM_ADDR18 Output Low EIM_A19 G25 NVCC_EIM GPIO ALT0 EIM_ADDR19 Output Low EIM_A20 H22 NVCC_EIM GPIO ALT0 EIM_ADDR20 Output Low EIM_A21 H23 NVCC_EIM GPIO ALT0 EIM_ADDR21 Output Low EIM_A22 F24 NVCC_EIM GPIO ALT0 EIM_ADDR22 Output Low EIM_A23 J21 NVCC_EIM GPIO ALT0 EIM_ADDR23 Output Low EIM_A24 F25 NVCC_EIM GPIO ALT0 EIM_ADDR24 Output Low EIM_A25 H19 NVCC_EIM GPIO ALT0 EIM_ADDR25 Output Low EIM_BCLK N22 NVCC_EIM GPIO ALT0 EIM_BCLK Output Low EIM_CS0 H24 NVCC_EIM GPIO ALT0 EIM_CS0 Output High i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 150 Freescale Semiconductor Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 EIM_CS1 J23 NVCC_EIM GPIO ALT0 EIM_CS1 Output High EIM_D16 C25 NVCC_EIM GPIO ALT5 GPIO3_IO16 Input 100 k pull-up EIM_D17 F21 NVCC_EIM GPIO ALT5 GPIO3_IO17 Input 100 k pull-up EIM_D18 D24 NVCC_EIM GPIO ALT5 GPIO3_IO18 Input 100 k pull-up EIM_D19 G21 NVCC_EIM GPIO ALT5 GPIO3_IO19 Input 100 k pull-up EIM_D20 G20 NVCC_EIM GPIO ALT5 GPIO3_IO20 Input 100 k pull-up EIM_D21 H20 NVCC_EIM GPIO ALT5 GPIO3_IO21 Input 100 k pull-up EIM_D22 E23 NVCC_EIM GPIO ALT5 GPIO3_IO22 Input 100 k pull-down EIM_D23 D25 NVCC_EIM GPIO ALT5 GPIO3_IO23 Input 100 k pull-up EIM_D24 F22 NVCC_EIM GPIO ALT5 GPIO3_IO24 Input 100 k pull-up EIM_D25 G22 NVCC_EIM GPIO ALT5 GPIO3_IO25 Input 100 k pull-up EIM_D26 E24 NVCC_EIM GPIO ALT5 GPIO3_IO26 Input 100 k pull-up EIM_D27 E25 NVCC_EIM GPIO ALT5 GPIO3_IO27 Input 100 k pull-up EIM_D28 G23 NVCC_EIM GPIO ALT5 GPIO3_IO28 Input 100 k pull-up EIM_D29 J19 NVCC_EIM GPIO ALT5 GPIO3_IO29 Input 100 k pull-up EIM_D30 J20 NVCC_EIM GPIO ALT5 GPIO3_IO30 Input 100 k pull-up EIM_D31 H21 NVCC_EIM GPIO ALT5 GPIO3_IO31 Input 100 k pull-down EIM_DA0 L20 NVCC_EIM GPIO ALT0 EIM_AD00 Input 100 k pull-up EIM_DA1 J25 NVCC_EIM GPIO ALT0 EIM_AD01 Input 100 k pull-up EIM_DA10 M22 NVCC_EIM GPIO ALT0 EIM_AD10 Input 100 k pull-up EIM_DA11 M20 NVCC_EIM GPIO ALT0 EIM_AD11 Input 100 k pull-up EIM_DA12 M24 NVCC_EIM GPIO ALT0 EIM_AD12 Input 100 k pull-up EIM_DA13 M23 NVCC_EIM GPIO ALT0 EIM_AD13 Input 100 k pull-up EIM_DA14 N23 NVCC_EIM GPIO ALT0 EIM_AD14 Input 100 k pull-up EIM_DA15 N24 NVCC_EIM GPIO ALT0 EIM_AD15 Input 100 k pull-up EIM_DA2 L21 NVCC_EIM GPIO ALT0 EIM_AD02 Input 100 k pull-up EIM_DA3 K24 NVCC_EIM GPIO ALT0 EIM_AD03 Input 100 k pull-up EIM_DA4 L22 NVCC_EIM GPIO ALT0 EIM_AD04 Input 100 k pull-up EIM_DA5 L23 NVCC_EIM GPIO ALT0 EIM_AD05 Input 100 k pull-up EIM_DA6 K25 NVCC_EIM GPIO ALT0 EIM_AD06 Input 100 k pull-up EIM_DA7 L25 NVCC_EIM GPIO ALT0 EIM_AD07 Input 100 k pull-up EIM_DA8 L24 NVCC_EIM GPIO ALT0 EIM_AD08 Input 100 k pull-up EIM_DA9 M21 NVCC_EIM GPIO ALT0 EIM_AD09 Input 100 k pull-up EIM_EB0 K21 NVCC_EIM GPIO ALT0 EIM_EB0 Output High EIM_EB1 K23 NVCC_EIM GPIO ALT0 EIM_EB1 Output High EIM_EB2 E22 NVCC_EIM GPIO ALT5 GPIO2_IO30 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 151 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 EIM_EB3 F23 NVCC_EIM GPIO ALT5 GPIO2_IO31 Input 100 k pull-up EIM_LBA K22 NVCC_EIM GPIO ALT0 EIM_LBA Output High EIM_OE J24 NVCC_EIM GPIO ALT0 EIM_OE Output High EIM_RW K20 NVCC_EIM GPIO ALT0 EIM_RW Output High EIM_WAIT M25 NVCC_EIM GPIO ALT0 EIM_WAIT Input 100 k pull-up ENET_CRS_DV U21 NVCC_ENET GPIO ALT5 GPIO1_IO25 Input 100 k pull-up ENET_MDC V20 NVCC_ENET GPIO ALT5 GPIO1_IO31 Input 100 k pull-up ENET_MDIO V23 NVCC_ENET GPIO ALT5 GPIO1_IO22 Input 100 k pull-up ENET_REF_CLK3 V22 NVCC_ENET GPIO ALT5 GPIO1_IO23 Input 100 k pull-up ENET_RX_ER W23 NVCC_ENET GPIO ALT5 GPIO1_IO24 Input 100 k pull-up ENET_RXD0 W21 NVCC_ENET GPIO ALT5 GPIO1_IO27 Input 100 k pull-up ENET_RXD1 W22 NVCC_ENET GPIO ALT5 GPIO1_IO26 Input 100 k pull-up ENET_TX_EN V21 NVCC_ENET GPIO ALT5 GPIO1_IO28 Input 100 k pull-up ENET_TXD0 U20 NVCC_ENET GPIO ALT5 GPIO1_IO30 Input 100 k pull-up ENET_TXD1 W20 NVCC_ENET GPIO ALT5 GPIO1_IO29 Input 100 k pull-up GPIO_0 T5 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input 100 k pull-down GPIO_1 T4 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input 100 k pull-up GPIO_16 R2 NVCC_GPIO GPIO ALT5 GPIO7_IO11 Input 100 k pull-up GPIO_17 R1 NVCC_GPIO GPIO ALT5 GPIO7_IO12 Input 100 k pull-up GPIO_18 P6 NVCC_GPIO GPIO ALT5 GPIO7_IO13 Input 100 k pull-up GPIO_19 P5 NVCC_GPIO GPIO ALT5 GPIO4_IO05 Input 100 k pull-up GPIO_2 T1 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input 100 k pull-up GPIO_3 R7 