Product Folder Order Now Technical Documents Tools & Software Support & Community DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 DRA72x Infotainment Applications Processor Silicon Revision 2.0 1 Device Overview 1.1 Features 1 • Architecture Designed for Infotainment Applications • Video, Image, and Graphics Processing Support – Full-HD Video (1920 × 1080p, 60 fps) – Multiple Video Input and Video Output – 2D and 3D Graphics • ARM® Cortex®-A15 Microprocessor Subsystem • C66x Floating-Point VLIW DSP – Fully Object-Code Compatible With C67x and C64x+ – Up to Thirty-two 16 × 16-Bit Fixed-Point Multiplies per Cycle • Up to 512KB of On-Chip L3 RAM • Level 3 (L3) and Level 4 (L4) Interconnects • DDR3/DDR3L Memory Interface (EMIF) Module – Supports up to DDR3-1333 (667 MHz) – Up to 2GB Across Single Chip Select • Dual ARM® Cortex®-M4 Image Processing Units (IPU) • IVA-HD Subsystem • Display Subsystem – Display Controller With DMA Engine and up to Three Pipelines – HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant • 2D-Graphics Accelerator (BB2D) Subsystem – Vivante™ GC320 Core • Video Processing Engine (VPE) • Single-Core PowerVR® SGX544 3D GPU • One Video Input Port (VIP) Module – Support for up to Four Multiplexed Input Ports • General-Purpose Memory Controller (GPMC) • Enhanced Direct Memory Access (EDMA) Controller • 2-Port Gigabit Ethernet (GMAC) – Up to Two External Ports • Sixteen 32-Bit General-Purpose Timers • 32-Bit MPU Watchdog Timer • Six High-Speed Inter-Integrated Circuit (I2C) Ports • HDQ™/1-Wire® Interface • Ten Configurable UART/IrDA/CIR Modules • Four Multichannel Serial Peripheral Interfaces (McSPI) • Quad SPI Interface (QSPI) • Media Local Bus Subsystem (MLBSS) • Real-Time Clock Subsystem (RTCSS) • SATA Interface • Eight Multichannel Audio Serial Port (McASP) Modules • SuperSpeed USB 3.0 Dual-Role Device • High-Speed USB 2.0 Dual-Role Device • High-Speed USB 2.0 On-The-Go • Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC/SD/SDIO) • PCI Express® 3.0 Subsystems With Two 5-Gbps Lanes – One 2-lane Gen2-Compliant Port – or Two 1-lane Gen2-Compliant Ports • Dual Controller Area Network (DCAN) Modules – CAN 2.0B Protocol • MIPI® CSI-2 Camera Serial Interface • Up to 215 General-Purpose I/O (GPIO) Pins • Power, Reset, and Clock Management • On-Chip Debug With CTools Technology • 28-nm CMOS Technology • 23 mm × 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABC) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 1.2 • • • • Applications Human-Machine Interface (HMI) Navigation Digital and Analog Radio Rear Seat Entertainment 1.3 www.ti.com • • • Multimedia Playback AM/FM/RDS and Digital Radio Decoding ADAS and Jacinto 6 Integration Description DRA72x ("Jacinto 6 Eco") infotainment applications processors are developed on the same architecture as Jacinto 6 devices to meet the intense processing needs of the modern infotainment-enabled automobile experiences. DRA72x devices offer upward scalability to DRA74x devices, while being pin-compatible across the family, allowing Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 and Jacinto 6 Eco devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. Programmability is provided by a single-core ARM Cortex-A15 RISC CPU with Neon™ extensions and a TI C66x VLIW floating-point DSP core. The ARM processor lets developers keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. Additionally, TI provides a complete set of development tools for the ARM, and DSP, including C compilers and a debugging interface for visibility into source code execution. The DRA72x Jacinto 6 Eco processor family is qualified according to the AEC-Q100 standard. Device Information PART NUMBER DRA72x 2 Device Overview PACKAGE BODY SIZE FCBGA (760) 23.0 mm × 23.0 mm Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 1.4 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Functional Block Diagram Figure 1-1 is functional block diagram for the device. DRA72x MPU IVA HD (1x ARM Cortex–A15) 1080p Video Co-Processor CSI2 x2 CAL Radio Accelerators VCP x2 GPU BB2D (1x SGX544 3D) (GC320 2D) HD ATL Display Subsystem 1x GFX Pipeline DSP (1x C66x Co-Processor) IPU1 (Dual Cortex–M4) 3x Video Pipeline IPU2 Blend / Scale (Dual Cortex–M4) EDMA LCD1 sDMA LCD2 LCD3 HDMI 1.4a VIP x1 MMU x2 VPE High-Speed Interconnect System Spinlock Connectivity Timers x16 1x USB 3.0 Mailbox x13 WDT PWM SS x3 Dual Mode FS/HS/SS w/ PHY GPIO x8 RTC SS HDQ 2x USB 2.0 MOST150 Dual Mode FS/HS 1x PHY, 1x ULPI GMAC AVB KBD MediaLB Program/Data Storage Serial Interfaces UART x10 QSPI McSPI x4 McASP x8 512-KB RAM with ECC I2C x6 OCMC EMIF x1 1x 32-bit DDR3/3L GPMC / ELM (NAND/NOR/ Async) 256-KB ROM DCAN x2 PCIe SS x2 MMC / SD x4 SATA DMM intro-001 Copyright © 2016, Texas Instruments Incorporated Figure 1-1. DRA72x Block Diagram Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Device Overview 3 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table of Contents 1 2 3 Device Overview ......................................... 1 7.12 Timers .............................................. 246 1.1 Features .............................................. 1 7.13 Inter-Integrated Circuit Interface (I2C) ............. 246 1.2 Applications ........................................... 2 1.3 Description ............................................ 2 7.14 7.15 1.4 Functional Block Diagram HDQ / 1-Wire Interface (HDQ1W) ................. 249 Universal Asynchronous Receiver Transmitter (UART) ............................................. 252 Revision History ......................................... 5 Device Comparison ..................................... 6 7.16 Multichannel Serial Peripheral Interface (McSPI) 253 7.17 Quad Serial Peripheral Interface (QSPI) 259 Device Comparison Table ............................ 6 7.18 Terminal Configuration and Functions .............. 8 7.19 4.1 Terminal Assignment ................................. 8 4.2 Ball Characteristics ................................... 9 7.20 7.21 4.3 Multiplexing Characteristics ......................... 71 4.4 Signal Descriptions .................................. 88 3.1 4 5 6 7 ......................................... 5.1 Absolute Maximum Ratings........................ 5.2 ESD Ratings ....................................... 5.3 Power on Hour (POH) Limits ...................... 5.4 Recommended Operating Conditions ............. 5.5 Operating Performance Points ..................... 5.6 Power Consumption Summary .................... 5.7 Electrical Characteristics ........................... 5.8 Thermal Characteristics ............................ 5.9 Power Supply Sequences ......................... Clock Specifications ................................. 6.1 Input Clock Specifications ......................... 6.2 DPLLs, DLLs Specifications ....................... Specifications 3 126 126 127 127 128 131 153 153 163 174 175 184 7.1 Timing Test Conditions ............................ 188 7.2 Interface Clock Specifications ..................... Timing Parameters and Information ............... 188 188 Recommended Clock and Control Signal Transition Behavior............................................ 190 7.5 Virtual and Manual I/O Timing Modes ............. 190 7.6 Video Input Ports (VIP) ............................ 192 7.7 7.8 Display Subsystem - Video Output Ports .......... 211 Display Subsystem - High-Definition Multimedia Interface (HDMI) ................................... 221 7.9 Camera Serial Interface 2 CAL bridge (CSI2) ..... 222 7.10 External Memory Interface (EMIF)................. 222 7.11 General-Purpose Memory Controller (GPMC) ..... 222 Table of Contents 8 162 Timing Requirements and Switching Characteristics ........................................ 188 7.3 7.4 4 ........................... 9 . .......... Multichannel Audio Serial Port (McASP) .......... Universal Serial Bus (USB) ........................ Serial Advanced Technology Attachment (SATA) . 263 283 284 Peripheral Component Interconnect Express (PCIe) .............................................. 285 7.22 Controller Area Network Interface (DCAN) ........ 285 7.23 Ethernet Interface (GMAC_SW) ................... 286 7.24 Media Local Bus (MLB) interface .................. 299 7.25 eMMC/SD/SDIO 7.26 General-Purpose Interface (GPIO) ................ 324 7.27 Audio Tracking Logic (ATL) ........................ 325 7.28 System and Miscellaneous interfaces ............. 325 7.29 Test Interfaces ..................................... 325 ................................... 300 Applications, Implementation, and Layout ...... 330 ........................................ 8.1 Introduction 8.2 Power Optimizations ............................... 331 8.3 Core Power Domains .............................. 342 ........................... .............................. 8.6 Clock Routing Guidelines .......................... 8.7 DDR3 Board Design and Layout Guidelines....... Device and Documentation Support .............. 9.1 Device Nomenclature .............................. 9.2 Tools and Software ................................ 9.3 Documentation Support ............................ 9.4 Receiving Notification of Documentation Updates. 9.5 Community Resources............................. 9.6 Related Links ...................................... 9.7 Trademarks ........................................ 9.8 Electrostatic Discharge Caution ................... 9.9 Export Control Notice .............................. 9.10 Glossary............................................ 8.4 Single-Ended Interfaces 8.5 Differential Interfaces 330 352 354 375 376 400 400 402 402 403 403 403 403 404 404 404 10 Mechanical Packaging and Orderable Information ............................................. 405 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 2 Revision History Changes from August 1, 2016 to January 30, 2017 (from A Revision (July 2016) to B Revision) • • • • • • • • • • • • • • • • • • • Page Updated Features list ................................................................................................................ 1 Updated DSIS Description for "blank" in Section 4.2 ........................................................................... 11 Added a note regarding rstoutn in Table 4-30 ................................................................................. 119 Changed GPMC 1 Load / 5 Load to Default Mode / Alternate Mode in Table 4-30 ...................................... 119 Updated ESD Ratings table to include HDMI pins specifics ................................................................. 127 Fixed typos and clean-up in Table 5-4 .......................................................................................... 128 Updated IQ1833 Buffers DC Electrical Characteristics Table ............................................................... 156 Updated rstoutn timing in Figure 5-4 ............................................................................................ 164 Added DSS_VIRTUAL1 and MMC2_VIRTUAL2 options to the Timing Chapter Section 7 .............................. 190 Changed GPMC 1 Load / 5 Load to Default Mode / Alternate Mode in Table 7-2 ........................................ 190 Added new timing information for VIP, DSS VOUT, GPMC, McSPI, QSPI, McASP and Ethernet Interfaces ........ 192 Added missing balls for vin1b in IOSET7 in Table 7-4 ....................................................................... 194 Updated Manual Modes for VIP, DSS and MMC modules ................................................................... 201 Updated are Virtual Mode Case Details for McASP2 when AXR(Inputs)/CLKX/FSX in 80MHz and non-80MHz operation. .......................................................................................................................... 270 Fixed typo in naming of Figure 7-47 to Figure 7-50 ........................................................................... 277 Removed 1149.7 (cJTAG) support from the DRA72x family of devices.................................................... 328 Updated details for SMPS1 of the TPS65917 PMIC in Table 8-5 ........................................................... 346 Updated capacitor value in diagram for PLL supply decoupling ............................................................ 356 Updated symbolization in Printed Device Reference Figure 9-1 and Nomenclature Description Table 9-1 ........... 401 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Revision History 5 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 3 Device Comparison 3.1 Device Comparison Table Table 3-1 shows a comparison between devices, highlighting the differences. Table 3-1. Device Comparison Device Features DRA722 DRA724 DRA725 DRA726 H J L P Processors/Accelerators Speed Grades ARM Single Cortex-A15 Microprocessor (MPU) Subsystem MPU core 0 Yes C66x VLIW DSP DSP1 Yes BitBLT 2D Hardware Acceleration Engine (BB2D) BB2D Yes VOUT1 Yes VOUT2 Yes VOUT3 Yes HDMI Yes IPU1 Yes Display Subsystem Dual ARM Cortex-M4 Image Processing Unit (IPU) IPU2 Yes Image Video Accelarator (IVA) IVA Yes SGX544 Single-Core 3D Graphics Processing Unit (GPU) GPU Yes vin1a Yes vin1b Yes vin2a Yes vin2b Yes VPE Yes Video Input Port (VIP) VIP1 Video Processing Engine (VPE) Program/Data Storage On-Chip Shared Memory (RAM) OCMC_RAM1 General-Purpose Memory Controller (GPMC) GPMC Yes EMIF1 up to 2GB across single chip select DDR3 Memory Controller SECDED/ECC Dynamic Memory Manager (DMM) 512KB (1) No DMM Yes ATL Yes VCP1 Yes VCP2 Yes DCAN1 Yes DCAN2 Yes Enhanced DMA (EDMA) EDMA Yes System DMA (DMA_SYSTEM) DMA_SYSTEM Yes Radio Support Audio Tracking Logic (ATL) Viterbi Coprocessor (VCP) Peripherals Dual Controller Area Network (DCAN) Interface Ethernet Subsystem (Ethernet SS) General-Purpose I/O (GPIO) GMAC_SW[0] MII, RMII, or RGMII GMAC_SW[1] MII, RMII, or RGMII GPIO 2 Up to 215 Inter-Integrated Circuit Interface (I C) I2C 6 System Mailbox Module MAILBOX 13 Media Local Bus Subsystem (MLBSS) MLB (1) 6 Yes ECC is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. Device Comparison Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 3-1. Device Comparison (continued) Device Features DRA722 Camera Adaptation Layer (CAL) Camera Serial Interface 2 (CSI2) Multichannel Audio Serial Port (McASP) MultiMedia Card/Secure Digital/Secure Digital Input Output Interface (MMC/SD/SDIO) DRA724 CSI2_0 1 CLK + 4 Data CSI2_1 1 CLK + 2 Data McASP1 16 serializers McASP2 16 serializers McASP3 4 serializers McASP4 4 serializers McASP5 4 serializers McASP6 4 serializers McASP7 4 serializers McASP8 4 serializers MMC1 1x UHSI 4b MMC2 1x eMMC 8b MMC3 1x SDIO 8b MMC4 PCI Express 3.0 Port with Integrated PHY DRA725 1x SDIO 4b PCIe_SS1 Up to two lanes (second lane shared with PCIe_SS2 and USB1) PCIe_SS2 Single lane (shared with PCIe_SS1 and USB1) Serial Advanced Technology Attachment (SATA) SATA Yes Real-Time Clock Subsystem (RTCSS) RTCSS Yes Multichannel Serial Peripheral Interface (McSPI) McSPI 4 HDQ1W HDQ1W Yes Quad SPI (QSPI) QSPI Yes Spinlock Module SPINLOCK Yes Keyboard Controller (KBD) KBD Yes Timers, General-Purpose TIMERS GP 16 Timer, Watchdog WD TIMER Yes PWMSS1 Yes PWMSS2 Yes PWMSS3 Yes Pulse-Width Modulation Subsystem (PWMSS) Universal Asynchronous Receiver/Transmitter (UART) UART Universal Serial Bus (USB3.0) Universal Serial Bus (USB2.0) DRA726 10 USB1 (Super-Speed, Dual-Role-Device [DRD]) Yes USB2 (High-Speed, Dual-Role-Device [DRD], with embedded HS PHY) Yes USB3 (High-Speed, OTG2.0, with ULPI) Yes USB4 (High-Speed, OTG2.0, with ULPI) No Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Device Comparison 7 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 4 Terminal Configuration and Functions 4.1 Terminal Assignment Figure 4-1 shows the ball locations for the 760 plastic ball grid array (PBGA) package and isused in conjunction with Table 4-2 through Table 4-35 to locate signal names and ball grid numbers. SPRS906_BALL_01 Figure 4-1. ABC S-PBGA-N760 Package (Bottom View) NOTE The following bottom balls are not pinned out: AF7, AF10, AF13, AF16, AF19, AE4, AE25, AB26, W3, W26, T3, T26, N3, N26, K3, K26, G3, D4, D25, C10, C13, C16, C19, C22. These balls do not exist on the package. NOTE The following bottom balls are not connected: AH11, AH12, AG2, AG8, AG11, AG12, AF4, AF6, AF8, AF9, AE3, AE5, AE6, AE8, AE9, AD3, AD8, AD9, Y15, Y16, V18, V19, U18, U19, U22, U23, U24, U25, U26, U27, U28, T22, T23, T27, T28, R20, R22, R23, R24, R25, R26, R27, R28, P19, P22, P23, P24, P25, P26, P27, N20, N22, N23, N27, N28, M20, M21, M22, M23, M24, M25, M26, M27, M28, L20, L21, L22, L23, L24, L25, L26, L27, L28, K20, K21, K22, K23, K27, K28, J20, J21, J22, J23, J24, J25, J26, J27, H20, H21, H22, H23, H24, H25, H26, H27, H28, G22, G23, G24, G25, G26, G27, G28, F24, F25, F26, F27, F28, E24, E26, E27, E28. These balls can be connected as desired, including to VSS. For users designing DRA74x / DRA75x compatible PCB, please refer to DRA75x/DRA74x Data Manual for appropriate requirements. 4.1.1 Unused Balls Connection Requirements This section describes the connection requirements of the unused and reserved balls. 8 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 NOTE The following balls are reserved: A27, K14, Y5, Y10, B28 These balls must be left unconnected. NOTE All unused power supply balls must be supplied with the voltages specified in the Section 5.4, Recommended Operating Conditions, unless alternative tie-off options are included in Section 4.4, Signal Descriptions. Table 4-1. Unused Balls Specific Connection Requirements Balls Connection Requirements AE15, AC15, AE14, D20, AD17, AC16, V27 These balls must be connected to GND through an external pull resistor if unused. E20, D21, E23, C20, C21, V28, F18 These balls must be connect to the corresponding power supply through an external pull resistor if unused. AF14 (rtc_iso) This ball should be connected to the corresponding power supply through an external pull resistor if unused; or can be connected to F22 (porz) when RTC unused (level translation may be needed) AB17 (rtc_porz) This ball should be connected to VSS when RTC is unused; or can be connected to F22 (porz) when RTC unused (level translation may be needed) NOTE All other unused signal balls with a Pad Configuration register can be left unconnected with their internal pullup or pulldown resistor enabled. NOTE All other unused signal balls without a Pad Configuration register can be left unconnected. 4.2 Ball Characteristics Table 4-2 describes the terminal characteristics and the signals multiplexed on each ball. The following list describes the table column headers: 1. BALL NUMBER:This column lists ball numbers on the bottom side associated with each signal on the bottom. 2. BALL NAME: This column lists mechanical name from package device (name is taken from muxmode 0). 3. SIGNAL NAME:This column lists names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0). NOTE Table 4-2 does not take into account the subsystem multiplexing signals. Subsystem multiplexing signals are described in Section 4.4, Signal Descriptions. NOTE In driver off mode, the buffer is configured in high-impedance. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 9 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE In some cases Table 4-2 may present more than one signal name per muxmode for the same ball. First signal in the list is the dominant function as selected via CTRL_CORE_PAD_* register. All other signals are virtual functions that present alternate multiplexing options. This virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT register. For more information on how to use this options, please refer to Device TRM, Chapter Control Module, Section Pad Configuration Registers. 4. MUXMODE: Multiplexing mode number: (a) MUXMODE 0 is the primary mode; this means that when MUXMODE=0 is set, the function mapped on the pin corresponds to the name of the pin. The primary muxmode is not necessarily the default muxmode. NOTE The default mode is the mode at the release of the reset; also see the RESET REL. MUXMODE column. (b) MUXMODE 1 through 15 are possible muxmodes for alternate functions. On each pin, some muxmodes are effectively used for alternate functions, while some muxmodes are not used. Only MUXMODE values which correspond to defined functions should be used. 5. TYPE: Signal type and direction: – I = Input – O = Output – IO = Input or Output – D = Open drain – DS = Differential Signaling – A = Analog – PWR = Power – GND = Ground – CAP = LDO Capacitor 6. BALL RESET STATE: The state of the terminal at power-on reset: – drive 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated) – drive 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated) – OFF: High-impedance – PD: High-impedance with an active pulldown resistor – PU: High-impedance with an active pullup resistor 7. BALL RESET REL. STATE: The state of the terminal at the deactivation of the rstoutn signal (also mapped to the PRCM SYS_WARM_OUT_RST signal) – drive 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated) – drive clk (OFF): The buffer drives a toggling clock (pulldown or pullup resistor not activated) – drive 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated) – OFF: High-impedance – PD: High-impedance with an active pulldown resistor – PU: High-impedance with an active pullup resistor NOTE For more information on the CORE_PWRON_RET_RST reset signal and its reset sources, see the Power, Reset, and Clock Management / PRCM Reset Management Functional Description section of the Device TRM. 8. BALL RESET REL. MUXMODE: This muxmode is automatically configured at the release of the 10 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 rstoutn signal (also mapped to the PRCM SYS_WARM_OUT_RST signal). 