16-Channel High Performance Differential Output, 192 kHz, 24-Bit DAC ADAU1966 FEATURES GENERAL DESCRIPTION 118 dB DAC dynamic range and SNR −98 dB THD + N Differential voltage DAC output 2.5 V digital and 3.3 V or 5 V analog and IO supplies 299 mW total (19 mW/channel) quiescent power at AVDD = 3.3 V PLL generated or direct MCLK master clock Low EMI design Linear regulator driver to generate digital supply Supports 24-bit and 32 kHz to 192 kHz sample rates Low propagation 192 kHz sample rate mode Log volume control with autoramp function Temperature sensor with digital readout ±3°C accuracy SPI and I2C controllable for flexibility Software-controllable clickless mute Software power-down Right-justified, left-justified, I2S, and TDM modes Master and slave modes with up to 16-channel input/output 80-lead LQFP package Qualified for automotive applications The ADAU1966 is a high performance, single-chip DAC that provides 16 digital-to-analog converters (DACs) with differential output using the Analog Devices, Inc., patented multibit sigma-delta (Σ-Δ) architecture. An SPI/I2C port is included, allowing a microcontroller to adjust volume and many other parameters. The ADAU1966 operates from 2.5 V digital and 3.3 V or 5 V analog supplies. A linear regulator is included to generate the digital supply voltage from the analog supply voltage. The ADAU1966 is available in an 80-lead LQFP package. The ADAU1966 is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the internal master clock from an external LRCLK, the ADAU1966 can eliminate the need for a separate high frequency master clock and can be used with or without a bit clock. The DACs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 2.5 V digital supplies, power consumption is minimized, and the digital waveforms are a smaller amplitude, further reducing emissions. APPLICATIONS Automotive audio systems Home theater systems Digital audio effects processors FUNCTIONAL BLOCK DIAGRAM DIGITAL AUDIO INPUT ADAU1966 SERIAL DATA PORT DAC DAC DAC DAC DIFFERENTIAL ANALOG AUDIO OUTPUTS DAC DAC DIGITAL FILTER AND VOLUME CONTROL DAC SDATA IN SDATA IN CLOCKS TIMING MANAGEMENT AND CONTROL (CLOCK AND PLL) DAC DAC DAC DIFFERENTIAL ANALOG AUDIO OUTPUTS DAC DAC DAC PRECISION VOLTAGE REFERENCE DAC DIGITAL FILTER AND VOLUME CONTROL DAC SPI/I2C CONTROL PORT CONTROL DATA INPUT/OUTPUT INTERNAL TEMP SENSOR 09434-001 DAC Figure 1. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. ADAU1966 TABLE OF CONTENTS Features .............................................................................................. 1 Block Power-Down and Thermal Sensor Control 1 Register26 Applications ....................................................................................... 1 Power-Down Control 2 Register .............................................. 27 General Description ......................................................................... 1 Power-Down Control 3 Register .............................................. 28 Functional Block Diagram .............................................................. 1 Thermal Sensor Temperature Readout Register .................... 29 Revision History ............................................................................... 2 DAC Control 0 Register ............................................................ 30 Specifications..................................................................................... 3 DAC Control 1 Register ............................................................ 31 Analog Performance Specifications ........................................... 3 DAC Control 2 Register ............................................................ 32 Crystal Oscillator Specifications................................................. 5 DAC Individual Channel Mutes 1 Register ............................ 33 Digital Input/Output Specifications........................................... 6 DAC Individual Channel Mutes 2 Register ............................ 34 Power Supply Specifications........................................................ 6 Master Volume Control Register.............................................. 35 Digital Filters ................................................................................. 7 DAC 1 Volume Control Register .............................................. 35 Timing Specifications .................................................................. 7 DAC 2 Volume Control Register .............................................. 36 Absolute Maximum Ratings............................................................ 9 DAC 3 Volume Control Register .............................................. 36 Thermal Resistance ...................................................................... 9 DAC 4 Volume Control Register .............................................. 37 ESD Caution .................................................................................. 9 DAC 5 Volume Control Register .............................................. 37 Pin Configuration and Function Descriptions ........................... 10 DAC 6 Volume Control Register .............................................. 38 Typical Performance Characteristics ........................................... 13 DAC 7 Volume Control Register .............................................. 38 Application Circuits ....................................................................... 14 DAC 8 Volume Control Register .............................................. 39 Theory of Operation ...................................................................... 15 DAC 9 Volume Control Register .............................................. 39 Digital-to-Analog Converters (DACs) .................................... 15 DAC 10 Volume Control Register............................................ 40 Clock Signals ............................................................................... 15 DAC 11 Volume Control Register............................................ 40 Power-Up and RST ..................................................................... 16 DAC 12 Volume Control Register............................................ 41 Standalone Mode ........................................................................ 17 DAC 13 Volume Control Register............................................ 41 I2C Control Port .......................................................................... 17 DAC 14 Volume Control Register............................................ 42 Serial Control Port: SPI Control Mode ................................... 19 DAC 15 Volume Control Register............................................ 42 Power Supply and Voltage Reference ....................................... 19 DAC 16 Volume Control Register............................................ 43 Serial Data Ports—Data Format ............................................... 19 Common-Mode and Pad Strength Register ........................... 43 Time-Division Multiplexed (TDM) Modes ............................ 19 DAC Power Adjust 1 Register ................................................... 44 Temperature Sensor ................................................................... 20 DAC Power Adjust 2 Register ................................................... 45 Additional Modes ....................................................................... 22 DAC Power Adjust 3 Register ................................................... 46 Register Summary .......................................................................... 23 DAC Power Adjust 4 Register ................................................... 47 Register Details ............................................................................... 24 Outline Dimensions ....................................................................... 51 PLL and Clock Control 0 Register ........................................... 24 Ordering Guide .......................................................................... 51 PLL and Clock Control 1 Register ........................................... 25 Automotive Products ................................................................. 51 REVISION HISTORY 9/11—Revision 0: Initial Version Rev. 0 | Page 2 of 52 ADAU1966 SPECIFICATIONS Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications. Master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = ±1 mA or 1.5 kΩ to ½ DVDD supply, input voltage high = 2.0 V, input voltage low = 0.8 V, unless otherwise noted. ANALOG PERFORMANCE SPECIFICATIONS Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V, ambient temperature1 (TA) = 25°C, unless otherwise noted. Table 1. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Differential Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-emphasis Gain Error Output Resistance at Each Pin REFERENCE VOLTAGES Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source TEMPERATURE SENSOR Temperature Accuracy Temperature Readout Range Temperature Readout Step Size Temperature Sample Rate REGULATOR Input Supply Voltage Regulated Output Voltage 1 Test Conditions/Comments Min Typ 105 108 115.5 118 −90 −98 −98 3.00 (±8.49) Max Unit 20 Hz to 20 kHz, −60 dB input 0 dBFS Two channels running, −1 dBFS 16 channels running, −1 dBFS AVDDx = 5.0 V −10 −25 −30 −6 −85 +10 +25 +30 100 0 0.375 95.25 ±0.6 100 TS_REF pin, AVDDx = 5.0 V CM pin, AVDDx = 5.0 V CM pin, AVDDx = 5.0 V 2.14 1.50 2.25 2.25 −3 −60 2.29 +3 +140 VSUPPLY pin VSENSE pin Functionally guaranteed at −40°C to +125°C case temperature. Rev. 0 | Page 3 of 52 3.0 2.26 5 2.50 V V V 6 °C °C °C Hz 5.5 2.59 V V 1 0.25 dB dB dB dB dB V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω ADAU1966 Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V, ambient temperature 1 (TA) = 105°C, unless otherwise noted. Table 2. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Differential Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-emphasis Gain Error Output Resistance at Each Pin REFERENCE Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source REGULATOR Input Supply Voltage Regulated Output Voltage 1 Test Conditions/Comments Min Typ 109 110.5 113.5 116 −85 −92.5 −92.5 3.00 (±8.49) Max Unit 20 Hz to 20 kHz, −60 dB input 0 dBFS Two channels running Eight channels running AVDDx = 5.0 V −10 −25 −30 −6 −85 +10 +25 +30 100 0 0.375 95.25 ±0.6 100 dB dB dB dB dB V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω TS_REF pin, AVDDx = 5.0 V CM pin, AVDDx = 5.0 V CM pin, AVDDx = 5.0 V 2.14 1.50 2.25 2.25 2.29 V V V VSUPPLY pin VSENSE pin 3.0 2.25 5 2.50 5.5 2.55 V V Functionally guaranteed at −40°C to +125°C case temperature. Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V, ambient temperature 1 (TA) = 25°C, unless otherwise noted. Table 3. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Differential Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-Emphasis Gain Error Output Resistance at Each Pin Test Conditions/Comments Min Typ 109 111.5 111 113.5 −90 −97 −97 2.00 (±5.66) Max Unit 20 Hz to 20 kHz, −60 dB input 0 dBFS Two channels running Eight channels running AVDDx = 3.3 V −10 −25 −30 −6 −85 +10 +25 +30 100 0 0.375 95.25 ±0.6 100 Rev. 0 | Page 4 of 52 dB dB dB dB dB V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω ADAU1966 Parameter REFERENCE Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source REGULATOR Input Supply Voltage Regulated Output Voltage 1 Test Conditions/Comments Min Typ Max Unit TS_REF pin, AVDDx = 3.3 V CM pin, AVDDx = 3.3 V CM pin, AVDDx = 3.3 V 1.43 1.50 1.50 1.50 1.56 V V V VSUPPLY pin VSENSE pin 3.0 2.26 5 2.50 5.5 2.59 V V Functionally guaranteed at −40°C to +125°C case temperature. Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V, ambient temperature 1 (TA) = 105°C, unless otherwise noted. Table 4. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Differential Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-emphasis Gain Error Output Resistance at Each Pin REFERENCE Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source REGULATOR Input Supply Voltage Regulated Output Voltage 1 Conditions/Comments Min Typ 108 110 109 112 −85 −92 −92 2.00 (5.66) Max Unit 20 Hz to 20 kHz, −60 dB input 0 dBFS Two channels running Eight channels running AVDDx = 3.3 V −10 −25 −30 −6 −83 +10 +25 +30 100 0 0.375 95.25 ±0.6 100 dB dB dB dB dB V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω TS_REF pin, AVDDx = 3.3 V CM pin, AVDDx = 3.3 V CM pin, AVDDx = 3.3 V 1.43 1.50 1.50 1.50 1.56 V V V VSUPPLY pin VSENSE pin 3.0 2.25 5 2.50 5.5 2.55 V V Functionally guaranteed at −40°C to +125°C case temperature. CRYSTAL OSCILLATOR SPECIFICATIONS Table 5. Parameter Transconductance, TA = 25°C Transconductance, TA = 105°C Min 6.4 5.2 Typ 7 to 10 7.5 to 8.5 Rev. 0 | Page 5 of 52 Max 14 12 Unit mmhos mmhos ADAU1966 DIGITAL INPUT/OUTPUT SPECIFICATIONS −40°C < TA < +105°C, IOVDD = 5.0 V and 3.3 V ± 10%. Table 6. Parameter High Level Input Voltage (VIH) Low Level Input Voltage (VIL) Input Leakage High Level Output Voltage (VOH) Low Level Output Voltage (VOL) Input Capacitance Test Conditions/Comments IOVDD = 5.0 V IOVDD = 3.3 V IOVDD = 5.0 V IOVDD = 3.3 V IIH at VIH = 2.4 V IIL at VIL = 0.8 V IOH = 1 mA IOL = 1 mA Min 3.7 2.5 Typ Max 1.3 0.8 10 10 IOVDD − 0.60 0.4 5 Unit V V V V μA μA V V pF POWER SUPPLY SPECIFICATIONS Table 7. Parameter SUPPLIES Voltage Analog Current—AVDD = 5.0 V Normal Operation Power-Down Analog Current—AVDD = 3.3 V Normal Operation Power-Down Digital Current—DVDD = 2.5 V Normal Operation Power-Down PLL Current—PLLVDD = 2.5 V Normal Operation Power-Down IO Current—IOVDD = 3.3 V Normal Operation Power-Down QUIESCENT DISSIPATION—DITHER INPUT Operation All Supplies All Supplies Analog Supply Analog Supply Digital Supply PLL Supply I/O Supply Power-Down, All Supplies POWER SUPPLY REJECTION RATIO Signal at Analog Supply Pins Test Conditions/Comments Min Typ Max Unit AVDD DVDD PLLVDD IOVDD VSUPPLY 3.0 2.25 2.25 3.0 3.0 5.0 2.5 2.5 5.0 5.0 5.5 3.6 3.6 5.5 5.5 V V V V V 82 1 mA μA 60 1 mA μA fS = 48 kHz to 192 kHz No MCLK or I2S 30 4 mA μA fS = 48 kHz to 192 kHz 5 1 mA μA 4 1 mA μA 511 299 410 198 75 13 13 0 mW mW mW mW mW mW mW mW 85 85 dB dB MCLK = 256 × fS, 48 kHz AVDDx = 5.0 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V AVDDx = 3.3 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V AVDDx = 5.0 V AVDDx = 3.3 V DVDD = 2.5 V PLLVDD= 2.5 V IOVDD = 3.3 V 1 kHz, 200 mV p-p 20 kHz, 200 mV p-p Rev. 0 | Page 6 of 52 ADAU1966 DIGITAL FILTERS Table 8. Parameter DAC INTERPOLATION FILTER Pass Band Pass-Band Ripple Transition Band Stop Band Stop-Band Attenuation Propagation Delay Mode Factor 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 192 kHz low delay mode, typical at 192 kHz 0.4535 × fS 0.3646 × fS 0.3646 × fS Min Typ Max 22 35 70 ±0.01 ±0.05 ±0.1 0.5 × fS 0.5 × fS 0.5 × fS 0.5465 × fS 0.6354 × fS 0.6354 × fS 24 48 96 26 61 122 68 68 68 25/fS 11/fS 8/fS 2/fS 521 115 42 10 Unit kHz kHz kHz dB dB dB kHz kHz kHz kHz kHz kHz dB dB dB μs μs μs μs TIMING SPECIFICATIONS −40°C < TA < +105°C, DVDD = 2.5 V ± 10%. Table 9. Parameter INPUT MASTER CLOCK (MCLK) AND RESET tMH tMH fMCLK fMCLK fBCLK tPDR tPDRR PLL Lock Time Lock Time 256 × fS VCO Clock, Output Duty Cycle, MCLKO Pin SPI PORT tCCH tCCL fCCLK tCDS tCDH tCLS tCLH tCLHIGH Description Min MCLK duty cycle, DAC clock source = PLL clock at 256 × fS, 384 × fS, 512 × fS, and 768 × fS DAC clock source = direct MCLK at 512 × fS (bypass on-chip PLL) MCLKI frequency, PLL mode Direct MCLK 512 × fS mode DBCLK frequency, PLL mode Low Recovery, reset to active output Max Unit 40 60 % 40 60 % 6.9 40.5 27.1 27.0 MHz MHz MHz ns ms 10 50 60 ms ms % 15 300 MCLK input DLRCLK input 40 See Figure 14 CCLK high CCLK low CCLK frequency, fCCLK = 1/tCCP; only tCCP shown in Figure 14 CDATA setup, time to CCLK rising CDATA hold, time from CCLK rising CLATCH setup, time to CCLK rising CLATCH hold, time from CCLK falling CLATCH high, not shown in Figure 14 Rev. 0 | Page 7 of 52 Typ 35 35 10 10 10 10 10 10 ns ns MHz ns ns ns ns ns ADAU1966 Parameter tCOE tCOD tCOH tCOTS I2C fSCL tSCLL tSCLH tSCS Description COUT enable from CCLK falling COUT delay from CCLK falling COUT hold from CCLK falling, not shown in Figure 14 COUT tristate from CCLK falling See Figure 2 and Figure 13 SCL clock frequency SCL low SCL high Setup time (start condition), relevant for repeated start condition Hold time (start condition), first clock generated after this period Setup time (stop condition) Data setup time SDA and SCL rise time SDA and SCL fall time Bus-free time between stop and start See Figure 16 DBCLK high, slave mode DBCLK low, slave mode DLRCLK setup, time to DBCLK rising, slave mode DLRCLK hold from DBCLK rising, slave mode DLRCLK skew from DBCLK falling, master mode DSDATAx setup to DBCLK rising DSDATAx hold from DBCLK rising tSCH tSSH tDS tSR tSF tBFT DAC SERIAL PORT tDBH tDBL tDLS tDLH tDLS tDDS tDDH tDS tSCH Min 30 400 kHz μs μs μs 0.6 μs 0.6 100 1.3 μs ns ns ns μs 10 10 10 5 −8 10 5 ns ns ns ns ns ns ns 300 300 tSF tSCS Figure 2. I2C Timing Diagram Rev. 0 | Page 8 of 52 tBFT 09434-002 tSCLH tSCLL Unit ns ns ns ns 1.3 0.6 0.6 tSCH SCL Max 30 30 30 SDA tSR Typ +8 ADAU1966 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 10. Parameter Analog (AVDD) I/O (IOVDD) Digital (DVDD) PLL (PLLVDD) VSUPPLY Input Current (Except Supply Pins) Analog Input Voltage (Signal Pins) Digital Input Voltage (Signal Pins) Operating Temperature Range (Case) Storage Temperature Range Rating −0.3 V to +5.5 V −0.3 V to +5.5 V −0.3 V to +3.6 V −0.3 V to +3.6 V −0.3 V to +6.0 V ±20 mA –0.3 V to AVDD + 0.3 V −0.3 V to DVDD + 0.3 V −40°C to +125°C −65°C to +150°C θJA represents junction-to-ambient thermal resistance; θJC represents the junction-to-case thermal resistance. All characteristics are for a 4-layer board with a solid ground plane. Table 11. Thermal Resistance Package Type 80-Lead LQFP ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 9 of 52 θJA 42.3 θJC 10.0 Unit °C/W ADAU1966 DAC9P DAC8N DAC8P DAC7N 73 72 71 70 69 68 67 66 65 64 63 62 61 60 DAC_BIAS2 59 DAC_BIAS1 AVDD3 3 58 AVDD2 DAC13P 4 57 DAC4N DAC13N 5 56 DAC4P DAC14P 6 55 DAC3N DAC14N 7 54 DAC3P DAC15P 8 53 DAC2N 52 DAC2P 51 DAC1N DAC16N 11 50 DAC1P AVDD4 12 49 AVDD1 AGND4 13 48 AGND1 PLLGND 14 47 PU/RST LF 15 46 SA_MODE PLLVDD 16 45 CLATCH/ADDR0/SA* MCLKI/XTALI 17 44 CCLK/SCL/SA* XTALO 18 43 COUT/SDA/SA* MCLKO 19 42 CDATA/ADDR1/SA* DVDD 20 41 DVDD PIN 1 INDICATOR DAC_BIAS4 2 ADAU1966 DAC15N 9 DBCLK 33 34 35 36 37 38 39 40 DGND DGND 32 IOVDD VSUPPLY 31 DSDATA1 VDRIVE 30 DSDATA2 VSENSE 29 DSDATA3 DGND IOVDD *SEE TABLE 15 FOR SA_MODE SETTINGS. 28 DSDATA4 27 DSDATA5 26 DSDATA6 25 DSDATA7/SA* 24 DSDATA8/SA* 23 DGND 22 DLRCLK 21 DVDD TOP VIEW (Not to Scale) DAC16P 10 Figure 3. Pin Configuration Table 12. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20, 29, 41 21, 26, 30, 40 Type 1 I I PWR O O O O O O O O PWR GND GND O PWR I O O PWR GND Mnemonic DAC_BIAS3 DAC_BIAS4 AVDD3 DAC13P DAC13N DAC14P DAC14N DAC15P DAC15N DAC16P DAC16N AVDD4 AGND4 PLLGND LF PLLVDD MCLKI/XTALI XTALO MCLKO DVDD DGND Description DAC Bias 3. AC couple with 470 nF to AGND3. DAC Bias 4. AC couple with 470 nF to AVDD3. Analog Power. DAC13 Positive Output. DAC13 Negative Output. DAC14 Positive Output. DAC14 Negative Output. DAC15 Positive Output. DAC15 Negative Output. DAC16 Positive Output. DAC16 Negative Output. Analog Power. Analog Ground. PLL Ground. PLL Loop Filter, Reference to PLLVDD. Apply 2.5 V to power PLL. Master Clock Input, Input to Crystal Inverter. Output from Crystal Inverter. Master Clock Output. Digital Power, 2.5 V. Digital Ground. Rev. 0 | Page 10 of 52 09434-003 DAC_BIAS3 1 AGND2 DAC9N 74 CM DAC10P 75 TS_REF DAC10N 76 DAC5P DAC11P 77 DAC5N DAC11N 78 DAC6P DAC12P 79 DAC7P DAC12N 80 DAC6N AGND3 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADAU1966 Pin No. 22, 39 23 Type 1 PWR I Mnemonic IOVDD VSENSE 24 25 O I VDRIVE VSUPPLY 27 28 31 I/O I/O I DBCLK DLRCLK DSDATA8/SA 32 I DSDATA7/SA 33 34 35 36 37 38 42 I I I I I I I DSDATA6 DSDATA5 DSDATA4 DSDATA3 DSDATA2 DSDATA1 CDATA/ADDR1/SA 43 I/O COUT/SDA/SA 44 I CCLK/SCL/SA 45 I CLATCH/ADDR0/SA 46 I SA_MODE 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 I GND PWR O O O O O O O O PWR I I GND O PU/RST AGND1 AVDD1 DAC1P DAC1N DAC2P DAC2N DAC3P DAC3N DAC4P DAC4N AVDD2 DAC_BIAS1 DAC_BIAS2 AGND2 CM 63 O TS_REF 64 65 66 67 68 69 70 O O O O O O O DAC5P DAC5N DAC6P DAC6N DAC7P DAC7N DAC8P Description Power for Digital Input and Output Pins, 3.3 V to 5 V. 2.5 V Output of Regulator, Collector of Pass Transistor. Bypass with 10 μF in parallel with 100 nF. Drive for Base of Pass Transistor. 5 V Input to Voltage Regulator, Emitter of Pass Transistor. Bypass with 10 μF in parallel with 100 nF. Bit Clock for DACs. Frame Clock for DACs. DAC15 and DAC 16 Serial Data Input/SA_MODE TDM State (see the Standalone Mode section, Table 15, and Table 16). DAC13 and DAC 14 Serial Data Input/SA_MODE TDM State (see the Standalone Mode section, Table 15, and Table 16). DAC11 and DAC 12 Serial Data Input. DAC9 and DAC 10 Serial Data Input. DAC7 and DAC 8 Serial Data Input. DAC5 and DAC 6 Serial Data Input. DAC3 and DAC 4 Serial Data Input. DAC1 and DAC 2 Serial Data Input. Control Data Input (SPI)/Address 1 (I2C)/SA_MODE State (see the Standalone Mode section and Table 15). Control Data Output (SPI)/Control Data Input (I2C)/SA_MODE State (see the Standalone Mode section and Table 15). Control Clock Input (SPI)/Control Clock Input (I2C)/SA_MODE State (see the Standalone Mode section and Table 15). Control Chip Select (SPI) (Low Active)/Address 0 (I2C)/SA_MODE State (see the Standalone Mode section and Table 15). Standalone Mode. This pin allows mode control of ADAU1966 using Pin 42 to Pin 45, Pin 31, and Pin 32 (high active, see Table 15 and Table 16). Power-Up/Reset (Low Active). Analog Ground. Analog Power. DAC1 Positive Output. DAC1 Negative Output. DAC2 Positive Output. DAC2 Negative Output. DAC3 Positive Output. DAC3 Negative Output. DAC4 Positive Output. DAC4 Negative Output. Analog Power. DAC Bias 1. AC couple with 470 nF to AVDD2. DAC Bias 2. AC couple with 470 nF to AGND2. Analog Ground. Common-Mode Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with 100 nF to AGND2. This reference can be shut off in the PLL_CLK_CTRL1 register and the pin can be driven with an outside voltage source. Voltage Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with 100 nF to AGND2. DAC5 Positive Output. DAC5 Negative Output. DAC6 Positive Output. DAC6 Negative Output. DAC7 Positive Output. DAC7 Negative Output. DAC8 Positive Output. Rev. 0 | Page 11 of 52 ADAU1966 Pin No. 71 72 73 74 75 76 77 78 79 80 1 Type 1 O O O O O O O O O GND Mnemonic DAC8N DAC9P DAC9N DAC10P DAC10N DAC11P DAC11N DAC12P DAC12N AGND3 Description DAC8 Negative Output. DAC9 Positive Output. DAC9 Negative Output. DAC10 Positive Output. DAC10 Negative Output. DAC11 Positive Output. DAC11 Negative Output. DAC12 Positive Output. DAC12 Negative Output. Analog Ground. I = input, O = output, I/O = input/output, PWR = power, GND = ground. Rev. 0 | Page 12 of 52 ADAU1966 TYPICAL PERFORMANCE CHARACTERISTICS 0.05 0.20 0.04 0.15 0.03 0.10 MAGNITUDE (dB) MAGNITUDE (dB) 0.02 0.01 0 –0.01 0.05 0 –0.05 –0.02 –0.10 –0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 FREQUENCY (FACTORED TO fS) –0.20 0 0.15 0.20 0.25 0.30 0.35 0.40 1.0 Figure 6. DAC Pass-Band Filter Response, 96 kHz 0 0 –10 –10 –20 –20 –30 MAGNITUDE (dB) –30 –40 –50 –60 –70 –40 –50 –60 –70 –80 –80 –90 –90 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 FREQUENCY (FACTORED TO fS) 0.9 1.0 09434-005 MAGNITUDE (dB) 0.10 FREQUENCY (FACTORED TO fS) Figure 4. DAC Pass-Band Filter Response, 48 kHz –100 0.05 09434-006 0 09434-004 –0.05 09434-007 –0.15 –0.04 –100 Figure 5. DAC Stop-Band Filter Response, 48 kHz 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 FREQUENCY (FACTORED TO fS) Figure 7. DAC Stop-Band Filter Response, 96 kHz Rev. 0 | Page 13 of 52 0.9 ADAU1966 APPLICATION CIRCUITS Typical application circuits are shown in Figure 8 to Figure 11. Recommended loop filters for DLRCLK and MCLKI/XTALI modes of the PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 9 and Figure 10, and an external regulator circuit is shown in Figure 11. LF DLRCLK MCLKI/XTALI LF 39nF 5.6nF 2.2nF 390pF 562Ω PLLVDD 09434-008 3.32kΩ PLLVDD Figure 8. Recommended Loop Filters for DLRCLK or MCLKI/XTALI PLL Reference Modes DACP 10µF + 237Ω OUTP 2.7nF DACN 10µF + 237Ω OUTN 49.9kΩ 09434-009 49.9kΩ Figure 9. Typical DAC Output Passive Filter Circuit (Differential) 1.1nF AD8672ARZ DAC1P 1.50kΩ 1.54kΩ 5 100Ω 7 4.7µF + OUTPUT1P 6 +12V DC 422Ω 2.49kΩ 100kΩ 8 0.1µF 4.7µF 0.1µF 4.7µF + 1nF 4.7µF 1nF 4.7µF + V+ V– 4 + + 100kΩ –12V DC 1.54kΩ 422Ω 100Ω 1 3 4.7µF + OUTPUT1N 09434-010 AD8672ARZ 1.1nF Figure 10. Typical DAC Output Active Filter Circuit (Differential) 100nF + 10µF VSUPPLY 5V 1kΩ B VDRIVE E FZT953 C VSENSE 2.5V 100nF + 10µF 09434-011 DAC1N 2 1.50kΩ 2.49kΩ Figure 11. Recommended 2.5 V Regulator Circuit Rev. 0 | Page 14 of 52 ADAU1966 THEORY OF OPERATION DIGITAL-TO-ANALOG CONVERTERS (DACS) The 16 ADAU1966 digital-to-analog converter (DAC) channels are differential for improved noise and distortion performance and are voltage output for simplified connection. The DACs include on-chip digital interpolation filters with 68 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 256× (48 kHz range), 128× (96 kHz range), or 64× (192 kHz range). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through eight serial data input pins (two channels on each pin), a common frame clock (DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the TDM modes can be used to access up to 16 channels on a single TDM data line. The ADAU1966 has a low propagation delay mode; this mode is an option for an fS of 192 kHz and is enabled in Register DAC_ CTRL0[2:1]. By setting these bits to b11, the propagation delay is reduced by the amount shown in Table 8. The shorter delay is achieved by reducing the amount of digital filtering; the negative impact of selecting this mode is reduced audio frequency response and increased out-of-band energy. When AVDD is supplied with 5 V, each analog output pin has a nominal common-mode (CM) dc level of 2.25 V and swings ±8.49 V p-p (3 V rms differential) from a 0 dBFS digital input signal. An AVDD of 3.3 V generates a CM dc voltage of 1.5 V and allows differential audio swings of ±5.66 V p-p (2 V rms) from a 0 dBFS digital input signal. The differential analog outputs require only a single-order passive differential RC filter to provide the specified DNR performance; see Figure 9 for an example filter. The outputs can easily drive differential inputs on a separate PCB through cabling as well as differential inputs on the same PCB. If more signal level is required or if a more robust filter is needed, a single op amp gain stage designed as a second-order, low-pass Bessel filter can be used to remove the high frequency out-ofband noise present on each pin of the differential outputs. The choice of components and design of this circuit is critical to yield the full DNR of the DACs (see the recommended passive and active circuits in Figure 9 and Figure 10). This filter can be built into an active difference amplifier to provide a single-ended output with gain, if necessary. Note that the use of op amps with low slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care when selecting these components. The ADAU1966 offers control over the analog performance of the DACs; it is possible to program the registers to reduce the power consumption with the trade-off of lower SNR and THD + N. The reduced power consumption is the result of changing the internal bias current to the analog output amplifiers. Register DAC_POWER1 to Register DAC_POWER4 present four basic settings for the DAC power vs. performance in each of the 16 channels: best performance, good performance, low power, and lowest power. Alternatively, in Register PLL_CLK_ CTRL1[7:6], the LOPWR_MODE bits offer global control over the power and performance for all 16 channels. The default setting is b00. This setting allows the channels to be controlled individually using the DAC_POWERx registers. Setting b10 and Setting b11 select the low power and lowest power settings. The data presented in Table 13 shows the result of setting all 16 channels to each of the four settings. The SNR and THD + N specifications are shown in relation to the measured performance of a device at the best performance setting. The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section). CLOCK SIGNALS Upon powering the ADAU1966 and asserting the PU/RST pin high, the part starts in either standalone mode (SA_MODE) or program mode, depending on the state of SA_MODE (Pin 46). The clock functionality of SA_MODE is described in the Standalone Mode section. In program mode, the default for the ADAU1966 is for the MCLKO pin to feed a buffered output of the MCLKI