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input 100 k pull-up GPIO_4 R6 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input 100 k pull-up GPIO_5 R4 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input 100 k pull-up GPIO_6 T3 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input 100 k pull-up GPIO_7 R3 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input 100 k pull-up GPIO_8 R5 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input 100 k pull-up GPIO_9 T2 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input 100 k pull-up HDMI_CLKM J5 HDMI — — HDMI_TX_CLK_N — — HDMI_CLKP J6 HDMI — — HDMI_TX_CLK_P — — HDMI_D0M K5 HDMI — — HDMI_TX_DATA0_N — — HDMI_D0P K6 HDMI — — HDMI_TX_DATA0_P — — HDMI_D1M J3 HDMI — — HDMI_TX_DATA1_N — — HDMI_D1P J4 HDMI — — HDMI_TX_DATA1_P — — HDMI_D2M K3 HDMI — — HDMI_TX_DATA2_N — — i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 152 Freescale Semiconductor Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 HDMI_D2P K4 HDMI — — HDMI_TX_DATA2_P — — HDMI_HPD K1 HDMI — — HDMI_TX_HPD — — JTAG_MOD H6 NVCC_JTAG GPIO ALT0 JTAG_MODE Input 100 k pull-up JTAG_TCK H5 NVCC_JTAG GPIO ALT0 JTAG_TCK Input 47 k pull-up JTAG_TDI G5 NVCC_JTAG GPIO ALT0 JTAG_TDI Input 47 k pull-up JTAG_TDO G6 NVCC_JTAG GPIO ALT0 JTAG_TDO Output Low JTAG_TMS C3 NVCC_JTAG GPIO ALT0 JTAG_TMS Input 47 k pull-up JTAG_TRSTB C2 NVCC_JTAG GPIO ALT0 JTAG_TRSTB Input 47 k pull-up KEY_COL0 W5 NVCC_GPIO GPIO ALT5 GPIO4_IO06 Input 100 k pull-up KEY_COL1 U7 NVCC_GPIO GPIO ALT5 GPIO4_IO08 Input 100 k pull-up KEY_COL2 W6 NVCC_GPIO GPIO ALT5 GPIO4_IO10 Input 100 k pull-up KEY_COL3 U5 NVCC_GPIO GPIO ALT5 GPIO4_IO12 Input 100 k pull-up KEY_COL4 T6 NVCC_GPIO GPIO ALT5 GPIO4_IO14 Input 100 k pull-up KEY_ROW0 V6 NVCC_GPIO GPIO ALT5 GPIO4_IO07 Input 100 k pull-up KEY_ROW1 U6 NVCC_GPIO GPIO ALT5 GPIO4_IO09 Input 100 k pull-up KEY_ROW2 W4 NVCC_GPIO GPIO ALT5 GPIO4_IO11 Input 100 k pull-up KEY_ROW3 T7 NVCC_GPIO GPIO ALT5 GPIO4_IO13 Input 100 k pull-up KEY_ROW4 V5 NVCC_GPIO GPIO ALT5 GPIO4_IO15 Input 100 k pull-down LVDS0_CLK_N V4 NVCC_LVDS2P5 — — LVDS0_CLK_N — — LVDS0_CLK_P V3 NVCC_LVDS2P5 — ALT0 LVDS0_CLK_P Input Keeper LVDS0_TX0_N U2 NVCC_LVDS2P5 — — LVDS0_TX0_N — — LVDS0_TX0_P U1 NVCC_LVDS2P5 — ALT0 LVDS0_TX0_P Input Keeper LVDS0_TX1_N U4 NVCC_LVDS2P5 — — LVDS0_TX1_N — — LVDS0_TX1_P U3 NVCC_LVDS2P5 — ALT0 LVDS0_TX1_P Input Keeper LVDS0_TX2_N V2 NVCC_LVDS2P5 — — LVDS0_TX2_N — — LVDS0_TX2_P V1 NVCC_LVDS2P5 — ALT0 LVDS0_TX2_P Input Keeper LVDS0_TX3_N W2 NVCC_LVDS2P5 — — LVDS0_TX3_N — — LVDS0_TX3_P W1 NVCC_LVDS2P5 — ALT0 LVDS0_TX3_P Input Keeper LVDS1_CLK_N Y3 NVCC_LVDS2P5 — — LVDS1_CLK_N — — LVDS1_CLK_P Y4 NVCC_LVDS2P5 — ALT0 LVDS1_CLK_P Input Keeper LVDS1_TX0_N Y1 NVCC_LVDS2P5 — — LVDS1_TX0_N — — LVDS1_TX0_P Y2 NVCC_LVDS2P5 — ALT0 LVDS1_TX0_P Input Keeper LVDS1_TX1_N AA2 NVCC_LVDS2P5 — — LVDS1_TX1_N — — LVDS1_TX1_P AA1 NVCC_LVDS2P5 — ALT0 LVDS1_TX1_P Input Keeper LVDS1_TX2_N AB1 NVCC_LVDS2P5 — — LVDS1_TX2_N — — LVDS1_TX2_P AB2 NVCC_LVDS2P5 — ALT0 LVDS1_TX2_P Input Keeper i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 153 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 LVDS1_TX3_N AA3 NVCC_LVDS2P5 — — LVDS1_TX3_N — — LVDS1_TX3_P AA4 NVCC_LVDS2P5 — ALT0 LVDS1_TX3_P Input Keeper MLB_CN A11 VDDHIGH_CAP MLB_CLK_N MLB_CP B11 VDDHIGH_CAP MLB_CLK_P MLB_DN B10 VDDHIGH_CAP MLB_DATA_N MLB_DP A10 VDDHIGH_CAP MLB_DATA_P MLB_SN A9 VDDHIGH_CAP MLB_SIG_N MLB_SP B9 VDDHIGH_CAP NANDF_ALE A16 NVCC_NANDF GPIO ALT5 GPIO6_IO08 MLB_SIG_P Input 100 k pull-up NANDF_CLE C15 NVCC_NANDF GPIO ALT5 GPIO6_IO07 Input 100 k pull-up NANDF_CS0 F15 NVCC_NANDF GPIO ALT5 GPIO6_IO11 Input 100 k pull-up NANDF_CS1 C16 NVCC_NANDF GPIO ALT5 GPIO6_IO14 Input 100 k pull-up NANDF_CS2 A17 NVCC_NANDF GPIO ALT5 GPIO6_IO15 Input 100 k pull-up NANDF_CS3 D16 NVCC_NANDF GPIO ALT5 GPIO6_IO16 Input 100 k pull-up NANDF_D0 A18 NVCC_NANDF GPIO ALT5 GPIO2_IO00 Input 100 k pull-up NANDF_D1 C17 NVCC_NANDF GPIO ALT5 GPIO2_IO01 Input 100 k pull-up NANDF_D2 F16 NVCC_NANDF GPIO ALT5 GPIO2_IO02 Input 100 k pull-up NANDF_D3 D17 NVCC_NANDF GPIO ALT5 GPIO2_IO03 Input 100 k pull-up NANDF_D4 A19 NVCC_NANDF GPIO ALT5 GPIO2_IO04 Input 100 k pull-up NANDF_D5 B18 NVCC_NANDF GPIO ALT5 GPIO2_IO05 Input 100 k pull-up NANDF_D6 E17 NVCC_NANDF GPIO ALT5 GPIO2_IO06 Input 100 k pull-up NANDF_D7 C18 NVCC_NANDF GPIO ALT5 GPIO2_IO07 Input 100 k pull-up NANDF_RB0 