9. IO VOLTAGE VALUE: This column describes the IO voltage value (VDDS supply). 10. POWER: The voltage supply that powers the terminal IO buffers. 11. HYS: Indicates if the input buffer is with hysteresis: – Yes: With hysteresis – No: Without hysteresis An empty box means "Yes". NOTE For more information, see the hysteresis values in Section 5.7, Electrical Characteristics. 12. BUFFER TYPE: Drive strength of the associated output buffer. NOTE For programmable buffer strength: – The default value is given in Table 4-2. – A note describes all possible values according to the selected muxmode. 13. PULLUP / PULLDOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software. 14. DSIS: The deselected input state (DSIS) indicates the state driven on the peripheral input (logic "0" or logic "1") when the peripheral pin function is not selected by any of the PINCNTLx registers. – 0: Logic 0 driven on the peripheral's input signal port. – 1: Logic 1 driven on the peripheral's input signal port. – blank: Pin state driven on the peripheral's input signal port. NOTE Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration (Hi-Z mode is not an input signal). NOTE When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s behavior is undefined. This should be avoided. NOTE Some of the EMIF1 signals have an additional state change at the release of porz. The state that the signals change to at the release of porz is as follows: drive 0 (OFF) for: ddr1_csn0, ddr1_ck, ddr1_nck, ddr1_casn, ddr1_rasn, ddr1_wen, ddr1_ba[2:0], ddr1_a[15:0]. OFF for: ddr1_ecc_d[7:0], ddr1_dqm[3:0], ddr1_dqm_ecc, ddr1_dqs[3:0], ddr1_dqsn[3:0], ddr1_dqs_ecc, ddr1_dqsn_ecc, ddr1_d[31:0]. NOTE ECC is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 11 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE Dual rank support is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. 12 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] K9 cap_vbbldo_dsp cap_vbbldo_dsp CAP Y14 cap_vbbldo_gpu cap_vbbldo_gpu CAP J10 cap_vbbldo_iva cap_vbbldo_iva CAP J16 cap_vbbldo_mpu cap_vbbldo_mpu CAP T20 cap_vddram_core1 cap_vddram_core1 CAP L9 cap_vddram_core3 cap_vddram_core3 CAP J19 cap_vddram_core4 cap_vddram_core4 CAP J9 cap_vddram_dsp cap_vddram_dsp CAP Y13 cap_vddram_gpu cap_vddram_gpu CAP K16 cap_vddram_iva cap_vddram_iva CAP K19 cap_vddram_mpu cap_vddram_mpu AE1 csi2_0_dx0 csi2_0_dx0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF1 csi2_0_dx1 csi2_0_dx1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF2 csi2_0_dx2 csi2_0_dx2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AH4 csi2_0_dx3 csi2_0_dx3 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AH3 csi2_0_dx4 csi2_0_dx4 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AD2 csi2_0_dy0 csi2_0_dy0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AE2 csi2_0_dy1 csi2_0_dy1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF3 csi2_0_dy2 csi2_0_dy2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AG4 csi2_0_dy3 csi2_0_dy3 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AG3 csi2_0_dy4 csi2_0_dy4 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AG5 csi2_1_dx0 csi2_1_dx0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AG6 csi2_1_dx1 csi2_1_dx1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AH7 csi2_1_dx2 csi2_1_dx2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AH5 csi2_1_dy0 csi2_1_dy0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AH6 csi2_1_dy1 csi2_1_dy1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AG7 csi2_1_dy2 csi2_1_dy2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD DSIS [14] CAP Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 13 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] G19 G20 BALL NAME [2] dcan1_rx dcan1_tx SIGNAL NAME [3] MUXMODE [4] TYPE [5] dcan1_rx 0 IO uart8_txd 2 O mmc2_sdwp 3 I sata1_led 4 O hdmi1_cec 6 IO gpio1_15 14 IO Driver off 15 I dcan1_tx 0 IO uart8_rxd 2 I mmc2_sdcd 3 I hdmi1_hpd 6 IO gpio1_14 14 IO Driver off 15 I BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PU 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv3 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS 1 0 PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1 1 1 AD20 ddr1_a0 ddr1_a0 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC19 ddr1_a1 ddr1_a1 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC20 ddr1_a2 ddr1_a2 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB19 ddr1_a3 ddr1_a3 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF21 ddr1_a4 ddr1_a4 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AH22 ddr1_a5 ddr1_a5 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG23 ddr1_a6 ddr1_a6 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE21 ddr1_a7 ddr1_a7 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF22 ddr1_a8 ddr1_a8 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE22 ddr1_a9 ddr1_a9 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AD21 ddr1_a10 ddr1_a10 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AD22 ddr1_a11 ddr1_a11 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC21 ddr1_a12 ddr1_a12 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF18 ddr1_a13 ddr1_a13 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE17 ddr1_a14 ddr1_a14 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy 14 DSIS [14] Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] AD18 ddr1_a15 ddr1_a15 0 O PD drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF17 ddr1_ba0 ddr1_ba0 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE18 ddr1_ba1 ddr1_ba1 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB18 ddr1_ba2 ddr1_ba2 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC18 ddr1_casn ddr1_casn 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG24 ddr1_ck ddr1_ck 0 O PD drive 0 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG22 ddr1_cke ddr1_cke 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AH23 ddr1_csn0 ddr1_csn0 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB16 ddr1_csn1 ddr1_csn1 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF25 ddr1_d0 ddr1_d0 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF26 ddr1_d1 ddr1_d1 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG26 ddr1_d2 ddr1_d2 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AH26 ddr1_d3 ddr1_d3 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF24 ddr1_d4 ddr1_d4 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE24 ddr1_d5 ddr1_d5 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF23 ddr1_d6 ddr1_d6 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE23 ddr1_d7 ddr1_d7 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC23 ddr1_d8 ddr1_d8 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF27 ddr1_d9 ddr1_d9 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG27 ddr1_d10 ddr1_d10 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF28 ddr1_d11 ddr1_d11 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE26 ddr1_d12 ddr1_d12 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC25 ddr1_d13 ddr1_d13 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy DSIS [14] Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 15 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] AC24 ddr1_d14 ddr1_d14 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AD25 ddr1_d15 ddr1_d15 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy V20 ddr1_d16 ddr1_d16 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy W20 ddr1_d17 ddr1_d17 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB28 ddr1_d18 ddr1_d18 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC28 ddr1_d19 ddr1_d19 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC27 ddr1_d20 ddr1_d20 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y19 ddr1_d21 ddr1_d21 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB27 ddr1_d22 ddr1_d22 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y20 ddr1_d23 ddr1_d23 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA23 ddr1_d24 ddr1_d24 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y22 ddr1_d25 ddr1_d25 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y23 ddr1_d26 ddr1_d26 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA24 ddr1_d27 ddr1_d27 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y24 ddr1_d28 ddr1_d28 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA26 ddr1_d29 ddr1_d29 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA25 ddr1_d30 ddr1_d30 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA28 ddr1_d31 ddr1_d31 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AD23 ddr1_dqm0 ddr1_dqm0 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AB23 ddr1_dqm1 ddr1_dqm1 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC26 ddr1_dqm2 ddr1_dqm2 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AA27 ddr1_dqm3 ddr1_dqm3 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy V26 ddr1_dqm_ecc ddr1_dqm_ecc 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy 16 Terminal Configuration and Functions DSIS [14] Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] AH25 ddr1_dqs0 ddr1_dqs0 0 IO PD PD 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy AE27 ddr1_dqs1 ddr1_dqs1 0 IO PD PD 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy AD27 ddr1_dqs2 ddr1_dqs2 0 IO PD PD 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy Y28 ddr1_dqs3 ddr1_dqs3 0 IO PD PD 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy AG25 ddr1_dqsn0 ddr1_dqsn0 0 IO PU PU 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy AE28 ddr1_dqsn1 ddr1_dqsn1 0 IO PU PU 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy AD28 ddr1_dqsn2 ddr1_dqsn2 0 IO PU PU 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy Y27 ddr1_dqsn3 ddr1_dqsn3 0 IO PU PU 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy V28 ddr1_dqsn_ecc ddr1_dqsn_ecc 0 IO PU PU 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy V27 ddr1_dqs_ecc ddr1_dqs_ecc 0 IO PD PD 1.35/1.5 vdds_ddr1 NA LVCMOS DDR PUx/PDy W22 ddr1_ecc_d0 ddr1_ecc_d0 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy V23 ddr1_ecc_d1 ddr1_ecc_d1 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy W19 ddr1_ecc_d2 ddr1_ecc_d2 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy W23 ddr1_ecc_d3 ddr1_ecc_d3 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y25 ddr1_ecc_d4 ddr1_ecc_d4 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy V24 ddr1_ecc_d5 ddr1_ecc_d5 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy V25 ddr1_ecc_d6 ddr1_ecc_d6 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy Y26 ddr1_ecc_d7 ddr1_ecc_d7 0 IO PD PD 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AH24 ddr1_nck ddr1_nck 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AE20 ddr1_odt0 ddr1_odt0 0 O PD drive 0 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AC17 ddr1_odt1 ddr1_odt1 0 O PD drive 0 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AF20 ddr1_rasn ddr1_rasn 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy AG21 ddr1_rst ddr1_rst 0 O PD drive 0 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy DSIS [14] Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 17 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Y18 ddr1_vref0 ddr1_vref0 0 PWR OFF drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR NA AH21 ddr1_wen ddr1_wen 0 O PU drive 1 (OFF) 1.35/1.5 vdds_ddr1 No LVCMOS DDR PUx/PDy G21 emu0 emu0 0 IO PU PU 0 1.8/3.3 vddshv3 Yes gpio8_30 14 IO Dual Voltage PU/PD LVCMOS emu1 0 IO PU PU 0 1.8/3.3 vddshv3 Yes gpio8_31 14 IO Dual Voltage PU/PD LVCMOS gpio6_10 0 IO PU PU 15 1.8/3.3 vddshv7 Yes mdio_mclk 1 O Dual Voltage PU/PD LVCMOS i2c3_sda 2 IO 1 usb3_ulpi_d7 3 IO 0 vin2b_hsync1 4 I vin1a_clk0 9 I ehrpwm2A 10 O gpio6_10 14 IO Driver off 15 I gpio6_11 0 IO mdio_d 1 IO i2c3_scl 2 IO 1 usb3_ulpi_d6 3 IO 0 vin2b_vsync1 4 I vin1a_de0 9 I ehrpwm2B 10 O gpio6_11 14 IO Driver off 15 I gpio6_14 0 IO mcasp1_axr8 1 IO dcan2_tx 2 IO 1 uart10_rxd 3 I 1 vout2_hsync 6 O vin2a_hsync0 vin1a_hsync0 8 I i2c3_sda 9 IO timer1 10 IO gpio6_14 14 IO Driver off 15 I D24 AC5 AB4 E21 18 emu1 gpio6_10 gpio6_11 gpio6_14 1 0 PU PU 15 1.8/3.3 vddshv7 Yes Dual Voltage PU/PD LVCMOS 1 0 PU PU 15 Terminal Configuration and Functions 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] F20 F21 R6 BALL NAME [2] gpio6_15 gpio6_16 gpmc_a0 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PU 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv3 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] gpio6_15 0 IO mcasp1_axr9 1 IO dcan2_rx 2 IO uart10_txd 3 O vout2_vsync 6 O vin2a_vsync0 vin1a_vsync0 8 I i2c3_scl 9 IO timer2 10 IO gpio6_15 14 IO Driver off 15 I gpio6_16 0 IO mcasp1_axr10 1 IO vout2_fld 6 O vin2a_fld0 vin1a_fld0 8 I clkout1 9 O timer3 10 IO gpio6_16 14 IO Driver off 15 I gpmc_a0 0 O vin1a_d16 2 I vout3_d16 3 O vin2a_d0 vin1a_d0 4 I vin1b_d0 6 I 0 i2c4_scl 7 IO 1 uart5_rxd 8 I 1 gpio7_3 gpmc_a26 gpmc_a16 14 IO Driver off 15 I 0 1 1 PU PD PU PD 15 15 1.8/3.3 1.8/3.3 vddshv3 vddshv10 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 19 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] T9 T6 T7 20 BALL NAME [2] gpmc_a1 gpmc_a2 gpmc_a3 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I vout3_d17 3 O vin2a_d1 vin1a_d1 4 I vin1b_d1 6 I 0 i2c4_sda 7 IO 1 uart5_txd 8 O gpio7_4 14 IO Driver off 15 I gpmc_a2 0 O vin1a_d18 2 I vout3_d18 3 O vin2a_d2 vin1a_d2 4 I vin1b_d2 6 I 0 uart7_rxd 7 I 1 uart5_ctsn 8 I 1 gpio7_5 14 IO Driver off 15 I gpmc_a3 0 O qspi1_cs2 1 O vin1a_d19 2 I vout3_d19 3 O vin2a_d3 vin1a_d3 4 I vin1b_d3 6 I uart7_txd 7 O uart5_rtsn 8 O gpio7_6 14 IO Driver off 15 I PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv10 Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] O vddshv10 Yes PULL UP/DOWN TYPE [13] 2 1.8/3.3 vddshv10 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] vin1a_d17 PD 15 POWER [10] gpmc_a1 PD PD I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 1 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] P6 R9 R5 BALL NAME [2] gpmc_a4 gpmc_a5 gpmc_a6 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv10 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] gpmc_a4 0 O qspi1_cs3 1 O vin1a_d20 2 I vout3_d20 3 O vin2a_d4 vin1a_d4 4 I vin1b_d4 6 I 0 i2c5_scl 7 IO 1 uart6_rxd 8 I 1 gpio1_26 14 IO Driver off 15 I gpmc_a5 0 O vin1a_d21 2 I vout3_d21 3 O vin2a_d5 vin1a_d5 4 I vin1b_d5 6 I 0 i2c5_sda 7 IO 1 uart6_txd 8 O gpio1_27 14 IO Driver off 15 I gpmc_a6 0 O vin1a_d22 2 I vout3_d22 3 O vin2a_d6 vin1a_d6 4 I vin1b_d6 6 I 0 uart8_rxd 7 I 1 uart6_ctsn 8 I 1 gpio1_28 14 IO Driver off 15 I 1 0 PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv10 vddshv10 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 21 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] P5 N7 R4 N9 22 BALL NAME [2] gpmc_a7 gpmc_a8 gpmc_a9 gpmc_a10 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_a7 0 O vin1a_d23 2 I vout3_d23 3 O vin2a_d7 vin1a_d7 4 I vin1b_d7 6 I uart8_txd 7 O uart6_rtsn 8 O gpio1_29 14 IO Driver off 15 I gpmc_a8 0 O vin1a_hsync0 2 I vout3_hsync 3 O vin1b_hsync1 6 I timer12 7 IO spi4_sclk 8 IO gpio1_30 14 IO Driver off 15 I gpmc_a9 0 O vin1a_vsync0 2 I vout3_vsync 3 O vin1b_vsync1 6 I timer11 7 IO spi4_d1 8 IO gpio1_31 14 IO Driver off 15 I gpmc_a10 0 O vin1a_de0 2 I vout3_de 3 O vin1b_clk1 6 I timer10 7 IO spi4_d0 8 IO gpio2_0 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv10 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] P9 P4 R3 T2 BALL NAME [2] gpmc_a11 gpmc_a12 gpmc_a13 gpmc_a14 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv10 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] gpmc_a11 0 O vin1a_fld0 2 I vout3_fld 3 O vin2a_fld0 vin1a_fld0 4 I vin1b_de1 6 I timer9 7 IO spi4_cs0 8 IO gpio2_1 14 IO Driver off 15 I gpmc_a12 0 O vin2a_clk0 vin1a_clk0 4 I gpmc_a0 5 O vin1b_fld1 6 I timer8 7 IO spi4_cs1 8 IO 1 dma_evt1 9 I 0 gpio2_2 14 IO Driver off 15 I gpmc_a13 0 O qspi1_rtclk 1 I vin2a_hsync0 vin1a_hsync0 4 I timer7 7 IO spi4_cs2 8 IO 1 dma_evt2 9 I 0 gpio2_3 14 IO Driver off 15 I gpmc_a14 0 O qspi1_d3 1 IO vin2a_vsync0 vin1a_vsync0 4 I timer6 7 IO spi4_cs3 8 IO gpio2_4 14 IO Driver off 15 I 0 0 1 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv10 vddshv10 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 23 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] U2 U1 P3 R2 K7 24 BALL NAME [2] gpmc_a15 gpmc_a16 gpmc_a17 gpmc_a18 gpmc_a19 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_a15 0 O qspi1_d2 1 IO vin2a_d8 vin1a_d8 4 I timer5 7 IO gpio2_5 14 IO Driver off 15 I gpmc_a16 0 O qspi1_d0 1 IO vin2a_d9 vin1a_d9 4 I gpio2_6 14 IO Driver off 15 I gpmc_a17 0 O qspi1_d1 1 IO vin2a_d10 vin1a_d10 4 I gpio2_7 14 IO Driver off 15 I gpmc_a18 0 O qspi1_sclk 1 IO vin2a_d11 vin1a_d11 4 I gpio2_8 14 IO Driver off 15 I gpmc_a19 0 O mmc2_dat4 1 IO gpmc_a13 2 O vin2a_d12 vin1a_d12 4 I vin2b_d0 vin1b_d0 6 I gpio2_9 14 IO Driver off 15 I BALL RESET STATE [6] PD PD PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD PD PD 15 15 15 I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 1.8/3.3 POWER [10] vddshv10 vddshv10 vddshv10 HYS [11] Yes Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage PU/PD LVCMOS Terminal Configuration and Functions DSIS [14] 0 0 0 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] M7 J5 K6 J7 BALL NAME [2] gpmc_a20 gpmc_a21 gpmc_a22 gpmc_a23 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_a20 0 O mmc2_dat5 1 IO gpmc_a14 2 O vin2a_d13 vin1a_d13 4 I vin2b_d1 vin1b_d1 6 I gpio2_10 14 IO Driver off 15 I gpmc_a21 0 O mmc2_dat6 1 IO gpmc_a15 2 O vin2a_d14 vin1a_d14 4 I vin2b_d2 vin1b_d2 6 I gpio2_11 14 IO Driver off 15 I gpmc_a22 0 O mmc2_dat7 1 IO gpmc_a16 2 O vin2a_d15 vin1a_d15 4 I vin2b_d3 vin1b_d3 6 I gpio2_12 14 IO Driver off 15 I gpmc_a23 0 O mmc2_clk 1 IO gpmc_a17 2 O vin2a_fld0 vin1a_fld0 4 I vin2b_d4 vin1b_d4 6 I gpio2_13 14 IO Driver off 15 I BALL RESET STATE [6] PD PD PD PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD PD PD PD 15 15 15 15 I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [10] vddshv11 vddshv11 vddshv11 vddshv11 HYS [11] Yes Yes Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS DSIS [14] 1 1 1 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 25 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] J4 J6 H4 H5 M6 26 BALL NAME [2] gpmc_a24 gpmc_a25 gpmc_a26 gpmc_a27 gpmc_ad0 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_a24 0 O mmc2_dat0 1 IO gpmc_a18 2 O vin1a_d8 4 I vin2b_d5 vin1b_d5 6 I gpio2_14 14 IO Driver off 15 I gpmc_a25 0 O mmc2_dat1 1 IO gpmc_a19 2 O vin1a_d9 4 I vin2b_d6 vin1b_d6 6 I gpio2_15 14 IO Driver off 15 I gpmc_a26 0 O mmc2_dat2 1 IO gpmc_a20 2 O vin1a_d10 4 I vin2b_d7 vin1b_d7 6 I gpio2_16 14 IO Driver off 15 I gpmc_a27 0 O mmc2_dat3 1 IO gpmc_a21 2 O vin1a_d11 4 I vin2b_hsync1 vin1b_hsync1 6 I gpio2_17 14 IO Driver off 15 I gpmc_ad0 0 IO vin1a_d0 2 I vout3_d0 3 O gpio1_6 14 IO sysboot0 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv11 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 1 0 PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage PU/PD LVCMOS 1 0 PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage PU/PD LVCMOS 1 0 PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage PU/PD LVCMOS 1 0 OFF OFF 15 Terminal Configuration and Functions 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] M2 L5 M1 L6 L4 L3 L2 BALL NAME [2] gpmc_ad1 gpmc_ad2 gpmc_ad3 gpmc_ad4 gpmc_ad5 gpmc_ad6 gpmc_ad7 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_ad1 0 IO vin1a_d1 2 I vout3_d1 3 O gpio1_7 14 IO sysboot1 15 I gpmc_ad2 0 IO vin1a_d2 2 I vout3_d2 3 O gpio1_8 14 IO sysboot2 15 I gpmc_ad3 0 IO vin1a_d3 2 I vout3_d3 3 O gpio1_9 14 IO sysboot3 15 I gpmc_ad4 0 IO vin1a_d4 2 I vout3_d4 3 O gpio1_10 14 IO sysboot4 15 I gpmc_ad5 0 IO vin1a_d5 2 I vout3_d5 3 O gpio1_11 14 IO sysboot5 15 I gpmc_ad6 0 IO vin1a_d6 2 I vout3_d6 3 O gpio1_12 14 IO sysboot6 15 I gpmc_ad7 0 IO vin1a_d7 2 I vout3_d7 3 O gpio1_13 14 IO sysboot7 15 I BALL RESET STATE [6] OFF OFF OFF OFF OFF OFF OFF BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] OFF OFF OFF OFF OFF OFF OFF 15 15 15 15 15 15 15 I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [10] vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 HYS [11] Yes Yes Yes Yes Yes Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 27 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] L1 K2 J1 J2 H1 J3 H2 28 BALL NAME [2] gpmc_ad8 gpmc_ad9 gpmc_ad10 gpmc_ad11 gpmc_ad12 gpmc_ad13 gpmc_ad14 SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_ad8 0 IO vin1a_d8 2 I vout3_d8 3 O gpio7_18 14 IO sysboot8 15 I gpmc_ad9 0 IO vin1a_d9 2 I vout3_d9 3 O gpio7_19 14 IO sysboot9 15 I gpmc_ad10 0 IO vin1a_d10 2 I vout3_d10 3 O gpio7_28 14 IO sysboot10 15 I gpmc_ad11 0 IO vin1a_d11 2 I vout3_d11 3 O gpio7_29 14 IO sysboot11 15 I gpmc_ad12 0 IO vin1a_d12 2 I vout3_d12 3 O gpio1_18 14 IO sysboot12 15 I gpmc_ad13 0 IO vin1a_d13 2 I vout3_d13 3 O gpio1_19 14 IO sysboot13 15 I gpmc_ad14 0 IO vin1a_d14 2 I vout3_d14 3 O gpio1_20 