signal. The default for the DLRCLK and DBCLK ports is slave mode; the DAC must be driven with a coherent set of MCLK, LRCLK, and BCLK signals to function. The MCLKO pin can be programmed to provide different clock signals using Register Bits PLL_CLK_CTRL1[5:4]. The default, b10, provides a buffered copy of the clock signal that is driving the MCLKI pin. Two modes, b00 and b01, provide low jitter clock signals. The b00 setting yields a clock rate between 4 MHz and 6 MHz, and b01 yields a clock rate between 8 MHz and 12 MHz. Both of these clock frequencies are scaled as ratios of MCLK automatically inside the ADAU1966. As an example, an MCLK of 8.192 MHz and a setting of b00 yield an MCLKO of (8.192/2) = 4.096 MHz. Alternatively, an MCLK of 36.864 MHz and a setting of b01 yield an MCLKO frequency of (36.864/3) = 12.288 MHz. The setting b11 shuts off the MCLKO pin. Table 13. DAC Power vs. Performance Register Setting Total AVDD Current SNR THD + N (−1 dbFS signal) Best Performance 82 mA Reference Reference Good Performance 73 mA −0.2 dB −1.8 dB Rev. 0 | Page 15 of 52 Low Power 64 mA −1.5 dB −3.0 dB Lowest Power 54 mA −14.2 dB −5.8 dB ADAU1966 After the PU/RST pin has been asserted high, the PLL_CLK_ CTRLx registers (0x00 and 0x01) can be programmed. The on-chip phase-locked loop (PLL) can be selected to use the clock appearing at the MCLKI/XTALI pin at a frequency of 256, 384, 512, or 768 times the sample rate (fS), referenced to the 48 kHz mode from the master clock select (MCS) setting, as described in Table 14. In 96 kHz mode, the master clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2. In 192 kHz mode, the actual multiplication rate is divided by 4. For example, if the ADAU1966 is programmed in 256 × fS mode, the frequency of the master clock input is 256 × 48 kHz = 12.288 MHz. If the ADAU1966 is then switched to 96 kHz operation (by writing to DAC_CTRL0 [2:1]), the frequency of the master clock should remain at 12.288 MHz, which is 128 × fS in this example. In 192 kHz mode, MCS becomes 64 × fS. The internal clock for the digital core varies by mode: 512 × fS (48 kHz mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By default, the on-board PLL generates this internal master clock from an external clock. The PLL should be powered and stable before the ADAU1966 is used as a source for quality audio. The PLL is enabled by reset and does not require writing to the I2C or SPI port for normal operation. With the PLL enabled, the performance of the ADAU1966 is not affected by jitter as high as a 300 ps rms time interval error (TIE). If the internal PLL is not used, it is best to use an independent crystal oscillator to generate the master clock. If the ADAU1966 is to be used in direct MCLK mode, the PLL can be powered down in the PDN_THRMSENS_CTRL_1 register. For direct MCLK mode, a 512 × fS (referenced to 48 kHz mode) master clock must be used as MCLK, and the CLK_SEL bit in the PLL_CLK_CTRL1 register must be set to b1. The ADAU1966 PLL can also be programmed to run from an external LRCLK. When the PLLIN bits in the PLL_CLK_CTRL0 register are set to 01 and the appropriate loop filter is connected to the LF pin (see Figure 8), the ADAU1966 PLL generates all of the necessary internal clocks for operation with no external MCLK. This mode reduces the number of high frequency signals in the design, reducing EMI emissions. It is possible to further reduce EMI emissions of the circuit by using the internal DBCLK generation setting of the BCLK_GEN bit in the DAC_CTRL1 register. With the BCLK_GEN bit set to b1 (internal) and the SAI_MS bit set to b0 (slave), the ADAU1966 generate its own DBCLK; this works with the PLL input set to either MCLKI/XTALI or DLRCLK. DLRCLK is the only required clock in DLRCLK PLL mode. POWER-UP AND RST Power sequencing for the ADAU1966 should start with AVDD and IOVDD, followed by DVDD. It is very important that AVDD be settled at a regulated voltage and that IOVDD be within 10% of regulated voltage before applying DVDD. When using the ADAU1966 internal regulator, this timing occurs by default. To guarantee proper startup, the PU/RST pin should be pulled low by an external resistor and then driven high after the power supplies have stabilized. The PU/RST can also be pulled high using a simple RC network. Driving the PU/RST pin low puts the part into a very low power state (<3 μA). All functionality of the ADAU1966 is disabled until the PU/RST pin is asserted high. Once this pin is asserted high, the ADAU1966 requires 300 ms to stabilize. The MMUTE bit in the DAC_CTRL0 register must be toggled for operation. The PUP bit in the PLL_CLK_CTRL0 register can be used to power down the ADAU1966. Engaging the master power-down puts the ADAU1966 in an idle state while maintaining the settings of all registers. Additionally, the power-down bits in the PDN_THRMSENS_CTRL1 register (TS_PDN, PLL_PDN, and VREG_PDN) can be used to power down individual sections of the ADAU1966. The SOFT_RST bit in the PLL_CLK_CTRL0 register sets all of the control registers to their default settings while maintaining the internal clocks in default mode. The SOFT_RST bit does not power down the analog outputs; toggling this bit does not cause audible popping sounds at the differential analog outputs. Proper startup of the ADAU1966 should proceed as follows: 1. 2. 3. 4. 5. Rev. 0 | Page 16 of 52 Apply power to the ADAU1966 as described previously. Assert the PU/RST pin high after power supplies have stabilized. Set the PUP bit to b1. Program all necessary registers for the desired settings. Set the MMUTE bit to b0 to unmute all channels. ADAU1966 Table 14. MCS and fS Modes Master Clock Select (MCS), PLL_CLK_CTRL0[2:1] Setting 0, b00 Setting 1, b01 Setting 2, b10 Ratio MCLK (MHz) Ratio MCLK Ratio MCLK 256 × fS 8.192 384 × fS 12.288 512 × fS 16.384 256 × fS 11.2896 384 × fS 16.9344 512 × fS 22.5792 256 × fS 12.288 384 × fS 18.432 512 × fS 24.576 128 × fS 8.192 192 × fS 12.288 256 × fS 16.384 128 × fS 11.2896 192 × fS 16.9344 256 × fS 22.5792 128 × fS 12.288 192 × fS 18.432 256 × fS 24.576 64 × fS 8.192 96 × fS 12.288 128 × fS 16.384 64 × fS 11.2896 96 × fS 16.9344 128 × fS 22.5792 64 × fS 12.288 96 × fS 18.432 128 × fS 24.576 Sample Rate Select (FS) DAC_CTRL0[2:1] 32 kHz, b00 44.1 kHz, b00 48 kHz, b00 64 kHz, b01 88.2 kHz, b01 96 kHz, b01 128 kHz, b10 or b11 176.4 kHz, b10 or b11 192 kHz, b10 or b11 STANDALONE MODE 2 The ADAU1966 can operate without a typical I C or SPI connection to a microcontroller. This standalone mode is made available by setting the SA_MODE (Pin 46) to high (IOVDD). All registers are set to default except the options shown in Table 15. Table 15. SA_MODE Settings Pin No. 42 43 44 45 Setting 0 1 0 1 0 1 0 1 Function Master mode serial audio interface (SAI) Slave mode SAI MCLK = 256 × fS, PLL on MCLK = 384 × fS, PLL on AVDD = 5.0 V (CM = 2.25 V) AVDD = 3.3 V (CM = 1.50 V) I2S SAI format TDM modes, determined by Pin 31 and Pin 32 When both SA_MODE and Pin 45 are set high, TDM mode is selected. Table 16 shows the available TDM modes; these modes are set by connecting Pin 31 (DSDATA8) and Pin 32 (DSDATA7) to GND or IOVDD. Table 16. TDM Modes Pin No. 32:31 Setting 00 01 10 11 Function TDM4—DLRCLK pulse TDM8—DLRCLK pulse TDM16—DLRCLK pulse TDM8—DLRCLK 50% duty cycle When the ADAU1966 is powered up in SA_MODE and the PU/RST pin is asserted high, the MCLKO pin provides a buffered version of the MCLKI pin, whether the source is a crystal or an active oscillator. 2 I C CONTROL PORT 2 The ADAU1966 has an I C-compatible control port that permits programming and reading back of the internal control registers for the DACs and clock system. The I2C interface of the ADAU1966 is a 2-wire interface consisting of a clock line, SCL, Setting 3, b11 Ratio MCLK 768 × fS 24.576 768 × fS 33.8688 768 × fS 36.864 384 × fS 24.576 384 × fS 33.8688 384 × fS 36.864 192 × fS 24.576 192 × fS 33.8688 192 × fS 36.864 and a data line, SDA. SDA is bidirectional, and the ADAU1966 drives SDA either to acknowledge the master (ACK) or to send data during a read operation. The SDA pin for the I2C port is an open-drain collector and requires a 2 kΩ pull-up resistor. A write or read access occurs when the SDA line is pulled low while the SCL line is high, indicated by a start in Figure 12 and Figure 13. SDA is only allowed to change when SCL is low except when a start or stop condition occurs, as shown in Figure 12 and Figure 13. The first eight bits of the data-word consist of the device address and the R/W bit. The device address consists of an internal built-in address (0x04) and two address pins, ADDR1 and ADDR0. The two address bits allow four ADAU1966 devices to be used in a system. Initiating a write operation to the ADAU1966 involves sending a start condition and then sending the device address with the R/W bit set low. The ADAU1966 responds by issuing an acknowledge to indicate that it has been addressed. The user then sends a second frame telling the ADAU1966 which register is required to be written. Another acknowledge is issued by the ADAU1966. Finally, the user can send another frame with the eight data bits required to be written to the register. A third acknowledge is issued by the ADAU1966 after which the user can send a stop condition to complete the data transfer. A read operation requires that the user first write to the ADAU1966 to point to the correct register and then read the data. This is achieved by sending a start condition followed by the device address frame, with the R/W bit low, and then the register address frame. Following the acknowledge from the ADAU1966, the user must issue a repeated start