B16 NVCC_NANDF GPIO ALT5 GPIO6_IO10 Input 100 k pull-up NANDF_WP_B E15 NVCC_NANDF GPIO ALT5 GPIO6_IO09 Input 100 k pull-up ONOFF D12 VDD_SNVS_IN GPIO ALT0 SRC_ONOFF Input 100 k pull-up PCIE_RXM B1 PCIE_VPH — — PCIE_RX_N — — PCIE_RXP B2 PCIE_VPH — — PCIE_RX_P — — PCIE_TXM A3 PCIE_VPH — — PCIE_TX_N — — PCIE_TXP B3 PCIE_VPH — — PCIE_TX_P — — PMIC_ON_REQ D11 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output PMIC_STBY_REQ F11 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output POR_B C11 VDD_SNVS_IN GPIO ALT0 SRC_POR_B Input 100 k pull-up RGMII_RD0 C24 NVCC_RGMII DDR ALT5 GPIO6_IO25 Input 100 k pull-up RGMII_RD1 B23 NVCC_RGMII DDR ALT5 GPIO6_IO27 Input 100 k pull-up RGMII_RD2 B24 NVCC_RGMII DDR ALT5 GPIO6_IO28 Input 100 k pull-up Open drain with PU(100K) enable Low i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 154 Freescale Semiconductor Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 RGMII_RD3 D23 NVCC_RGMII DDR ALT5 GPIO6_IO29 Input 100 k pull-up RGMII_RX_CTL D22 NVCC_RGMII DDR ALT5 GPIO6_IO24 Input 100 k pull-down RGMII_RXC B25 NVCC_RGMII DDR ALT5 GPIO6_IO30 Input 100 k pull-down RGMII_TD0 C22 NVCC_RGMII DDR ALT5 GPIO6_IO20 Input 100 k pull-up RGMII_TD1 F20 NVCC_RGMII DDR ALT5 GPIO6_IO21 Input 100 k pull-up RGMII_TD2 E21 NVCC_RGMII DDR ALT5 GPIO6_IO22 Input 100 k pull-up RGMII_TD3 A24 NVCC_RGMII DDR ALT5 GPIO6_IO23 Input 100 k pull-up RGMII_TX_CTL C23 NVCC_RGMII DDR ALT5 GPIO6_IO26 Input 100 k pull-down RGMII_TXC D21 NVCC_RGMII DDR ALT5 GPIO6_IO19 Input 100 k pull-down RTC_XTALI D9 VDD_SNVS_CAP — — RTC_XTALI — — RTC_XTALO C9 VDD_SNVS_CAP — — RTC_XTALO — — SD1_CLK D20 NVCC_SD1 GPIO ALT5 GPIO1_IO20 Input 100 k pull-up SD1_CMD B21 NVCC_SD1 GPIO ALT5 GPIO1_IO18 Input 100 k pull-up SD1_DAT0 A21 NVCC_SD1 GPIO ALT5 GPIO1_IO16 Input 100 k pull-up SD1_DAT1 C20 NVCC_SD1 GPIO ALT5 GPIO1_IO17 Input 100 k pull-up SD1_DAT2 E19 NVCC_SD1 GPIO ALT5 GPIO1_IO19 Input 100 k pull-up SD1_DAT3 F18 NVCC_SD1 GPIO ALT5 GPIO1_IO21 Input 100 k pull-up SD2_CLK C21 NVCC_SD2 GPIO ALT5 GPIO1_IO10 Input 100 k pull-up SD2_CMD F19 NVCC_SD2 GPIO ALT5 GPIO1_IO11 Input 100 k pull-up SD2_DAT0 A22 NVCC_SD2 GPIO ALT5 GPIO1_IO15 Input 100 k pull-up SD2_DAT1 E20 NVCC_SD2 GPIO ALT5 GPIO1_IO14 Input 100 k pull-up SD2_DAT2 A23 NVCC_SD2 GPIO ALT5 GPIO1_IO13 Input 100 k pull-up SD2_DAT3 B22 NVCC_SD2 GPIO ALT5 GPIO1_IO12 Input 100 k pull-up SD3_CLK D14 NVCC_SD3 GPIO ALT5 GPIO7_IO03 Input 100 k pull-up SD3_CMD B13 NVCC_SD3 GPIO ALT5 GPIO7_IO02 Input 100 k pull-up SD3_DAT0 E14 NVCC_SD3 GPIO ALT5 GPIO7_IO04 Input 100 k pull-up SD3_DAT1 F14 NVCC_SD3 GPIO ALT5 GPIO7_IO05 Input 100 k pull-up SD3_DAT2 A15 NVCC_SD3 GPIO ALT5 GPIO7_IO06 Input 100 k pull-up SD3_DAT3 B15 NVCC_SD3 GPIO ALT5 GPIO7_IO07 Input 100 k pull-up SD3_DAT4 D13 NVCC_SD3 GPIO ALT5 GPIO7_IO01 Input 100 k pull-up SD3_DAT5 C13 NVCC_SD3 GPIO ALT5 GPIO7_IO00 Input 100 k pull-up SD3_DAT6 E13 NVCC_SD3 GPIO ALT5 GPIO6_IO18 Input 100 k pull-up SD3_DAT7 F13 NVCC_SD3 GPIO ALT5 GPIO6_IO17 Input 100 k pull-up SD3_RST D15 NVCC_SD3 GPIO ALT5 GPIO7_IO08 Input 100 k pull-up SD4_CLK E16 NVCC_NANDF GPIO ALT5 GPIO7_IO10 Input 100 k pull-up SD4_CMD B17 NVCC_NANDF GPIO ALT5 GPIO7_IO09 Input 100 k pull-up i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 155 Package Information and Contact Assignments Table 101. 21 x 21 mm Functional Contact Assignments (continued) Out of Reset Condition1 Ball Name Ball Power Group Ball Type Default Mode (Reset Mode) Default Function Input/ Output Value2 SD4_DAT0 D18 NVCC_NANDF GPIO ALT5 GPIO2_IO08 Input 100 k pull-up SD4_DAT1 B19 NVCC_NANDF GPIO ALT5 GPIO2_IO09 Input 100 k pull-up SD4_DAT2 F17 NVCC_NANDF GPIO ALT5 GPIO2_IO10 Input 100 k pull-up SD4_DAT3 A20 NVCC_NANDF GPIO ALT5 GPIO2_IO11 Input 100 k pull-up SD4_DAT4 E18 NVCC_NANDF GPIO ALT5 GPIO2_IO12 Input 100 k pull-up SD4_DAT5 C19 NVCC_NANDF GPIO ALT5 GPIO2_IO13 Input 100 k pull-up SD4_DAT6 B20 NVCC_NANDF GPIO ALT5 GPIO2_IO14 Input 100 k pull-up SD4_DAT7 D19 NVCC_NANDF GPIO ALT5 GPIO2_IO15 Input 100 k pull-up TAMPER E11 VDD_SNVS_IN GPIO ALT0 SNVS_TAMPER Input 100 k pull-down TEST_MODE E12 VDD_SNVS_IN GPIO ALT0 TCU_TEST_MODE Input 100 k pull-down USB_H1_DN F10 VDDUSB_CAP — — USB_H1_DN — — USB_H1_DP E10 VDDUSB_CAP — — USB_H1_DP — — USB_OTG_CHD_B B8 VDDUSB_CAP — — USB_OTG_CHD_B — — USB_OTG_DN B6 VDDUSB_CAP — — USB_OTG_DN — — USB_OTG_DP A6 VDDUSB_CAP — — USB_OTG_DP — — XTALI