14 IO sysboot14 15 I BALL RESET STATE [6] OFF OFF OFF OFF OFF OFF OFF BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] OFF OFF OFF OFF OFF OFF OFF 15 15 15 15 15 15 15 Terminal Configuration and Functions I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [10] vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 HYS [11] Yes Yes Yes Yes Yes Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] H3 N1 N6 M4 BALL NAME [2] gpmc_ad15 gpmc_advn_ale gpmc_ben0 gpmc_ben1 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] OFF BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I vout3_d15 3 O gpio1_21 14 IO sysboot15 15 I gpmc_advn_ale 0 O gpmc_cs6 1 O clkout2 2 O gpmc_wait1 3 I vin2a_vsync0 vin1a_vsync0 4 I gpmc_a2 5 O gpmc_a23 6 O timer3 7 IO i2c3_sda 8 IO 1 dma_evt2 9 I 0 gpio2_23 gpmc_a19 14 IO Driver off 15 I gpmc_ben0 0 O gpmc_cs4 1 O vin2b_de1 vin1b_de1 6 I timer2 7 IO dma_evt3 9 I gpio2_26 gpmc_a21 14 IO Driver off 15 I gpmc_ben1 0 O gpmc_cs5 1 O vin2b_clk1 vin1b_clk1 4 I gpmc_a3 5 O vin2b_fld1 vin1b_fld1 6 I timer1 7 IO dma_evt4 9 I gpio2_27 gpmc_a22 14 IO Driver off 15 I Yes Dual Voltage PU/PD LVCMOS DSIS [14] IO vddshv10 Yes PULL UP/DOWN TYPE [13] 2 1.8/3.3 vddshv10 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] vin1a_d15 PU 15 POWER [10] gpmc_ad15 PU OFF I/O VOLTAGE VALUE [9] 0 0 Dual Voltage PU/PD LVCMOS 1 PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 29 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] P7 T1 H6 P2 30 BALL NAME [2] gpmc_clk gpmc_cs0 gpmc_cs1 gpmc_cs2 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PU 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv10 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] gpmc_clk 0 IO gpmc_cs7 1 O 0 clkout1 2 O gpmc_wait1 3 I vin2a_hsync0 vin1a_hsync0 4 I vin2a_de0 vin1a_de0 5 I vin2b_clk1 vin1b_clk1 6 I timer4 7 IO i2c3_scl 8 IO 1 dma_evt1 9 I 0 gpio2_22 gpmc_a20 14 IO Driver off 15 I gpmc_cs0 0 O gpio2_19 14 IO Driver off 15 I gpmc_cs1 0 O mmc2_cmd 1 IO gpmc_a22 2 O vin2a_de0 vin1a_de0 4 I vin2b_vsync1 vin1b_vsync1 6 I gpio2_18 14 IO Driver off 15 I gpmc_cs2 0 O qspi1_cs0 1 IO gpio2_20 gpmc_a23 gpmc_a13 14 IO Driver off 15 I 1 PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS PU PU 15 1.8/3.3 vddshv11 Yes Dual Voltage PU/PD LVCMOS PU PU 15 Terminal Configuration and Functions 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 1 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] P1 M5 N2 M3 BALL NAME [2] gpmc_cs3 gpmc_oen_ren gpmc_wait0 gpmc_wen SIGNAL NAME [3] MUXMODE [4] TYPE [5] gpmc_cs3 0 O qspi1_cs1 1 O vin1a_clk0 2 I vout3_clk 3 O gpmc_a1 5 O gpio2_21 gpmc_a24 gpmc_a14 14 IO Driver off 15 I gpmc_oen_ren 0 O gpio2_24 14 IO Driver off 15 I gpmc_wait0 0 I gpio2_28 gpmc_a25 gpmc_a15 14 IO Driver off 15 I gpmc_wen 0 O gpio2_25 14 IO BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PU 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv10 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 1 0 PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage PU/PD LVCMOS 1 Driver off 15 I AG16 hdmi1_clockx hdmi1_clockx 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AH16 hdmi1_clocky hdmi1_clocky 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AG17 hdmi1_data0x hdmi1_data0x 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AH17 hdmi1_data0y hdmi1_data0y 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AG18 hdmi1_data1x hdmi1_data1x 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AH18 hdmi1_data1y hdmi1_data1y 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AG19 hdmi1_data2x hdmi1_data2x 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy AH19 hdmi1_data2y hdmi1_data2y 0 O 1.8 vdda_hdmi NA HDMIPHY Pdy C20 i2c1_scl i2c1_scl 0 IO 1.8/3.3 vddshv3 Yes Driver off 15 I Dual Voltage PU/PD LVCMOS I2C C21 i2c1_sda i2c1_sda 0 IO 1.8/3.3 vddshv3 Yes Driver off 15 I Dual Voltage PU/PD LVCMOS I2C i2c2_scl 0 IO 15 1.8/3.3 vddshv3 Yes 1 IO Dual Voltage PU/PD LVCMOS I2C 1 hdmi1_ddc_sda Driver off 15 I i2c2_sda 0 IO 15 1.8/3.3 vddshv3 Yes 1 IO Dual Voltage PU/PD LVCMOS I2C 1 hdmi1_ddc_scl Driver off 15 I ljcb_clkn 0 IO 1.8 vdda_pcie NA LJCB F17 C25 AH15 i2c2_scl i2c2_sda ljcb_clkn NA Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 31 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] AG15 ljcb_clkp ljcb_clkp 0 IO B14 mcasp1_aclkr mcasp1_aclkr 0 IO mcasp7_axr2 1 IO vout2_d0 6 O vin2a_d0 vin1a_d0 8 I i2c4_sda 10 IO gpio5_0 14 IO Driver off 15 I mcasp1_aclkx 0 IO vin1a_fld0 7 I i2c3_sda 10 IO gpio7_31 14 IO Driver off 15 I mcasp1_axr0 0 IO uart6_rxd 3 I vin1a_vsync0 7 I 0 i2c5_sda 10 IO 1 gpio5_2 14 IO Driver off 15 I mcasp1_axr1 0 IO uart6_txd 3 O vin1a_hsync0 7 I 0 i2c5_scl 10 IO 1 gpio5_3 14 IO Driver off 15 I mcasp1_axr2 0 IO mcasp6_axr2 1 IO uart6_ctsn 3 I vout2_d2 6 O vin2a_d2 vin1a_d2 8 I gpio5_4 14 IO Driver off 15 I C14 G12 F12 G13 32 mcasp1_aclkx mcasp1_axr0 mcasp1_axr1 mcasp1_axr2 PD PD 15 1.8 vdda_pcie NA LJCB 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS DSIS [14] NA 0 0 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 1 PD PD PD PD PD PD 15 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 1 0 0 0 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] J11 E12 F13 C12 D12 BALL NAME [2] mcasp1_axr3 mcasp1_axr4 mcasp1_axr5 mcasp1_axr6 mcasp1_axr7 SIGNAL NAME [3] MUXMODE [4] TYPE [5] mcasp1_axr3 0 IO mcasp6_axr3 1 IO uart6_rtsn 3 O vout2_d3 6 O vin2a_d3 vin1a_d3 8 I gpio5_5 14 IO Driver off 15 I mcasp1_axr4 0 IO mcasp4_axr2 1 IO vout2_d4 6 O vin2a_d4 vin1a_d4 8 I gpio5_6 14 IO Driver off 15 I mcasp1_axr5 0 IO mcasp4_axr3 1 IO vout2_d5 6 O vin2a_d5 vin1a_d5 8 I gpio5_7 14 IO Driver off 15 I mcasp1_axr6 0 IO mcasp5_axr2 1 IO vout2_d6 6 O vin2a_d6 vin1a_d6 8 I gpio5_8 14 IO Driver off 15 I mcasp1_axr7 0 IO mcasp5_axr3 1 IO vout2_d7 6 O vin2a_d7 vin1a_d7 8 I timer4 10 IO gpio5_9 14 IO Driver off 15 I BALL RESET STATE [6] PD PD PD PD PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD PD PD PD PD 15 15 15 15 15 I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [10] vddshv3 vddshv3 vddshv3 vddshv3 vddshv3 HYS [11] Yes Yes Yes Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 33 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B12 A11 B13 A12 E14 34 BALL NAME [2] mcasp1_axr8 mcasp1_axr9 mcasp1_axr10 mcasp1_axr11 mcasp1_axr12 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] IO spi3_sclk 3 IO 0 vin1a_d15 7 I 0 timer5 10 IO gpio5_10 14 IO Driver off 15 I mcasp1_axr9 0 IO mcasp6_axr1 1 IO spi3_d1 3 IO 0 vin1a_d14 7 I 0 timer6 10 IO gpio5_11 14 IO Driver off 15 I mcasp1_axr10 0 IO mcasp6_aclkx 1 IO mcasp6_aclkr 2 IO spi3_d0 3 IO 0 vin1a_d13 7 I 0 timer7 10 IO gpio5_12 14 IO Driver off 15 I mcasp1_axr11 0 IO mcasp6_fsx 1 IO mcasp6_fsr 2 IO spi3_cs0 3 IO 1 vin1a_d12 7 I 0 timer8 10 IO gpio4_17 14 IO Driver off 15 I mcasp1_axr12 0 IO mcasp7_axr0 1 IO spi3_cs1 3 IO 1 vin1a_d11 7 I 0 timer9 10 IO gpio4_18 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] IO vddshv3 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv3 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] mcasp6_axr0 PD 15 POWER [10] mcasp1_axr8 PD PD I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 0 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] A13 G14 F14 J14 D14 BALL NAME [2] mcasp1_axr13 mcasp1_axr14 mcasp1_axr15 mcasp1_fsr mcasp1_fsx SIGNAL NAME [3] MUXMODE [4] TYPE [5] mcasp1_axr13 0 IO mcasp7_axr1 1 IO vin1a_d10 7 I timer10 10 IO gpio6_4 14 IO Driver off 15 I mcasp1_axr14 0 IO mcasp7_aclkx 1 IO mcasp7_aclkr 2 IO vin1a_d9 7 I timer11 10 IO gpio6_5 14 IO Driver off 15 I mcasp1_axr15 0 IO mcasp7_fsx 1 IO mcasp7_fsr 2 IO vin1a_d8 7 I timer12 10 IO gpio6_6 14 IO Driver off 15 I mcasp1_fsr 0 IO mcasp7_axr3 1 IO vout2_d1 6 O vin2a_d1 vin1a_d1 8 I i2c4_scl 10 IO gpio5_1 14 IO Driver off 15 I mcasp1_fsx 0 IO vin1a_de0 7 I i2c3_scl 10 IO gpio7_30 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv3 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 35 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] E15 A19 B15 A15 C15 A16 D15 36 BALL NAME [2] mcasp2_aclkr mcasp2_aclkx mcasp2_axr0 mcasp2_axr1 mcasp2_axr2 mcasp2_axr3 mcasp2_axr4 SIGNAL NAME [3] MUXMODE [4] TYPE [5] mcasp2_aclkr 0 IO mcasp8_axr2 1 IO vout2_d8 6 O vin2a_d8 vin1a_d8 8 I Driver off 15 I mcasp2_aclkx 0 IO vin1a_d7 7 I Driver off 15 I mcasp2_axr0 0 IO vout2_d10 6 O vin2a_d10 vin1a_d10 8 I Driver off 15 I mcasp2_axr1 0 IO vout2_d11 6 O vin2a_d11 vin1a_d11 8 I Driver off 15 I mcasp2_axr2 0 IO mcasp3_axr2 1 IO vin1a_d5 7 I gpio6_8 14 IO Driver off 15 I mcasp2_axr3 0 IO mcasp3_axr3 1 IO vin1a_d4 7 I gpio6_9 14 IO Driver off 15 I mcasp2_axr4 0 IO mcasp8_axr0 1 IO vout2_d12 6 O vin2a_d12 vin1a_d12 8 I gpio1_4 14 IO Driver off 15 I BALL RESET STATE [6] PD PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD PD 15 15 I/O VOLTAGE VALUE [9] 1.8/3.3 1.8/3.3 POWER [10] vddshv3 vddshv3 HYS [11] Yes Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B16 B17 A17 A20 A18 B18 BALL NAME [2] mcasp2_axr5 mcasp2_axr6 mcasp2_axr7 mcasp2_fsr mcasp2_fsx mcasp3_aclkx SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] IO IO vout2_d13 6 O vin2a_d13 vin1a_d13 8 I gpio6_7 14 IO Driver off 15 I mcasp2_axr6 0 IO mcasp8_aclkx 1 IO mcasp8_aclkr 2 IO vout2_d14 6 O vin2a_d14 vin1a_d14 8 I gpio2_29 14 IO Driver off 15 I mcasp2_axr7 0 IO mcasp8_fsx 1 IO mcasp8_fsr 2 IO vout2_d15 6 O vin2a_d15 vin1a_d15 8 I gpio1_5 14 IO Driver off 15 I mcasp2_fsr 0 IO mcasp8_axr3 1 IO vout2_d9 6 O vin2a_d9 vin1a_d9 8 I Driver off 15 I mcasp2_fsx 0 IO vin1a_d6 7 I Driver off 15 I mcasp3_aclkx 0 IO mcasp3_aclkr 1 IO mcasp2_axr12 2 IO 0 uart7_rxd 3 I 1 vin1a_d3 7 I 0 gpio5_13 14 IO Driver off 15 I PD PD PD PD PD PD PD PD 15 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 vddshv3 vddshv3 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv3 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] mcasp8_axr1 PD 15 POWER [10] mcasp2_axr5 PD PD I/O VOLTAGE VALUE [9] Yes Yes Yes Yes Yes Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 37 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B19 C17 F15 C18 38 BALL NAME [2] mcasp3_axr0 mcasp3_axr1 mcasp3_fsx mcasp4_aclkx SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] IO uart7_ctsn 3 I 1 uart5_rxd 4 I 1 vin1a_d1 7 I 0 Driver off 15 I mcasp3_axr1 0 IO mcasp2_axr15 2 IO uart7_rtsn 3 O uart5_txd 4 O vin1a_d0 7 I 0 vin1a_fld0 9 I 0 Driver off 15 I mcasp3_fsx 0 IO mcasp3_fsr 1 IO mcasp2_axr13 2 IO uart7_txd 3 O vin1a_d2 7 I gpio5_14 14 IO Driver off 15 I mcasp4_aclkx 0 IO mcasp4_aclkr 1 IO spi3_sclk 2 IO 0 uart8_rxd 3 I 1 i2c4_sda 4 IO 1 vout2_d16 6 O vin2a_d16 vin1a_d16 8 I vin1a_d15 9 I Driver off 15 I PD PD 15 1.8/3.3 vddshv3 Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] IO vddshv3 Yes PULL UP/DOWN TYPE [13] 2 1.8/3.3 vddshv3 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] mcasp2_axr14 PD 15 POWER [10] mcasp3_axr0 PD PD I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 0 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] G16 D17 A21 BALL NAME [2] mcasp4_axr0 mcasp4_axr1 mcasp4_fsx SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv3 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] mcasp4_axr0 0 IO spi3_d0 2 IO 0 uart8_ctsn 3 I 1 uart4_rxd 4 I 1 vout2_d18 6 O vin2a_d18 vin1a_d18 8 I vin1a_d13 9 I i2c6_scl 14 IO Driver off 15 I mcasp4_axr1 0 IO spi3_cs0 2 IO uart8_rtsn 3 O uart4_txd 4 O vout2_d19 6 O vin2a_d19 vin1a_d19 8 I vin1a_d12 9 I i2c6_sda 14 IO Driver off 15 I mcasp4_fsx 0 IO mcasp4_fsr 1 IO spi3_d1 2 IO uart8_txd 3 O i2c4_scl 4 IO vout2_d17 6 O vin2a_d17 vin1a_d17 8 I vin1a_d14 9 I Driver off 15 I 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 1 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 1 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 39 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AA3 AB3 AA4 40 BALL NAME [2] mcasp5_aclkx mcasp5_axr0 mcasp5_axr1 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv7 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] mcasp5_aclkx 0 IO mcasp5_aclkr 1 IO 0 spi4_sclk 2 IO 0 uart9_rxd 3 I 1 i2c5_sda 4 IO 1 mlb_clk 5 I 1 vout2_d20 6 O vin2a_d20 vin1a_d20 8 I vin1a_d11 9 I Driver off 15 I mcasp5_axr0 0 IO spi4_d0 2 IO uart9_ctsn 3 I 1 uart3_rxd 4 I 1 mlb_sig 5 IO 1 vout2_d22 6 O vin2a_d22 vin1a_d22 8 I vin1a_d9 9 I Driver off 15 I mcasp5_axr1 0 IO spi4_cs0 2 IO uart9_rtsn 3 O uart3_txd 4 O mlb_dat 5 IO vout2_d23 6 O vin2a_d23 vin1a_d23 8 I vin1a_d8 9 I Driver off 15 I 0 PD PD 15 1.8/3.3 vddshv7 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv7 Yes Dual Voltage PU/PD LVCMOS 0 1 1 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AB9 U4 V1 BALL NAME [2] mcasp5_fsx mdio_d mdio_mclk SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv7 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] mcasp5_fsx 0 IO mcasp5_fsr 1 IO 0 spi4_d1 2 IO uart9_txd 3 O i2c5_scl 4 IO vout2_d21 6 O vin2a_d21 vin1a_d21 8 I vin1a_d10 9 I Driver off 15 I mdio_d 0 IO uart3_ctsn 1 I mii0_txer 3 O 0 vin2a_d0 4 I 0 vin1b_d0 5 I 0 gpio5_16 14 IO Driver off 15 I mdio_mclk 0 O uart3_rtsn 1 O mii0_col 3 I vin2a_clk0 4 I vin1b_clk1 5 I gpio5_15 14 IO 0 1 0 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 1 1 0 0 Driver off 15 I AB2 mlbp_clk_n mlbp_clk_n 0 I vdds_mlbp No BMLB18 NA AB1 mlbp_clk_p mlbp_clk_p 0 I vdds_mlbp No BMLB18 NA AA2 mlbp_dat_n mlbp_dat_n 0 IO OFF OFF vdds_mlbp No BMLB18 NA AA1 mlbp_dat_p mlbp_dat_p 0 IO OFF OFF vdds_mlbp No BMLB18 NA AC2 mlbp_sig_n mlbp_sig_n 0 IO OFF OFF vdds_mlbp No BMLB18 NA AC1 mlbp_sig_p mlbp_sig_p 0 IO OFF OFF vdds_mlbp No BMLB18 NA W6 mmc1_clk mmc1_clk 0 IO PU PU 15 1.8/3.3 vddshv8 Yes 1 gpio6_21 14 IO SDIO2KV183 Pux/PDy 3 Driver off 15 I mmc1_cmd 0 IO PU PU 15 1.8/3.3 vddshv8 Yes 14 IO SDIO2KV183 Pux/PDy 3 1 gpio6_22 Driver off 15 I Y6 mmc1_cmd Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 41 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AA6 Y4 AA5 Y3 W7 Y9 AD4 AC4 42 BALL NAME [2] mmc1_dat0 mmc1_dat1 mmc1_dat2 mmc1_dat3 mmc1_sdcd mmc1_sdwp mmc3_clk mmc3_cmd SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] mmc1_dat0 0 IO gpio6_23 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO2KV183 Pux/PDy 3 1 Driver off 15 I mmc1_dat1 0 IO gpio6_24 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO2KV183 Pux/PDy 3 1 Driver off 15 I mmc1_dat2 0 IO gpio6_25 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO2KV183 Pux/PDy 3 1 Driver off 15 I mmc1_dat3 0 IO gpio6_26 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO2KV183 Pux/PDy 3 1 Driver off 15 I mmc1_sdcd 0 I uart6_rxd 3 I PU PU 15 1.8/3.3 vddshv8 Yes Dual Voltage PU/PD LVCMOS 1 i2c4_sda 4 IO gpio6_27 14 IO Driver off 15 I mmc1_sdwp 0 I uart6_txd 3 O i2c4_scl 4 IO gpio6_28 14 IO Driver off 15 I mmc3_clk 0 IO usb3_ulpi_d5 3 IO vin2b_d7 4 I 0 vin1a_d7 9 I 0 ehrpwm2_tripzone_input 10 IO 0 gpio6_29 14 IO Driver off 15 I mmc3_cmd 0 IO spi3_sclk 1 IO usb3_ulpi_d4 3 IO 0 vin2b_d6 4 I 0 vin1a_d6 9 I 0 eCAP2_in_PWM2_out 10 IO 0 gpio6_30 14 IO Driver off 15 I 1 1 PD PD 15 1.8/3.3 vddshv8 Yes Dual Voltage PU/PD LVCMOS 0 1 PU PU PU PU 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 vddshv7 vddshv7 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 0 1 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AC7 AC6 AC9 AC3 BALL NAME [2] mmc3_dat0 mmc3_dat1 mmc3_dat2 mmc3_dat3 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] IO uart5_rxd 2 I 1 usb3_ulpi_d3 3 IO 0 vin2b_d5 4 I 0 vin1a_d5 9 I 0 eQEP3A_in 10 I 0 gpio6_31 14 IO Driver off 15 I mmc3_dat1 0 IO spi3_d0 1 IO uart5_txd 2 O usb3_ulpi_d2 3 IO 0 vin2b_d4 4 I 0 vin1a_d4 9 I 0 eQEP3B_in 10 I 0 gpio7_0 14 IO Driver off 15 I mmc3_dat2 0 IO spi3_cs0 1 IO uart5_ctsn 2 I 1 usb3_ulpi_d1 3 IO 0 vin2b_d3 4 I 0 vin1a_d3 9 I 0 eQEP3_index 10 IO 0 gpio7_1 14 IO Driver off 15 I mmc3_dat3 0 IO spi3_cs1 1 IO uart5_rtsn 2 O usb3_ulpi_d0 3 IO 0 vin2b_d2 4 I 0 vin1a_d2 9 I 0 eQEP3_strobe 10 IO 0 gpio7_2 14 IO Driver off 15 I PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv7 vddshv7 Yes Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] IO vddshv7 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv7 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] spi3_d1 PU 15 POWER [10] mmc3_dat0 PU PU I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 0 1 0 1 1 1 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 43 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AC8 AD6 AB8 AB5 D21 44 BALL NAME [2] mmc3_dat4 mmc3_dat5 mmc3_dat6 mmc3_dat7 nmin_dsp SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] IO uart10_rxd 2 I 1 usb3_ulpi_nxt 3 I 0 vin2b_d1 4 I 0 vin1a_d1 9 I 0 ehrpwm3A 10 O gpio1_22 14 IO Driver off 15 I mmc3_dat5 0 IO spi4_d1 1 IO uart10_txd 2 O usb3_ulpi_dir 3 I 0 vin2b_d0 4 I 0 vin1a_d0 9 I 0 ehrpwm3B 10 O gpio1_23 14 IO Driver off 15 I mmc3_dat6 0 IO spi4_d0 1 IO uart10_ctsn 2 I usb3_ulpi_stp 3 O vin2b_de1 4 I vin1a_hsync0 9 I 0 ehrpwm3_tripzone_input 10 IO 0 gpio1_24 14 IO Driver off 15 I mmc3_dat7 0 IO spi4_cs0 1 IO uart10_rtsn 2 O usb3_ulpi_clk 3 I vin2b_clk1 4 I vin1a_vsync0 9 I 0 eCAP3_in_PWM3_out 10 IO 0 gpio1_25 14 IO Driver off 15 I nmin_dsp 0 I PU PU 15 1.8/3.3 vddshv7 Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] IO vddshv7 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv7 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] spi4_sclk PU 15 POWER [10] mmc3_dat4 PU PU I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 0 1 0 1 0 1 PU PU 15 1.8/3.3 vddshv7 Yes Dual Voltage PU/PD LVCMOS 1 1 0 PD PD Terminal Configuration and Functions 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Y11 on_off on_off 0 O PU drive 1 (OFF) 1.8/3.3 vddshv5 Yes BC1833IHHV PU/PD AG13 pcie_rxn0 pcie_rxn0 0 I OFF OFF 1.8 vdda_pcie0 NA SERDES NA AH13 pcie_rxp0 pcie_rxp0 0 I OFF OFF 1.8 vdda_pcie0 NA SERDES NA AG14 pcie_txn0 pcie_txn0 0 O 1.8 vdda_pcie0 NA SERDES NA AH14 pcie_txp0 pcie_txp0 0 O 1.8 vdda_pcie0 NA SERDES NA F22 porz porz 0 I 1.8/3.3 vddshv3 Yes IHHV1833 PU/PD E23 resetn resetn 0 I PU PU 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS U5 rgmii0_rxc rgmii0_rxc 0 I PD PD 1.8/3.3 vddshv9 Yes rmii1_txen 2 O Dual Voltage PU/PD LVCMOS mii0_txclk 3 I 0 vin2a_d5 4 I 0 vin1b_d5 5 I 0 usb3_ulpi_d2 6 IO 0 gpio5_26 14 IO Driver off 15 I rgmii0_rxctl 0 I rmii1_txd1 2 O mii0_txd3 3 O vin2a_d6 4 I 0 vin1b_d6 5 I 0 usb3_ulpi_d3 6 IO 0 gpio5_27 14 IO Driver off 15 I rgmii0_rxd0 0 I rmii0_txd0 1 O mii0_txd0 3 O vin2a_fld0 4 I vin1b_fld1 5 I 0 usb3_ulpi_d7 6 IO 0 gpio5_31 14 IO Driver off 15 I V5 W2 rgmii0_rxctl rgmii0_rxd0 PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 45 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] Y2 V3 V4 W9 46 BALL NAME [2] rgmii0_rxd1 rgmii0_rxd2 rgmii0_rxd3 rgmii0_txc SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] O mii0_txd1 3 O vin2a_d9 4 I 0 usb3_ulpi_d6 6 IO 0 gpio5_30 14 IO Driver off 15 I rgmii0_rxd2 0 I rmii0_txen 1 O mii0_txen 3 O vin2a_d8 4 I 0 usb3_ulpi_d5 6 IO 0 gpio5_29 14 IO Driver off 15 I rgmii0_rxd3 0 I rmii1_txd0 2 O mii0_txd2 3 O vin2a_d7 4 I 0 vin1b_d7 5 I 0 usb3_ulpi_d4 6 IO 0 gpio5_28 14 IO Driver off 15 I rgmii0_txc 0 O uart3_ctsn 1 I rmii1_rxd1 2 I 0 mii0_rxd3 3 I 0 vin2a_d3 4 I 0 vin1b_d3 5 I 0 usb3_ulpi_clk 6 I 0 spi3_d0 7 IO 0 spi4_cs2 8 IO 1 gpio5_20 14 IO Driver off 15 I PD PD PD PD 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] I vddshv9 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv9 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] rmii0_txd1 PD 15 POWER [10] rgmii0_rxd1 PD PD I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] V9 U6 V6 BALL NAME [2] rgmii0_txctl rgmii0_txd0 rgmii0_txd1 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] O O rmii1_rxd0 2 I 0 mii0_rxd2 3 I 0 vin2a_d4 4 I 0 vin1b_d4 5 I 0 usb3_ulpi_stp 6 O spi3_cs0 7 IO 1 spi4_cs3 8 IO 1 gpio5_21 14 IO Driver off 15 I rgmii0_txd0 0 O rmii0_rxd0 1 I mii0_rxd0 3 I 0 vin2a_d10 4 I 0 usb3_ulpi_d1 6 IO 0 spi4_cs0 7 IO 1 uart4_rtsn 8 O gpio5_25 14 IO Driver off 15 I rgmii0_txd1 0 O rmii0_rxd1 1 I mii0_rxd1 3 I vin2a_vsync0 4 I vin1b_vsync1 5 I 0 usb3_ulpi_d0 6 IO 0 spi4_d0 7 IO 0 uart4_ctsn 8 IO 1 gpio5_24 14 IO Driver off 15 I PD PD 15 1.8/3.3 vddshv9 vddshv9 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv9 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] uart3_rtsn PD 15 POWER [10] rgmii0_txctl PD PD I/O VOLTAGE VALUE [9] Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 47 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] U7 V7 U3 BALL NAME [2] rgmii0_txd2 rgmii0_txd3 RMII_MHZ_50_CLK SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv9 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS rgmii0_txd2 0 O rmii0_rxer 1 I mii0_rxer 3 I vin2a_hsync0 4 I vin1b_hsync1 5 I 0 usb3_ulpi_nxt 6 I 0 spi4_d1 7 IO 0 uart4_txd 8 O gpio5_23 14 IO Driver off 15 I rgmii0_txd3 0 O rmii0_crs 1 I mii0_crs 3 I vin2a_de0 4 I vin1b_de1 5 I 0 usb3_ulpi_dir 6 I 0 spi4_sclk 7 IO 0 uart4_rxd 8 I 1 gpio5_22 14 IO Driver off 15 I RMII_MHZ_50_CLK 0 IO vin2a_d11 4 I gpio5_17 14 IO 0 0 PD PD 15 1.8/3.3 vddshv9 Yes Dual Voltage PU/PD LVCMOS 0 0 PD PD Driver off 15 I F23 rstoutn rstoutn 0 O PD PD E18 rtck rtck 0 O PU OFF gpio8_29 14 IO 15 0 1.8/3.3 vddshv9 Yes Dual Voltage PU/PD LVCMOS 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS AF14 rtc_iso rtc_iso 0 I 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD AE14 rtc_osc_xi_clkin32 rtc_osc_xi_clkin32 0 I 1.8 vdda_rtc No LVCMOS OSC NA AD14 rtc_osc_xo rtc_osc_xo 0 O 1.8 vdda_rtc No LVCMOS OSC NA AB17 rtc_porz rtc_porz 0 I 