condition. The next frame is the device address with the R/W bit set high. On the next frame, the ADAU1966 outputs the register data on the SDA line. A stop condition completes the read operation. Table 17. I2C Addresses ADDR1 0 0 1 1 Rev. 0 | Page 17 of 52 ADDR0 0 1 0 1 Slave Address 0x04 0x24 0x44 0x64 ADAU1966 SCL SDA AD1 AD0 0 0 1 0 0 START BY MASTER (S) R/W 0 0 0 0 0 1 1 0 ACK. BY ADAU1966 (AS) ACK. BY ADAU1966 (AS) FRAME 1 CHIP ADDRESS BYTE FRAME 2 REGISTER ADDRESS BYTE SCL (CONTINUED) D7 D6 D5 D4 D3 D2 D1 D0 ACK. BY STOP BY ADAU1966 (AS) MASTER (P) FRAME 3 DATA BYTE TO ADAU1966 09434-012 SDA (CONTINUED) Figure 12. I2C Write Format SCL SDA AD1 AD0 0 0 1 0 0 R/W START BY MASTER (S) 0 0 0 0 0 1 1 0 ACK. BY ADAU1966 (AS) ACK. BY ADAU1966 (AS) FRAME 1 CHIP ADDRESS BYTE FRAME 2 REGISTER ADDRESS BYTE SCL (CONTINUED) 0 0 0 REPEATED START BY MASTER (S) 0 1 AD1 AD0 D7 R/W D6 D5 ACK. BY ADAU1966 (AS) FRAME 3 CHIP ADDRESS BYTE D4 D3 D2 D1 D0 ACK. BY STOP BY MASTER (AM) MASTER (P) FRAME 4 REGISTER DATA 09434-013 SDA (CONTINUED) Figure 13. I2C Read Format Table 18. I2C Abbreviations Abbreviation S P AM AS Condition Start bit Stop bit Acknowledge by master Acknowledge by slave Table 19. Single Word I2C Write S AS Chip Address, R = 0 Register Address AS Data-Word AS P Table 20. Burst Mode I2C Write S Chip Address, R = 0 AS Register Address AS Data-Word 1 AS Data-Word 2 AS Data-Word N AS P Table 21. Single Word I2C Read S AS Chip Address, R = 0 Register Address AS S AS Chip Address, R = 1 Data-Word AM P Table 22. Burst Mode I2C Read S Chip Address, R =0 AS Register Address AS S Chip Address, R =1 AS Rev. 0 | Page 18 of 52 DataWord 1 AM DataWord 2 AM DataWord N AM P ADAU1966 SERIAL CONTROL PORT: SPI CONTROL MODE The ADAU1966 has an SPI control port that permits programming and reading back of the internal control registers for the DACs and clock system. A standalone mode is also available for operation without serial control; it is configured at reset using the SA_MODE pin. See the Standalone Mode section for details about SA_MODE. By default, the ADAU1966 is in I2C mode, but it can be put into SPI control mode by pulling CLATCH low three times. This is done by performing three dummy writes to the SPI port (the ADAU1966 does not acknowledge these three writes). Beginning with the fourth SPI write, data can be written to or read from the IC. The ADAU1966 can be taken out of SPI control mode only by a full reset initiated by power cycling the IC. The SPI control port of the ADAU1966 is a 4-wire serial control port. The format is similar to the Motorola SPI format except the input data-word is 24 bits wide. The serial bit clock and latch can be completely asynchronous to the sample rate of the DACs. Figure 14 shows the format of the SPI signal. The first byte is a global address with a read/write bit. For the ADAU1966, the address is 0x06, shifted left one bit due to the R/W bit. The second byte is the ADAU1966 register address, and the third byte is the data. POWER SUPPLY AND VOLTAGE REFERENCE The ADAU1966 is designed for 3.3 V or 5 V analog and 2.5 V digital supplies. To minimize noise pickup, the power supply pins should be bypassed with 100 nF ceramic chip capacitors placed as close to the pins as possible. A bulk aluminum electrolytic capacitor of at least 22 μF should also be provided for each rail on the same PC board as the codec. It is important that the analog supply be as clean as possible. The ADAU1966 includes a 2.5 V regulator driver that requires only an external pass transistor and bypass capacitors to make a 2.5 V regulator from a 5 V or 3.3 V supply. The VSUPPLY and VSENSE pins should be decoupled with no more than 10 μF, in parallel with 100 nF high frequency bypassing. If the regulator driver is not used, connect VSUPPLY and VDRIVE to GND and leave VSENSE unconnected. All digital inputs are compatible with TTL and CMOS levels. All outputs are driven from the 3.3 V or 5 V IOVDD supply and are compatible with TTL and 3.3 V CMOS levels. The temperature sensor internal voltage reference (VTS_REF) is brought out on the TS_REF pin and should be bypassed as close as possible to the chip with a parallel combination of 10 μF and 100 nF. The internal band gap reference can be disabled in the PLL_CLK_CTRL1 register by setting VREF_EN to 0; the CM pin can be then be driven from an external source. This can be used to scale the DAC output to the clipping level of a power amplifier based on its power supply voltage. The CM pin is the internal common-mode reference. It should be bypassed as close as possible to the chip, with a parallel combination of 10 μF and 100 nF. This voltage can be used to bias external op amps to the common-mode voltage of the analog input and output signal pins. The output current should be limited to less than 0.5 mA source and 2 mA sink. SERIAL DATA PORTS—DATA FORMAT The 16 DAC channels use a common serial bit clock (DBCLK) and a common left-right framing clock (DLRCLK) in the serial data port. The clock signals are all synchronous with the sample rate. The normal stereo serial modes are shown in Figure 15. The DAC serial data mode defaults to I2S (1 BCLK delay) upon power-up and reset. The ports can also be programmed for leftjustified and right-justified (24-bit and 16-bit) operation using DAC_CTRL0[7:6]. Stereo and TDM modes can be selected using DAC_CTRL0[5:3]. The polarity of DBCLK and DLRCLK is programmable according to the DAC_CTRL1[1] and DAC_ CTRL1[5] bits. The serial ports are programmable as the clock masters according to the DAC_CTRL1[0] bit. By default, the serial port is in slave mode. TIME-DIVISION MULTIPLEXED (TDM) MODES The ADAU1966 serial ports also have several different TDM serial data modes. The ADAU1966 can support a single data line TDM16, a dual data line (TDM8), a quad data line (TDM4), or eight data lines (TDM2). The DLRCLK can be operated in both single-cycle pulse mode and a 50% duty cycle mode. Both 16 DBCLKs or 32 DBCLKs per channel are selectable for each mode. The I/O pins of the serial ports are defined according to the serial mode that is selected. For a detailed description of the function of each pin in TDM and stereo modes, see Table 23. Rev. 0 | Page 19 of 52 ADAU1966 conversion, placing the resulting temperature data in the THRM_TEMP_STAT register. In continuous operation mode, the data conversion takes place at a rate set by Bits[7:6], THRM_RATE, with a range of 0.5 sec to 4 sec between samples. Faster rates are possible using the one-shot mode. TEMPERATURE SENSOR The ADAU1966 has an on-board temperature sensor that allows the user to read the temperature of the silicon inside the part. The temperature sensor readout has a range of −60°C to +140°C in 1°C steps. The PDN_THRMSENS_CTRL_1 register controls the settings of the sensor. The temperature sensor is powered on by default and can be shut off by setting the TS_PDN[2] bit to b1 in PDN_THRMSENS_CTRL_1. The temperature sensor can be run in either continuous operation or one-shot mode. The temperature sensor conversion mode is modified using Bit 5, THRM_MODE; the default is THRM_MODE = 1, one-shot mode. In one-shot mode, writing a 0 followed by writing a 1 to Bit 4, THRM_GO, results in a single reset and temperature Once a temperature conversion has been placed in the THRM_TEMP_STAT register, the data can be translated into degrees Celsius (°C) using the following steps: 1. 2. Convert the binary or hexadecimal data read from THRM_TEMP_STAT into decimal form. Subtract 60 from the converted THRM_TEMP_STAT data; this is the temperature of the silicon in °C. LEFT CHANNEL LRCLK RIGHT CHANNEL BCLK SDATA LSB MSB LSB MSB LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 1 LEFT CHANNEL LRCLK RIGHT CHANNEL BCLK SDATA MSB LSB MSB I2S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 0 LEFT CHANNEL LRCLK LSB RIGHT CHANNEL BCLK SDATA MSB MSB LSB LSB RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL: SAI = 0, SDATA_FMT = 2 OR 3 LRCLK BCLK MSB MSB LSB TDM MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 1, 2, 3, OR 4 1/fS Figure 15. Serial Audio Modes Rev. 0 | Page 20 of 52 LSB 09434-015 SDATA ADAU1966 tDBH DBCLK tDBL tDLH tDLS DLRCLK DSDATAx LEFT-JUSTIFIED MODE tDDS MSB MSB – 1 tDDH tDDS DSDATAx I2S-JUSTIFIED MODE MSB tDDH tDDS MSB LSB tDDH tDDH 09434-016 tDDS DSDATAx RIGHT-JUSTIFIED MODE Figure 16. DAC Serial Timing Table 23. Pin Function Changes in Different Serial Audio Interface Modes DLRCLK Stereo Modes (SAI = 0 or 1) Channel 1/Channel 2 data in Channel 3/Channel 4 data in Channel 5/Channel 6 data in Channel 7/Channel 8 data in Channel 9/Channel 10 data in Channel 11/Channel 12 data in Channel 13/Channel 14 data in Channel 15/Channel 16 data in DLRCLK in/DLRCLK out DBCLK DBCLK in/DBCLK out Maximum Sample Rate 192 kHz Signal DSDATA1 DSDATA2 DSDATA3 DSDATA4 DSDATA5 DSDATA6 DSDATA7 DSDATA8 TDM4 Mode (SAI = 2) Channel 1 to Channel 4 data in Channel 5 to Channel 8 data in Channel 9 to Channel 12 data in Channel 13 to Channel 16 data in Not used TDM8 Mode (SAI = 3) Channel 1 to Channel 8 data in Channel 9 to Channel 16 data in Not used TDM16 Mode (SAI = 4) Channel 1 to Channel 16 data in Not used Not used Not used Not used Not used Not used Not Used Not used Not used Not used Not used Not used Not used Not used TDM frame sync in/ TDM frame sync out TDM DBCLK in/TDM DBCLK out 192 kHz TDM frame sync in/ TDM frame sync out TDM DBCLK in/TDM DBCLK out 96 kHz TDM frame sync in/ TDM frame sync out TDM DBCLK in/ TDM DBCLK out 48 kHz Rev. 0 | Page 21 of 52 Not used ADAU1966 ADDITIONAL MODES The ADAU1966 offers several additional modes for board level design enhancements. To reduce the