A7 NVCC_PLL_OUT — — XTALI — — XTALO B7 NVCC_PLL_OUT — — XTALO — — 1 The state immediately after reset and before ROM firmware or software has executed. Variance of the pull-up and pull-down strengths are shown in the tables as follows: • Table 24, "GPIO DC Parameters," on page 40 • Table 25, "LPDDR2 I/O DC Electrical Parameters," on page 41 • Table 26, "DDR3/DDR3L I/O DC Electrical Characteristics," on page 41 3 ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RMGII mode uses either GPIO_16 or RGMII_TX_CTL as a clock source. For more information on these clocks, see the device Reference Manual and the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG). 2 Table 102. Signals with Differing Before Reset and After Reset States Before Reset State Ball Name Input/Output Value EIM_A16 Input PD (100K) EIM_A17 Input PD (100K) EIM_A18 Input PD (100K) EIM_A19 Input PD (100K) EIM_A20 Input PD (100K) EIM_A21 Input PD (100K) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 156 Freescale Semiconductor Package Information and Contact Assignments Table 102. Signals with Differing Before Reset and After Reset States (continued) Before Reset State Ball Name Input/Output Value EIM_A22 Input PD (100K) EIM_A23 Input PD (100K) EIM_A24 Input PD (100K) EIM_A25 Input PD (100K) EIM_DA0 Input PD (100K) EIM_DA1 Input PD (100K) EIM_DA2 Input PD (100K) EIM_DA3 Input PD (100K) EIM_DA4 Input PD (100K) EIM_DA5 Input PD (100K) EIM_DA6 Input PD (100K) EIM_DA7 Input PD (100K) EIM_DA8 Input PD (100K) EIM_DA9 Input PD (100K) EIM_DA10 Input PD (100K) EIM_DA11 Input PD (100K) EIM_DA12 Input PD (100K) EIM_DA13 Input PD (100K) EIM_DA14 Input PD (100K) EIM_DA15 Input PD (100K) EIM_EB0 Input PD (100K) EIM_EB1 Input PD (100K) EIM_EB2 Input PD (100K) EIM_EB3 Input PD (100K) EIM_LBA Input PD (100K) EIM_RW Input PD (100K) EIM_WAIT Input PD (100K) GPIO_17 Output Drive state unknown (x) GPIO_19 Output Drive state unknown (x) KEY_COL0 Output Drive state unknown (x) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 157 158 CLK2_N GND CLK1_N GPANAIO RTC_XTALO GND POR_B BOOT_MODE0 SD3_DAT5 NC NANDF_CLE NANDF_CS1 NANDF_D1 NANDF_D7 SD4_DAT5 SD1_DAT1 SD2_CLK RGMII_TD0 RGMII_TX_CTL RGMII_RD0 EIM_D16 C GND CLK1_P GND RTC_XTALI USB_H1_VBUS PMIC_ON_REQ ONOFF SD3_DAT4 SD3_CLK SD3_RST NANDF_CS3 NANDF_D3 SD4_DAT0 SD4_DAT7 SD1_CLK RGMII_TXC RGMII_RX_CTL RGMII_RD3 EIM_D18 EIM_D23 D GND GND NVCC_PLL_OUT USB_OTG_VBUS USB_H1_DP TAMPER TEST_MODE SD3_DAT6 SD3_DAT0 NANDF_WP_B SD4_CLK NANDF_D6 SD4_DAT4 SD1_DAT2 SD2_DAT1 RGMII_TD2 EIM_EB2 EIM_D22 EIM_D26 EIM_D27 E GND GND GND VDDUSB_CAP USB_H1_DN PMIC_STBY_REQ BOOT_MODE1 SD3_DAT7 SD3_DAT1 NANDF_CS0 NANDF_D2 SD4_DAT2 SD1_DAT3 SD2_CMD RGMII_TD1 EIM_D17 EIM_D24 EIM_EB3 EIM_A22 EIM_A24 F JTAG_TDO PCIE_VPH PCIE_VPTX VDD_SNVS_CAP GND VDD_SNVS_IN NC NC NVCC_SD3 NVCC_NANDF NVCC_SD1 NVCC_SD2 NVCC_RGMII GND EIM_D20 EIM_D19 EIM_D25 EIM_D28 EIM_A17 EIM_A19 G GND CSI_REXT CSI_D0M CSI_CLK0M DSI_REXT CLK2_P JTAG_TMS GND CSI_D0P CSI_CLK0P GND GND JTAG_TRSTB CSI_D1P NC NC DSI_D0M GND GND CSI_D1M NC NC DSI_D0P B RGMII_RXC RGMII_RD2 RGMII_RD1 SD2_DAT3 SD1_CMD SD4_DAT6 SD4_DAT1 NANDF_D5 SD4_CMD NANDF_RB0 SD3_DAT3 NC SD3_CMD NC MLB_CP MLB_DN MLB_SP USB_OTG_CHD_B XTALO USB_OTG_DN VDD_FA GND PCIE_TXP PCIE_RXP PCIE_RXM B 5 4 3 2 1 15 14 13 12 11 10 9 8 7 A GND RGMII_TD3 SD2_DAT2 SD2_DAT0 SD1_DAT0 SD4_DAT3 NANDF_D4 NANDF_D0 25 24 23 22 21 20 19 18 NANDF_CS2 17 NANDF_ALE 16 SD3_DAT2 NC GND NC MLB_CN MLB_DP MLB_SN GND XTALI USB_OTG_DP 6 FA_ANA GND PCIE_TXM PCIE_REXT NC A 6.2.3 JTAG_TDI C D E F G Package Information and Contact Assignments 21 x 21 mm, 0.8 mm Pitch Ball Map Table 103 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6Solo. Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor Freescale Semiconductor CSI0_DAT19 HDMI_VP GND VDDARM_IN GND CSI0_DAT18 HDMI_VPH GND VDDARM_IN GND CSI0_DAT8 NVCC_CSI GND VDDARM_IN GND GPIO_18 NVCC_GPIO GND VDDARM_IN GND GPIO_4 GPIO_3 GND VDDARM_IN VDDSOC_CAP GND VDDARM_IN GND NVCC_MIPI HDMI_D0P HDMI_D0M HDMI_D2P HDMI_D2M HDMI_DDCCEC HDMI_HPD K 6 7 8 9 PCIE_VP GND VDDHIGH_IN 4 DSI_CLK0P JTAG_MOD 3 DSI_CLK0M 5 2 DSI_D1M JTAG_TCK 1 DSI_D1P H VDDHIGH_CAP VDDHIGH_CAP 10 VDDHIGH_IN GND NVCC_JTAG HDMI_CLKP HDMI_CLKM HDMI_D1P HDMI_D1M GND HDMI_REF J GND NC GND GND GND GND GND 12 NVCC_EIM NVCC_EIM DI0_DISP_CLK NVCC_LCD DISP0_DAT4 DISP0_DAT3 DISP0_DAT1 DISP0_DAT2 DISP0_DAT0 