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD AH9 sata1_rxn0 sata1_rxn0 0 I OFF OFF 1.8 vdda_sata NA SATAPHY NA AG9 sata1_rxp0 sata1_rxp0 0 I OFF OFF 1.8 vdda_sata NA SATAPHY NA AG10 sata1_txn0 sata1_txn0 0 O 1.8 vdda_sata NA SATAPHY NA AH10 sata1_txp0 sata1_txp0 0 O 1.8 vdda_sata NA SATAPHY NA 48 DSIS [14] Terminal Configuration and Functions 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] A24 A22 B21 B20 B25 F16 A25 BALL NAME [2] spi1_cs0 spi1_cs1 spi1_cs2 spi1_cs3 spi1_d0 spi1_d1 spi1_sclk SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] spi1_cs0 0 IO gpio7_10 14 IO PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1 Driver off 15 I spi1_cs1 0 IO sata1_led 2 O PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1 spi2_cs1 3 IO gpio7_11 14 IO Driver off 15 I spi1_cs2 0 IO uart4_rxd 1 I mmc3_sdcd 2 I 1 spi2_cs2 3 IO 1 dcan2_tx 4 IO 1 mdio_mclk 5 O 1 hdmi1_hpd 6 IO gpio7_12 14 IO Driver off 15 I spi1_cs3 0 IO uart4_txd 1 O mmc3_sdwp 2 I 0 spi2_cs3 3 IO 1 dcan2_rx 4 IO 1 mdio_d 5 IO 1 hdmi1_cec 6 IO gpio7_13 14 IO Driver off 15 I spi1_d0 0 IO gpio7_9 14 IO Driver off 15 I spi1_d1 0 IO gpio7_8 14 IO Driver off 15 I spi1_sclk 0 IO gpio7_7 14 IO Driver off 15 I 1 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv3 vddshv3 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 1 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 49 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B24 G17 B22 A26 BALL NAME [2] spi2_cs0 spi2_d0 spi2_d1 spi2_sclk SIGNAL NAME [3] MUXMODE [4] TYPE [5] spi2_cs0 0 IO uart3_rtsn 1 O uart5_txd 2 O gpio7_17 14 IO Driver off 15 I spi2_d0 0 IO uart3_ctsn 1 I uart5_rxd 2 I gpio7_16 14 IO Driver off 15 I spi2_d1 0 IO uart3_txd 1 O gpio7_15 14 IO Driver off 15 I spi2_sclk 0 IO uart3_rxd 1 I gpio7_14 14 IO BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 Driver off 15 I tclk tclk 0 I PU PU 0 1.8/3.3 vddshv3 Yes IQ1833 D23 tdi tdi 0 I PU PU 0 1.8/3.3 vddshv3 Yes gpio8_27 14 I Dual Voltage PU/PD LVCMOS F19 tdo tdo 0 O PU PU 0 1.8/3.3 vddshv3 Yes gpio8_28 14 IO Dual Voltage PU/PD LVCMOS 0 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 1.8/3.3 vddshv4 Yes Dual Voltage PU/PD LVCMOS F18 tms tms 0 I PU PU D20 trstn trstn 0 I PD PD E25 uart1_ctsn uart1_ctsn 0 I PU PU uart9_rxd 2 I mmc4_clk 3 IO gpio7_24 14 IO Driver off 15 I uart1_rtsn 0 O uart9_txd 2 O mmc4_cmd 3 IO gpio7_25 14 IO Driver off 15 I 50 uart1_rtsn 1 1 E20 C27 DSIS [14] 15 1 PU/PD 1 1 1 PU PU 15 Terminal Configuration and Functions 1.8/3.3 vddshv4 Yes Dual Voltage PU/PD LVCMOS 1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B27 C26 D27 C28 D28 BALL NAME [2] uart1_rxd uart1_txd uart2_ctsn uart2_rtsn uart2_rxd SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I gpio7_22 14 IO Driver off 15 I uart1_txd 0 O mmc4_sdwp 3 I gpio7_23 14 IO Driver off 15 I uart2_ctsn 0 I uart3_rxd 2 I mmc4_dat2 3 IO 1 uart10_rxd 4 I 1 uart1_dtrn 5 O gpio1_16 14 IO Driver off 15 I uart2_rtsn 0 O uart3_txd 1 O uart3_irtx 2 O mmc4_dat3 3 IO uart10_txd 4 O uart1_rin 5 I gpio1_17 14 IO Driver off 15 I uart2_rxd 0 I uart3_ctsn 1 I uart3_rctx 2 O mmc4_dat0 3 IO 1 uart2_rxd 4 I 1 uart1_dcdn 5 I 1 gpio7_26 14 IO Driver off 15 I PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv4 vddshv4 Yes Yes Yes Dual Voltage PU/PD LVCMOS DSIS [14] I vddshv4 Yes PULL UP/DOWN TYPE [13] 3 1.8/3.3 vddshv4 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] mmc4_sdcd PU 15 POWER [10] uart1_rxd PU PU I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 1 0 1 1 Dual Voltage PU/PD LVCMOS 1 1 PU PU 15 1.8/3.3 vddshv4 Yes Dual Voltage PU/PD LVCMOS 1 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 51 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] D26 V2 Y1 BALL NAME [2] uart2_txd uart3_rxd uart3_txd SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PU BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PU 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv4 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] uart2_txd 0 O uart3_rtsn 1 O Dual Voltage PU/PD LVCMOS uart3_sd 2 O mmc4_dat1 3 IO uart2_txd 4 O uart1_dsrn 5 I gpio7_27 14 IO Driver off 15 I uart3_rxd 0 I rmii1_crs 2 I mii0_rxdv 3 I 0 vin2a_d1 4 I 0 vin1b_d1 5 I 0 spi3_sclk 7 IO 0 gpio5_18 14 IO Driver off 15 I uart3_txd 0 O rmii1_rxer 2 I mii0_rxclk 3 I 0 vin2a_d2 4 I 0 vin1b_d2 5 I 0 spi3_d1 7 IO 0 spi4_cs1 8 IO 1 gpio5_19 14 IO 1 0 PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Driver off 15 I AC12 usb1_dm usb1_dm 0 IO OFF OFF 3.3 vdda33v_usb NA 1 USBPHY NA AD12 usb1_dp usb1_dp 0 IO OFF OFF 3.3 vdda33v_usb NA 1 USBPHY NA AB10 usb1_drvvbus usb1_drvvbus 0 O PD PD 1.8/3.3 vddshv6 timer16 7 IO Dual Voltage PU/PD LVCMOS gpio6_12 14 IO Driver off 15 I 15 Yes AF11 usb2_dm usb2_dm 0 IO 3.3 vdda33v_usb No 2 USBPHY NA AE11 usb2_dp usb2_dp 0 IO 3.3 vdda33v_usb No 2 USBPHY NA 52 DSIS [14] Terminal Configuration and Functions 1 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] AC10 AF12 AE12 AC11 AD11 BALL NAME [2] usb2_drvvbus usb_rxn0 usb_rxp0 usb_txn0 usb_txp0 SIGNAL NAME [3] MUXMODE [4] TYPE [5] usb2_drvvbus 0 O timer15 7 IO gpio6_13 14 IO Driver off 15 I usb_rxn0 0 I pcie_rxn1 1 I usb_rxp0 0 I pcie_rxp1 1 I usb_txn0 0 O pcie_txn1 1 O usb_txp0 0 O pcie_txp1 1 O H13, H14, J17, J18, L7, L8, N10, N13, P11, P12, P13, R11, R16, R19, T13, T16, T19, U13, U16, U8, U9, V16, V8 vdd vdd PWR AA12 vdda33v_usb1 vdda33v_usb1 PWR Y12 vdda33v_usb2 vdda33v_usb2 PWR P14 vdda_core_gmac vdda_core_gmac PWR W12 vdda_csi vdda_csi PWR R17 vdda_ddr vdda_ddr PWR N11 vdda_debug vdda_debug PWR N12 vdda_dsp_iva vdda_dsp_iva PWR R14 vdda_gpu vdda_gpu PWR Y17 vdda_hdmi vdda_hdmi PWR N16 vdda_mpu_abe vdda_mpu_abe PWR AD16, AE16 vdda_osc vdda_osc PWR AA17 vdda_pcie vdda_pcie PWR AA16 vdda_pcie0 vdda_pcie0 PWR M14 vdda_per vdda_per PWR P15 vdda_pll_spare vdda_pll_spare PWR AB13 vdda_rtc vdda_rtc PWR V13 vdda_sata vdda_sata PWR AA13 vdda_usb1 vdda_usb1 PWR AB12 vdda_usb2 vdda_usb2 PWR W14 vdda_usb3 vdda_usb3 PWR P16 vdda_video vdda_video PWR BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD PD OFF OFF 15 I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] 1.8/3.3 vddshv6 Yes Dual Voltage PU/PD LVCMOS OFF 1.8 vdda_usb1 NA SERDES NA OFF 1.8 vdda_usb1 NA SERDES NA 1.8 vdda_usb1 NA SERDES NA 1.8 vdda_usb1 NA SERDES NA DSIS [14] Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 53 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] G18, H17, M8, M9, N8, P8, R8, T8, V21, V22, W17, W18 BALL NAME [2] MUXMODE [4] TYPE [5] vdds18v PWR AA18, AA19, N21, vdds18v_ddr1 P20, P21, W21, Y21 vdds18v_ddr1 PWR E3, E5, G4, G5, H8, H9 vddshv1 vddshv1 PWR B6, D10, E10, H10, H11 vddshv2 vddshv2 PWR B23, D16, D22, E16, E22, G15, H15, H16, H18, H19 vddshv3 vddshv3 PWR C24 vddshv4 vddshv4 PWR V12 vddshv5 vddshv5 PWR AD5, AD7, AE7, AF5 vddshv6 vddshv6 PWR AB6, AB7 vddshv7 vddshv7 PWR W8, Y8 vddshv8 vddshv8 PWR U10, W4, W5 vddshv9 vddshv9 PWR N4, N5, P10, R10, vddshv10 R7, T4, T5 vddshv10 PWR J8, K8 vddshv11 vddshv11 PWR AA21, AA22, AB21, AB22, AB24, AB25, AC22, AD26, AG20, AG28, AH27, T24, T25, W16, W27 vdds_ddr1 vdds_ddr1 PWR AA7, Y7 vdds_mlbp vdds_mlbp PWR K10, K11, L10, L11, M10, M11 vdd_dsp vdd_dsp PWR U11, U12, V10, V11, V14, W10, W11, W13 vdd_gpu vdd_gpu PWR J13, K12, K13, L12, M12, M13 vdd_iva vdd_iva PWR K17, K18, L15, L16, L17, L18, L19, M15, M16, M17, M18, N17, N18, P17, P18, R18 vdd_mpu vdd_mpu PWR AB15 vdd_rtc vdd_rtc PWR 54 vdds18v SIGNAL NAME [3] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] Terminal Configuration and Functions I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] E1 F2 F3 D1 BALL NAME [2] vin2a_clk0 vin2a_d0 vin2a_d1 vin2a_d2 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] I O emu5 5 O kbd_row0 9 I 0 eQEP1A_in 10 I 0 gpio3_28 gpmc_a27 gpmc_a17 14 IO Driver off 15 I vin2a_d0 0 I vout2_d23 4 O emu10 5 O uart9_ctsn 7 I 1 spi4_d0 8 IO 0 kbd_row4 9 I 0 ehrpwm1B 10 O gpio4_1 14 IO Driver off 15 I vin2a_d1 0 I vout2_d22 4 O emu11 5 O uart9_rtsn 7 O spi4_cs0 8 IO 1 kbd_row5 9 I 0 ehrpwm1_tripzone_input 10 IO 0 gpio4_2 14 IO Driver off 15 I vin2a_d2 0 I vout2_d21 4 O emu12 5 O uart10_rxd 8 I 1 kbd_row6 9 I 0 eCAP1_in_PWM1_out 10 IO 0 gpio4_3 14 IO Driver off 15 I PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv1 vddshv1 vddshv1 Yes PULL UP/DOWN TYPE [13] 4 1.8/3.3 vddshv1 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] vout2_fld PD 15 POWER [10] vin2a_clk0 PD PD I/O VOLTAGE VALUE [9] Yes Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 55 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] E2 D2 F4 C1 56 BALL NAME [2] vin2a_d3 vin2a_d4 vin2a_d5 vin2a_d6 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vin2a_d3 0 I vout2_d20 4 O emu13 5 O uart10_txd 8 O kbd_col0 9 O ehrpwm1_synci 10 I gpio4_4 14 IO Driver off 15 I vin2a_d4 0 I vout2_d19 4 O emu14 5 O uart10_ctsn 8 I kbd_col1 9 O ehrpwm1_synco 10 O gpio4_5 14 IO Driver off 15 I vin2a_d5 0 I vout2_d18 4 O emu15 5 O uart10_rtsn 8 O kbd_col2 9 O eQEP2A_in 10 I gpio4_6 14 IO Driver off 15 I vin2a_d6 0 I vout2_d17 4 O emu16 5 O mii1_rxd1 8 I kbd_col3 9 O eQEP2B_in 10 I gpio4_7 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv1 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 1 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] E4 F5 E6 D3 BALL NAME [2] vin2a_d7 vin2a_d8 vin2a_d9 vin2a_d10 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vin2a_d7 0 I vout2_d16 4 O emu17 5 O mii1_rxd2 8 I kbd_col4 9 O eQEP2_index 10 IO gpio4_8 14 IO Driver off 15 I vin2a_d8 0 I vout2_d15 4 O emu18 5 O mii1_rxd3 8 I kbd_col5 9 O eQEP2_strobe 10 IO gpio4_9 gpmc_a26 14 IO Driver off 15 I vin2a_d9 0 I vout2_d14 4 O emu19 5 O mii1_rxd0 8 I kbd_col6 9 O ehrpwm2A 10 O gpio4_10 gpmc_a25 14 IO Driver off 15 I vin2a_d10 0 I mdio_mclk 3 O vout2_d13 4 O kbd_col7 9 O ehrpwm2B 10 O gpio4_11 gpmc_a24 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv1 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 57 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] F6 D5 C2 C3 C4 58 BALL NAME [2] vin2a_d11 vin2a_d12 vin2a_d13 vin2a_d14 vin2a_d15 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] IO vout2_d12 4 O kbd_row7 9 I 0 ehrpwm2_tripzone_input 10 IO 0 gpio4_12 gpmc_a23 14 IO Driver off 15 I vin2a_d12 0 I rgmii1_txc 3 O vout2_d11 4 O mii1_rxclk 8 I kbd_col8 9 O eCAP2_in_PWM2_out 10 IO gpio4_13 14 IO Driver off 15 I vin2a_d13 0 I rgmii1_txctl 3 O vout2_d10 4 O mii1_rxdv 8 I 0 kbd_row8 9 I 0 eQEP3A_in 10 I 0 gpio4_14 14 IO Driver off 15 I vin2a_d14 0 I rgmii1_txd3 3 O vout2_d9 4 O mii1_txclk 8 I 0 eQEP3B_in 10 I 0 gpio4_15 14 IO Driver off 15 I vin2a_d15 0 I rgmii1_txd2 3 O vout2_d8 4 O mii1_txd0 8 O eQEP3_index 10 IO gpio4_16 14 IO Driver off 15 I Yes Dual Voltage PU/PD LVCMOS DSIS [14] I vddshv1 Yes PULL UP/DOWN TYPE [13] 3 1.8/3.3 vddshv1 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] mdio_d PD 15 POWER [10] vin2a_d11 PD PD I/O VOLTAGE VALUE [9] Dual Voltage PU/PD LVCMOS 0 1 0 0 0 PD PD PD PD PD PD 15 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 1.8/3.3 vddshv1 vddshv1 vddshv1 Yes Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B2 D6 C5 A3 BALL NAME [2] vin2a_d16 vin2a_d17 vin2a_d18 vin2a_d19 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv1 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] vin2a_d16 0 I vin2b_d7 2 I 0 rgmii1_txd1 3 O vout2_d7 4 O mii1_txd1 8 O eQEP3_strobe 10 IO gpio4_24 14 IO Driver off 15 I vin2a_d17 0 I vin2b_d6 2 I rgmii1_txd0 3 O vout2_d6 4 O mii1_txd2 8 O ehrpwm3A 10 O gpio4_25 14 IO Driver off 15 I vin2a_d18 0 I vin2b_d5 2 I rgmii1_rxc 3 I vout2_d5 4 O mii1_txd3 8 O ehrpwm3B 10 O gpio4_26 14 IO Driver off 15 I vin2a_d19 0 I vin2b_d4 2 I rgmii1_rxctl 3 I vout2_d4 4 O mii1_txer 8 O 0 ehrpwm3_tripzone_input 10 IO 0 gpio4_27 14 IO Driver off 15 I 0 0 PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv1 vddshv1 Yes Yes Dual Voltage PU/PD LVCMOS 0 Dual Voltage PU/PD LVCMOS 0 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 59 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] B3 B4 B5 A4 60 BALL NAME [2] vin2a_d20 vin2a_d21 vin2a_d22 vin2a_d23 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv1 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] vin2a_d20 0 I vin2b_d3 2 I 0 rgmii1_rxd3 3 I vout2_d3 4 O mii1_rxer 8 I 0 eCAP3_in_PWM3_out 10 IO 0 gpio4_28 14 IO Driver off 15 I vin2a_d21 0 I vin2b_d2 2 I rgmii1_rxd2 3 I vout2_d2 4 O mii1_col 8 I gpio4_29 14 IO Driver off 15 I vin2a_d22 0 I vin2b_d1 2 I rgmii1_rxd1 3 I vout2_d1 4 O mii1_crs 8 I gpio4_30 14 IO Driver off 15 I vin2a_d23 0 I vin2b_d0 2 I rgmii1_rxd0 3 I vout2_d0 4 O mii1_txen 8 O gpio4_31 14 IO Driver off 15 I 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS 0 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] G2 H7 G1 BALL NAME [2] vin2a_de0 vin2a_fld0 vin2a_hsync0 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] I I vin2b_fld1 2 I vin2b_de1 3 I vout2_de 4 O emu6 5 O kbd_row1 9 I 0 eQEP1B_in 10 I 0 gpio3_29 14 IO Driver off 15 I vin2a_fld0 0 I vin2b_clk1 2 I vout2_clk 4 O emu7 5 O eQEP1_index 10 IO gpio3_30 gpmc_a27 gpmc_a18 14 IO Driver off 15 I vin2a_hsync0 0 I vin2b_hsync1 3 I vout2_hsync 4 O emu8 5 O uart9_rxd 7 I 1 spi4_sclk 8 IO 0 kbd_row2 9 I 0 eQEP1_strobe 10 IO 0 gpio3_31 gpmc_a27 14 IO Driver off 15 I vddshv1 Yes PULL UP/DOWN TYPE [13] 1 1.8/3.3 vddshv1 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] vin2a_fld0 PD 15 POWER [10] vin2a_de0 PD PD I/O VOLTAGE VALUE [9] Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage PU/PD LVCMOS Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 61 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] G6 D11 F11 G10 62 BALL NAME [2] vin2a_vsync0 vout1_clk vout1_d0 vout1_d1 SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] I I vout2_vsync 4 O emu9 5 O uart9_txd 7 O spi4_d1 8 IO 0 kbd_row3 9 I 0 ehrpwm1A 10 O gpio4_0 14 IO Driver off 15 I vout1_clk 0 O vin2a_fld0 vin1a_fld0 3 I vin1a_fld0 4 I 0 spi3_cs0 8 IO 1 gpio4_19 14 IO Driver off 15 I vout1_d0 0 O uart5_rxd 2 I vin2a_d16 vin1a_d16 3 I vin1a_d16 4 I 0 spi3_cs2 8 IO 1 gpio8_0 14 IO Driver off 15 I vout1_d1 0 O uart5_txd 2 O vin2a_d17 vin1a_d17 3 I vin1a_d17 4 I gpio8_1 14 IO Driver off 15 I PD PD PD PD 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 Yes PULL UP/DOWN TYPE [13] 3 1.8/3.3 vddshv1 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] vin2b_vsync1 PD 15 POWER [10] vin2a_vsync0 PD PD I/O VOLTAGE VALUE [9] Yes Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS 1 Dual Voltage PU/PD LVCMOS 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] F10 G11 E9 F9 BALL NAME [2] vout1_d2 vout1_d3 vout1_d4 vout1_d5 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vout1_d2 0 O emu2 2 O vin2a_d18 vin1a_d18 3 I vin1a_d18 4 I obs0 5 O obs16 6 O obs_irq1 7 O gpio8_2 14 IO Driver off 15 I vout1_d3 0 O emu5 2 O vin2a_d19 vin1a_d19 3 I vin1a_d19 4 I obs1 5 O obs17 6 O obs_dmarq1 7 O gpio8_3 14 IO Driver off 15 I vout1_d4 0 O emu6 2 O vin2a_d20 vin1a_d20 3 I vin1a_d20 4 I obs2 5 O obs18 6 O gpio8_4 14 IO Driver off 15 I vout1_d5 0 O emu7 2 O vin2a_d21 vin1a_d21 3 I vin1a_d21 4 I obs3 5 O obs19 6 O gpio8_5 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv2 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 63 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] F8 E7 E8 D9 D7 64 BALL NAME [2] vout1_d6 vout1_d7 vout1_d8 vout1_d9 vout1_d10 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vout1_d6 0 O emu8 2 O vin2a_d22 vin1a_d22 3 I vin1a_d22 4 I obs4 5 O obs20 6 O gpio8_6 14 IO Driver off 15 I vout1_d7 0 O emu9 2 O vin2a_d23 vin1a_d23 3 I vin1a_d23 4 I gpio8_7 14 IO Driver off 15 I vout1_d8 0 O uart6_rxd 2 I vin2a_d8 vin1a_d8 3 I vin1a_d8 4 I gpio8_8 14 IO Driver off 15 I vout1_d9 0 O uart6_txd 2 O vin2a_d9 vin1a_d9 3 I vin1a_d9 4 I gpio8_9 14 IO Driver off 15 I vout1_d10 0 O emu3 2 O vin2a_d10 vin1a_d10 3 I vin1a_d10 4 I obs5 5 O obs21 6 O obs_irq2 7 O gpio8_10 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv2 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 1 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] D8 A5 C6 C8 BALL NAME [2] vout1_d11 vout1_d12 vout1_d13 vout1_d14 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vout1_d11 0 O emu10 2 O vin2a_d11 vin1a_d11 3 I vin1a_d11 4 I obs6 5 O obs22 6 O obs_dmarq2 7 O gpio8_11 14 IO Driver off 15 I vout1_d12 0 O emu11 2 O vin2a_d12 vin1a_d12 3 I vin1a_d12 4 I obs7 5 O obs23 6 O gpio8_12 14 IO Driver off 15 I vout1_d13 0 O emu12 2 O vin2a_d13 vin1a_d13 3 I vin1a_d13 4 I obs8 5 O obs24 6 O gpio8_13 14 IO Driver off 15 I vout1_d14 0 O emu13 2 O vin2a_d14 vin1a_d14 3 I vin1a_d14 4 I obs9 5 O obs25 6 O gpio8_14 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv2 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 65 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] C7 B7 B8 A7 66 BALL NAME [2] vout1_d15 vout1_d16 vout1_d17 vout1_d18 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vout1_d15 0 O emu14 2 O vin2a_d15 vin1a_d15 3 I vin1a_d15 4 I obs10 5 O obs26 6 O gpio8_15 14 IO Driver off 15 I vout1_d16 0 O uart7_rxd 2 I vin2a_d0 vin1a_d0 3 I vin1a_d0 4 I gpio8_16 14 IO Driver off 15 I vout1_d17 0 O uart7_txd 2 O vin2a_d1 vin1a_d1 3 I vin1a_d1 4 I gpio8_17 14 IO Driver off 15 I vout1_d18 0 O emu4 2 O vin2a_d2 vin1a_d2 3 I vin1a_d2 4 I obs11 5 O obs27 6 O gpio8_18 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv2 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 1 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] A8 C9 A9 B9 BALL NAME [2] vout1_d19 vout1_d20 vout1_d21 vout1_d22 SIGNAL NAME [3] MUXMODE [4] TYPE [5] vout1_d19 0 O emu15 2 O vin2a_d3 vin1a_d3 3 I vin1a_d3 4 I obs12 5 O obs28 6 O gpio8_19 14 IO Driver off 15 I vout1_d20 0 O emu16 2 O vin2a_d4 vin1a_d4 3 I vin1a_d4 4 I obs13 5 O obs29 6 O gpio8_20 14 IO Driver off 15 I vout1_d21 0 O emu17 2 O vin2a_d5 vin1a_d5 3 I vin1a_d5 4 I obs14 5 O obs30 6 O gpio8_21 14 IO Driver off 15 I vout1_d22 0 O emu18 2 O vin2a_d6 vin1a_d6 3 I vin1a_d6 4 I obs15 5 O obs31 6 O gpio8_22 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv2 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 PD PD 15 1.8/3.3 vddshv2 Yes Dual Voltage PU/PD LVCMOS 0 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 67 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] A10 B10 B11 C11 E11 68 BALL NAME [2] vout1_d23 vout1_de vout1_fld vout1_hsync vout1_vsync SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] DSIS [14] O O vin2a_d7 vin1a_d7 3 I vin1a_d7 4 I 0 spi3_cs3 8 IO 1 gpio8_23 14 IO Driver off 15 I vout1_de 0 O vin2a_de0 vin1a_de0 3 I vin1a_de0 4 I 0 spi3_d1 8 IO 0 gpio4_20 14 IO Driver off 15 I vout1_fld 0 O vin2a_clk0 vin1a_clk0 3 I vin1a_clk0 4 I 0 spi3_cs1 8 IO 1 gpio4_21 14 IO Driver off 15 I vout1_hsync 0 O vin2a_hsync0 vin1a_hsync0 3 I vin1a_hsync0 4 I 0 spi3_d0 8 IO 0 gpio4_22 14 IO Driver off 15 I vout1_vsync 0 O vin2a_vsync0 vin1a_vsync0 3 I vin1a_vsync0 4 I 0 spi3_sclk 8 IO 0 gpio4_23 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 Terminal Configuration and Functions 1.8/3.3 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 vddshv2 Yes PULL UP/DOWN TYPE [13] 2 1.8/3.3 vddshv2 BUFFER TYPE [12] 0 15 1.8/3.3 HYS [11] emu19 PD 15 POWER [10] vout1_d23 PD PD I/O VOLTAGE VALUE [9] Yes Yes Yes Yes Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Dual Voltage PU/PD LVCMOS Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] A1, A14, A2, A23, vss A28, A6, AA14, AA15, AA20, AA8, AA9, AB14, AB20, AD1, AD24, AG1, AH1, AH2, AH20, AH28, B1, D13, D19, E13, E19, F1, F7, G7, G8, G9, H12, J12, J15, J28, K1, K15, K24, K25, K4, K5, L13, L14, M19, N14, N15, N19, N24, N25, P28, R1, R12, R13, R21, T10, T11, T12, T14, T15, T17, T18, T21, U14, U15, U17, U20, U21, V15, V17, W1, W15, W24, W25, W28 vss GND AA10, AH8 vssa_csi vssa_csi GND AD19, AE19 vssa_hdmi vssa_hdmi GND AF15 vssa_osc0 vssa_osc0 GND AC14 vssa_osc1 vssa_osc1 GND AD13, AE13 vssa_pcie vssa_pcie GND AE10 vssa_sata vssa_sata GND AA11, AB11 vssa_usb vssa_usb GND AD10 vssa_usb3 vssa_usb3 GND R15 vssa_video vssa_video AD17 Wakeup0 Wakeup0 0 I dcan1_rx 1 I gpio1_0 sys_nirq2 14 I Driver off 15 I Wakeup3 0 I sys_nirq1 1 I gpio1_3 dcan2_rx 14 I AC16 Wakeup3 BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] DSIS [14] GND 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD 1 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD Driver off 15 I AE15 xi_osc0 xi_osc0 0 I 1.8 vdda_osc No LVCMOS Analog NA AC15 xi_osc1 xi_osc1 0 I 1.8 vdda_osc No LVCMOS Analog NA AD15 xo_osc0 xo_osc0 0 O 1.8 vdda_osc No LVCMOS Analog NA Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 69 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] MUXMODE [4] TYPE [5] BALL RESET STATE [6] BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] I/O VOLTAGE VALUE [9] POWER [10] HYS [11] BUFFER TYPE [12] PULL UP/DOWN TYPE [13] AC13 xo_osc1 xo_osc1 0 A D18 xref_clk0 xref_clk0 0 I mcasp2_axr8 1 IO mcasp1_axr4 2 IO mcasp1_ahclkx 3 O mcasp5_ahclkx 4 O atl_clk0 5 O vin1a_d0 7 I 0 hdq0 8 IO 1 clkout2 9 O timer13 10 IO gpio6_17 14 IO Driver off 15 I xref_clk1 0 I mcasp2_axr9 1 IO mcasp1_axr5 2 IO mcasp2_ahclkx 3 O mcasp6_ahclkx 4 O atl_clk1 5 O vin1a_clk0 7 I timer14 10 IO gpio6_18 14 IO Driver off 15 I xref_clk2 0 I mcasp2_axr10 1 IO mcasp1_axr6 2 IO mcasp3_ahclkx 3 O mcasp7_ahclkx 4 O atl_clk2 5 O vout2_clk 6 O vin2a_clk0 vin1a_clk0 8 I timer15 10 IO gpio6_19 14 IO Driver off 15 I E17 B26 70 xref_clk1 xref_clk2 PD PD 15 1.8 vdda_osc No LVCMOS Analog 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS DSIS [14] NA 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 0 PD PD 15 Terminal Configuration and Functions 1.8/3.3 vddshv3 Yes Dual Voltage PU/PD LVCMOS 0 0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-2. Ball Characteristics(1) (continued) BALL NUMBER [1] C23 BALL NAME [2] xref_clk3 SIGNAL NAME [3] MUXMODE [4] TYPE [5] xref_clk3 0 I mcasp2_axr11 1 IO mcasp1_axr7 2 IO mcasp4_ahclkx 3 O mcasp8_ahclkx 4 O atl_clk3 5 O vout2_de 6 O hdq0 7 IO vin2a_de0 vin1a_de0 8 I clkout3 9 O timer16 10 IO gpio6_20 14 IO Driver off 15 I BALL RESET STATE [6] PD BALL BALL RESET REL. RESET REL. MUXMODE STATE [7] [8] PD 15 I/O VOLTAGE VALUE [9] 1.8/3.3 POWER [10] vddshv3 HYS [11] Yes BUFFER TYPE [12] PULL UP/DOWN TYPE [13] Dual Voltage PU/PD LVCMOS DSIS [14] 0 0 1 (1) NA in this table stands for Not Applicable. (2) For more information on recommended operating conditions, see Table 5-4, Recommended Operating Conditions. (3) The pullup or pulldown block strength is equal to: minimum = 50 μA, typical = 100 μA, maximum = 250 μA. (4) The output impedance settings of this IO cell are programmable; by default, the value is DS[1:0] = 10, this means 40 Ω. For more information on DS[1:0] register configuration, see the Device TRM. (5) IO drive strength for usb1_dp, usb1_dm, usb2_dp and usb2_dm: minimum 18.3 mA, maximum 89 mA (for a power supply vdda33v_usb1 and vdda33v_usb2 = 3.46 V). (6) Minimum PU = 900 Ω, maximum PU = 3.090 kΩ and minimum PD = 14.25 kΩ, maximum PD = 24.8 kΩ. For more information, see chapter 7 of the USB2.0 specification, in particular section Signaling / Device Speed Identification. (7) This function will not be supported on some pin-compatible roadmap devices. Pin compatibility can be maintained in the future by not using these GPIO signals. (8) In PUx / PDy, x and y = 60 to 200 μA. The output impedance settings (or drive strengths) of this IO are programmable (34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω) depending on the values of the I[2:0] registers. 