EMI in board level design, serial data can be transmitted without an explicit DBCLK. See Figure 17 for an example of a DAC TDM data transmission mode that does not require a high speed DBCLK or an external MCLK. This configuration is applicable when the ADAU1966 master clock is generated by the PLL with the DLRCLK as the PLL reference frequency. To relax the requirement for the setup time of the ADAU1966 in cases of high speed TDM data transmission, the ADAU1966 can latch in the data using the falling edge of DBCLK; see the BCLK_EDGE bit in the DAC_CTRL1 register. This effectively dedicates the entire BCLK period to the setup time. This mode is useful in cases where the source has a large delay time in the serial data driver. Figure 18 shows this inverted DBCLK mode of data transmission. DLRCLK 32 BITS INTERNAL DBCLK DSDATAx DLRCLK 09434-017 INTERNAL DBCLK TDM-DSDATAx Figure 17. Serial DAC Data Transmission in TDM Format Without DBCLK (Applicable Only If PLL Locks to DLRCLK) DLRCLK DATA MUST BE VALID AT THIS BCLK EDGE DSDATAx MSB Figure 18. Inverted DBCLK Mode in DAC Serial Data Transmission (Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission) Rev. 0 | Page 22 of 52 09434-018 DBCLK ADAU1966 REGISTER SUMMARY Table 24. ADAU1966 Register Summary Reg 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 Name PLL_CLK_CTRL0 PLL_CLK_CTRL1 PDN_THRMSENS_CTRL_1 PDN_CTRL2 PDN_CTRL3 THRM_TEMP_STAT DAC_CTRL0 DAC_CTRL1 DAC_CTRL2 DAC_MUTE1 DAC_MUTE2 DACMSTR_VOL DAC01_VOL DAC02_VOL DAC03_VOL DAC04_VOL DAC05_VOL DAC06_VOL DAC07_VOL DAC08_VOL DAC09_VOL DAC10_VOL DAC11_VOL DAC12_VOL DAC13_VOL DAC14_VOL DAC15_VOL DAC16_VOL CM_SEL_PAD_STRGTH DAC_POWER1 DAC_POWER2 DAC_POWER3 DAC_POWER4 Bits [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] [7:0] Bit 7 Bit 6 PLLIN LOPWR_MODE THRM_RATE DAC08_PDN DAC07_PDN DAC16_PDN DAC15_PDN Bit 5 Bit 4 XTAL_SET MCLKO_SEL THRM_MODE THRM_GO DAC06_PDN DAC05_PDN DAC14_PDN DAC13_PDN Bit 3 SOFT_RST PLL_MUTE RESERVED DAC04_PDN DAC12_PDN TEMP Reset 0x00 0x2A 0xA0 0x00 0x00 0x00 SDATA_FMT SAI FS MMUTE 0x01 BCLK_GEN LRCLK_MODE LRCLK_POL SAI_MSB RESERVED BCLK_RATE BCLK_EDGE SAI_MS 0x00 RESERVED VREG_CTRL BCLK_TDMC DAC_POL AUTO_MUTE_EN DAC_OSR DE_EMP_EN 0x06 DAC08_MUTE DAC07_MUTE DAC06_MUTE DAC05_MUTE DAC04_MUTE DAC03_MUTE DAC02_MUTE DAC01_MUTE 0x00 DAC16_MUTE DAC15_MUTE DAC14_MUTE DAC13_MUTE DAC12_MUTE DAC11_MUTE DAC10_MUTE DAC09_MUTE 0x00 DACMSTR_VOL 0x00 DAC01_VOL 0x00 DAC02_VOL 0x00 DAC03_VOL 0x00 DAC04_VOL 0x00 DAC05_VOL 0x00 DAC06_VOL 0x00 DAC07_VOL 0x00 DAC08_VOL 0x00 DAC09_VOL 0x00 DAC10_VOL 0x00 DAC11_VOL 0x00 DAC12_VOL 0x00 DAC13_VOL 0x00 DAC14_VOL 0x00 DAC15_VOL 0x00 DAC16_VOL 0x00 RESERVED RESERVED PAD_DRV RESERVED RESERVED RESERVED CM_SEL RESERVED 0x02 DAC04_POWER DAC03_POWER DAC02_POWER DAC01_POWER 0xAA DAC08_POWER DAC07_POWER DAC06_POWER DAC05_POWER 0xAA DAC12_POWER DAC11_POWER DAC10_POWER DAC09_POWER 0xAA DAC16_POWER DAC15_POWER DAC14_POWER DAC13_POWER 0xAA Rev. 0 | Page 23 of 52 Bit 2 Bit 1 MCS PLL_LOCK VREF_EN TS_PDN PLL_PDN DAC03_PDN DAC02_PDN DAC11_PDN DAC10_PDN Bit 0 PUP CLK_SEL VREG_PDN DAC01_PDN DAC09_PDN RW RW RW RW RW RW R RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW ADAU1966 REGISTER DETAILS PLL AND CLOCK CONTROL 0 REGISTER Address: 0x00, Reset: 0x00, Name: PLL_CLK_CTRL0 Table 25. Bit Descriptions for PLL_CLK_CTRL0 Bits [7:6] Bit Name PLLIN Settings 00 01 10 11 [5:4] XTAL_SET 00 01 10 11 3 SOFT_RST 0 1 [2:1] MCS 00 01 10 11 0 PUP 0 1 Description PLL Input Select. Selects between MCLKI/XTALI or DLRCLK as the input to the PLL. MCLKI or XTALI DLRCLK Reserved Reserved XTAL Oscillator Setting. XTALO pin status. XTAL Oscillator Enabled Reserved Reserved XTALO Off Software Reset Control. This bit resets all circuitry inside the IC, except I2C/SPI communications. All control registers are reset to default values, except 0x00 and 0x01. The PLL_CLK_CTRLx registers do not change state. Normal Operation Device in Reset Master Clock Select. MCLKI/XTALI pin functionality (PLL active), master clock rate setting. The following values are for the fS rate window from 32 kHz to 48 kHz. See Table 14 for details when using other fS selections. 256 × fS MCLK (44.1 kHz or 48 kHz) 384 × fS MCLK (44.1 kHz or 48 kHz) 512 × fS MCLK (44.1 kHz or 48 kHz) 768 × fS MCLK (44.1 kHz or 48 kHz) Master Power-Up Control. This bit must be set to 1 as the first register write to power up the IC. Master Power-Down Master Power-Up Rev. 0 | Page 24 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 PLL AND CLOCK CONTROL 1 REGISTER Address: 0x01, Reset: 0x2A, Name: PLL_CLK_CTRL1 B7 B6 B5 B4 B3 B2 B1 B0 0 0 1 0 1 0 1 0 [7:6] LOPWR_MODE [0] CLK_SEL Global Power/Performance Adjust DAC Clock Select 00: I2C Register Settings 01: Reserved 10: Lower Power 11: Lowest Power 0: MCLK from PLL 1: MCLK from MCLKI or XTALI [1] VREF_EN Internal Voltage Reference Enable 0: Disabled 1: Enabled [5:4] MCLKO_SEL MCLK Output Frequency 00: MCLKO = 4 MHz to 6 MHz scaled by fs [2] PLL_LOCK 01: MCLKO = 8 MHz to 12 MHz scaled by fs 10: MCLKO = Buffered MCLKI PLL Lock Indicator 0: PLL Not Locked 11: MCLKO Pin Disabled 1: PLL Locked [3] PLL_MUTE PLL Automute Enable/Lock 0: No DAC Automute 1: DAC Automute on PLL Unlock Table 26. Bit Descriptions for PLL_CLK_CTRL1 Bits [7:6] Bit Name LOPWR_MODE Settings 00 01 10 11 [5:4] MCLKO_SEL 00 01 10 11 3 PLL_MUTE 0 1 2 PLL_LOCK 0 1 1 VREF_EN 0 1 0 CLK_SEL 0 1 Description Global Power/Performance Adjust. These bits adjust the power consumption and performance level for all 16 DAC channels at once. See the Digital-to-Analog Converters (DACs) section for more details. I2C Register Settings Reserved Low Power Lowest Power MCLK Output Frequency. Frequency selection for MCLKO pin. See the Clock Signals section for more details. MCLKO = 4 MHz to 6 MHz scaled by fS MCLKO = 8 MHz to 12 MHz scaled by fS MCLKO = Buffered MCLKI MCLKO Pin Disabled PLL Automute Enable/Lock. This bit enables the PLL lock automute function. No DAC Automute DAC Automute on PLL Unlock PLL Lock Indicator. PLL Not Locked PLL Locked Internal Voltage Reference Enable. The internal voltage reference powers the common mode for the ADAU1966. Disabling this bit allows the user to drive the CM pin with an outside voltage source. Disabled Enabled DAC Clock Select. Selects between PLL or Direct MCLK mode. MCLK from PLL MCLK from MCLKI or XTALI Rev. 0 | Page 25 of 52 Reset 0x0 Access RW 0x2 RW 0x1 RW 0x0 R 0x1 RW 0x0 RW ADAU1966 BLOCK POWER-DOWN AND THERMAL SENSOR CONTROL 1 REGISTER Address: 0x02, Reset: 0xA0, Name: PDN_THRMSENS_CTRL_1 Table 27. Bit Descriptions for PDN_THRMSENS_CTRL_1 Bits [7:6] Bit Name THRM_RATE Settings 00 01 10 11 5 THRM_MODE 0 1 4 THRM_GO 0 1 2 TS_PDN 0 1 1 PLL_PDN 0 1 0 VREG_PDN 0 1 Description Conversion Time Interval. When THERM_MODE = 0, the THERM_RATE bits control the time interval between temperature conversions. 4 sec/Conversion 0.5 sec/Conversion 1 sec/Conversion 2 sec/Conversion Continuous vs. One-Shot. Determines whether the temperature conversions occur continuously or only when commanded. To perform one-shot temperature conversions, set this bit to 1. Continuous Operation One-Shot Mode One-Shot Conversion Mode. When in one-shot conversion mode, THERM_MODE = 1, the THERM_GO bit must be set to 0 followed by a write of 1. This sequence results in a single temperature conversion. The temperature data is available 120 ms after writing a 1 to this bit. Reset Convert temperature Temperature Sensor Power-Down. Temperature Sensor On Temperature Sensor Power-Down PLL Power-Down. PLL Normal Operation PLL Power-Down Voltage Regulator Power-Down. Voltage Regulator Normal Operation Voltage Regulator Power-Down Rev. 0 | Page 26 of 52 Reset 0x2 Access RW 0x1 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 POWER-DOWN CONTROL 2 REGISTER Address: 0x03, Reset: 0x00, Name: PDN_CTRL2 Table 28. Bit Descriptions for PDN_CTRL2 Bits 7 Bit Name DAC08_PDN Settings 0 1 6 DAC07_PDN 0 1 5 DAC06_PDN 0 1 4 DAC05_PDN 0 1 3 DAC04_PDN 0 1 2 DAC03_PDN 0 1 1 DAC02_PDN 0 1 0 DAC01_PDN 0 1 Description Channel 8 Power-Down. Normal Operation Power-Down Channel 8 Channel 7 Power-Down. Normal Operation Power-Down Channel 7 Channel 6 Power-Down. Normal Operation Power-Down Channel 6 Channel 5 Power-Down. Normal Operation Power-Down Channel 5 Channel 4 Power-Down. Normal Operation Power-Down Channel 4 Channel 3 Power-Down. Normal Operation Power-Down Channel 2 Channel 2 Power-Down. Normal Operation Power-Down Channel 2 Channel 1 Power-Down. Normal Operation Power-Down Channel 1 Rev. 0 | Page 27 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 POWER-DOWN CONTROL 3 REGISTER Address: 0x04, Reset: 0x00, Name: PDN_CTRL3 Table 29. Bit Descriptions for PDN_CTRL3 Bits 7 Bit Name DAC16_PDN Settings 0 1 6 DAC15_PDN 0 1 5 DAC14_PDN 0 1 4 DAC13_PDN 0 1 3 DAC12_PDN 0 1 2 DAC11_PDN 0 1 1 DAC10_PDN 0 1 0 DAC09_PDN 0 1 Description Channel 16 Power-Down. Normal Operation Power-Down Channel 16 Channel 15 Power-Down. Normal Operation Power-Down Channel 15 Channel 14 Power-Down. Normal Operation Power-Down Channel 14 Channel 13 Power-Down. Normal Operation Power-Down Channel 13 Channel 12 Power-Down. Normal Operation Power-Down Channel 12 Channel 11 Power-Down. Normal Operation Power-Down Channel 11 Channel 10 Power-Down. Normal Operation Power-Down Channel 10 Channel 9 Power-Down. Normal Operation Power-Down Channel 9 Rev. 0 | Page 28 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 THERMAL SENSOR TEMPERATURE READOUT REGISTER Address: 0x05, Reset: 0x00, Name: THRM_TEMP_STAT Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step size. Read this register and convert the hexadecimal or binary TEMP value into decimal form; then