DI0_PIN4 NVCC_ENET DISP0_DAT13 DISP0_DAT10 DISP0_DAT8 DISP0_DAT6 DISP0_DAT7 DISP0_DAT5 P GND GND GND GND NVCC_DRAM R VDDPU_CAP VDDPU_CAP VDDPU_CAP VDDPU_CAP GND N DI0_PIN2 EIM_DA15 EIM_DA14 EIM_BCLK DI0_PIN15 M EIM_WAIT EIM_DA12 EIM_DA13 EIM_DA10 EIM_DA9 EIM_EB1 EIM_DA3 EIM_DA6 EIM_DA5 EIM_DA8 EIM_DA7 K EIM_LBA EIM_DA4 L EIM_EB0 EIM_RW NVCC_EIM GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN EIM_DA2 EIM_DA0 VDDSOC_IN VDDSOC_IN VDDSOC_IN VDDSOC_IN VDDSOC_IN EIM_DA11 GND GND GND GND GND DI0_PIN3 VDDARM_IN VDDARM_IN VDDARM_IN VDDARM_IN VDDARM_IN J EIM_DA1 EIM_OE EIM_CS1 EIM_A18 EIM_A23 EIM_D30 EIM_D29 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN 16 17 18 19 VDDSOC_IN VDDPU_CAP GND EIM_A25 H EIM_A16 EIM_CS0 EIM_A21 EIM_A20 EIM_D31 25 24 23 22 21 20 15 GND EIM_D21 14 VDDARM_IN VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP 13 GND VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP 11 GND CSI0_DAT16 CSI0_DAT14 CSI0_DAT6 CSI0_MCLK GPIO_5 CSI0_DAT15 CSI0_DAT17 CSI0_DAT11 CSI0_DAT7 CSI0_DATA_EN GPIO_7 CSI0_DAT9 GND CSI0_DAT12 CSI0_VSYNC CSI0_DAT5 GPIO_16 GPIO_19 CSI0_DAT13 CSI0_DAT10 CSI0_DAT4 CSI0_PIXCLK GPIO_17 GPIO_8 L M N P R Package Information and Contact Assignments Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 159 160 GND GND GND DRAM_D21 DRAM_D19 DRAM_D25 DRAM_D17 DRAM_D23 GND DRAM_DQM2 DRAM_D18 DRAM_D22 DRAM_D28 DRAM_A4 GND GND GND GND GND ENET_TXD1 ENET_RXD0 ENET_RXD1 ENET_REF_CLK DISP0_DAT20 DISP0_DAT19 GND ENET_RX_ER DISP0_DAT23 NC W DRAM_A7 DRAM_A3 DRAM_SDBA1 DRAM_CS0 NC NC NC NC NC NC NC GND NC Y GND DRAM_A2 DRAM_A10 GND NC NC GND NC NC GND NC NC NC AA DRAM_A8 DRAM_A1 DRAM_RAS DRAM_SDWE DRAM_SDODT1 NC NC NC NC NC NC GND NC AB DRAM_A6 DRAM_A0 DRAM_SDBA0 DRAM_SDODT0 DRAM_A13 NC NC NC NC NC NC NC NC AC V DISP0_DAT18 DISP0_DAT22 ENET_MDIO ENET_TX_EN ENET_MDC GND NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM 9 8 7 6 5 4 3 2 1 GND GND 12 11 15 17 19 DISP0_DAT21 20 GND NVCC_DRAM 18 GND VDDSOC_IN 16 GND U DISP0_DAT14 DISP0_DAT17 T DISP0_DAT9 25 DISP0_DAT12 24 DISP0_DAT11 23 DISP0_DAT15 22 ENET_CRS_DV DISP0_DAT16 21 ENET_TXD0 GND NVCC_DRAM GND VDDSOC_IN GND VDDSOC_CAP VDDSOC_CAP 14 VDDSOC_CAP VDDSOC_CAP 13 GND GND DRAM_A15 DRAM_A14 DRAM_SDBA2 GND DRAM_A11 NVCC_DRAM VDDARM_IN GND KEY_ROW3 KEY_COL4 GPIO_0 GPIO_1 GPIO_6 GPIO_9 GPIO_2 T VDDSOC_CAP VDDSOC_CAP 10 VDDARM_IN GND KEY_COL1 KEY_ROW1 KEY_COL3 DRAM_D27 NVCC_DRAM NVCC_DRAM NVCC_DRAM GND NVCC_LVDS2P5 KEY_ROW0 KEY_ROW4 LVDS0_TX1_N LVDS0_TX1_P LVDS0_TX0_N LVDS0_TX0_P U DRAM_D31 GND GND DRAM_D20 GND DRAM_D16 DRAM_D15 DRAM_SDCKE1 DRAM_SDCKE0 KEY_COL2 DRAM_RESET DRAM_D10 DRAM_D14 DRAM_DQM1 DRAM_SDQS3 DRAM_SDQS3_B KEY_COL0 GND DRAM_D3 KEY_ROW2 LVDS1_CLK_P LVDS1_TX3_P DRAM_D6 DRAM_D2 DRAM_D12 LVDS0_CLK_P GND LVDS1_CLK_N LVDS1_TX3_N GND DRAM_DQM0 DRAM_D13 LVDS0_TX2_N LVDS1_TX0_P LVDS0_TX3_N LVDS1_TX1_N LVDS1_TX2_P DRAM_VREF LVDS0_CLK_N LVDS0_TX2_P LVDS1_TX0_N LVDS0_TX3_P LVDS1_TX1_P V LVDS1_TX2_N W DRAM_D4 Y AA AB AC Package Information and Contact Assignments Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 20 21 22 23 24 25 NC NC GND NC NC NC How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, the ARM logo, and Cortex are registered trademarks of ARM Limited. MPCore and NEON are trademarks of ARM Limited. © 2012-2014 Freescale Semiconductor, Inc. All rights reserved. Document Number: IMX6SDLCEC Rev. 3 03/2014 AD 19 13 GND GND 12 DRAM_A12 18 11 DRAM_D30 NC 10 GND 17 9 DRAM_D29 DRAM_CS1 8 DRAM_SDQS2 16 7 GND GND 6 DRAM_SDQS1 DRAM_SDCLK_0 15 5 DRAM_D8 DRAM_SDCLK_1 14 4 GND 2 DRAM_D0 DRAM_SDQS0_B 3 1 DRAM_D5 AD Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued) 162 GND CLK1_N GPANAIO RTC_XTALO GND POR_B BOOT_MODE0 SD3_DAT5 NC NANDF_CLE NANDF_CS1 NANDF_D1 NANDF_D7 SD4_DAT5 SD1_DAT1 SD2_CLK RGMII_TD0 RGMII_TX_CTL RGMII_RD0 EIM_D16 C GND CLK1_P GND RTC_XTALI USB_H1_VBUS PMIC_ON_REQ ONOFF SD3_DAT4 SD3_CLK SD3_RST NANDF_CS3 NANDF_D3 SD4_DAT0 SD4_DAT7 SD1_CLK RGMII_TXC RGMII_RX_CTL RGMII_RD3 EIM_D18 EIM_D23 D GND GND NVCC_PLL_OUT USB_OTG_VBUS USB_H1_DP TAMPER TEST_MODE SD3_DAT6 SD3_DAT0 NANDF_WP_B SD4_CLK NANDF_D6 SD4_DAT4 SD1_DAT2 SD2_DAT1 RGMII_TD2 EIM_EB2 EIM_D22 EIM_D26 EIM_D27 E GND CSI_REXT CSI_D0M CLK2_N JTAG_TMS GND CSI_D0P CLK2_P JTAG_TRSTB CSI_D1P NC GND GND CSI_D1M NC C D E B RGMII_RXC RGMII_RD2 RGMII_RD1 SD2_DAT3 SD1_CMD SD4_DAT6 SD4_DAT1 NANDF_D5 SD4_CMD NANDF_RB0 SD3_DAT3 