4.3 Multiplexing Characteristics Table 4-3 describes the device multiplexing (no characteristics are available in this table). NOTE This table doesn't take into account subsystem multiplexing signals. Subsystem multiplexing signals are described in Section 4.4, Signal Descriptions. Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 71 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE For more information, see the Control Module / Control Module Functional Description / PAD Functional Multiplexing and Configuration section of the Device TRM. NOTE Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration (Hi-Z mode is not an input signal). NOTE When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s behavior is undefined. This should be avoided. NOTE In some cases Table 4-3 may present more than one signal per muxmode for the same ball. First signal in the list is the dominant function as selected via CTRL_CORE_PAD_* register. All other signals are virtual functions that present alternate multiplexing options. This virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT register. For more information on how to use this options, please refer to Device TRM, Chapter Control Module, Section Pad Configuration Registers. NOTE ECC is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in the corresponding tables. NOTE Dual rank support is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. 72 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0 Y23 ddr1_d26 Y19 ddr1_d21 AE15 xi_osc0 AH24 ddr1_nck AG15 ljcb_clkp AF24 ddr1_d4 V25 ddr1_ecc_d6 AB16 ddr1_csn1 AG19 hdmi1_data2x AF21 ddr1_a4 AG5 csi2_1_dx0 W23 ddr1_ecc_d3 Y27 ddr1_dqsn3 AC24 ddr1_d14 AF28 ddr1_d11 AA23 ddr1_d24 AD18 ddr1_a15 AH16 hdmi1_clocky AH5 csi2_1_dy0 AC20 ddr1_a2 AA24 ddr1_d27 W19 ddr1_ecc_d2 AG21 ddr1_rst AE28 ddr1_dqsn1 AC11 usb_txn0 AG25 ddr1_dqsn0 AC17 ddr1_odt1 AG4 csi2_0_dy3 W20 ddr1_d17 AF14 rtc_iso AA27 ddr1_dqm3 AF25 ddr1_d0 AF2 csi2_0_dx2 AF23 ddr1_d6 AG18 hdmi1_data1x AH6 csi2_1_dy1 AG10 sata1_txn0 AF20 ddr1_rasn 1 2 3* 4* 5* 6* 7 8* 9 10 14* 15 pcie_txn1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 73 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS 74 REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0 V26 ddr1_dqm_ec c V20 ddr1_d16 AH13 pcie_rxp0 AC18 ddr1_casn AG9 sata1_rxp0 AH23 ddr1_csn0 AE11 usb2_dp Y24 ddr1_d28 AH15 ljcb_clkn AD20 ddr1_a0 AA25 ddr1_d30 AA1 mlbp_dat_p AD14 rtc_osc_xo AC25 ddr1_d13 AB23 ddr1_dqm1 AE1 csi2_0_dx0 AH19 hdmi1_data2y AB27 ddr1_d22 AG14 pcie_txn0 Y28 ddr1_dqs3 AB19 ddr1_a3 AH10 sata1_txp0 AG24 ddr1_ck AE24 ddr1_d5 AC15 xi_osc1 AC21 ddr1_a12 AB1 mlbp_clk_p AF12 usb_rxn0 AH9 sata1_rxn0 AC26 ddr1_dqm2 AA28 ddr1_d31 AD23 ddr1_dqm0 AE27 ddr1_dqs1 AF27 ddr1_d9 V24 ddr1_ecc_d5 AG27 ddr1_d10 AF22 ddr1_a8 AA2 mlbp_dat_n 1 2 3* 4* 5* 6* 7 8* 9 10 14* 15 pcie_rxn1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 AH21 ddr1_wen AE21 ddr1_a7 AC12 usb1_dm Y20 ddr1_d23 AC27 ddr1_d20 AE23 ddr1_d7 AG22 ddr1_cke AD27 ddr1_dqs2 AH14 pcie_txp0 AH26 ddr1_d3 AD21 ddr1_a10 Y25 ddr1_ecc_d4 AE17 ddr1_a14 AG7 csi2_1_dy2 AH18 hdmi1_data1y AH22 ddr1_a5 W22 ddr1_ecc_d0 V23 ddr1_ecc_d1 AE12 usb_rxp0 AE14 rtc_osc_xi_clki n32 AF3 csi2_0_dy2 AB2 mlbp_clk_n AG23 ddr1_a6 AG6 csi2_1_dx1 AB18 ddr1_ba2 AG17 hdmi1_data0x AF26 ddr1_d1 AD11 usb_txp0 AC1 mlbp_sig_p V27 ddr1_dqs_ecc AF17 ddr1_ba0 AE26 ddr1_d12 AC19 ddr1_a1 AG13 pcie_rxn0 AB28 ddr1_d18 Y26 ddr1_ecc_d7 AH3 csi2_0_dx4 AD22 ddr1_a11 1 2 3* 4* 5* 6* 7 8* 9 10 14* 15 pcie_rxp1 pcie_txp1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 75 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0 AD28 ddr1_dqsn2 AD2 csi2_0_dy0 AE18 ddr1_ba1 AE20 ddr1_odt0 AF11 usb2_dm AD15 xo_osc0 AH7 csi2_1_dx2 AE22 ddr1_a9 Y18 ddr1_vref0 AC13 xo_osc1 AC2 mlbp_sig_n AD12 usb1_dp Y22 ddr1_d25 AH17 hdmi1_data0y AH4 csi2_0_dx3 AE2 csi2_0_dy1 AG26 ddr1_d2 AH25 ddr1_dqs0 AF18 ddr1_a13 AC28 ddr1_d19 AG3 csi2_0_dy4 V28 ddr1_dqsn_ec c AC23 ddr1_d8 F22 porz AG16 hdmi1_clockx AF1 csi2_0_dx1 AA26 ddr1_d29 AD25 ddr1_d15 1 2 3* 4* 5* 6* 7 8* 9 10 14* 15 0x1400 CTRL_CORE_PAD_ GPMC_AD0 M6 gpmc_ad0 vin1a_d0 vout3_d0 gpio1_6 sysboot0 0x1404 CTRL_CORE_PAD_ GPMC_AD1 M2 gpmc_ad1 vin1a_d1 vout3_d1 gpio1_7 sysboot1 0x1408 CTRL_CORE_PAD_ GPMC_AD2 L5 gpmc_ad2 vin1a_d2 vout3_d2 gpio1_8 sysboot2 0x140C CTRL_CORE_PAD_ GPMC_AD3 M1 gpmc_ad3 vin1a_d3 vout3_d3 gpio1_9 sysboot3 0x1410 CTRL_CORE_PAD_ GPMC_AD4 L6 gpmc_ad4 vin1a_d4 vout3_d4 gpio1_10 sysboot4 0x1414 CTRL_CORE_PAD_ GPMC_AD5 L4 gpmc_ad5 vin1a_d5 vout3_d5 gpio1_11 sysboot5 76 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 2 3* 4* 14* 15 0x1418 CTRL_CORE_PAD_ GPMC_AD6 L3 gpmc_ad6 vin1a_d6 vout3_d6 5* gpio1_12 sysboot6 0x141C CTRL_CORE_PAD_ GPMC_AD7 L2 gpmc_ad7 vin1a_d7 vout3_d7 gpio1_13 sysboot7 0x1420 CTRL_CORE_PAD_ GPMC_AD8 L1 gpmc_ad8 vin1a_d8 vout3_d8 gpio7_18 sysboot8 0x1424 CTRL_CORE_PAD_ GPMC_AD9 K2 gpmc_ad9 vin1a_d9 vout3_d9 gpio7_19 sysboot9 0x1428 CTRL_CORE_PAD_ GPMC_AD10 J1 gpmc_ad10 vin1a_d10 vout3_d10 gpio7_28 sysboot10 0x142C CTRL_CORE_PAD_ GPMC_AD11 J2 gpmc_ad11 vin1a_d11 vout3_d11 gpio7_29 sysboot11 0x1430 CTRL_CORE_PAD_ GPMC_AD12 H1 gpmc_ad12 vin1a_d12 vout3_d12 gpio1_18 sysboot12 0x1434 CTRL_CORE_PAD_ GPMC_AD13 J3 gpmc_ad13 vin1a_d13 vout3_d13 gpio1_19 sysboot13 0x1438 CTRL_CORE_PAD_ GPMC_AD14 H2 gpmc_ad14 vin1a_d14 vout3_d14 gpio1_20 sysboot14 0x143C CTRL_CORE_PAD_ GPMC_AD15 H3 gpmc_ad15 vin1a_d15 vout3_d15 gpio1_21 sysboot15 0x1440 CTRL_CORE_PAD_ GPMC_A0 R6 gpmc_a0 vin1a_d16 vout3_d16 vin2a_d0 vin1a_d0 vin1b_d0 i2c4_scl uart5_rxd gpio7_3 gpmc_a26 gpmc_a16 Driver off 0x1444 CTRL_CORE_PAD_ GPMC_A1 T9 gpmc_a1 vin1a_d17 vout3_d17 vin2a_d1 vin1a_d1 vin1b_d1 i2c4_sda uart5_txd gpio7_4 Driver off 0x1448 CTRL_CORE_PAD_ GPMC_A2 T6 gpmc_a2 vin1a_d18 vout3_d18 vin2a_d2 vin1a_d2 vin1b_d2 uart7_rxd uart5_ctsn gpio7_5 Driver off 0x144C CTRL_CORE_PAD_ GPMC_A3 T7 gpmc_a3 qspi1_cs2 vin1a_d19 vout3_d19 vin2a_d3 vin1a_d3 vin1b_d3 uart7_txd uart5_rtsn gpio7_6 Driver off 0x1450 CTRL_CORE_PAD_ GPMC_A4 P6 gpmc_a4 qspi1_cs3 vin1a_d20 vout3_d20 vin2a_d4 vin1a_d4 vin1b_d4 i2c5_scl uart6_rxd gpio1_26 Driver off 0x1454 CTRL_CORE_PAD_ GPMC_A5 R9 gpmc_a5 vin1a_d21 vout3_d21 vin2a_d5 vin1a_d5 vin1b_d5 i2c5_sda uart6_txd gpio1_27 Driver off 0x1458 CTRL_CORE_PAD_ GPMC_A6 R5 gpmc_a6 vin1a_d22 vout3_d22 vin2a_d6 vin1a_d6 vin1b_d6 uart8_rxd uart6_ctsn gpio1_28 Driver off 0x145C CTRL_CORE_PAD_ GPMC_A7 P5 gpmc_a7 vin1a_d23 vout3_d23 vin2a_d7 vin1a_d7 vin1b_d7 uart8_txd uart6_rtsn gpio1_29 Driver off 0x1460 CTRL_CORE_PAD_ GPMC_A8 N7 gpmc_a8 vin1a_hsync0 vout3_hsync vin1b_hsync1 timer12 spi4_sclk gpio1_30 Driver off 0x1464 CTRL_CORE_PAD_ GPMC_A9 R4 gpmc_a9 vin1a_vsync0 vout3_vsync vin1b_vsync1 timer11 spi4_d1 gpio1_31 Driver off 0x1468 CTRL_CORE_PAD_ GPMC_A10 N9 gpmc_a10 vin1a_de0 vout3_de vin1b_clk1 timer10 spi4_d0 gpio2_0 Driver off 0x146C CTRL_CORE_PAD_ GPMC_A11 P9 gpmc_a11 vin1a_fld0 vout3_fld vin1b_de1 timer9 spi4_cs0 gpio2_1 Driver off 0x1470 CTRL_CORE_PAD_ GPMC_A12 P4 gpmc_a12 vin1b_fld1 timer8 spi4_cs1 gpio2_2 Driver off vin2a_fld0 vin1a_fld0 vin2a_clk0 vin1a_clk0 gpmc_a0 6* 7 8* 9 dma_evt1 10 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 77 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0 1 2 3* 4* 5* 6* 7 8* 0x1474 CTRL_CORE_PAD_ GPMC_A13 R3 gpmc_a13 qspi1_rtclk vin2a_hsync0 vin1a_hsync0 timer7 spi4_cs2 0x1478 CTRL_CORE_PAD_ GPMC_A14 T2 gpmc_a14 qspi1_d3 vin2a_vsync0 vin1a_vsync0 timer6 spi4_cs3 0x147C CTRL_CORE_PAD_ GPMC_A15 U2 gpmc_a15 qspi1_d2 vin2a_d8 vin1a_d8 timer5 0x1480 CTRL_CORE_PAD_ GPMC_A16 U1 gpmc_a16 qspi1_d0 0x1484 CTRL_CORE_PAD_ GPMC_A17 P3 gpmc_a17 0x1488 CTRL_CORE_PAD_ GPMC_A18 R2 0x148C CTRL_CORE_PAD_ GPMC_A19 0x1490 9 10 14* 15 gpio2_3 Driver off gpio2_4 Driver off gpio2_5 Driver off vin2a_d9 vin1a_d9 gpio2_6 Driver off qspi1_d1 vin2a_d10 vin1a_d10 gpio2_7 Driver off gpmc_a18 qspi1_sclk vin2a_d11 vin1a_d11 gpio2_8 Driver off K7 gpmc_a19 mmc2_dat4 gpmc_a13 vin2a_d12 vin1a_d12 vin2b_d0 vin1b_d0 gpio2_9 Driver off CTRL_CORE_PAD_ GPMC_A20 M7 gpmc_a20 mmc2_dat5 gpmc_a14 vin2a_d13 vin1a_d13 vin2b_d1 vin1b_d1 gpio2_10 Driver off 0x1494 CTRL_CORE_PAD_ GPMC_A21 J5 gpmc_a21 mmc2_dat6 gpmc_a15 vin2a_d14 vin1a_d14 vin2b_d2 vin1b_d2 gpio2_11 Driver off 0x1498 CTRL_CORE_PAD_ GPMC_A22 K6 gpmc_a22 mmc2_dat7 gpmc_a16 vin2a_d15 vin1a_d15 vin2b_d3 vin1b_d3 gpio2_12 Driver off 0x149C CTRL_CORE_PAD_ GPMC_A23 J7 gpmc_a23 mmc2_clk gpmc_a17 vin2a_fld0 vin1a_fld0 vin2b_d4 vin1b_d4 gpio2_13 Driver off 0x14A0 CTRL_CORE_PAD_ GPMC_A24 J4 gpmc_a24 mmc2_dat0 gpmc_a18 vin1a_d8 vin2b_d5 vin1b_d5 gpio2_14 Driver off 0x14A4 CTRL_CORE_PAD_ GPMC_A25 J6 gpmc_a25 mmc2_dat1 gpmc_a19 vin1a_d9 vin2b_d6 vin1b_d6 gpio2_15 Driver off 0x14A8 CTRL_CORE_PAD_ GPMC_A26 H4 gpmc_a26 mmc2_dat2 gpmc_a20 vin1a_d10 vin2b_d7 vin1b_d7 gpio2_16 Driver off 0x14AC CTRL_CORE_PAD_ GPMC_A27 H5 gpmc_a27 mmc2_dat3 gpmc_a21 vin1a_d11 vin2b_hsync1 vin1b_hsync1 gpio2_17 Driver off 0x14B0 CTRL_CORE_PAD_ GPMC_CS1 H6 gpmc_cs1 mmc2_cmd gpmc_a22 vin2a_de0 vin1a_de0 vin2b_vsync1 vin1b_vsync1 gpio2_18 Driver off 0x14B4 CTRL_CORE_PAD_ GPMC_CS0 T1 gpmc_cs0 gpio2_19 Driver off 0x14B8 CTRL_CORE_PAD_ GPMC_CS2 P2 gpmc_cs2 qspi1_cs0 gpio2_20 gpmc_a23 gpmc_a13 Driver off 0x14BC CTRL_CORE_PAD_ GPMC_CS3 P1 gpmc_cs3 qspi1_cs1 vin1a_clk0 vout3_clk gpio2_21 gpmc_a24 gpmc_a14 Driver off 0x14C0 CTRL_CORE_PAD_ GPMC_CLK P7 gpmc_clk gpmc_cs7 clkout1 gpmc_wait1 vin2a_hsync0 vin2a_de0 vin1a_hsync0 vin1a_de0 vin2b_clk1 vin1b_clk1 timer4 i2c3_scl dma_evt1 gpio2_22 gpmc_a20 Driver off 0x14C4 CTRL_CORE_PAD_ GPMC_ADVN_ALE N1 gpmc_advn_al gpmc_cs6 e clkout2 gpmc_wait1 vin2a_vsync0 gpmc_a2 vin1a_vsync0 gpmc_a23 timer3 i2c3_sda dma_evt2 gpio2_23 gpmc_a19 Driver off 0x14C8 CTRL_CORE_PAD_ GPMC_OEN_REN M5 gpmc_oen_re n gpio2_24 Driver off 0x14CC CTRL_CORE_PAD_ GPMC_WEN M3 gpmc_wen gpio2_25 Driver off 78 dma_evt2 gpmc_a1 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 2 3* 4* 5* 6* 7 8* 0x14D0 CTRL_CORE_PAD_ GPMC_BEN0 N6 gpmc_ben0 gpmc_cs4 0x14D4 CTRL_CORE_PAD_ GPMC_BEN1 M4 gpmc_ben1 gpmc_cs5 0x14D8 CTRL_CORE_PAD_ GPMC_WAIT0 N2 gpmc_wait0 0x1554 CTRL_CORE_PAD_V E1 IN2A_CLK0 vin2a_clk0 0x1558 CTRL_CORE_PAD_V G2 IN2A_DE0 vin2a_de0 0x155C CTRL_CORE_PAD_V H7 IN2A_FLD0 vin2a_fld0 0x1560 CTRL_CORE_PAD_V G1 IN2A_HSYNC0 vin2a_hsync0 vin2b_hsync1 vout2_hsync emu8 uart9_rxd spi4_sclk 0x1564 CTRL_CORE_PAD_V G6 IN2A_VSYNC0 vin2a_vsync0 vin2b_vsync1 vout2_vsync emu9 uart9_txd 0x1568 CTRL_CORE_PAD_V F2 IN2A_D0 vin2a_d0 vout2_d23 emu10 0x156C CTRL_CORE_PAD_V F3 IN2A_D1 vin2a_d1 vout2_d22 emu11 0x1570 CTRL_CORE_PAD_V D1 IN2A_D2 vin2a_d2 vout2_d21 0x1574 CTRL_CORE_PAD_V E2 IN2A_D3 vin2a_d3 0x1578 CTRL_CORE_PAD_V D2 IN2A_D4 0x157C vin2a_fld0 vin2b_clk1 vin1b_clk1 vin2b_fld1 vin2b_de1 vin2b_clk1 gpmc_a3 9 10 14* 15 vin2b_de1 vin1b_de1 timer2 dma_evt3 gpio2_26 gpmc_a21 Driver off vin2b_fld1 vin1b_fld1 timer1 dma_evt4 gpio2_27 gpmc_a22 Driver off gpio2_28 gpmc_a25 gpmc_a15 Driver off vout2_fld emu5 kbd_row0 eQEP1A_in gpio3_28 gpmc_a27 gpmc_a17 Driver off vout2_de emu6 kbd_row1 eQEP1B_in gpio3_29 Driver off vout2_clk emu7 eQEP1_index gpio3_30 gpmc_a27 gpmc_a18 Driver off kbd_row2 eQEP1_strob gpio3_31 e gpmc_a27 Driver off spi4_d1 kbd_row3 ehrpwm1A gpio4_0 Driver off uart9_ctsn spi4_d0 kbd_row4 ehrpwm1B gpio4_1 Driver off uart9_rtsn spi4_cs0 kbd_row5 ehrpwm1_trip gpio4_2 zone_input Driver off emu12 uart10_rxd kbd_row6 eCAP1_in_P WM1_out gpio4_3 Driver off vout2_d20 emu13 uart10_txd kbd_col0 ehrpwm1_syn gpio4_4 ci Driver off vin2a_d4 vout2_d19 emu14 uart10_ctsn kbd_col1 ehrpwm1_syn gpio4_5 co Driver off CTRL_CORE_PAD_V F4 IN2A_D5 vin2a_d5 vout2_d18 emu15 uart10_rtsn kbd_col2 eQEP2A_in gpio4_6 Driver off 0x1580 CTRL_CORE_PAD_V C1 IN2A_D6 vin2a_d6 vout2_d17 emu16 mii1_rxd1 kbd_col3 eQEP2B_in gpio4_7 Driver off 0x1584 CTRL_CORE_PAD_V E4 IN2A_D7 vin2a_d7 vout2_d16 emu17 mii1_rxd2 kbd_col4 eQEP2_index gpio4_8 Driver off 0x1588 CTRL_CORE_PAD_V F5 IN2A_D8 vin2a_d8 vout2_d15 emu18 mii1_rxd3 kbd_col5 eQEP2_strob gpio4_9 e gpmc_a26 Driver off 0x158C CTRL_CORE_PAD_V E6 IN2A_D9 vin2a_d9 vout2_d14 emu19 mii1_rxd0 kbd_col6 ehrpwm2A gpio4_10 gpmc_a25 Driver off 0x1590 CTRL_CORE_PAD_V D3 IN2A_D10 vin2a_d10 mdio_mclk vout2_d13 kbd_col7 ehrpwm2B gpio4_11 gpmc_a24 Driver off 0x1594 CTRL_CORE_PAD_V F6 IN2A_D11 vin2a_d11 mdio_d vout2_d12 kbd_row7 ehrpwm2_trip gpio4_12 zone_input gpmc_a23 Driver off 0x1598 CTRL_CORE_PAD_V D5 IN2A_D12 vin2a_d12 rgmii1_txc vout2_d11 mii1_rxclk kbd_col8 eCAP2_in_P WM2_out gpio4_13 Driver off 0x159C CTRL_CORE_PAD_V C2 IN2A_D13 vin2a_d13 rgmii1_txctl vout2_d10 mii1_rxdv kbd_row8 eQEP3A_in gpio4_14 Driver off Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 79 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 14* 15 0x15A0 CTRL_CORE_PAD_V C3 IN2A_D14 vin2a_d14 rgmii1_txd3 vout2_d9 mii1_txclk eQEP3B_in gpio4_15 Driver off 0x15A4 CTRL_CORE_PAD_V C4 IN2A_D15 vin2a_d15 rgmii1_txd2 vout2_d8 mii1_txd0 eQEP3_index gpio4_16 Driver off 0x15A8 CTRL_CORE_PAD_V B2 IN2A_D16 vin2a_d16 vin2b_d7 rgmii1_txd1 vout2_d7 mii1_txd1 eQEP3_strob gpio4_24 e Driver off 0x15AC CTRL_CORE_PAD_V D6 IN2A_D17 vin2a_d17 vin2b_d6 rgmii1_txd0 vout2_d6 mii1_txd2 ehrpwm3A gpio4_25 Driver off 0x15B0 CTRL_CORE_PAD_V C5 IN2A_D18 vin2a_d18 vin2b_d5 rgmii1_rxc vout2_d5 mii1_txd3 ehrpwm3B gpio4_26 Driver off 0x15B4 CTRL_CORE_PAD_V A3 IN2A_D19 vin2a_d19 vin2b_d4 rgmii1_rxctl vout2_d4 mii1_txer ehrpwm3_trip gpio4_27 zone_input Driver off 0x15B8 CTRL_CORE_PAD_V B3 IN2A_D20 vin2a_d20 vin2b_d3 rgmii1_rxd3 vout2_d3 mii1_rxer eCAP3_in_P WM3_out gpio4_28 Driver off 0x15BC CTRL_CORE_PAD_V B4 IN2A_D21 vin2a_d21 vin2b_d2 rgmii1_rxd2 vout2_d2 mii1_col gpio4_29 Driver off 0x15C0 CTRL_CORE_PAD_V B5 IN2A_D22 vin2a_d22 vin2b_d1 rgmii1_rxd1 vout2_d1 mii1_crs gpio4_30 Driver off 0x15C4 CTRL_CORE_PAD_V A4 IN2A_D23 vin2a_d23 vin2b_d0 rgmii1_rxd0 vout2_d0 mii1_txen gpio4_31 Driver off 0x15C8 CTRL_CORE_PAD_V D11 OUT1_CLK vout1_clk vin2a_fld0 vin1a_fld0 vin1a_fld0 spi3_cs0 gpio4_19 Driver off 0x15CC CTRL_CORE_PAD_V B10 OUT1_DE vout1_de vin2a_de0 vin1a_de0 vin1a_de0 spi3_d1 gpio4_20 Driver off 0x15D0 CTRL_CORE_PAD_V B11 OUT1_FLD vout1_fld vin2a_clk0 vin1a_clk0 vin1a_clk0 spi3_cs1 gpio4_21 Driver off 0x15D4 CTRL_CORE_PAD_V C11 OUT1_HSYNC vout1_hsync vin2a_hsync0 vin1a_hsync0 vin1a_hsync0 spi3_d0 gpio4_22 Driver off 0x15D8 CTRL_CORE_PAD_V E11 OUT1_VSYNC vout1_vsync vin2a_vsync0 vin1a_vsync0 vin1a_vsync0 spi3_sclk gpio4_23 Driver off 0x15DC CTRL_CORE_PAD_V F11 OUT1_D0 vout1_d0 uart5_rxd vin2a_d16 vin1a_d16 vin1a_d16 spi3_cs2 gpio8_0 Driver off 0x15E0 CTRL_CORE_PAD_V G10 OUT1_D1 vout1_d1 uart5_txd vin2a_d17 vin1a_d17 vin1a_d17 gpio8_1 Driver off 0x15E4 CTRL_CORE_PAD_V F10 OUT1_D2 vout1_d2 emu2 vin2a_d18 vin1a_d18 vin1a_d18 obs0 obs16 obs_irq1 gpio8_2 Driver off 0x15E8 CTRL_CORE_PAD_V G11 OUT1_D3 vout1_d3 emu5 vin2a_d19 vin1a_d19 vin1a_d19 obs1 obs17 obs_dmarq1 gpio8_3 Driver off 0x15EC CTRL_CORE_PAD_V E9 OUT1_D4 vout1_d4 emu6 vin2a_d20 vin1a_d20 vin1a_d20 obs2 obs18 gpio8_4 Driver off 0x15F0 CTRL_CORE_PAD_V F9 OUT1_D5 vout1_d5 emu7 vin2a_d21 vin1a_d21 vin1a_d21 obs3 obs19 gpio8_5 Driver off 0x15F4 CTRL_CORE_PAD_V F8 OUT1_D6 vout1_d6 emu8 vin2a_d22 vin1a_d22 vin1a_d22 obs4 obs20 gpio8_6 Driver off 0x15F8 CTRL_CORE_PAD_V E7 OUT1_D7 vout1_d7 emu9 vin2a_d23 vin1a_d23 vin1a_d23 gpio8_7 Driver off 0x15FC CTRL_CORE_PAD_V E8 OUT1_D8 vout1_d8 uart6_rxd vin2a_d8 vin1a_d8 vin1a_d8 gpio8_8 Driver off 80 0 1 2 3* 4* 5* 6* 7 Terminal Configuration and Functions 8* 9 10 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 2 3* 4* 5* 6* 0x1600 CTRL_CORE_PAD_V D9 OUT1_D9 vout1_d9 uart6_txd vin2a_d9 vin1a_d9 vin1a_d9 0x1604 CTRL_CORE_PAD_V D7 OUT1_D10 vout1_d10 emu3 vin2a_d10 vin1a_d10 vin1a_d10 obs5 obs21 0x1608 CTRL_CORE_PAD_V D8 OUT1_D11 vout1_d11 emu10 vin2a_d11 vin1a_d11 vin1a_d11 obs6 obs22 0x160C CTRL_CORE_PAD_V A5 OUT1_D12 vout1_d12 emu11 vin2a_d12 vin1a_d12 vin1a_d12 obs7 0x1610 CTRL_CORE_PAD_V C6 OUT1_D13 vout1_d13 emu12 vin2a_d13 vin1a_d13 vin1a_d13 0x1614 CTRL_CORE_PAD_V C8 OUT1_D14 vout1_d14 emu13 vin2a_d14 vin1a_d14 0x1618 CTRL_CORE_PAD_V C7 OUT1_D15 vout1_d15 emu14 0x161C CTRL_CORE_PAD_V B7 OUT1_D16 vout1_d16 0x1620 CTRL_CORE_PAD_V B8 OUT1_D17 0x1624 7 8* 9 10 14* 15 gpio8_9 Driver off obs_irq2 gpio8_10 Driver off obs_dmarq2 gpio8_11 Driver off obs23 gpio8_12 Driver off obs8 obs24 gpio8_13 Driver off vin1a_d14 obs9 obs25 gpio8_14 Driver off vin2a_d15 vin1a_d15 vin1a_d15 obs10 obs26 gpio8_15 Driver off uart7_rxd vin2a_d0 vin1a_d0 vin1a_d0 gpio8_16 Driver off vout1_d17 uart7_txd vin2a_d1 vin1a_d1 vin1a_d1 gpio8_17 Driver off CTRL_CORE_PAD_V A7 OUT1_D18 vout1_d18 emu4 vin2a_d2 vin1a_d2 vin1a_d2 obs11 obs27 gpio8_18 Driver off 0x1628 CTRL_CORE_PAD_V A8 OUT1_D19 vout1_d19 emu15 vin2a_d3 vin1a_d3 vin1a_d3 obs12 obs28 gpio8_19 Driver off 0x162C CTRL_CORE_PAD_V C9 OUT1_D20 vout1_d20 emu16 vin2a_d4 vin1a_d4 vin1a_d4 obs13 obs29 gpio8_20 Driver off 0x1630 CTRL_CORE_PAD_V A9 OUT1_D21 vout1_d21 emu17 vin2a_d5 vin1a_d5 vin1a_d5 obs14 obs30 gpio8_21 Driver off 0x1634 CTRL_CORE_PAD_V B9 OUT1_D22 vout1_d22 emu18 vin2a_d6 vin1a_d6 vin1a_d6 obs15 obs31 gpio8_22 Driver off 0x1638 CTRL_CORE_PAD_V A10 OUT1_D23 vout1_d23 emu19 vin2a_d7 vin1a_d7 vin1a_d7 gpio8_23 Driver off 0x163C CTRL_CORE_PAD_ MDIO_MCLK V1 mdio_mclk uart3_rtsn mii0_col vin2a_clk0 vin1b_clk1 gpio5_15 Driver off 0x1640 CTRL_CORE_PAD_ MDIO_D U4 mdio_d uart3_ctsn mii0_txer vin2a_d0 vin1b_d0 gpio5_16 Driver off 0x1644 CTRL_CORE_PAD_R U3 MII_MHZ_50_CLK RMII_MHZ_50 _CLK gpio5_17 Driver off 0x1648 CTRL_CORE_PAD_U V2 ART3_RXD uart3_rxd rmii1_crs mii0_rxdv vin2a_d1 vin1b_d1 spi3_sclk gpio5_18 Driver off 0x164C CTRL_CORE_PAD_U Y1 ART3_TXD uart3_txd rmii1_rxer mii0_rxclk vin2a_d2 vin1b_d2 spi3_d1 spi4_cs1 gpio5_19 Driver off 0x1650 CTRL_CORE_PAD_R W9 GMII0_TXC rgmii0_txc uart3_ctsn rmii1_rxd1 mii0_rxd3 vin2a_d3 vin1b_d3 usb3_ulpi_clk spi3_d0 spi4_cs2 gpio5_20 Driver off 0x1654 CTRL_CORE_PAD_R V9 GMII0_TXCTL rgmii0_txctl uart3_rtsn rmii1_rxd0 mii0_rxd2 vin2a_d4 vin1b_d4 usb3_ulpi_stp spi3_cs0 spi4_cs3 gpio5_21 Driver off 0x1658 CTRL_CORE_PAD_R V7 GMII0_TXD3 rgmii0_txd3 rmii0_crs mii0_crs vin2a_de0 vin1b_de1 usb3_ulpi_dir spi4_sclk uart4_rxd gpio5_22 Driver off 0x165C CTRL_CORE_PAD_R U7 GMII0_TXD2 rgmii0_txd2 rmii0_rxer mii0_rxer vin2a_hsync0 vin1b_hsync1 usb3_ulpi_nxt spi4_d1 uart4_txd gpio5_23 Driver off spi3_cs3 vin2a_d11 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 81 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 14* 15 0x1660 CTRL_CORE_PAD_R V6 GMII0_TXD1 rgmii0_txd1 rmii0_rxd1 mii0_rxd1 vin2a_vsync0 vin1b_vsync1 usb3_ulpi_d0 spi4_d0 uart4_ctsn gpio5_24 Driver off 0x1664 CTRL_CORE_PAD_R U6 GMII0_TXD0 rgmii0_txd0 rmii0_rxd0 mii0_rxd0 vin2a_d10 uart4_rtsn gpio5_25 Driver off 0x1668 CTRL_CORE_PAD_R U5 GMII0_RXC rgmii0_rxc rmii1_txen mii0_txclk vin2a_d5 vin1b_d5 usb3_ulpi_d2 gpio5_26 Driver off 0x166C CTRL_CORE_PAD_R V5 GMII0_RXCTL rgmii0_rxctl rmii1_txd1 mii0_txd3 vin2a_d6 vin1b_d6 usb3_ulpi_d3 gpio5_27 Driver off 0x1670 CTRL_CORE_PAD_R V4 GMII0_RXD3 rgmii0_rxd3 rmii1_txd0 mii0_txd2 vin2a_d7 vin1b_d7 usb3_ulpi_d4 gpio5_28 Driver off 0x1674 CTRL_CORE_PAD_R V3 GMII0_RXD2 rgmii0_rxd2 rmii0_txen mii0_txen vin2a_d8 usb3_ulpi_d5 gpio5_29 Driver off 0x1678 CTRL_CORE_PAD_R Y2 GMII0_RXD1 rgmii0_rxd1 rmii0_txd1 mii0_txd1 vin2a_d9 usb3_ulpi_d6 gpio5_30 Driver off 0x167C CTRL_CORE_PAD_R W2 GMII0_RXD0 rgmii0_rxd0 rmii0_txd0 mii0_txd0 vin2a_fld0 usb3_ulpi_d7 gpio5_31 Driver off 0x1680 CTRL_CORE_PAD_U AB10 SB1_DRVVBUS usb1_drvvbus timer16 gpio6_12 Driver off 0x1684 CTRL_CORE_PAD_U AC10 SB2_DRVVBUS usb2_drvvbus timer15 gpio6_13 Driver off 0x1688 