subtract 60 from this decimal conversion. The result is the temperature in degrees Celsius. Table 30. Bit Descriptions for THRM_TEMP_STAT Bits [7:0] Bit Name TEMP Settings Description Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step size. To convert TEMP code to temperature, use the equation (TEMP − 60). Rev. 0 | Page 29 of 52 Reset 0x00 Access R ADAU1966 DAC CONTROL 0 REGISTER Address: 0x06, Reset: 0x01, Name: DAC_CTRL0 B7 B6 B5 B4 B3 B2 B1 B0 0 0 0 0 0 0 0 1 [7:6] SDATA_FMT [0] MMUTE SDATA Format DAC Master Mute 00: I2S—1-BCLK Cycle Delay 01: Left-Justified—0-BCLK Cycle Delay 10: Right-Justified 24-bit Data— 8-BCLK Cycle Delay 11: Right-Justified 16-bit Data— 16-BCLK Cycle Delay 0: Normal Operation 1: All Channels Muted [2:1] FS Sample Rate Select 00: 32 kHz/44.1kHz/48kHz [5:3] SAI 01: 64 kHz/88.2kHz/96kHz Serial Audio Interface 10: 128 kHz/176.4kHz/192kHz 000: Stereo (I 2S, LJ, RJ) 11: 128 kHz/176.4kHz/192kHz Low Propagation Delay 001: TDM2—Octal Line 010: TDM4—Quad Line 011: TDM8—Dual Line 100: TDM16—Single Line (48 kHz) 101: Reserved 110: Reserved 111: Reserved Table 31. Bit Descriptions for DAC_CTRL0 Bits [7:6] Bit Name SDATA_FMT Settings 00 01 10 11 [5:3] SAI 000 001 010 011 100 101 110 111 [2:1] FS 00 01 10 11 0 MMUTE 0 1 Description SDATA Format. Only used when SAI = 000. I2S—1-BCLK Cycle Delay Left-Justified—0-BCLK Cycle Delay Right-Justified 24-bit Data—8-BCLK Cycle Delay Right-Justified 16-bit Data—16-BCLK Cycle Delay Serial Audio Interface. When SAI = 000, the SDATA_FMT bits control stereo SDATA format. Stereo (I2S, LJ, RJ) TDM2—Octal Line TDM4—Quad Line TDM8—Dual Line TDM16—Single Line (48 kHz) Reserved Reserved Reserved Sample Rate Select. 32 kHz/44.1 kHz/48 kHz 64 kHz/88.2 kHz/96 kHz 128 kHz/176.4 kHz/192 kHz 128 kHz/176.4 kHz/192 kHz Low Propagation Delay DAC Master Mute. Normal Operation All Channels Muted Rev. 0 | Page 30 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x1 RW ADAU1966 DAC CONTROL 1 REGISTER Address: 0x07, Reset: 0x00, Name: DAC_CTRL1 Table 32. Bit Descriptions for DAC_CTRL1 Bits 7 Bit Name BCLK_GEN Settings 0 1 6 LRCLK_MODE 0 1 5 LRCLK_POL 0 1 4 SAI_MSB 0 1 2 BCLK_RATE 0 1 1 BCLK_EDGE 0 1 0 SAI_MS 0 1 Description DBCLK Generation. When the PLL is locked to DLRCLK, it is possible to run the ADAU1966 without an external DBCLK. Normal Operation—DBCLK Internal DBCLK Generation DLRCLK Mode Select. Only Valid for TDM modes. 50% Duty Cycle DLRCLK Pulse Mode DLRCLK Polarity. Allows the swapping of data between channels. Left/Odd channels are DLRCLK Low (Normal) Left/Odd channels are DLRCLK High (Inverted) MSB Position. MSB First DSDATA LSB First DSDATA DBCLK Rate. Number of DBCLK cycles per DLRCLK Frame. Used only for generating DBCLK in Master Mode operation (SAI_MS = 1). 32 Cycles per Frame 16 Cycles per Frame DBCLK Active Edge. Adjust the polarity of the DBCLK leading edge. Latch in Rising Edge Latch in Falling Edge Serial Interface Master. Both DLRCLK and DBCLK become master when enabled. DLRCLK/DBCLK Slave DLRCLK/DBCLK Master Rev. 0 | Page 31 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 DAC CONTROL 2 REGISTER Address: 0x08, Reset: 0x06, Name: DAC_CTRL2 Table 33. Bit Descriptions for DAC_CTRL2 Bits [6:5] Bit Name VREG_CTRL Settings 00 01 10 11 4 BCLK_TDMC 0 1 3 DAC_POL 0 1 2 AUTO_MUTE_EN 0 1 1 DAC_OSR 0 1 0 DE_EMP_EN 0 1 Description Voltage Regulator Control. Select the Regulator Output Voltage. Regulator Out = 2.5 V Regulator Out = 2.75 V Regulator Out = 3.0 V Regulator Out = 3.3 V DBCLK Rate in TDM Mode. Number of DBCLK cycles per channel slot when in TDM mode. 32 BCLK cycles/channel slot 16 BCLK cycles/channel slot DAC Output Polarity. This is a global switch of DAC polarity. Noninverted DAC Output Inverted DAC Output Automute Enable. Automatically mutes the DACs when 1024 consecutive zero input samples are received. This is independent per channel. Auto-Zero Input Mute Disabled Auto-Zero Input Mute Enabled DAC Oversampling Rate. OSR Selection. 256 × fS DAC Oversampling 128 × fS DAC Oversampling De-Emphasis Enable. No De-Emphasis/Flat De-Emphasis Enabled Rev. 0 | Page 32 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x1 RW 0x1 RW 0x0 RW ADAU1966 DAC INDIVIDUAL CHANNEL MUTES 1 REGISTER Address: 0x09, Reset: 0x00, Name: DAC_MUTE1 Table 34. Bit Descriptions for DAC_MUTE1 Bits 7 Bit Name DAC08_MUTE Settings 0 1 6 DAC07_MUTE 0 1 5 DAC06_MUTE 0 1 4 DAC05_MUTE 0 1 3 DAC04_MUTE 0 1 2 DAC03_MUTE 0 1 1 DAC02_MUTE 0 1 0 DAC01_MUTE 0 1 Description DAC8 Soft Mute. DAC8 Normal Operation DAC8 Mute DAC7 Soft Mute. DAC7 Normal Operation DAC7 Mute DAC6 Soft Mute. DAC6 Normal Operation DAC6 Mute DAC5 Soft Mute. DAC5 Normal Operation DAC5 Mute DAC4 Soft Mute. DAC4 Normal Operation DAC4 Mute DAC3 Soft Mute. DAC3 Normal Operation DAC3 Mute DAC2 Soft Mute. DAC2 Normal Operation DAC2 Mute DAC1 Soft Mute. DAC1 Normal Operation DAC1 Mute Rev. 0 | Page 33 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 DAC INDIVIDUAL CHANNEL MUTES 2 REGISTER Address: 0x0A, Reset: 0x00, Name: DAC_MUTE2 Table 35. Bit Descriptions for DAC_MUTE2 Bits 7 Bit Name DAC16_MUTE Settings 0 1 6 DAC15_MUTE 0 1 5 DAC14_MUTE 0 1 4 DAC13_MUTE 0 1 3 DAC12_MUTE 0 1 2 DAC11_MUTE 0 1 1 DAC10_MUTE 0 1 0 DAC09_MUTE 0 1 Description DAC16 Soft Mute. DAC16 Normal Operation DAC16 Mute DAC15 Soft Mute. DAC15 Normal Operation DAC15 Mute DAC14 Soft Mute. DAC14 Normal Operation DAC14 Mute DAC13 Soft Mute. DAC13 Normal Operation DAC13 Mute DAC12 Soft Mute. DAC12 Normal Operation DAC12 Mute DAC11 Soft Mute. DAC11 Normal Operation DAC11 Mute DAC10 Soft Mute. DAC10 Normal Operation DAC10 Mute DAC9 Soft Mute. DAC9 Normal Operation DAC9 Mute Rev. 0 | Page 34 of 52 Reset 0x0 Access RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW 0x0 RW ADAU1966 MASTER VOLUME CONTROL REGISTER Address: 0x0B, Reset: 0x00, Name: DACMSTR_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 36. Bit Descriptions for DACMSTR_VOL Bits [7:0] Bit Name DACMSTR_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description Master Volume Control. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 1 VOLUME CONTROL REGISTER Address: 0x0C, Reset: 0x00, Name: DAC01_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 37. Bit Descriptions for DAC01_VOL Bits [7:0] Bit Name DAC01_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 1. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 35 of 52 ADAU1966 DAC 2 VOLUME CONTROL REGISTER Address: 0x0D, Reset: 0x00, Name: DAC02_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 38. Bit Descriptions for DAC02_VOL Bits [7:0] Bit Name DAC02_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 2. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 3 VOLUME CONTROL REGISTER Address: 0x0E, Reset: 0x00, Name: DAC03_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 39. Bit Descriptions for DAC03_VOL Bits [7:0] Bit Name DAC03_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 3. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 36 of 52 ADAU1966 DAC 4 VOLUME CONTROL REGISTER Address: 0x0F, Reset: 0x00, Name: DAC04_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 40. Bit Descriptions for DAC04_VOL Bits [7:0] Bit Name DAC04_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 4. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 5 VOLUME CONTROL REGISTER Address: 0x10, Reset: 0x00, Name: DAC05_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 41. Bit Descriptions for DAC05_VOL Bits [7:0] Bit Name DAC05_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 5. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 37 of 52 ADAU1966 DAC 6 VOLUME CONTROL REGISTER Address: 0x11, Reset: 0x00, Name: DAC06_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 42. Bit Descriptions for DAC06_VOL Bits [7:0] Bit Name DAC06_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 6. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 7 VOLUME CONTROL REGISTER Address: 0x12, Reset: 0x00, Name: DAC07_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 43. Bit Descriptions for DAC07_VOL Bits [7:0] Bit Name DAC07_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 7. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 38 of 52 ADAU1966 DAC 8 VOLUME CONTROL REGISTER Address: 0x13, Reset: 0x00, Name: DAC08_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 44. Bit Descriptions for DAC08_VOL Bits [7:0] Bit Name DAC08_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 8. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 9 VOLUME CONTROL REGISTER Address: 0x14, Reset: 0x00, Name: DAC09_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 45. Bit Descriptions for DAC09_VOL Bits [7:0] Bit Name DAC09_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 9. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 39 of 52 ADAU1966 DAC 10 VOLUME CONTROL REGISTER Address: 0x15, Reset: 0x00, Name: DAC10_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 46. Bit Descriptions for DAC10_VOL Bits [7:0] Bit Name DAC10_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 10. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 11 VOLUME CONTROL REGISTER Address: 0x16, Reset: 0x00, Name: DAC11_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 47. Bit Descriptions for DAC11_VOL Bits [7:0] Bit Name DAC11_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 11. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 40 of 52 ADAU1966 DAC 12 VOLUME CONTROL REGISTER Address: 0x17, Reset: 0x00, Name: DAC12_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 48. Bit Descriptions for DAC12_VOL Bits [7:0] Bit Name DAC12_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 12. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 13 VOLUME CONTROL REGISTER Address: 0x18, Reset: 0x00, Name: DAC13_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 49. Bit Descriptions for DAC13_VOL Bits [7:0] Bit Name DAC13_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 13. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 41 of 52 ADAU1966 DAC 14 VOLUME CONTROL REGISTER Address: 0x19, Reset: 0x00, Name: DAC14_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 50. Bit Descriptions for DAC14_VOL Bits [7:0] Bit Name DAC14_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 14. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x00 Access RW DAC 15 VOLUME CONTROL REGISTER Address: 0x1A, Reset: 0x00, Name: DAC15_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 51. Bit Descriptions for DAC15_VOL Bits [7:0] Bit Name DAC15_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 15. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Rev. 0 | Page 42 of 52 ADAU1966 DAC 16 VOLUME CONTROL REGISTER Address: 0x1B, Reset: 0x00, Name: DAC16_VOL Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings. Table 52. Bit Descriptions for DAC16_VOL Bits [7:0] Bit Name DAC16_VOL Settings 00000000 00000001 00000010 11111110 11111111 Description DAC Volume Control Channel 16. 0 dB (default) −0.375 dB −0.750 dB −95.250 dB −95.625 dB Reset 0x00 Access RW Reset 0x0 Access RW 0x1 RW COMMON-MODE AND PAD STRENGTH REGISTER Address: 0x1C, Reset: 0x02, Name: CM_SEL_PAD_STRGTH Table 53. Bit Descriptions for CM_SEL_PAD_STRGTH Bits 5 Bit Name PAD_DRV Settings 0 1 1 CM_SEL 0 1 Description Output Pad Drive Strength Control. Pad strength is stated for IOVDD = 5 V. 4 mA Drive for All Pads 8 mA Drive for All Pads Common Mode Generation Selection. Fixed 3.3 V AVDD CM Generation Fixed 5 V AVDD CM Generation Rev. 0 | Page 43 of 52 ADAU1966 DAC POWER ADJUST 1 REGISTER Address: 0x1D, Reset: 0xAA, Name: DAC_POWER1 Table 54. Bit Descriptions for DAC_POWER1 Bits [7:6] Bit Name DAC04_POWER Settings 00 01 10 11 [5:4] DAC03_POWER 00 01 10 11 [3:2] DAC02_POWER 00 01 10 11 [1:0] DAC01_POWER 00 01 10 11 Description DAC Power Control Channel 4. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 3. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 2. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 1. Low Power Lowest Power Best Performance Good Performance Rev. 0 | Page 44 of 52 Reset 0x2 Access RW 0x2 RW 0x2 RW 0x2 RW ADAU1966 DAC POWER ADJUST 2 REGISTER Address: 0x1E, Reset: 0xAA, Name: DAC_POWER2 Table 55. Bit Descriptions for DAC_POWER2 Bits [7:6] Bit Name DAC08_POWER Settings 00 01 10 11 [5:4] DAC07_POWER 00 01 10 11 [3:2] DAC06_POWER 00 01 10 11 [1:0] DAC05_POWER 00 01 10 11 Description DAC Power Control Channel 8. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 7. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 6. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 5. Low Power Lowest Power Best Performance Good Performance Rev. 0 | Page 45 of 52 Reset 0x2 Access RW 0x2 RW 0x2 RW 0x2 RW ADAU1966 DAC POWER ADJUST 3 REGISTER Address: 0x1F, Reset: 0xAA, Name: DAC_POWER3 Table 56. Bit Descriptions for DAC_POWER3 Bits [7:6] Bit Name DAC12_POWER Settings 00 01 10 11 [5:4] DAC11_POWER 00 01 10 11 [3:2] DAC10_POWER 00 01 10 11 [1:0] DAC09_POWER 00 01 10 11 Description DAC Power Control Channel 12. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 11. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 10. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 9. Low Power Lowest Power Best Performance Good Performance Rev. 0 | Page 46 of 52 Reset 0x2 Access RW 0x2 RW 0x2 RW 0x2 RW ADAU1966 DAC POWER ADJUST 4 REGISTER Address: 0x20, Reset: 0xAA, Name: DAC_POWER4 Table 57. Bit Descriptions for DAC_POWER4 Bits [7:6] Bit Name DAC16_POWER Settings 00 01 10 11 [5:4] DAC15_POWER 00 01 10 11 [3:2] DAC14_POWER 00 01 10 11 [1:0] DAC13_POWER 00 01 10 11 Description DAC Power Control Channel 16. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 15. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 14. Low Power Lowest Power Best Performance Good Performance DAC Power Control Channel 13. Low Power Lowest Power Best Performance Good Performance Rev. 0 | Page 47 of 52 Reset 0x2 Access RW 0x2 RW 0x2 RW 0x2 RW ADAU1966 Table 58. Volume Table Binary Value Volume Attenuation (dB) Binary Value Volume Attenuation (dB) 00000000 0 00101110 −17.25 00000001 −0.375 00101111 −17.625 00000010 −0.75 00110000 −18 00000011 −1.125 00110001 −18.375 00000100 −1.5 00110010 −18.75 00000101 −1.875 00110011 −19.125 00000110 −2.25 00110100 −19.5 00000111 −2.625 00110101 −19.875 00001000 −3 00110110 −20.25 00001001 −3.375 00110111 −20.625 00001010 −3.75 00111000 −21 00001011 −4.125 00111001 −21.375 00001100 −4.5 00111010 −21.75 00001101 −4.875 00111011 −22.125 00001110 −5.25 00111100 −22.5 00001111 −5.625 00111101 −22.875 00010000 −6 00111110 −23.25 00010001 −6.375 00111111 −23.625 00010010 −6.75 01000000 −24 00010011 −7.125 01000001 −24.375 00010100 −7.5 01000010 −24.75 00010101 −7.875 01000011 −25.125 00010110 −8.25 01000100 −25.5 00010111 −8.625 01000101 −25.875 00011000 −9 01000110 −26.25 00011001 −9.375 01000111 −26.625 00011010 −9.75 01001000 −27 00011011 −10.125 01001001 −27.375 00011100 −10.5 01001010 −27.75 00011101 −10.875 01001011 −28.125 00011110 −11.25 01001100 −28.5 00011111 −11.625 01001101 −28.875 00100000 −12 01001110 −29.25 00100001 −12.375 01001111 −29.625 00100010 −12.75 01010000 −30 00100011 −13.125 01010001 −30.375 00100100 −13.5 01010010 −30.75 00100101 −13.875 01010011 −31.125 00100110 −14.25 01010100 −31.5 00100111 −14.625 01010101 −31.875 00101000 −15 01010110 −32.25 00101001 −15.375 01010111 −32.625 00101010 −15.75 01011000 −33 00101011 −16.125 01011001 −33.375 00101100 −16.5 01011010 −33.75 00101101 −16.875 01011011 −34.125 Rev. 0 | Page 48 of 52 ADAU1966 Binary Value Volume Attenuation (dB) Binary Value Volume Attenuation (dB) 01011100 −34.5 10001011 −52.125 01011101 −34.875 10001100 −52.5 01011110 −35.25 10001101 −52.875 01011111 −35.625 10001110 −53.25 01100000 −36 10001111 −53.625 01100001 −36.375 10010000 −54 01100010 −36.75 10010001 −54.375 01100011 −37.125 10010010 −54.75 01100100 −37.5 10010011 −55.125 01100101 −37.875 10010100 −55.5 01100110 −38.25 10010101 −55.875 01100111 −38.625 10010110 −56.25 01101000 −39 10010111 −56.625 01101001 −39.375 10011000 −57 01101010 −39.75 10011001 −57.375 01101011 −40.125 10011010 −57.75 01101100 −40.5 10011011 −58.125 01101101 −40.875 10011100 −58.5 01101110 −41.25 10011101 −58.875 01101111 −41.625 10011110 −59.25 01110000 −42 10011111 −59.625 01110001 −42.375 10100000 −60 01110010 −42.75 10100001 −60.375 01110011 −43.125 10100010 −60.75 01110100 −43.5 10100011 −61.125 01110101 −43.875 10100100 −61.5 01110110 −44.25 10100101 −61.875 01110111 −44.625 10100110 −62.25 01111000 −45 10100111 −62.625 01111001 −45.375 10101000 −63 01111010 −45.75 10101001 −63.375 01111011 −46.125 10101010 −63.75 01111100 −46.5 10101011 −64.125 01111101 −46.875 10101100 −64.5 01111110 −47.25 10101101 −64.875 01111111 −47.625 10101110 −65.25 10000000 −48 10101111 −65.625 10000001 −48.375 10110000 −66 10000010 −48.75 10110001 −66.375 10000011 −49.125 10110010 −66.75 10000100 −49.5 10110011 −67.125 10000101 −49.875 10110100 −67.5 10000110 −50.25 10110101 −67.875 10000111 −50.625 10110110 −68.25 10001000 −51 10110111 −68.625 10001001 −51.375 10111000 −69 10001010 −51.75 10111001 −69.375 Rev. 0 | Page 49 of 52 ADAU1966 Binary Value Volume Attenuation (dB) Binary Value Volume Attenuation (dB) 10111010 −69.75 11011101 −82.875 10111011 −70.125 11011110 −83.25 10111100 −70.5 11011111 −83.625 10111101 −70.875 11100000 −84 10111110 −71.25 11100001 −84.375 10111111 −71.625 11100010 −84.75 11000000 −72 11100011 −85.125 11000001 −72.375 11100100 −85.5 11000010 −72.75 11100101 −85.875 11000011 −73.125 11100110 −86.25 11000100 −73.5 11100111 −86.625 11000101 −73.875 11101000 −87 11000110 −74.25 11101001 −87.375 11000111 −74.625 11101010 −87.75 11001000 −75 11101011 −88.125 11001001 −75.375 11101100 −88.5 11001010 −75.75 11101101 −88.875 11001011 −76.125 11101110 −89.25 11001100 −76.5 11101111 −89.625 11001101 −76.875 11110000 −90 11001110 −77.25 11110001 −90.375 11001111 −77.625 11110010 −90.75 11010000 −78 11110011 −91.125 11010001 −78.375 11110100 −91.5 11010010 −78.75 11110101 −91.875 11010011 −79.125 11110110 −92.25 11010100 −79.5 11110111 −92.625 11010101 −79.875 11111000 −93 11010110 −80.25 11111001 −93.375 11010111 −80.625 11111010 −93.75 11011000 −81 11111011 −94.125 11011001 −81.375 11111100 −94.5 11011010 −81.75 11111101 −94.875 11011011 −82.125 11111110 −95.25 11011100 −82.5 11111111 −95.625 Rev. 0 | Page 50 of 52 ADAU1966 OUTLINE DIMENSIONS 0.75 0.60 0.45 16.00 BSC SQ 1.60 MAX 61 80 60 1 SEATING PLANE PIN 1 14.00 BSC SQ TOP VIEW (PINS DOWN) 10° 6° 2° 1.45 1.40 1.35 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 0.10 MAX COPLANARITY VIEW A 20 41 40 21 0.65 BSC VIEW A 0.38 0.32 0.22 ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-BEC Figure 19. 80-Lead Low Profile Quad Flat Package [LQFP] (ST-80-2) Dimensions shown in millimeters ORDERING GUIDE Model1, 2 ADAU1966WBSTZ ADAU1966WBSTZRL EVAL-ADAU1966Z 1 2 Temperature Range −40°C to +105°C −40°C to +105°C Package Description 80-Lead LQFP 80-Lead LQFP, 13” Tape and Reel Evaluation Board Package Option ST-80-2 ST-80-2 Z = RoHS Compliant Part. W = Qualified for Automotive Applications. AUTOMOTIVE PRODUCTS The ADAU1966W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. Rev. 0 | Page 51 of 52 ADAU1966 NOTES I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). ©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09434-0-9/11(0) Rev. 0 | Page 52 of 52