NC SD3_CMD NC MLB_CP MLB_DN MLB_SP USB_OTG_CHD_B XTALO USB_OTG_DN VDD_FA GND PCIE_TXP PCIE_RXP PCIE_RXM B 5 4 3 2 1 A GND RGMII_TD3 SD2_DAT2 SD2_DAT0 SD1_DAT0 SD4_DAT3 NANDF_D4 NANDF_D0 NANDF_CS2 NANDF_ALE SD3_DAT2 NC GND NC MLB_CN MLB_DP MLB_SN GND XTALI 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 USB_OTG_DP 6 FA_ANA GND PCIE_TXM PCIE_REXT NC A 4 5 DRAM_D7 DRAM_D9 4 5 DRAM_A5 DRAM_A9 DRAM_D26 DRAM_DQM3 DRAM_D24 DRAM_SDQS2_B DRAM_ 13 12 11 10 9 8 7 25 24 23 22 21 20 19 18 17 16 AE GND NC NC NC NC NC NC NC ZQPAD DRAM_CAS 25 24 23 22 21 20 19 18 17 16 15 DRAM_SDCLK_0_B 15 14 DRAM_SDCLK_1_B 14 13 12 11 10 9 8 7 6 3 DRAM_SDQS0 3 DRAM_SDQS1_B 2 DRAM_D1 2 6 1 GND 1 AE Package Information and Contact Assignments Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued) Table 104 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6DualLite. Table 104. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor Freescale Semiconductor NVCC_JTAG GND VDDHIGH_IN NVCC_MIPI GND VDDARM_IN GND HDMI_VP GND VDDARM_IN GND HDMI_VPH GND VDDARM_IN GND NVCC_CSI GND VDDARM_IN GND GND GND GND VDDPU_CAP GND EIM_D29 EIM_D30 EIM_A23 VDDPU_CAP GND NVCC_EIM EIM_RW EIM_EB0 VDDPU_CAP GND NVCC_EIM EIM_DA0 EIM_DA2 VDDPU_CAP GND NVCC_EIM EIM_DA11 EIM_DA9 EIM_DA10 EIM_DA13 EIM_DA12 EIM_WAIT VDDPU_CAP GND DI0_DISP_CLK DI0_PIN3 DI0_PIN15 EIM_BCLK EIM_DA14 EIM_DA15 DI0_PIN2 M VDDSOC_IN VDDSOC_IN VDDSOC_IN VDDSOC_IN VDDSOC_IN N GND GND GND GND GND L EIM_DA7 EIM_DA8 EIM_DA5 K EIM_DA6 EIM_DA3 EIM_EB1 EIM_A16 EIM_DA1 H EIM_CS0 EIM_OE J EIM_A21 EIM_A20 EIM_D31 EIM_D21 EIM_A25 GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN EIM_CS1 EIM_A18 VDDARM_IN VDDARM_IN VDDARM_IN EIM_LBA GND VDDARM_CAP VDDARM_CAP GND VDDARM_IN EIM_DA4 VDDHIGH_IN GND PCIE_VP JTAG_MOD VDDARM_CAP VDDARM_CAP VDDARM_IN VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP NC VDDARM_CAP VDDARM_CAP VDDARM_CAP VDDARM_CAP HDMI_CLKP HDMI_D0P CSI0_DAT19 CSI0_DAT18 CSI0_DAT8 JTAG_TCK DSI_CLK0P DSI_CLK0M DSI_D1M DSI_D1P H VDDHIGH_CAP VDDHIGH_CAP HDMI_CLKM HDMI_D1P HDMI_D2P CSI0_DAT16 CSI0_DAT14 CSI0_DAT6 HDMI_D0M HDMI_D1M HDMI_D2M CSI0_DAT17 CSI0_DAT11 CSI0_DAT7 GND GND HDMI_DDCCEC GND CSI0_DAT12 CSI0_VSYNC CSI0_DAT15 HDMI_REF HDMI_HPD CSI0_DAT13 CSI0_DAT10 CSI0_DAT4 CSI0_DAT9 J K L M N G EIM_A19 EIM_A17 EIM_D28 EIM_D25 EIM_D19 EIM_D20 GND NVCC_RGMII NVCC_SD2 NVCC_SD1 NVCC_NANDF NVCC_SD3 NC NC VDD_SNVS_IN GND VDD_SNVS_CAP PCIE_VPTX PCIE_VPH JTAG_TDO JTAG_TDI DSI_REXT GND DSI_D0M DSI_D0P G 10 9 8 7 6 5 4 3 2 1 F EIM_A24 EIM_A22 EIM_EB3 EIM_D24 EIM_D17 RGMII_TD1 SD2_CMD SD1_DAT3 SD4_DAT2 NANDF_D2 NANDF_CS0 SD3_DAT1 SD3_DAT7 BOOT_MODE1 25 24 23 22 21 20 19 18 17 16 15 14 13 12 PMIC_STBY_REQ 11 USB_H1_DN VDDUSB_CAP GND GND GND GND CSI_CLK0M CSI_CLK0P NC NC F Package Information and Contact Assignments Table 104. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 163 164 DISP0_DAT9 T KEY_COL1 GND VDDARM_IN GND GND GND VDDSOC_IN GND NVCC_DRAM GND ENET_TXD0 DISP0_DAT20 DISP0_DAT19 DISP0_DAT17 DISP0_DAT14 U NVCC_LVDS2P5 GND NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM GND ENET_MDC ENET_TX_EN ENET_REF_CLK ENET_MDIO DISP0_DAT22 DISP0_DAT18 V GND GND GND GND GND GND GND DRAM_A4 GND GND GND GND GND ENET_TXD1 ENET_RXD0 ENET_RXD1 ENET_RX_ER DISP0_DAT23 DRAM_D63 W DRAM_D20 DRAM_D21 DRAM_D19 DRAM_D25 DRAM_SDCKE0 DRAM_A15 DRAM_A7 DRAM_A3 DRAM_SDBA1 DRAM_CS0 DRAM_D36 DRAM_D37 DRAM_D40 DRAM_D44 DRAM_DQM7 DRAM_D59 DRAM_D62 GND DRAM_D58 Y GND DRAM_D17 DRAM_D23 GND DRAM_SDCKE1 DRAM_A14 GND DRAM_A2 DRAM_A10 GND DRAM_D32 DRAM_D33 GND DRAM_D45 DRAM_D57 GND DRAM_D61 DRAM_SDQS7_B DRAM_SDQS7 AA VDDARM_IN GND GPIO_3 GPIO_4 GPIO_8 GPIO_5 GPIO_7 GPIO_16 GPIO_17 R 2 1 10 9 8 7 6 5 4 GND GND 12 VDDARM_CAP VDDARM_CAP 11 GND VDDARM_IN GND NVCC_GPIO GPIO_18 GPIO_19 CSI0_MCLK CSI0_DATA_EN 3 CSI0_DAT5 CSI0_PIXCLK P DISP0_DAT12 DISP0_DAT11 DISP0_DAT15 ENET_CRS_DV DISP0_DAT16 DISP0_DAT21 GND NVCC_DRAM GND VDDSOC_IN GND VDDSOC_CAP VDDSOC_CAP R DISP0_DAT5 DISP0_DAT7 DISP0_DAT6 DISP0_DAT8 DISP0_DAT10 DISP0_DAT13 NVCC_ENET NVCC_DRAM GND VDDSOC_IN GND VDDARM_IN P DI0_PIN4 DISP0_DAT0 DISP0_DAT2 DISP0_DAT1 DISP0_DAT3 DISP0_DAT4 NVCC_LCD GND VDDPU_CAP VDDSOC_IN GND VDDARM_IN 25 24 23 22 21 20 19 18 17 16 15 14 VDDSOC_CAP VDDSOC_CAP VDDARM_CAP VDDARM_CAP 13 GND GND VDDSOC_CAP VDDSOC_CAP VDDSOC_CAP VDDARM_IN GND KEY_ROW3 KEY_COL4 KEY_ROW1 KEY_ROW0 KEY_COL2 DRAM_RESET DRAM_D10 GPIO_0 GPIO_1 KEY_COL3 LVDS0_TX1_N LVDS0_CLK_N KEY_ROW2 LVDS1_CLK_P LVDS1_TX3_P GPIO_6 KEY_ROW4 LVDS0_TX1_P LVDS0_CLK_P GND LVDS1_CLK_N LVDS1_TX3_N GPIO_9 KEY_COL0 LVDS0_TX0_N LVDS0_TX2_N LVDS0_TX3_N LVDS1_TX0_P LVDS1_TX1_N GPIO_2 GND LVDS0_TX0_P LVDS0_TX2_P LVDS0_TX3_P LVDS1_TX0_N LVDS1_TX1_P T DRAM_D3 U V W Y AA Package Information and Contact Assignments Table 104. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor Freescale Semiconductor 6 7 8 9 11 12 13 14 15 16 DRAM_D14 DRAM_D16 DRAM_DQM2 DRAM_D18 DRAM_D27 DRAM_SDBA2 DRAM_A8 DRAM_A1 DRAM_RAS DRAM_SDWE DRAM_DQM1 DRAM_D15 DRAM_D22 DRAM_D28 DRAM_SDQS3 DRAM_D31 DRAM_A11 DRAM_A6 DRAM_A0 DRAM_SDBA0 DRAM_SDQS1 GND DRAM_SDQS2 DRAM_D29 GND DRAM_D30 DRAM_A12 GND DRAM_SDQS1_B DRAM_D11 DRAM_SDQS2_B DRAM_D24 DRAM_DQM3 DRAM_D26 DRAM_A9 DRAM_A5 6 7 8 9 10 11 12 13 14 DRAM_SDCLK_1_B DRAM_SDCLK_1 15 DRAM_SDCLK_0_B DRAM_SDCLK_0 21 22 23 24 25 DRAM_D42 DRAM_D52 DRAM_D60 GND DRAM_D56 DRAM_DQM5 DRAM_D47 DRAM_D48 DRAM_D53 DRAM_D51 DRAM_D55 DRAM_SDQS5 DRAM_D43 GND DRAM_SDQS6 DRAM_DQM6 DRAM_D54 DRAM_SDQS5_B DRAM_D46 DRAM_D49 DRAM_SDQS6_B DRAM_D50 GND 20 21 22 23 24 25 AC 20 DRAM_D41 DRAM_D39 GND DRAM_D35 19 AD 19 DRAM_D38 DRAM_D34 DRAM_SDQS4 DRAM_SDQS4_B 18 AE 18 DRAM_DQM4 DRAM_A13 DRAM_CS1 ZQPAD 17 AB DRAM_SDODT1 17 DRAM_SDODT0 GND DRAM_CAS 16 DRAM_SDQS3_B 10 5 DRAM_D12 DRAM_D6 DRAM_D2 GND DRAM_D7 4 DRAM_D13 4 GND DRAM_DQM0 DRAM_SDQS0_B DRAM_SDQS0 3 DRAM_D8 3 LVDS1_TX2_P DRAM_VREF DRAM_D0 DRAM_D1 2 DRAM_D9 2 LVDS1_TX2_N DRAM_D4 DRAM_D5 GND 1 5 1 AB AC AD AE Package Information and Contact Assignments Table 104. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued) i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 165 Revision History 7 Revision History Table 105 provides a revision history for this data sheet. Table 105. i.MX 6Solo/6DualLite Data Sheet Document Revision History Rev. Number Rev. 3 Date Substantive Changes 02/2014 • Updates throughout for Silicon revision C, including: - Figure 1 Part number nomenclature diagram - Table 1 Example Orderable Part Numbers • Feature descriptions updated for: - Camera sensors: updated from one to two ports at up to 240 MHz peak. - Miscellaneous IPs and interfaces; SSI and ESAI. • Table 3, Modules List, uSDHC 1–4 description change: including SDXC cards up to 2 TB. • Table 3, Modules List, UART 1–5 description change: programmable baud rate up to 5 MHz. • Table 4, Special Signal Considerations: XTALOSC_RTC_XTALI/RTC_XTALO: ending paragraph removed. Was: “In case when high accuracy real time clock are not required system may use internal low frequency ring oscillator. It is recommended to connect XTALOSC_RTC_XTALI to GND and keep RTC_XTALO floating.” • Table 9, Operating Ranges for Run mode LDO bypassed: Added footnote regarding alternate maximum voltage on VDD_SOC_IN … this maximum can be 1.3V. • Table 9, Operating Ranges Standby/DSM mode: Added footnote regarding alternate maximum voltage on VDD_SOC_IN … this maximum can be 1.3V. • Table 9, Operating Ranges GPIO supply voltages: Corrected supply name to NVCC_NANDF • Table 9, Operating ranges: updated table footnotes for clarity. • Removed table “On-Chip LDOs and their On-Chip Loads.” • Section 4.1.4, External Clock Sources; added Note, “The internal RTC oscillator does not ...”. • Section 4.1.5, Maximum Supply Currents: Reworded second paragraph about the power management IC to explain that a robust thermal design is required for the increased system power dissipation. • Table 11, Maximum Supply Currents: NVCC_RGMII Condition value corrected to N=6. • Table 11, Maximum Supply Currents: Corrected supply name NVCC_NANDF. • Table 11, Maximum Supply currents: Added row NVCC_LVDS2P5 • Section 4.2.1, Power-Up Sequence: Clarified wording of third bulleted item regarding POR control. • Section 4.2.1, Power-Up Sequence: Removed Note. • Section 4.2.1, Power-Up Sequence: Corrected bullet regarding VDD_ARM_CAP / VDD_SOC_CAP difference from 50 mV to 100 mV. • Section 4.5.2, OSC32K, second paragraph reworded to describe OSC32K automatic switching. • Section 4.5.2, OSC32K, added Note following second paragraph to caution use of internal oscillator. • Table 23, XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih minimum value to 0.8. • Table 23, XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih maximum value to 1.1. • Table 39, Reset Timing Parameters; removed rise/fall time requirement • Section 4.9.3, External Interface Module; enhanced wording to first paragraph to describe operating frequency for data transfers, and to explain register settings are valid for entire range of frequencies. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 166 Freescale Semiconductor Revision History Table 105. i.MX 6Solo/6DualLite Data Sheet Document Revision History (continued) Rev. Number Date Substantive Changes Rev. 3 continued 2/2014 • • • • • • • • • • Rev. 2.2 8/2013 • 21x21 functional contact table: changed from NAND to NANDF • System Timing Parameters Table 39, Reset timing parameter, CC1 description, change from: "Duration of SRC_POR_B to be qualified as valid ( <= 5 ns)" to: "Duration of SRC_POR_B to be qualified as valid" and added a footnote to the parameter with the following text: "SRC_POR_B rise and fall times must be 5 ns or less." Rev. 2.1 5/2013 Substantive changes throughout this document are as follows: • Incorporated standardized signal names. This change is extensive throughout. • Added reference to EB792, i.MX Signal Name Mapping. • Figures updated to align to standardized signal names. • Updated references to eMMC standard to include 4.41. • Added MediaLB (MLB) feature and DTCP module to the commercial temperature grade version. • Figure 1 Part Number Nomenclature: Updates to Part differentiator section to align with Table 1. • Table 1 “Orderable Part Numbers,” added ARM core information to the Options column: 2x “ARM Cortex-A9” 64-bit to 6DualLite 1x “ARM Cortex -A9” 32-bit to 6Solo • Table 3 Changed reference to Global Power Controller to read General Power Controller. • Table 9 “Operating Ranges,” added reference for information on product lifetime: i.MX 6Dual/6Quad Product Usage Lifetime Estimates Application Note, AN4725. • Table 11 “Maximum Supply Currents,” updated footnote 2. • Table 12 Stop Mode Current and Power Consumption: Added SNVS Only mode • Table 64 RGMII parameter TskewT minimum and maximum values corrected. • Table 64 RGMII parameter TskewR units corrected. • Table 101 Clarification of ENET_REF_CLK naming. • Added Table 102, "Signals with Differing Before Reset and After Reset States," on page 156. • Removed section, EIM Signal Cross Reference. Signal names are now aligned with reference manual. • Removed table from Section 3.2, “Recommended Connections for Unused Analog Interfaces and referenced the Hardware Development Guide. • Section 1.2, “Features added bulleted item regarding the SOC-level memory system. • Section 1.2, “Features Camera sensors: Changed Camera port to be up to 180 MHz peak. • Added Section 1.3, “Updated Signal Naming Convention • Section 4.2.1, “Power-Up Sequence” updated wording. • Section 4.3.2, “Regulators for Analog Modules” section updates. • Added Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters.” • Section 4.10, “General-Purpose Media Interface (GPMI) Timing” figures replaced, tables revised. Rev. 2 Table 42, EIM Bus Timing Parameters; reworded footnotes for clarity. Table 42, EIM Asynchronous Timing Parameters; removed comment from the Max heading cell. Figure 65, Gated Clock Mode Timing Diagram: Corrected HSYNC trace behavior Table 70, Video Signal Cross-Reference: Corrected naming of HSYNC and VSYNC Section 4.11.22, USB PHY Parameters: Updated Battery Charging Specification bullet Table 99, BGA Package Details: Corrected to read “21 x 21, 0.8 mm”. Table 100, Supplies Contact Assignments: Corrected supply name NVCC_NANDF Table 100, Supplies Contact Assignments: Updated NC rows to show i.MX 6DualLite vs. i.MX 6Solo Table 101, Functional Contact Assignments: ALT5 Default function signal names corrected Table 101, Functional Contact Assignments: PMIC_ON_REQ Out of Reset value corrected to “Open Drain with PU (100K) enabled” • Table 101, Functional Contact Assignments: TEST_MODE row included • Table 101, Functional Contact Assignments: VDD_ARM_IN and ZQPAD row removed 05/2013 • Revision 2 was not published. i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 3 Freescale Semiconductor 167 How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, the ARM logo, and Cortex are registered trademarks of ARM Limited. MPCore and NEON are trademarks of ARM Limited. © 2012-2014 Freescale Semiconductor, Inc. All rights reserved. Document Number: IMX6SDLCEC Rev. 3 03/2014