CTRL_CORE_PAD_ GPIO6_14 E21 gpio6_14 mcasp1_axr8 dcan2_tx uart10_rxd vout2_hsync vin2a_hsync0 i2c3_sda vin1a_hsync0 timer1 gpio6_14 Driver off 0x168C CTRL_CORE_PAD_ GPIO6_15 F20 gpio6_15 mcasp1_axr9 dcan2_rx uart10_txd vout2_vsync vin2a_vsync0 i2c3_scl vin1a_vsync0 timer2 gpio6_15 Driver off 0x1690 CTRL_CORE_PAD_ GPIO6_16 F21 gpio6_16 mcasp1_axr1 0 vout2_fld vin2a_fld0 vin1a_fld0 clkout1 timer3 gpio6_16 Driver off 0x1694 CTRL_CORE_PAD_X D18 REF_CLK0 xref_clk0 mcasp2_axr8 mcasp1_axr4 mcasp1_ahclk mcasp5_ahclk atl_clk0 x x vin1a_d0 hdq0 clkout2 timer13 gpio6_17 Driver off 0x1698 CTRL_CORE_PAD_X E17 REF_CLK1 xref_clk1 mcasp2_axr9 mcasp1_axr5 mcasp2_ahclk mcasp6_ahclk atl_clk1 x x vin1a_clk0 timer14 gpio6_18 Driver off 0x169C CTRL_CORE_PAD_X B26 REF_CLK2 xref_clk2 mcasp2_axr1 mcasp1_axr6 mcasp3_ahclk mcasp7_ahclk atl_clk2 0 x x vout2_clk timer15 gpio6_19 Driver off 0x16A0 CTRL_CORE_PAD_X C23 REF_CLK3 xref_clk3 mcasp2_axr1 mcasp1_axr7 mcasp4_ahclk mcasp8_ahclk atl_clk3 1 x x vout2_de timer16 gpio6_20 Driver off 0x16A4 CTRL_CORE_PAD_ MCASP1_ACLKX C14 mcasp1_aclkx vin1a_fld0 i2c3_sda gpio7_31 Driver off 0x16A8 CTRL_CORE_PAD_ MCASP1_FSX D14 mcasp1_fsx vin1a_de0 i2c3_scl gpio7_30 Driver off 0x16AC CTRL_CORE_PAD_ MCASP1_ACLKR B14 mcasp1_aclkr mcasp7_axr2 vout2_d0 vin2a_d0 vin1a_d0 i2c4_sda gpio5_0 Driver off 0x16B0 CTRL_CORE_PAD_ MCASP1_FSR J14 mcasp1_fsr vout2_d1 vin2a_d1 vin1a_d1 i2c4_scl gpio5_1 Driver off 0x16B4 CTRL_CORE_PAD_ MCASP1_AXR0 G12 mcasp1_axr0 uart6_rxd vin1a_vsync0 i2c5_sda gpio5_2 Driver off 0x16B8 CTRL_CORE_PAD_ MCASP1_AXR1 F12 mcasp1_axr1 uart6_txd vin1a_hsync0 i2c5_scl gpio5_3 Driver off 0x16BC CTRL_CORE_PAD_ MCASP1_AXR2 G13 mcasp1_axr2 mcasp6_axr2 uart6_ctsn gpio5_4 Driver off 82 0 1 2 3* mcasp7_axr3 4* 5* 6* 7 usb3_ulpi_d1 spi4_cs0 vin1b_fld1 8* 9 vin2a_clk0 vin1a_clk0 hdq0 vout2_d2 Terminal Configuration and Functions vin2a_de0 vin1a_de0 vin2a_d2 vin1a_d2 clkout3 10 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 0x16C0 CTRL_CORE_PAD_ MCASP1_AXR3 J11 mcasp1_axr3 mcasp6_axr3 0x16C4 CTRL_CORE_PAD_ MCASP1_AXR4 E12 0x16C8 CTRL_CORE_PAD_ MCASP1_AXR5 0x16CC 2 3* uart6_rtsn 4* 5* 6* 7 8* 9 10 14* 15 vout2_d3 vin2a_d3 vin1a_d3 gpio5_5 Driver off mcasp1_axr4 mcasp4_axr2 vout2_d4 vin2a_d4 vin1a_d4 gpio5_6 Driver off F13 mcasp1_axr5 mcasp4_axr3 vout2_d5 vin2a_d5 vin1a_d5 gpio5_7 Driver off CTRL_CORE_PAD_ MCASP1_AXR6 C12 mcasp1_axr6 mcasp5_axr2 vout2_d6 vin2a_d6 vin1a_d6 gpio5_8 Driver off 0x16D0 CTRL_CORE_PAD_ MCASP1_AXR7 D12 mcasp1_axr7 mcasp5_axr3 vout2_d7 vin2a_d7 vin1a_d7 timer4 gpio5_9 Driver off 0x16D4 CTRL_CORE_PAD_ MCASP1_AXR8 B12 mcasp1_axr8 mcasp6_axr0 spi3_sclk vin1a_d15 timer5 gpio5_10 Driver off 0x16D8 CTRL_CORE_PAD_ MCASP1_AXR9 A11 mcasp1_axr9 mcasp6_axr1 spi3_d1 vin1a_d14 timer6 gpio5_11 Driver off 0x16DC CTRL_CORE_PAD_ MCASP1_AXR10 B13 mcasp1_axr1 mcasp6_aclkx mcasp6_aclkr spi3_d0 0 vin1a_d13 timer7 gpio5_12 Driver off 0x16E0 CTRL_CORE_PAD_ MCASP1_AXR11 A12 mcasp1_axr1 mcasp6_fsx 1 spi3_cs0 vin1a_d12 timer8 gpio4_17 Driver off 0x16E4 CTRL_CORE_PAD_ MCASP1_AXR12 E14 mcasp1_axr1 mcasp7_axr0 2 spi3_cs1 vin1a_d11 timer9 gpio4_18 Driver off 0x16E8 CTRL_CORE_PAD_ MCASP1_AXR13 A13 mcasp1_axr1 mcasp7_axr1 3 vin1a_d10 timer10 gpio6_4 Driver off 0x16EC CTRL_CORE_PAD_ MCASP1_AXR14 G14 mcasp1_axr1 mcasp7_aclkx mcasp7_aclkr 4 vin1a_d9 timer11 gpio6_5 Driver off 0x16F0 CTRL_CORE_PAD_ MCASP1_AXR15 F14 mcasp1_axr1 mcasp7_fsx 5 vin1a_d8 timer12 gpio6_6 Driver off 0x16F4 CTRL_CORE_PAD_ MCASP2_ACLKX A19 mcasp2_aclkx vin1a_d7 Driver off 0x16F8 CTRL_CORE_PAD_ MCASP2_FSX A18 mcasp2_fsx vin1a_d6 Driver off 0x16FC CTRL_CORE_PAD_ MCASP2_ACLKR E15 mcasp2_aclkr mcasp8_axr2 vout2_d8 vin2a_d8 vin1a_d8 Driver off 0x1700 CTRL_CORE_PAD_ MCASP2_FSR A20 mcasp2_fsr vout2_d9 vin2a_d9 vin1a_d9 Driver off 0x1704 CTRL_CORE_PAD_ MCASP2_AXR0 B15 mcasp2_axr0 vout2_d10 vin2a_d10 vin1a_d10 Driver off 0x1708 CTRL_CORE_PAD_ MCASP2_AXR1 A15 mcasp2_axr1 vout2_d11 vin2a_d11 vin1a_d11 Driver off 0x170C CTRL_CORE_PAD_ MCASP2_AXR2 C15 mcasp2_axr2 mcasp3_axr2 vin1a_d5 gpio6_8 Driver off 0x1710 CTRL_CORE_PAD_ MCASP2_AXR3 A16 mcasp2_axr3 mcasp3_axr3 vin1a_d4 gpio6_9 Driver off 0x1714 CTRL_CORE_PAD_ MCASP2_AXR4 D15 mcasp2_axr4 mcasp8_axr0 vout2_d12 vin2a_d12 vin1a_d12 gpio1_4 Driver off 0x1718 CTRL_CORE_PAD_ MCASP2_AXR5 B16 mcasp2_axr5 mcasp8_axr1 vout2_d13 vin2a_d13 vin1a_d13 gpio6_7 Driver off 0x171C CTRL_CORE_PAD_ MCASP2_AXR6 B17 mcasp2_axr6 mcasp8_aclkx mcasp8_aclkr vout2_d14 vin2a_d14 vin1a_d14 gpio2_29 Driver off mcasp6_fsr mcasp7_fsr mcasp8_axr3 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 83 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0 1 2 3* 4* 5* 7 CTRL_CORE_PAD_ MCASP2_AXR7 A17 mcasp2_axr7 mcasp8_fsx 0x1724 CTRL_CORE_PAD_ MCASP3_ACLKX B18 mcasp3_aclkx mcasp3_aclkr mcasp2_axr1 uart7_rxd 2 0x1728 CTRL_CORE_PAD_ MCASP3_FSX F15 mcasp3_fsx 0x172C CTRL_CORE_PAD_ MCASP3_AXR0 B19 mcasp3_axr0 mcasp2_axr1 uart7_ctsn 4 uart5_rxd vin1a_d1 0x1730 CTRL_CORE_PAD_ MCASP3_AXR1 C17 mcasp3_axr1 mcasp2_axr1 uart7_rtsn 5 uart5_txd vin1a_d0 0x1734 CTRL_CORE_PAD_ MCASP4_ACLKX C18 mcasp4_aclkx mcasp4_aclkr spi3_sclk uart8_rxd i2c4_sda vout2_d16 0x1738 CTRL_CORE_PAD_ MCASP4_FSX A21 mcasp4_fsx spi3_d1 uart8_txd i2c4_scl 0x173C CTRL_CORE_PAD_ MCASP4_AXR0 G16 mcasp4_axr0 spi3_d0 uart8_ctsn 0x1740 CTRL_CORE_PAD_ MCASP4_AXR1 D17 mcasp4_axr1 spi3_cs0 0x1744 CTRL_CORE_PAD_ MCASP5_ACLKX AA3 0x1748 CTRL_CORE_PAD_ MCASP5_FSX 0x174C mcasp3_fsr mcasp8_fsr 6* 0x1720 vout2_d15 mcasp2_axr1 uart7_txd 3 8* 9 10 vin2a_d15 vin1a_d15 14* 15 gpio1_5 Driver off vin1a_d3 gpio5_13 Driver off vin1a_d2 gpio5_14 Driver off Driver off vin1a_fld0 Driver off vin2a_d16 vin1a_d16 vin1a_d15 Driver off vout2_d17 vin2a_d17 vin1a_d17 vin1a_d14 Driver off uart4_rxd vout2_d18 vin2a_d18 vin1a_d18 vin1a_d13 i2c6_scl Driver off uart8_rtsn uart4_txd vout2_d19 vin2a_d19 vin1a_d19 vin1a_d12 i2c6_sda Driver off mcasp5_aclkx mcasp5_aclkr spi4_sclk uart9_rxd i2c5_sda vout2_d20 vin2a_d20 vin1a_d20 vin1a_d11 Driver off AB9 mcasp5_fsx spi4_d1 uart9_txd i2c5_scl vout2_d21 vin2a_d21 vin1a_d21 vin1a_d10 Driver off CTRL_CORE_PAD_ MCASP5_AXR0 AB3 mcasp5_axr0 spi4_d0 uart9_ctsn uart3_rxd mlb_sig vout2_d22 vin2a_d22 vin1a_d22 vin1a_d9 Driver off 0x1750 CTRL_CORE_PAD_ MCASP5_AXR1 AA4 mcasp5_axr1 spi4_cs0 uart9_rtsn uart3_txd mlb_dat vout2_d23 vin2a_d23 vin1a_d23 vin1a_d8 Driver off 0x1754 CTRL_CORE_PAD_ MMC1_CLK W6 mmc1_clk gpio6_21 Driver off 0x1758 CTRL_CORE_PAD_ MMC1_CMD Y6 mmc1_cmd gpio6_22 Driver off 0x175C CTRL_CORE_PAD_ MMC1_DAT0 AA6 mmc1_dat0 gpio6_23 Driver off 0x1760 CTRL_CORE_PAD_ MMC1_DAT1 Y4 mmc1_dat1 gpio6_24 Driver off 0x1764 CTRL_CORE_PAD_ MMC1_DAT2 AA5 mmc1_dat2 gpio6_25 Driver off 0x1768 CTRL_CORE_PAD_ MMC1_DAT3 Y3 mmc1_dat3 gpio6_26 Driver off 0x176C CTRL_CORE_PAD_ MMC1_SDCD W7 mmc1_sdcd uart6_rxd i2c4_sda gpio6_27 Driver off 0x1770 CTRL_CORE_PAD_ MMC1_SDWP Y9 mmc1_sdwp uart6_txd i2c4_scl gpio6_28 Driver off 0x1774 CTRL_CORE_PAD_ GPIO6_10 AC5 gpio6_10 mdio_mclk i2c3_sda usb3_ulpi_d7 vin2b_hsync1 vin1a_clk0 ehrpwm2A gpio6_10 Driver off 0x1778 CTRL_CORE_PAD_ GPIO6_11 AB4 gpio6_11 mdio_d i2c3_scl usb3_ulpi_d6 vin2b_vsync1 vin1a_de0 ehrpwm2B gpio6_11 Driver off 0x177C CTRL_CORE_PAD_ MMC3_CLK AD4 mmc3_clk usb3_ulpi_d5 vin2b_d7 vin1a_d7 ehrpwm2_trip gpio6_29 zone_input Driver off 84 mcasp4_fsr mcasp5_fsr mlb_clk Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 14* 15 usb3_ulpi_d4 vin2b_d6 vin1a_d6 eCAP2_in_P WM2_out gpio6_30 Driver off uart5_rxd usb3_ulpi_d3 vin2b_d5 vin1a_d5 eQEP3A_in gpio6_31 Driver off spi3_d0 uart5_txd usb3_ulpi_d2 vin2b_d4 vin1a_d4 eQEP3B_in gpio7_0 Driver off mmc3_dat2 spi3_cs0 uart5_ctsn usb3_ulpi_d1 vin2b_d3 vin1a_d3 eQEP3_index gpio7_1 Driver off AC3 mmc3_dat3 spi3_cs1 uart5_rtsn usb3_ulpi_d0 vin2b_d2 vin1a_d2 eQEP3_strob gpio7_2 e Driver off CTRL_CORE_PAD_ MMC3_DAT4 AC8 mmc3_dat4 spi4_sclk uart10_rxd usb3_ulpi_nxt vin2b_d1 vin1a_d1 ehrpwm3A gpio1_22 Driver off 0x1798 CTRL_CORE_PAD_ MMC3_DAT5 AD6 mmc3_dat5 spi4_d1 uart10_txd usb3_ulpi_dir vin2b_d0 vin1a_d0 ehrpwm3B gpio1_23 Driver off 0x179C CTRL_CORE_PAD_ MMC3_DAT6 AB8 mmc3_dat6 spi4_d0 uart10_ctsn usb3_ulpi_stp vin2b_de1 vin1a_hsync0 ehrpwm3_trip gpio1_24 zone_input Driver off 0x17A0 CTRL_CORE_PAD_ MMC3_DAT7 AB5 mmc3_dat7 spi4_cs0 uart10_rtsn usb3_ulpi_clk vin2b_clk1 vin1a_vsync0 eCAP3_in_P WM3_out gpio1_25 Driver off 0x17A4 CTRL_CORE_PAD_S A25 PI1_SCLK spi1_sclk gpio7_7 Driver off 0x17A8 CTRL_CORE_PAD_S F16 PI1_D1 spi1_d1 gpio7_8 Driver off 0x17AC CTRL_CORE_PAD_S B25 PI1_D0 spi1_d0 gpio7_9 Driver off 0x17B0 CTRL_CORE_PAD_S A24 PI1_CS0 spi1_cs0 gpio7_10 Driver off 0x17B4 CTRL_CORE_PAD_S A22 PI1_CS1 spi1_cs1 gpio7_11 Driver off 0x17B8 CTRL_CORE_PAD_S B21 PI1_CS2 spi1_cs2 0x17BC CTRL_CORE_PAD_S B20 PI1_CS3 0x17C0 0x1780 CTRL_CORE_PAD_ MMC3_CMD AC4 mmc3_cmd spi3_sclk 0x1784 CTRL_CORE_PAD_ MMC3_DAT0 AC7 mmc3_dat0 spi3_d1 0x1788 CTRL_CORE_PAD_ MMC3_DAT1 AC6 mmc3_dat1 0x178C CTRL_CORE_PAD_ MMC3_DAT2 AC9 0x1790 CTRL_CORE_PAD_ MMC3_DAT3 0x1794 2 3* 4* 5* 6* 7 8* 9 10 sata1_led spi2_cs1 uart4_rxd mmc3_sdcd spi2_cs2 dcan2_tx mdio_mclk hdmi1_hpd gpio7_12 Driver off spi1_cs3 uart4_txd mmc3_sdwp spi2_cs3 dcan2_rx mdio_d hdmi1_cec gpio7_13 Driver off CTRL_CORE_PAD_S A26 PI2_SCLK spi2_sclk uart3_rxd gpio7_14 Driver off 0x17C4 CTRL_CORE_PAD_S B22 PI2_D1 spi2_d1 uart3_txd gpio7_15 Driver off 0x17C8 CTRL_CORE_PAD_S G17 PI2_D0 spi2_d0 uart3_ctsn uart5_rxd gpio7_16 Driver off 0x17CC CTRL_CORE_PAD_S B24 PI2_CS0 spi2_cs0 uart3_rtsn uart5_txd gpio7_17 Driver off 0x17D0 CTRL_CORE_PAD_D G20 CAN1_TX dcan1_tx uart8_rxd mmc2_sdcd hdmi1_hpd gpio1_14 Driver off 0x17D4 CTRL_CORE_PAD_D G19 CAN1_RX dcan1_rx uart8_txd mmc2_sdwp hdmi1_cec gpio1_15 Driver off 0x17E0 CTRL_CORE_PAD_U B27 ART1_RXD uart1_rxd mmc4_sdcd gpio7_22 Driver off 0x17E4 CTRL_CORE_PAD_U C26 ART1_TXD uart1_txd mmc4_sdwp gpio7_23 Driver off sata1_led Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 85 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-3. Multiplexing Characteristics (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 14* 15 0x17E8 CTRL_CORE_PAD_U E25 ART1_CTSN uart1_ctsn uart9_rxd mmc4_clk gpio7_24 Driver off 0x17EC CTRL_CORE_PAD_U C27 ART1_RTSN uart1_rtsn uart9_txd mmc4_cmd gpio7_25 Driver off 0x17F0 CTRL_CORE_PAD_U D28 ART2_RXD uart2_rxd uart3_ctsn uart3_rctx mmc4_dat0 uart2_rxd uart1_dcdn gpio7_26 Driver off 0x17F4 CTRL_CORE_PAD_U D26 ART2_TXD uart2_txd uart3_rtsn uart3_sd mmc4_dat1 uart2_txd uart1_dsrn gpio7_27 Driver off 0x17F8 CTRL_CORE_PAD_U D27 ART2_CTSN uart2_ctsn uart3_rxd mmc4_dat2 uart10_rxd uart1_dtrn gpio1_16 Driver off 0x17FC CTRL_CORE_PAD_U C28 ART2_RTSN uart2_rtsn uart3_irtx mmc4_dat3 uart10_txd uart1_rin gpio1_17 Driver off 0x1800 CTRL_CORE_PAD_I C21 2C1_SDA i2c1_sda Driver off 0x1804 CTRL_CORE_PAD_I C20 2C1_SCL i2c1_scl Driver off 0x1808 CTRL_CORE_PAD_I C25 2C2_SDA i2c2_sda hdmi1_ddc_sc l Driver off 0x180C CTRL_CORE_PAD_I F17 2C2_SCL i2c2_scl hdmi1_ddc_sd a Driver off 0x1818 CTRL_CORE_PAD_ WAKEUP0 AD17 Wakeup0 dcan1_rx gpio1_0 sys_nirq2 Driver off 0x1824 CTRL_CORE_PAD_ WAKEUP3 AC16 Wakeup3 sys_nirq1 gpio1_3 dcan2_rx Driver off 0x1828 CTRL_CORE_PAD_ ON_OFF Y11 on_off 0x182C CTRL_CORE_PAD_R AB17 TC_PORZ rtc_porz 0x1830 CTRL_CORE_PAD_T F18 MS tms 0x1834 CTRL_CORE_PAD_T D23 DI tdi gpio8_27 0x1838 CTRL_CORE_PAD_T F19 DO tdo gpio8_28 0x183C CTRL_CORE_PAD_T E20 CLK tclk 0x1840 CTRL_CORE_PAD_T D20 RSTN trstn 0x1844 CTRL_CORE_PAD_R E18 TCK rtck gpio8_29 0x1848 CTRL_CORE_PAD_E G21 MU0 emu0 gpio8_30 0x184C CTRL_CORE_PAD_E D24 MU1 emu1 gpio8_31 0x185C CTRL_CORE_PAD_R E23 ESETN resetn 0x1860 CTRL_CORE_PAD_N D21 MIN_DSP nmin_dsp 86 0 1 uart3_txd 2 3* 4* 5* 6* Terminal Configuration and Functions 7 8* 9 10 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-3. Multiplexing Characteristics (continued) ADDRESS 0x1864 REGISTER NAME BALL NUMBER CTRL_CORE_PAD_R F23 STOUTN MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0 1 2 3* 4* 5* 6* 7 8* 9 10 14* 15 rstoutn 1. NA in table stands for Not Applicable. Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 87 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 4.4 www.ti.com Signal Descriptions Many signals are available on multiple pins, according to the software configuration of the pin multiplexing options. 1. SIGNAL NAME: The name of the signal passing through the pin. NOTE The subsystem multiplexing signals are not described in Table 4-2 and Table 4-3. 2. DESCRIPTION: Description of the signal 3. TYPE: Signal direction and type: – I = Input – O = Output – IO = Input or output – D = Open Drain – DS = Differential – A = Analog – PWR = Power – GND = Ground 4. BALL: Associated ball(s) bottom NOTE For more information, see the Control Module / Control Module Register Manual section of the device TRM. 4.4.1 Video Input Ports (VIP) NOTE For more information, see the Video Input Port (VIP) section of the device TRM. CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are valid only for VIN1 and VIN2 if signals within a single IOSET are used. The IOSETs are defined in Table 7-4. Table 4-4. VIP Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Video Input 1 Port A Clock input.Input clock for 8-bit 16-bit or 24-bit Port A video capture. Input data is sampled on the CLK0 edge. I AC5 / B11 / E17 / P1 / P4 / B26 vin1a_d0 Video Input 1 Port A Data input I AD6 / B7 / C17 / D18 / M6 / R6 / B14 vin1a_d1 Video Input 1 Port A Data input I AC8 / B19 / B8 / M2 / T9 / J14 vin1a_d2 Video Input 1 Port A Data input I A7 / AC3 / F15 / L5 / T6 / G13 vin1a_d3 Video Input 1 Port A Data input I A8 / AC9 / B18 / M1 / T7 / J11 vin1a_d4 Video Input 1 Port A Data input I A16 / AC6 / C9 / L6 / P6 / E12 Video Input 1 vin1a_clk0 88 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-4. VIP Signal Descriptions (continued) SIGNAL NAME TYPE BALL vin1a_d5 DESCRIPTION Video Input 1 Port A Data input I A9 / AC7 / C15 / L4 / R9 / F13 vin1a_d6 Video Input 1 Port A Data input I A18 / AC4 / B9 / L3 / R5 / C12 vin1a_d7 Video Input 1 Port A Data input I A10 / A19 / AD4 / L2 / P5 / D12 vin1a_d8 Video Input 1 Port A Data input I AA4 / E8 / F14 / L1 / U2 / J4 / E15 vin1a_d9 Video Input 1 Port A Data input I AB3 / D9 / G14 / K2 / U1 / J6 / A20 vin1a_d10 Video Input 1 Port A Data input I A13 / AB9 / D7 / J1 / P3 / H4 / B15 vin1a_d11 Video Input 1 Port A Data input I AA3 / D8 / E14 / J2 / R2 / H5 / A15 vin1a_d12 Video Input 1 Port A Data input I A12 / A5 / D17 / H1 / K7 / D15 vin1a_d13 Video Input 1 Port A Data input I B13 / C6 / G16 / J3 / M7 / B16 vin1a_d14 Video Input 1 Port A Data input I A11 / A21 / C8 / H2 / J5 / B17 vin1a_d15 Video Input 1 Port A Data input I B12 / C18 / C7 / H3 / K6 / A17 vin1a_d16 Video Input 1 Port A Data input I F11 / R6 / C18 vin1a_d17 Video Input 1 Port A Data input I G10 / T9 / A21 vin1a_d18 Video Input 1 Port A Data input I F10 / T6 / G16 vin1a_d19 Video Input 1 Port A Data input I G11 / T7 / D17 vin1a_d20 Video Input 1 Port A Data input I E9 / P6 / AA3 vin1a_d21 Video Input 1 Port A Data input I F9 / R9 / AB9 vin1a_d22 Video Input 1 Port A Data input I F8 / R5 / AB3 vin1a_d23 Video Input 1 Port A Data input I E7 / P5 / AA4 vin1a_de0 Video Input 1 Port A Field ID input I AB4 / B10 / D14 / N9 / H6 / C23 / P7 vin1a_fld0 Video Input 1 Port A Field ID input I C14 / C17 / D11 / P9 / J7 / F21 vin1a_hsync0 Video Input 1 Port A Horizontal Sync input I AB8 / C11 / F12 / N7 / R3 / P7 / E21 vin1a_vsync0 Video Input 1 Port A Vertical Sync input I AB5 / E11 / G12 / R4 / T2 / N1 / F20 vin1b_clk1 Video Input 1 Port B Clock input I N9 / V1 / M4 / P7 vin1b_d0 Video Input 1 Port B Data input I R6 / U4 / K7 vin1b_d1 Video Input 1 Port B Data input I T9 / V2 / M7 vin1b_d2 Video Input 1 Port B Data input I T6 / Y1 / J5 vin1b_d3 Video Input 1 Port B Data input I T7 / W9 / K6 vin1b_d4 Video Input 1 Port B Data input I P6 / V9 / J7 vin1b_d5 Video Input 1 Port B Data input I R9 / U5 / J4 vin1b_d6 Video Input 1 Port B Data input I R5 / V5 / J6 vin1b_d7 Video Input 1 Port B Data input I P5 / V4 / H4 vin1b_de1 Video Input 1 Port B Field ID input I P9 / V7 / N6 vin1b_fld1 Video Input 1 Port B Field ID input I P4 / W2 / M4 vin1b_hsync1 Video Input 1 Port B Horizontal Sync input I N7 / U7 / H5 vin1b_vsync1 Video Input 1 Port B Vertical Sync input I R4 / V6 / H6 Video Input 2 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 89 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-4. VIP Signal Descriptions (continued) SIGNAL NAME 90 TYPE BALL vin2a_clk0 DESCRIPTION Video Input 2 Port A Clock input I B11 / B26 / E1 / P4 / V1 vin2a_d0 Video Input 2 Port A Data input I B14 / B7 / F2 / R6 / U4 vin2a_d1 Video Input 2 Port A Data input I B8 / F3 / J14 / T9 / V2 vin2a_d2 Video Input 2 Port A Data input I A7 / D1 / G13 / T6 / Y1 vin2a_d3 Video Input 2 Port A Data input I A8 / E2 / J11 / T7 / W9 vin2a_d4 Video Input 2 Port A Data input I C9 / D2 / E12 / P6 / V9 vin2a_d5 Video Input 2 Port A Data input I A9 / F13 / F4 / R9 / U5 vin2a_d6 Video Input 2 Port A Data input I B9 / C1 / C12 / R5 / V5 vin2a_d7 Video Input 2 Port A Data input I A10 / D12 / E4 / P5 / V4 vin2a_d8 Video Input 2 Port A Data input I E15 / E8 / F5 / U2 / V3 vin2a_d9 Video Input 2 Port A Data input I A20 / D9 / E6 / U1 / Y2 vin2a_d10 Video Input 2 Port A Data input IO B15 / D3 / D7 / P3 / U6 vin2a_d11 Video Input 2 Port A Data input IO A15 / D8 / F6 / R2 / U3 vin2a_d12 Video Input 2 Port A Data input I A5 / D15 / D5 / K7 vin2a_d13 Video Input 2 Port A Data input I B16 / C2 / C6 / M7 vin2a_d14 Video Input 2 Port A Data input I B17 / C3 / C8 / J5 vin2a_d15 Video Input 2 Port A Data input I A17 / C4 / C7 / K6 vin2a_d16 Video Input 2 Port A Data input I B2 / C18 / F11 vin2a_d17 Video Input 2 Port A Data input I A21 / D6 / G10 vin2a_d18 Video Input 2 Port A Data input I C5 / F10 / G16 vin2a_d19 Video Input 2 Port A Data input I A3 / D17 / G11 vin2a_d20 Video Input 2 Port A Data input I AA3 / B3 / E9 vin2a_d21 Video Input 2 Port A Data input I AB9 / B4 / F9 vin2a_d22 Video Input 2 Port A Data input I AB3 / B5 / F8 vin2a_d23 Video Input 2 Port A Data input I A4 / AA4 / E7 vin2a_de0 Video Input 2 Port A Field ID input I B10 / C23 / G2 / H6 / P7 / V7 vin2a_fld0 Video Input 2 Port A Field ID input I D11 / F21 / G2 / H7 / J7 / P9 / W2 vin2a_hsync0 Video Input 2 Port A Horizontal Sync input I C11 / E21 / G1 / P7 / R3 / U7 vin2a_vsync0 Video Input 2 Port A Vertical Sync input I E11 / F20 / G6 / N1 / T2 / V6 vin2b_clk1 Video Input 2 Port B Clock input I AB5 / H7 / M4 / P7 vin2b_d0 Video Input 2 Port B Data input I A4 / AD6 / K7 vin2b_d1 Video Input 2 Port B Data input I AC8 / B5 / M7 vin2b_d2 Video Input 2 Port B Data input I AC3 / B4 / J5 vin2b_d3 Video Input 2 Port B Data input I AC9 / B3 / K6 vin2b_d4 Video Input 2 Port B Data input I A3 / AC6 / J7 vin2b_d5 Video Input 2 Port B Data input I AC7 / C5 / J4 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-4. VIP Signal Descriptions (continued) SIGNAL NAME TYPE BALL vin2b_d6 DESCRIPTION Video Input 2 Port B Data input I AC4 / D6 / J6 vin2b_d7 Video Input 2 Port B Data input I AD4 / B2 / H4 vin2b_de1 Video Input 2 Port B Field ID input I AB8 / G2 / N6 vin2b_fld1 Video Input 2 Port B Field ID input I G2 / M4 vin2b_hsync1 Video Input 2 Port B Horizontal Sync input I AC5 / G1 / H5 vin2b_vsync1 Video Input 2 Port B Vertical Sync input I AB4 / G6 / H6 4.4.2 Display Subsystem – Video Output Ports CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-16. Table 4-5. DSS Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL DPI Video Output 1 vout1_clk Video Output 1 Clock output O D11 vout1_de Video Output 1 Data Enable output O B10 vout1_fld Video Output 1 Field ID output. This signal is not used for embedded sync modes. O B11 vout1_hsync Video Output 1 Horizontal Sync output. This signal is not used for embedded sync modes. O C11 vout1_vsync Video Output 1 Vertical Sync output. This signal is not used for embedded sync modes. O E11 vout1_d0 Video Output 1 Data output O F11 vout1_d1 Video Output 1 Data output O G10 vout1_d2 Video Output 1 Data output O F10 vout1_d3 Video Output 1 Data output O G11 vout1_d4 Video Output 1 Data output O E9 vout1_d5 Video Output 1 Data output O F9 vout1_d6 Video Output 1 Data output O F8 vout1_d7 Video Output 1 Data output O E7 vout1_d8 Video Output 1 Data output O E8 vout1_d9 Video Output 1 Data output O D9 vout1_d10 Video Output 1 Data output O D7 vout1_d11 Video Output 1 Data output O D8 vout1_d12 Video Output 1 Data output O A5 vout1_d13 Video Output 1 Data output O C6 vout1_d14 Video Output 1 Data output O C8 vout1_d15 Video Output 1 Data output O C7 vout1_d16 Video Output 1 Data output O B7 vout1_d17 Video Output 1 Data output O B8 vout1_d18 Video Output 1 Data output O A7 vout1_d19 Video Output 1 Data output O A8 vout1_d20 Video Output 1 Data output O C9 vout1_d21 Video Output 1 Data output O A9 vout1_d22 Video Output 1 Data output O B9 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 91 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-5. DSS Signal Descriptions (continued) SIGNAL NAME TYPE BALL Video Output 1 Data output O A10 vout2_clk Video Output 2 Clock output O H7 / B26 vout2_de Video Output 2 Data Enable output O G2 / C23 vout1_d23 DESCRIPTION DPI Video Output 2 vout2_fld Video Output 2 Field ID output. This signal is not used for embedded sync modes. O E1 / F21 vout2_hsync Video Output 2 Horizontal Sync output. This signal is not used for embedded sync modes. O G1 / E21 vout2_vsync Video Output 2 Vertical Sync output. This signal is not used for embedded sync modes. O G6 / F20 vout2_d0 Video Output 2 Data output O A4 / B14 vout2_d1 Video Output 2 Data output O B5 / J14 vout2_d2 Video Output 2 Data output O B4 / G13 vout2_d3 Video Output 2 Data output O B3 / J11 vout2_d4 Video Output 2 Data output O A3 / E12 vout2_d5 Video Output 2 Data output O C5 / F13 vout2_d6 Video Output 2 Data output O D6 / C12 vout2_d7 Video Output 2 Data output O B2 / D12 vout2_d8 Video Output 2 Data output O C4 / E15 vout2_d9 Video Output 2 Data output O C3 / A20 vout2_d10 Video Output 2 Data output O C2 / B15 vout2_d11 Video Output 2 Data output O D5 / A15 vout2_d12 Video Output 2 Data output O F6 / D15 vout2_d13 Video Output 2 Data output O D3 / B16 vout2_d14 Video Output 2 Data output O E6 / B17 vout2_d15 Video Output 2 Data output O F5 / A17 vout2_d16 Video Output 2 Data output O E4 / C18 vout2_d17 Video Output 2 Data output O C1 / A21 vout2_d18 Video Output 2 Data output O F4 / G16 vout2_d19 Video Output 2 Data output O D2 / D17 vout2_d20 Video Output 2 Data output O E2 / AA3 vout2_d21 Video Output 2 Data output O D1 / AB9 vout2_d22 Video Output 2 Data output O F3 / AB3 vout2_d23 Video Output 2 Data output O F2 / AA4 vout3_clk Video Output 3 Clock output O P1 vout3_d0 Video Output 3 Data output O M6 vout3_d1 Video Output 3 Data output O M2 vout3_d2 Video Output 3 Data output O L5 vout3_d3 Video Output 3 Data output O M1 vout3_d4 Video Output 3 Data output O L6 vout3_d5 Video Output 3 Data output O L4 vout3_d6 Video Output 3 Data output O L3 vout3_d7 Video Output 3 Data output O L2 vout3_d8 Video Output 3 Data output O L1 vout3_d9 Video Output 3 Data output O K2 vout3_d10 Video Output 3 Data output O J1 vout3_d11 Video Output 3 Data output O J2 vout3_d12 Video Output 3 Data output O H1 vout3_d13 Video Output 3 Data output O J3 DPI Video Output 3 92 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-5. DSS Signal Descriptions (continued) SIGNAL NAME TYPE BALL vout3_d14 DESCRIPTION Video Output 3 Data output O H2 vout3_d15 Video Output 3 Data output O H3 vout3_d16 Video Output 3 Data output O R6 vout3_d17 Video Output 3 Data output O T9 vout3_d18 Video Output 3 Data output O T6 vout3_d19 Video Output 3 Data output O T7 vout3_d20 Video Output 3 Data output O P6 vout3_d21 Video Output 3 Data output O R9 vout3_d22 Video Output 3 Data output O R5 vout3_d23 Video Output 3 Data output O P5 vout3_de Video Output 3 Data Enable output O N9 vout3_fld Video Output 3 Field ID output. This signal is not used for embedded sync modes. O P9 vout3_hsync Video Output 3 Horizontal Sync output. This signal is not used for embedded sync modes. O N7 vout3_vsync Video Output 3 Vertical Sync output. This signal is not used for embedded sync modes. O R4 4.4.3 Display Subsystem – High-Definition Multimedia Interface (HDMI) NOTE For more information, see the Display Subsystem / Display Subsystem Overview of the device TRM. Table 4-6. HDMI Signal Descriptions SIGNAL NAME DESCRIPTION hdmi1_cec HDMI consumer electronic control hdmi1_hpd HDMI display hot plug detect TYPE BALL IOD B20/ G19 IO B21/ G20 hdmi1_ddc_scl HDMI display data channel clock IOD C25 hdmi1_ddc_sda HDMI display data channel data IOD F17 hdmi1_clockx HDMI clock differential positive or negative ODS AG16 hdmi1_clocky HDMI clock differential positive or negative ODS AH16 hdmi1_data2x HDMI data 2 differential positive or negative ODS AG19 hdmi1_data2y HDMI data 2 differential positive or negative ODS AH19 hdmi1_data1x HDMI data 1 differential positive or negative ODS AG18 hdmi1_data1y HDMI data 1 differential positive or negative ODS AH18 hdmi1_data0x HDMI data 0 differential positive or negative ODS AG17 hdmi1_data0y HDMI data 0 differential positive or negative ODS AH17 4.4.4 Camera Serial Interface 2 CAL bridge (CSI2) NOTE For more information, see the CAL Subsystem / CAL Subsystem Overview of the device TRM. Table 4-7. CSI 2 Signal Descriptions SIGNAL NAME csi2_0_dx0 DESCRIPTION Serial data/clock input - line 0 (position 1) TYPE BALL I AE1 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 93 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-7. CSI 2 Signal Descriptions (continued) SIGNAL NAME TYPE BALL csi2_0_dy0 DESCRIPTION Serial data/clock input - line 0 (position 1) I AD2 csi2_0_dx1 Serial data/clock input - line 1 (position 2) I AF1 csi2_0_dy1 Serial data/clock input - line 1 (position 2) I AE2 csi2_0_dx2 Serial data/clock input - line 2 (position 3) I AF2 csi2_0_dy2 Serial data/clock input - line 2 (position 3) I AF3 csi2_0_dx3 Serial data/clock input - line 3 (position 4) I AH4 csi2_0_dy3 Serial data/clock input - line 3 (position 4) I AG4 csi2_0_dx4 Serial data input only - line 4 (position 5) (1) I AH3 csi2_0_dy4 Serial data input only - line 4 (position 5) (1) I AG3 csi2_1_dx0 Serial data/clock input - line 0 (position 1) I AG5 csi2_1_dy0 Serial data/clock input - line 0 (position 1) I AH5 csi2_1_dx1 Serial data/clock input - line 1 (position 2) I AG6 csi2_1_dy1 Serial data/clock input - line 1 (position 2) I AH6 csi2_1_dx2 Serial data/clock input - line 2 (position 3) I AH7 csi2_1_dy2 Serial data/clock input - line 2 (position 3) I AG7 (1) Line 4 (position 5) supports only data. For more information see CAL Subsystem of the device TRM. 4.4.5 External Memory Interface (EMIF) NOTE For more information, see the Memory Subsystem / EMIF Controller section of the device TRM. NOTE Dual rank support is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. NOTE ECC is not available on this device, but signal names are retained for consistency with the DRA7xx family of devices. NOTE The index number 1 which is part of the EMIF1 signal prefixes (ddr1_*) listed in Table 4-8, EMIF Signal Descriptions, column "SIGNAL NAME" not to be confused with DDR1 type of SDRAM memories. Table 4-8. EMIF Signal Descriptions SIGNAL NAME 94 DESCRIPTION TYPE BALL AH23 ddr1_csn0 EMIF1 Chip Select 0 O ddr1_csn1 EMIF1 Chip Select 1 O AB16 ddr1_cke EMIF1 Clock Enable O AG22 ddr1_ck EMIF1 Clock O AG24 ddr1_nck EMIF1 Negative Clock O AH24 ddr1_odt0 EMIF1 On-Die Termination for Chip Select 0 O AE20 ddr1_odt1 EMIF1 On-Die Termination for Chip Select 1 O AC17 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-8. EMIF Signal Descriptions (continued) SIGNAL NAME TYPE BALL ddr1_casn DESCRIPTION EMIF1 Column Address Strobe O AC18 ddr1_rasn EMIF1 Row Address Strobe O AF20 ddr1_wen EMIF1 Write Enable O AH21 ddr1_rst EMIF1 Reset output (DDR3-SDRAM only) O AG21 ddr1_ba0 EMIF1 Bank Address O AF17 ddr1_ba1 EMIF1 Bank Address O AE18 ddr1_ba2 EMIF1 Bank Address O AB18 ddr1_a0 EMIF1 Address Bus O AD20 ddr1_a1 EMIF1 Address Bus O AC19 ddr1_a2 EMIF1 Address Bus O AC20 ddr1_a3 EMIF1 Address Bus O AB19 ddr1_a4 EMIF1 Address Bus O AF21 ddr1_a5 EMIF1 Address Bus O AH22 ddr1_a6 EMIF1 Address Bus O AG23 ddr1_a7 EMIF1 Address Bus O AE21 ddr1_a8 EMIF1 Address Bus O AF22 ddr1_a9 EMIF1 Address Bus O AE22 ddr1_a10 EMIF1 Address Bus O AD21 ddr1_a11 EMIF1 Address Bus O AD22 ddr1_a12 EMIF1 Address Bus O AC21 ddr1_a13 EMIF1 Address Bus O AF18 ddr1_a14 EMIF1 Address Bus O AE17 ddr1_a15 EMIF1 Address Bus O AD18 ddr1_d0 EMIF1 Data Bus IO AF25 ddr1_d1 EMIF1 Data Bus IO AF26 ddr1_d2 EMIF1 Data Bus IO AG26 ddr1_d3 EMIF1 Data Bus IO AH26 ddr1_d4 EMIF1 Data Bus IO AF24 ddr1_d5 EMIF1 Data Bus IO AE24 ddr1_d6 EMIF1 Data Bus IO AF23 ddr1_d7 EMIF1 Data Bus IO AE23 ddr1_d8 EMIF1 Data Bus IO AC23 ddr1_d9 EMIF1 Data Bus IO AF27 ddr1_d10 EMIF1 Data Bus IO AG27 ddr1_d11 EMIF1 Data Bus IO AF28 ddr1_d12 EMIF1 Data Bus IO AE26 ddr1_d13 EMIF1 Data Bus IO AC25 ddr1_d14 EMIF1 Data Bus IO AC24 ddr1_d15 EMIF1 Data Bus IO AD25 ddr1_d16 EMIF1 Data Bus IO V20 ddr1_d17 EMIF1 Data Bus IO W20 ddr1_d18 EMIF1 Data Bus IO AB28 ddr1_d19 EMIF1 Data Bus IO AC28 ddr1_d20 EMIF1 Data Bus IO AC27 ddr1_d21 EMIF1 Data Bus IO Y19 ddr1_d22 EMIF1 Data Bus IO AB27 ddr1_d23 EMIF1 Data Bus IO Y20 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 95 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-8. EMIF Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL ddr1_d24 EMIF1 Data Bus IO AA23 ddr1_d25 EMIF1 Data Bus IO Y22 ddr1_d26 EMIF1 Data Bus IO Y23 ddr1_d27 EMIF1 Data Bus IO AA24 ddr1_d28 EMIF1 Data Bus IO Y24 ddr1_d29 EMIF1 Data Bus IO AA26 ddr1_d30 EMIF1 Data Bus IO AA25 ddr1_d31 EMIF1 Data Bus IO AA28 ddr1_ecc_d0 EMIF1 ECC Data Bus IO W22 ddr1_ecc_d1 EMIF1 ECC Data Bus IO V23 ddr1_ecc_d2 EMIF1 ECC Data Bus IO W19 ddr1_ecc_d3 EMIF1 ECC Data Bus IO W23 ddr1_ecc_d4 EMIF1 ECC Data Bus IO Y25 ddr1_ecc_d5 EMIF1 ECC Data Bus IO V24 ddr1_ecc_d6 EMIF1 ECC Data Bus IO V25 ddr1_ecc_d7 EMIF1 ECC Data Bus IO Y26 ddr1_dqm0 EMIF1 Data Mask O AD23 ddr1_dqm1 EMIF1 Data Mask O AB23 ddr1_dqm2 EMIF1 Data Mask O AC26 ddr1_dqm3 EMIF1 Data Mask O AA27 EMIF1 ECC Data Mask O V26 ddr1_dqs0 Data strobe 0 input/output for byte 0 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AH25 ddr1_dqsn0 Data strobe 0 invert IO AG25 ddr1_dqs1 Data strobe 1 input/output for byte 1 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AE27 ddr1_dqsn1 Data strobe 1 invert IO AE28 ddr1_dqs2 Data strobe 2 input/output for byte 2 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AD27 ddr1_dqsn2 Data strobe 2 invert IO AD28 ddr1_dqs3 Data strobe 3 input/output for byte 3 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO Y28 ddr1_dqsn3 ddr1_dqm_ecc Data strobe 3 invert IO Y27 ddr1_dqs_ecc EMIF1 ECC Data strobe input/output. This signal is output to the EMIF1 memory when writing and input when reading. IO V27 ddr1_dqsn_ecc EMIF1 ECC Complementary Data strobe IO V28 Reference Power Supply EMIF1 A Y18 ddr1_vref0 4.4.6 General-Purpose Memory Controller (GPMC) NOTE For more information, see the Memory Subsystem / General-Purpose Memory Controller section of the device TRM. Table 4-9. GPMC Signal Descriptions SIGNAL NAME gpmc_ad0 96 DESCRIPTION GPMC Data 0 in A/D nonmultiplexed mode and additionally Address 1 in A/D multiplexed mode Terminal Configuration and Functions TYPE BALL IO M6 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-9. GPMC Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpmc_ad1 DESCRIPTION GPMC Data 1 in A/D nonmultiplexed mode and additionally Address 2 in A/D multiplexed mode IO M2 gpmc_ad2 GPMC Data 2 in A/D nonmultiplexed mode and additionally Address 3 in A/D multiplexed mode IO L5 gpmc_ad3 GPMC Data 3 in A/D nonmultiplexed mode and additionally Address 4 in A/D multiplexed mode IO M1 gpmc_ad4 GPMC Data 4 in A/D nonmultiplexed mode and additionally Address 5 in A/D multiplexed mode IO L6 gpmc_ad5 GPMC Data 5 in A/D nonmultiplexed mode and additionally Address 6 in A/D multiplexed mode IO L4 gpmc_ad6 GPMC Data 6 in A/D nonmultiplexed mode and additionally Address 7 in A/D multiplexed mode IO L3 gpmc_ad7 GPMC Data 7 in A/D nonmultiplexed mode and additionally Address 8 in A/D multiplexed mode IO L2 gpmc_ad8 GPMC Data 8 in A/D nonmultiplexed mode and additionally Address 9 in A/D multiplexed mode IO L1 gpmc_ad9 GPMC Data 9 in A/D nonmultiplexed mode and additionally Address 10 in A/D multiplexed mode IO K2 gpmc_ad10 GPMC Data 10 in A/D nonmultiplexed mode and additionally Address 11 in A/D multiplexed mode IO J1 gpmc_ad11 GPMC Data 11 in A/D nonmultiplexed mode and additionally Address 12 in A/D multiplexed mode IO J2 gpmc_ad12 GPMC Data 12 in A/D nonmultiplexed mode and additionally Address 13 in A/D multiplexed mode IO H1 gpmc_ad13 GPMC Data 13 in A/D nonmultiplexed mode and additionally Address 14 in A/D multiplexed mode IO J3 gpmc_ad14 GPMC Data 14 in A/D nonmultiplexed mode and additionally Address 15 in A/D multiplexed mode IO H2 gpmc_ad15 GPMC Data 15 in A/D nonmultiplexed mode and additionally Address 16 in A/D multiplexed mode IO H3 gpmc_a0 GPMC Address 0. Only used to effectively address 8-bit data nonmultiplexed memories O R6 / P4 gpmc_a1 GPMC address 1 in A/D nonmultiplexed mode and Address 17 in A/D multiplexed mode O T9 / P1 gpmc_a2 GPMC address 2 in A/D nonmultiplexed mode and Address 18 in A/D multiplexed mode O T6 / N1 gpmc_a3 GPMC address 3 in A/D nonmultiplexed mode and Address 19 in A/D multiplexed mode O T7 / M4 gpmc_a4 GPMC address 4 in A/D nonmultiplexed mode and Address 20 in A/D multiplexed mode O P6 gpmc_a5 GPMC address 5 in A/D nonmultiplexed mode and Address 21 in A/D multiplexed mode O R9 gpmc_a6 GPMC address 6 in A/D nonmultiplexed mode and Address 22 in A/D multiplexed mode O R5 gpmc_a7 GPMC address 7 in A/D nonmultiplexed mode and Address 23 in A/D multiplexed mode O P5 gpmc_a8 GPMC address 8 in A/D nonmultiplexed mode and Address 24 in A/D multiplexed mode O N7 gpmc_a9 GPMC address 9 in A/D nonmultiplexed mode and Address 25 in A/D multiplexed mode O R4 gpmc_a10 GPMC address 10 in A/D nonmultiplexed mode and Address 26 in A/D multiplexed mode O N9 gpmc_a11 GPMC address 11 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O P9 gpmc_a12 GPMC address 12 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O P4 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 97 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-9. GPMC Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpmc_a13 GPMC address 13 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O R3 / K7 / P2 gpmc_a14 GPMC address 14 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O T2 / M7 / P1 gpmc_a15 GPMC address 15 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O U2 / J5 / N2 gpmc_a16 GPMC address 16 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O U1 / K6 / R6 gpmc_a17 GPMC address 17 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O P3 / J7 / E1 gpmc_a18 GPMC address 18 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O R2 / J4 / H7 gpmc_a19 GPMC address 19 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O K7 / J6 gpmc_a20 GPMC address 20 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O M7 / H4 gpmc_a21 GPMC address 21 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O J5 / H5 gpmc_a22 GPMC address 22 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O K6 / H6 gpmc_a23 GPMC address 23 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O F6 / J7 / N1 / P2 gpmc_a24 GPMC address 24 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O D3 / J4 / P1 gpmc_a25 GPMC address 25 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O E6 / J6 / N2 gpmc_a26 GPMC address 26 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O F5 / H4 / R6 gpmc_a27 GPMC address 27 in A/D nonmultiplexed mode and Address 27 in A/D multiplexed mode O G1 / H5 / E1 / H7 gpmc_cs0 GPMC Chip Select 0 (active low) O T1 gpmc_cs1 GPMC Chip Select 1 (active low) O H6 gpmc_cs2 GPMC Chip Select 2 (active low) O P2 gpmc_cs3 GPMC Chip Select 3 (active low) O P1 gpmc_cs4 GPMC Chip Select 4 (active low) O N6 gpmc_cs5 GPMC Chip Select 5 (active low) O M4 gpmc_cs6 GPMC Chip Select 6 (active low) O N1 gpmc_cs7 GPMC Chip Select 7 (active low) O P7 GPMC Clock output IO P7 gpmc_advn_ale GPMC address valid active low or address latch enable O N1 gpmc_oen_ren gpmc_clk(1)(2) DESCRIPTION GPMC output enable active low or read enable O M5 gpmc_wen GPMC write enable active low O M3 gpmc_ben0 GPMC lower-byte enable active low O N6 M4 gpmc_ben1 GPMC upper-byte enable active low O gpmc_wait0 GPMC external indication of wait 0 I N2 gpmc_wait1 GPMC external indication of wait 1 I P7 / N1 (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. (2) The gpio6_16.clkout1 signal can be used as an “always-on” alternative to gpmc_clk provided that the external device can support the associated timing. See Table 7-23 GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default and Table 7-25 GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate for timing information. 98 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 4.4.7 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Timers NOTE For more information, see the Timers section of the device TRM. Table 4-10. Timers Signal Descriptions SIGNAL NAME TYPE BALL timer1 PWM output/event trigger input IO M4 / E21 timer2 PWM output/event trigger input IO N6 / F20 timer3 PWM output/event trigger input IO N1 / F21 timer4 PWM output/event trigger input IO P7 / D12 timer5 PWM output/event trigger input IO U2 / B12 timer6 PWM output/event trigger input IO T2 / A11 timer7 PWM output/event trigger input IO R3 / B13 timer8 PWM output/event trigger input IO P4 / A12 timer9 PWM output/event trigger input IO P9 / E14 timer10 PWM output/event trigger input IO N9 / A13 timer11 PWM output/event trigger input IO R4 / G14 timer12 PWM output/event trigger input IO N7 / F14 timer13 PWM output/event trigger input IO D18 timer14 PWM output/event trigger input IO E17 timer15 PWM output/event trigger input IO AC10 / B26 timer16 PWM output/event trigger input IO AB10 / C23 4.4.8 DESCRIPTION Inter-Integrated Circuit Interface (I2C) NOTE For more information, see the Serial Communication Interface / Multimaster High-Speed I2C Controller / HS I2C Environment / HS I2C in I2C Mode section of the device TRM. NOTE I2C1 and I2C2 do NOT support HS-mode. Table 4-11. I2C Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Inter-Integrated Circuit Interface 1 (I2C1) i2c1_scl I2C1 Clock IOD C20 i2c1_sda I2C1 Data IOD C21 Inter-Integrated Circuit Interface 2 (I2C2) i2c2_scl I2C2 Clock IOD F17 i2c2_sda I2C2 Data IOD C25 Inter-Integrated Circuit Interface 3 (I2C3) i2c3_scl I2C3 Clock IOD P7/ D14/ AB4/ F20 i2c3_sda I2C3 Data IOD N1/ C14/ AC5/ E21 Inter-Integrated Circuit Interface 4 (I2C4) i2c4_scl I2C4 Clock IOD R6/ J14/ A21/ Y9 i2c4_sda I2C4 Data IOD T9/ B14/ C18/ W7 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 99 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-11. I2C Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL Inter-Integrated Circuit Interface 5 (I2C5) i2c5_scl I2C5 Clock IOD AB9/ P6/ F12 i2c5_sda I2C5 Data IOD AA3/ R9/ G12 Inter-Integrated Circuit Interface 6 (I2C6) 4.4.9 i2c6_scl I2C6 Clock IOD G16 i2c6_sda I2C6 Data IOD D17 HDQ / 1-Wire Interface (HDQ1W) NOTE For more information, see the Serial Communication Interface / HDQ/1-Wire section of the device TRM. Table 4-12. HDQ / 1-Wire Signal Descriptions SIGNAL NAME hdq0 DESCRIPTION HDQ or 1-wire protocol single interface pin TYPE BALL IOD D18/ C23 4.4.10 Universal Asynchronous Receiver Transmitter (UART) NOTE For more information about UART booting, see the Initialization / Device Initialization by ROM Code / Perypheral Booting / Initialization Phase for UART Boot section of the device TRM. Table 4-13. UART Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL I D28 Universal Asynchronous Receiver/Transmitter 1 (UART1) uart1_dcdn UART1 Data Carrier Detect active low uart1_dsrn UART1 Data Set Ready Active Low I D26 uart1_dtrn UART1 Data Terminal Ready Active Low O D27 uart1_rin UART1 Ring Indicator I C28 uart1_rxd UART1 Receive Data I B27 C26 uart1_txd UART1 Transmit Data O uart1_ctsn UART1 clear to send active low I E25 uart1_rtsn UART1 request to send active low O C27 Universal Asynchronous Receiver/Transmitter 2 (UART2) uart2_rxd UART2 Receive Data I D28 uart2_txd UART2 Transmit Data O D26 uart2_ctsn UART2 clear to send active low I D27 uart2_rtsn UART2 request to send active low O C28 Universal Asynchronous Receiver/Transmitter 3 (UART3)/IrDA 100 uart3_rxd UART3 Receive Data I V2/ AB3/ A26 / D27 uart3_txd UART3 Transmit Data O Y1/ AA4/ B22/ C28 uart3_ctsn UART3 clear to send active low I U4/ W9/ G17/ D28 uart3_rtsn UART3 request to send active low O V1/ V9/ D26/ B24 uart3_rctx Remote control data O D28 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-13. UART Signal Descriptions (continued) SIGNAL NAME TYPE BALL uart3_sd DESCRIPTION Infrared transceiver configure/shutdown O D26 uart3_irrx Infrared data input. Also functions as uart3_rxd Receive Data Input when IrDA mode is not used. I D27 uart3_irtx Infrared data output O C28 Universal Asynchronous Receiver/Transmitter 4 (UART4) uart4_rxd UART4 Receive Data I V7/ G16/ B21 uart4_txd UART4 Transmit Data O U7/ D17/ B20 uart4_ctsn UART4 clear to send active low I V6 uart4_rtsn UART4 request to send active low O U6 Universal Asynchronous Receiver/Transmitter 5 (UART5) uart5_rxd UART5 Receive Data I R6/ F11/ B19/ AC7/ G17 uart5_txd UART5 Transmit Data O T9/ G10/ C17/ AC6/ B24 uart5_ctsn UART5 clear to send active low I T6 / AC9 uart5_rtsn UART5 request to send active low O T7 / AC3 Universal Asynchronous Receiver/Transmitter 6 (UART6) uart6_rxd UART6 Receive Data I P6/ E8/ G12/ W7 uart6_txd UART6 Transmit Data O R9/ D9/ F12/ Y9 uart6_ctsn UART6 clear to send active low I R5 / G13 uart6_rtsn UART6 request to send active low O P5 / J11 Universal Asynchronous Receiver/Transmitter 7 (UART7) uart7_rxd UART7 Receive Data I B18 / B7 / T6 uart7_txd UART7 Transmit Data O B8 / F15 / T7 uart7_ctsn UART7 clear to send active low I B19 uart7_rtsn UART7 request to send active low O C17 Universal Asynchronous Receiver/Transmitter 8 (UART8) uart8_rxd UART8 Receive Data I C18 / G20 / R5 uart8_txd UART8 Transmit Data O A21 / G19 / P5 uart8_ctsn UART8 clear to send active low I G16 uart8_rtsn UART8 request to send active low O D17 Universal Asynchronous Receiver/Transmitter 9 (UART9) uart9_rxd UART9 Receive Data I G1/ AA3/ E25 uart9_txd UART9 Transmit Data O G6/ AB9/ C27 uart9_ctsn UART9 clear to send active low I F2 / AB3 uart9_rtsn UART9 request to send active low O F3/ AA4 Universal Asynchronous Receiver/Transmitter 10 (UART10) uart10_rxd UART10 Receive Data I D1/ E21/ AC8/ D27 uart10_txd UART10 Transmit Data O E2/ F20/ AD6/ C28 uart10_ctsn UART10 clear to send active low I D2 / AB8 uart10_rtsn UART10 request to send active low O F4 / AB5 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 101 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 4.4.11 Multichannel Serial Peripheral Interface (McSPI) CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are applicable for all combinations of signals for SPI1 and SPI2. However, the timings are valid only for SPI3 and SPI4 if signals within a single IOSET are used. The IOSETS are defined in Table 7-42. NOTE For more information, see the Serial Communication Interface / Multichannel Serial Peripheral Interface (McSPI) section of the device TRM. Table 4-14. SPI Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL SPI1 Clock IO A25 spi1_d1 SPI1 Data. Can be configured as either MISO or MOSI. IO F16 spi1_d0 SPI1 Data. Can be configured as either MISO or MOSI. IO B25 spi1_cs0 SPI1 Chip Select IO A24 spi1_cs1 SPI1 Chip Select IO A22 spi1_cs2 SPI1 Chip Select IO B21 spi1_cs3 SPI1 Chip Select IO B20 A26 Serial Peripheral Interface 1 spi1_sclk(1) Serial Peripheral Interface 2 spi2_sclk(1) SPI2 Clock IO spi2_d1 SPI2 Data. Can be configured as either MISO or MOSI. IO B22 spi2_d0 SPI2 Data. Can be configured as either MISO or MOSI. IO G17 spi2_cs0 SPI2 Chip Select IO B24 spi2_cs1 SPI2 Chip Select IO A22 spi2_cs2 SPI2 Chip Select IO B21 spi2_cs3 SPI2 Chip Select IO B20 SPI3 Clock IO AC4 / B12 / C18 / E11 / V2 spi3_d1 SPI3 Data. Can be configured as either MISO or MOSI. IO A11 / A21 / AC7 / B10 / Y1 spi3_d0 SPI3 Data. Can be configured as either MISO or MOSI. IO AC6 / B13 / C11 / G16 / W9 spi3_cs0 SPI3 Chip Select IO A12 / AC9 / D11 / D17 / V9 spi3_cs1 SPI3 Chip Select IO AC3 / B11 / E14 spi3_cs2 SPI3 Chip Select IO F11 spi3_cs3 SPI3 Chip Select IO A10 SPI4 Clock IO N7/ G1/ AA3/ V7/ AC8 spi4_d1 SPI4 Data. Can be configured as either MISO or MOSI. IO R4/ G6/ AB9/ U7/ AD6 spi4_d0 SPI4 Data. Can be configured as either MISO or MOSI. IO N9/ F2/ AB3/ V6/ AB8 Serial Peripheral Interface 3 spi3_sclk(1) Serial Peripheral Interface 4 spi4_sclk(1) 102 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-14. SPI Signal Descriptions (continued) SIGNAL NAME TYPE BALL spi4_cs0 DESCRIPTION SPI4 Chip Select IO P9/ F3/ AA4/ U6/ AB5 spi4_cs1 SPI4 Chip Select IO P4 / Y1 spi4_cs2 SPI4 Chip Select IO R3 / W9 spi4_cs3 SPI4 Chip Select IO T2 / V9 (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.4.12 Quad Serial Peripheral Interface (QSPI) NOTE For more information about UART booting, see the Initialization / Device Initialization by ROM Code / Memory Booting / SPI/QSPI Flash Devices section of the device TRM. Table 4-15. QSPI Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL IO R2 QSPI1 Return Clock Input. Must be connected from QSPI1_SCLK on PCB. Refer to PCB Guidelines for QSPI1 I R3 qspi1_d0 QSPI1 Data[0]. This pin is output data for all commands/writes and for dual read and quad read modes it becomes input data pin during read phase. IO U1 qspi1_d1 QSPI1 Data[1]. Input read data in all modes. IO P3 qspi1_d2 QSPI1 Data[2]. This pin is used only in quad read mode as input data pin during read phase IO U2 qspi1_d3 QSPI1 Data[3]. This pin is used only in quad read mode as input data pin during read phase IO T2 qspi1_cs0 QSPI1 Chip Select[0]. This pin is Used for QSPI1 boot modes. IO P2 qspi1_cs1 QSPI1 Chip Select[1] O P1 qspi1_cs2 QSPI1 Chip Select[2] O T7 qspi1_cs3 QSPI1 Chip Select[3] O P6 qspi1_sclk QSPI1 Serial Clock qspi1_rtclk 4.4.13 Multicannel Audio Serial Port (McASP) NOTE For more information, see the Serial Communication Interface / Multichannel Audio Serial Port (McASP) section of the device TRM. Table 4-16. McASP Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL G12 Multichannel Audio Serial Port 1 mcasp1_axr0 McASP1 Transmit/Receive Data IO mcasp1_axr1 McASP1 Transmit/Receive Data IO F12 mcasp1_axr2 McASP1 Transmit/Receive Data IO G13 mcasp1_axr3 McASP1 Transmit/Receive Data IO J11 mcasp1_axr4 McASP1 Transmit/Receive Data IO D18/ E12 mcasp1_axr5 McASP1 Transmit/Receive Data IO E17 / F13 mcasp1_axr6 McASP1 Transmit/Receive Data IO B26 / C12 mcasp1_axr7 McASP1 Transmit/Receive Data IO C23 / D12 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 103 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-16. McASP Signal Descriptions (continued) SIGNAL NAME TYPE BALL mcasp1_axr8 DESCRIPTION McASP1 Transmit/Receive Data IO E21 / B12 mcasp1_axr9 McASP1 Transmit/Receive Data IO F20/ A11 mcasp1_axr10 McASP1 Transmit/Receive Data IO F21 / B13 mcasp1_axr11 McASP1 Transmit/Receive Data IO A12 mcasp1_axr12 McASP1 Transmit/Receive Data IO E14 mcasp1_axr13 McASP1 Transmit/Receive Data IO A13 mcasp1_axr14 McASP1 Transmit/Receive Data IO G14 mcasp1_axr15 McASP1 Transmit/Receive Data IO F14 mcasp1_fsx McASP1 Transmit Frame Sync IO D14 McASP1 Receive Bit Clock IO B14 McASP1 Receive Frame Sync IO J14 mcasp1_aclkr(1) mcasp1_fsr mcasp1_ahclkx McASP1 Transmit High-Frequency Master Clock O D18 mcasp1_aclkx(1) McASP1 Transmit Bit Clock IO C14 B15 Multichannel Audio Serial Port 2 mcasp2_axr0 McASP2 Transmit/Receive Data IO mcasp2_axr1 McASP2 Transmit/Receive Data IO A15 mcasp2_axr2 McASP2 Transmit/Receive Data IO C15 mcasp2_axr3 McASP2 Transmit/Receive Data IO A16 mcasp2_axr4 McASP2 Transmit/Receive Data IO D15 mcasp2_axr5 McASP2 Transmit/Receive Data IO B16 mcasp2_axr6 McASP2 Transmit/Receive Data IO B17 mcasp2_axr7 McASP2 Transmit/Receive Data IO A17 mcasp2_axr8 McASP2 Transmit/Receive Data IO D18 mcasp2_axr9 McASP2 Transmit/Receive Data IO E17 mcasp2_axr10 McASP2 Transmit/Receive Data IO B26 mcasp2_axr11 McASP2 Transmit/Receive Data IO C23 mcasp2_axr12 McASP2 Transmit/Receive Data IO B18 mcasp2_axr13 McASP2 Transmit/Receive Data IO F15 mcasp2_axr14 McASP2 Transmit/Receive Data IO B19 mcasp2_axr15 McASP2 Transmit/Receive Data IO C17 mcasp2_fsx McASP2 Transmit Frame Sync IO A18 McASP2 Receive Bit Clock IO E15 McASP2 Receive Frame Sync IO A20 McASP2 Transmit High-Frequency Master Clock O E17 McASP2 Transmit Bit Clock IO A19 (1) mcasp2_aclkr mcasp2_fsr mcasp2_ahclkx (1) mcasp2_aclkx Multichannel Audio Serial Port 3 mcasp3_axr0 McASP3 Transmit/Receive Data IO B19 mcasp3_axr1 McASP3 Transmit/Receive Data IO C17 mcasp3_axr2 McASP3 Transmit/Receive Data IO C15 mcasp3_axr3 McASP3 Transmit/Receive Data IO A16 mcasp3_fsx McASP3 Transmit Frame Sync IO F15 mcasp3_ahclkx McASP3 Transmit High-Frequency Master Clock O B26 mcasp3_aclkx(1) McASP3 Transmit Bit Clock IO B18 mcasp3_aclkr(1) McASP3 Receive Bit Clock IO B18 McASP3 Receive Frame Sync IO F15 IO G16 mcasp3_fsr Multichannel Audio Serial Port 4 mcasp4_axr0 104 McASP4 Transmit/Receive Data Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-16. McASP Signal Descriptions (continued) SIGNAL NAME TYPE BALL mcasp4_axr1 DESCRIPTION McASP4 Transmit/Receive Data IO D17 mcasp4_axr2 McASP4 Transmit/Receive Data IO E12 mcasp4_axr3 McASP4 Transmit/Receive Data IO F13 mcasp4_fsx McASP4 Transmit Frame Sync IO A21 mcasp4_ahclkx McASP4 Transmit High-Frequency Master Clock O C23 mcasp4_aclkx(1) McASP4 Transmit Bit Clock IO C18 mcasp4_aclkr(1) McASP4 Receive Bit Clock IO C18 McASP4 Receive Frame Sync IO A21 mcasp4_fsr Multichannel Audio Serial Port 5 mcasp5_axr0 McASP5 Transmit/Receive Data IO AB3 mcasp5_axr1 McASP5 Transmit/Receive Data IO AA4 mcasp5_axr2 McASP5 Transmit/Receive Data IO C12 mcasp5_axr3 McASP5 Transmit/Receive Data IO D12 mcasp5_fsx McASP5 Transmit Frame Sync IO AB9 mcasp5_ahclkx McASP5 Transmit High-Frequency Master Clock O D18 mcasp5_aclkx(1) McASP5 Transmit Bit Clock IO AA3 mcasp5_aclkr(1) McASP5 Receive Bit Clock IO AA3 McASP5 Receive Frame Sync IO AB9 mcasp5_fsr Multichannel Audio Serial Port 6 mcasp6_axr0 McASP6 Transmit/Receive Data IO B12 mcasp6_axr1 McASP6 Transmit/Receive Data IO A11 mcasp6_axr2 McASP6 Transmit/Receive Data IO G13 mcasp6_axr3 McASP6 Transmit/Receive Data IO J11 mcasp6_ahclkx McASP6 Transmit High-Frequency Master Clock O E17 mcasp6_aclkx(1) McASP6 Transmit Bit Clock IO B13 McASP6 Transmit Frame Sync IO A12 McASP6 Receive Bit Clock IO B13 McASP6 Receive Frame Sync IO A12 mcasp6_fsx mcasp6_aclkr(1) mcasp6_fsr Multichannel Audio Serial Port 7 mcasp7_axr0 McASP7 Transmit/Receive Data IO E14 mcasp7_axr1 McASP7 Transmit/Receive Data IO A13 mcasp7_axr2 McASP7 Transmit/Receive Data IO B14 mcasp7_axr3 McASP7 Transmit/Receive Data IO J14 mcasp7_ahclkx McASP7 Transmit High-Frequency Master Clock O B26 mcasp7_aclkx(1) McASP7 Transmit Bit Clock IO G14 McASP7 Transmit Frame Sync IO F14 McASP7 Receive Bit Clock IO G14 McASP7 Receive Frame Sync IO F14 mcasp7_fsx mcasp7_aclkr(1) mcasp7_fsr Multichannel Audio Serial Port 8 mcasp8_axr0 McASP8 Transmit/Receive Data IO D15 mcasp8_axr1 McASP8 Transmit/Receive Data IO B16 mcasp8_axr2 McASP8 Transmit/Receive Data IO E15 mcasp8_axr3 McASP8 Transmit/Receive Data IO A20 mcasp8_ahclkx McASP8 Transmit High-Frequency Master Clock O C23 mcasp8_aclkx(1) McASP8 Transmit Bit Clock IO B17 McASP8 Transmit Frame Sync IO A17 McASP8 Receive Bit Clock IO B17 mcasp8_fsx mcasp8_aclkr(1) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 105 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-16. McASP Signal Descriptions (continued) SIGNAL NAME DESCRIPTION mcasp8_fsr McASP8 Receive Frame Sync TYPE BALL IO A17 (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.4.14 Universal Serial Bus (USB) NOTE For more information, see: Serial Communication Interface / SuperSpeed USB DRD Subsystem section of the device TRM. Table 4-17. Universal Serial Bus Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL usb1_dp USB1 USB2.0 differential signal pair (positive) IODS AD12 usb1_dm USB1 USB2.0 differential signal pair (negative) IODS AC12 O AB10 Universal Serial Bus 1 usb1_drvvbus USB1 Drive VBUS signal (1) usb_rxn0 USB1 USB3.0 receiver negative lane IDS AF12 usb_rxp0(1) USB1 USB3.0 receiver positive lane IDS AE12 usb_txn0(1) USB1 USB3.0 transmitter negative lane ODS AC11 usb_txp0(1) USB1 USB3.0 transmitter positive lane ODS AD11 Universal Serial Bus 2 usb2_dp USB2 USB2.0 differential signal pair (positive) IO AE11 usb2_dm USB2 USB2.0 differential signal pair (negative) IO AF11 USB2 Drive VBUS signal O AC10 usb2_drvvbus Universal Serial Bus 3 usb3_ulpi_d0 USB3 - ULPI 8-bit data bus IODS AC3 / V6 usb3_ulpi_d1 USB3 - ULPI 8-bit data bus IODS AC9 / U6 usb3_ulpi_d2 USB3 - ULPI 8-bit data bus IO AC6 / U5 usb3_ulpi_d3 USB3 - ULPI 8-bit data bus IO AC7 / V5 usb3_ulpi_d4 USB3 - ULPI 8-bit data bus IO AC4 / V4 usb3_ulpi_d5 USB3 - ULPI 8-bit data bus IO AD4 / V3 usb3_ulpi_d6 USB3 - ULPI 8-bit data bus IO AB4 / Y2 usb3_ulpi_d7 USB3 - ULPI 8-bit data bus IO AC5 / W2 usb3_ulpi_nxt USB3 - ULPI next I AC8 / U7 usb3_ulpi_dir USB3 - ULPI bus direction I AD6 / V7 usb3_ulpi_stp USB3 - ULPI stop O AB8 / V9 usb3_ulpi_clk USB3 - ULPI functional clock I AB5 / W9 (1) Signals are enabled by selecting the correct field in the PCIE_B1C0_MODE_SEL register. There are no CTRL_CORE_PAD* register involved. 4.4.15 SATA NOTE For more information, see the Serial Communication Interfaces / SATA section of the device TRM. 106 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-18. SATA Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL sata1_rxn0 SATA differential negative receiver lane 0 IDS AH9 sata1_rxp0 SATA differential positive receiver lane 0 IDS AG9 sata1_txn0 SATA differential negative transmitter lane 0 ODS AG10 sata1_txp0 SATA differential positive transmitter lane 0 ODS AH10 sata1_led SATA channel activity indicator O A22 / G19 4.4.16 Peripheral Component Interconnect Express (PCIe) NOTE For more information, see the Serial Communication Interfaces / PCIe Controllers and the Shared PHY Component Subsystems / PCIe Shared PHY Susbsytem sections of the device TRM. Table 4-19. PCIe Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL AG13 pcie_rxn0 PCIe1_PHY_RX Receive Data Lane 0 (negative) - mapped to PCIe_SS1 only. IDS pcie_rxp0 PCIe1_PHY_RX Receive Data Lane 0 (positive) - mapped to PCIe_SS1 only. IDS AH13 pcie_txn0 PCIe1_PHY_TX Transmit Data Lane 0 (negative) - mapped to PCIe_SS1 only. ODS AG14 pcie_txp0 PCIe1_PHY_TX Transmit Data Lane 0 (positive) - mapped to PCIe_SS1 only. ODS AH14 pcie_rxn1 PCIe2_PHY_RX Receive Data Lane 1 (negative) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) IDS AF12 pcie_rxp1 PCIe2_PHY_RX Receive Data Lane 1 (positive) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) IDS AE12 pcie_txn1 PCIe2_PHY_TX Transmit Data Lane 1 (negative) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) ODS AC11 pcie_txp1 PCIe2_PHY_TX Transmit Data Lane 1 (positive) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) ODS AD11 ljcb_clkp PCIe1_PHY / PCIe2_PHY shared Reference Clock Input / Output Differential Pair (positive) IODS AG15 ljcb_clkn PCIe1_PHY / PCIe2_PHY shared Reference Clock Input / Output Differential Pair (negative) IODS AH15 4.4.17 Controller Area Network Interface (DCAN) NOTE For more information, see the Serial Communication Interface / DCAN section of the device TRM. Table 4-20. DCAN Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL DCAN 1 dcan1_tx DCAN1 transmit data pin IO G20 dcan1_rx DCAN1 receive data pin IO G19 / AD17 dcan2_tx DCAN2 transmit data pin IO E21/ B21 dcan2_rx DCAN2 receive data pin IO F20/ B20/ AC16 DCAN 2 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 107 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 4.4.18 Ethernet Interface (GMAC_SW) CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-72, Table 7-75, Table 7-80 and Table 7-87. NOTE For more information, see the Serial Communication Interfaces / Ethernet Controller section of the device TRM. Table 4-21. GMAC Signal Descriptions SIGNAL NAME 108 TYPE BALL rgmii0_txc DESCRIPTION RGMII0 Transmit Clock O W9 rgmii0_txctl RGMII0 Transmit Enable O V9 rgmii0_txd3 RGMII0 Transmit Data O V7 rgmii0_txd2 RGMII0 Transmit Data O U7 rgmii0_txd1 RGMII0 Transmit Data O V6 rgmii0_txd0 RGMII0 Transmit Data O U6 rgmii0_rxc RGMII0 Receive Clock I U5 rgmii0_rxctl RGMII0 Receive Control I V5 rgmii0_rxd3 RGMII0 Receive Data I V4 rgmii0_rxd2 RGMII0 Receive Data I V3 rgmii0_rxd1 RGMII0 Receive Data I Y2 rgmii0_rxd0 RGMII0 Receive Data I W2 rgmii1_txc RGMII1 Transmit Clock O D5 rgmii1_txctl RGMII1 Transmit Enable O C2 rgmii1_txd3 RGMII1 Transmit Data O C3 rgmii1_txd2 RGMII1 Transmit Data O C4 rgmii1_txd1 RGMII1 Transmit Data O B2 rgmii1_txd0 RGMII1 Transmit Data O D6 rgmii1_rxc RGMII1 Receive Clock I C5 rgmii1_rxctl RGMII1 Receive Control I A3 rgmii1_rxd3 RGMII1 Receive Data I B3 rgmii1_rxd2 RGMII1 Receive Data I B4 rgmii1_rxd1 RGMII1 Receive Data I B5 rgmii1_rxd0 RGMII1 Receive Data I A4 mii1_rxd1 MII1 Receive Data I C1 mii1_rxd2 MII1 Receive Data I E4 mii1_rxd3 MII1 Receive Data I F5 mii1_rxd0 MII1 Receive Data I E6 mii1_rxclk MII1 Receive Clock I D5 mii1_rxdv MII1 Receive Data Valid I C2 mii1_txclk MII1 Transmit Clock I C3 mii1_txd0 MII1 Transmit Data O C4 mii1_txd1 MII1 Transmit Data O B2 mii1_txd2 MII1 Transmit Data O D6 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-21. GMAC Signal Descriptions (continued) SIGNAL NAME TYPE BALL mii1_txd3 DESCRIPTION MII1 Transmit Data O C5 mii1_txer MII1 Transmit Error I A3 mii1_rxer MII1 Receive Data Error I B3 mii1_col MII1 Collision Detect (Sense) I B4 mii1_crs MII1 Carrier Sense I B5 mii1_txen MII1 Transmit Data Enable O A4 mii0_rxd1 MII0 Receive Data I V6 mii0_rxd2 MII0 Receive Data I V9 mii0_rxd3 MII0 Receive Data I W9 mii0_rxd0 MII0 Receive Data I U6 mii0_rxclk MII0 Receive Clock I Y1 mii0_rxdv MII0 Receive Data Valid I V2 mii0_txclk MII0 Transmit Clock I U5 mii0_txd0 MII0 Transmit Data O W2 mii0_txd1 MII0 Transmit Data O Y2 mii0_txd2 MII0 Transmit Data O V4 mii0_txd3 MII0 Transmit Data O V5 mii0_txer MII0 Transmit Error I U4 mii0_rxer MII0 Receive Data Error I U7 mii0_col MII0 Collision Detect (Sense) I V1 mii0_crs MII0 Carrier Sense I V7 mii0_txen MII0 Transmit Data Enable O V3 rmii1_crs RMII1 Carrier Sense I V2 rmii1_rxer RMII1 Receive Data Error I Y1 rmii1_rxd1 RMII1 Receive Data I W9 rmii1_rxd0 RMII1 Receive Data I V9 rmii1_txen RMII1 Transmit Data Enable O U5 rmii1_txd1 RMII1 Transmit Data O V5 rmii1_txd0 RMII1 Transmit Data O V4 rmii0_crs RMII0 Carrier Sense I V7 rmii0_rxer RMII0 Receive Data Error I U7 rmii0_rxd1 RMII0 Receive Data I V6 rmii0_rxd0 RMII0 Receive Data I U6 rmii0_txen RMII0 Transmit Data Enable O V3 rmii0_txd1 RMII0 Transmit Data O Y2 rmii0_txd0 RMII0 Transmit Data O W2 mdio_mclk Management Data Serial Clock O AC5 / V1 / B21 / D3 Management Data IO AB4 / U4 / B20 / F6 mdio_d 4.4.19 Media Local Bus (MLB) Interface NOTE FMLB in 6-pin mode may require pull ups/ downs on SIG and DAT bus signals. For additional details, please consult the MLB bus interface specification. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 109 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE For more information, see the Serial Communication Interface / Media Local Bus (MLB) section of the device TRM. Table 4-22. MLB Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL mlb_sig Media Local Bus (MLB) Subsystem signal IO AB3 mlb_dat Media Local Bus (MLB) Subsystem data IO AA4 mlb_clk Media Local Bus (MLB) Subsystem clock I AA3 mlbp_sig_p Media Local Bus (MLB) Subsystem signal differential pair (positive) IODS AC1 mlbp_sig_n Media Local Bus (MLB) Subsystem signal differential pair (negative) IODS AC2 mlbp_dat_p Media Local Bus (MLB) Subsystem data differential pair (positive) IODS AA1 mlbp_dat_n Media Local Bus (MLB) Subsystem data differential pair (negative) IODS AA2 mlbp_clk_p Media Local Bus (MLB) Subsystem clock differential pair (positive) IDS AB1 mlbp_clk_n Media Local Bus (MLB) Subsystem clock differential pair (negative) IDS AB2 TYPE BALL W6 4.4.20 eMMC/SD/SDIO NOTE For more information, see the HS MMC/SDIO section of the device TRM. Table 4-23. eMMC/SD/SDIO Signal Descriptions SIGNAL NAME DESCRIPTION Multi Media Card 1 mmc1_clk(1) MMC1 clock IO mmc1_cmd MMC1 command IO Y6 mmc1_sdcd MMC1 Card Detect I W7 mmc1_sdwp MMC1 Write Protect I Y9 mmc1_dat0 MMC1 data bit 0 IO AA6 mmc1_dat1 MMC1 data bit 1 IO Y4 mmc1_dat2 MMC1 data bit 2 IO AA5 mmc1_dat3 MMC1 data bit 3 IO Y3 mmc2_clk(1) MMC2 clock IO J7 mmc2_cmd MMC2 command IO H6 Multi Media Card 2 mmc2_sdcd MMC2 Card Detect I G20 mmc2_sdwp MMC2 Write Protect I G19 mmc2_dat0 MMC2 data bit 0 IO J4 mmc2_dat1 MMC2 data bit 1 IO J6 mmc2_dat2 MMC2 data bit 2 IO H4 mmc2_dat3 MMC2 data bit 3 IO H5 mmc2_dat4 MMC2 data bit 4 IO K7 mmc2_dat5 MMC2 data bit 5 IO M7 mmc2_dat6 MMC2 data bit 6 IO J5 mmc2_dat7 MMC2 data bit 7 IO K6 mmc3_clk(1) MMC3 clock IO AD4 mmc3_cmd MMC3 command IO AC4 Multi Media Card 3 110 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-23. eMMC/SD/SDIO Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL I B21 mmc3_sdcd MMC3 Card Detect mmc3_sdwp MMC3 Write Protect I B20 mmc3_dat0 MMC3 data bit 0 IO AC7 mmc3_dat1 MMC3 data bit 1 IO AC6 mmc3_dat2 MMC3 data bit 2 IO AC9 mmc3_dat3 MMC3 data bit 3 IO AC3 mmc3_dat4 MMC3 data bit 4 IO AC8 mmc3_dat5 MMC3 data bit 5 IO AD6 mmc3_dat6 MMC3 data bit 6 IO AB8 mmc3_dat7 MMC3 data bit 7 IO AB5 mmc4_clk(1) MMC4 clock IO E25 mmc4_cmd MMC4 command IO C27 mmc4_sdcd MMC4 Card Detect I B27 mmc4_sdwp MMC4 Write Protect I C26 mmc4_dat0 MMC4 data bit 0 IO D28 mmc4_dat1 MMC4 data bit 1 IO D26 mmc4_dat2 MMC4 data bit 2 IO D27 mmc4_dat3 MMC4 data bit 3 IO C28 Multi Media Card 4 (1) By default, this clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. mmc1_clk and mmc2_clk have an optional software programmable setting to use an 'internal loopback clock' instead of the default 'pad loopback clock'. If the 'pad loopback clock' is used, series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.4.21 General-Purpose Interface (GPIO) NOTE For more information, see the General-Purpose Interface section of the device TRM. Table 4-24. GPIOs Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL GPIO 1 gpio1_0 General-Purpose Input I AD17 gpio1_3 General-Purpose Input I AC16 gpio1_4 General-Purpose Input/Output IO D15 gpio1_5 General-Purpose Input/Output IO A17 gpio1_6 General-Purpose Input/Output IO M6 gpio1_7 General-Purpose Input/Output IO M2 gpio1_8 General-Purpose Input/Output IO L5 gpio1_9 General-Purpose Input/Output IO M1 gpio1_10 General-Purpose Input/Output IO L6 gpio1_11 General-Purpose Input/Output IO L4 gpio1_12 General-Purpose Input/Output IO L3 gpio1_13 General-Purpose Input/Output IO L2 gpio1_14 General-Purpose Input/Output IO G20 gpio1_15 General-Purpose Input/Output IO G19 gpio1_16 General-Purpose Input/Output IO D27 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 111 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-24. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio1_17 DESCRIPTION General-Purpose Input/Output IO C28 gpio1_18 General-Purpose Input/Output IO H1 gpio1_19 General-Purpose Input/Output IO J3 gpio1_20 General-Purpose Input/Output IO H2 gpio1_21 General-Purpose Input/Output IO H3 gpio1_22 General-Purpose Input/Output IO AC8 gpio1_23 General-Purpose Input/Output IO AD6 gpio1_24 General-Purpose Input/Output IO AB8 gpio1_25 General-Purpose Input/Output IO AB5 gpio1_26 General-Purpose Input/Output IO P6 gpio1_27 General-Purpose Input/Output IO R9 gpio1_28 General-Purpose Input/Output IO R5 gpio1_29 General-Purpose Input/Output IO P5 gpio1_30 General-Purpose Input/Output IO N7 gpio1_31 General-Purpose Input/Output IO R4 gpio2_0 General-Purpose Input/Output IO N9 gpio2_1 General-Purpose Input/Output IO P9 gpio2_2 General-Purpose Input/Output IO P4 gpio2_3 General-Purpose Input/Output IO R3 gpio2_4 General-Purpose Input/Output IO T2 gpio2_5 General-Purpose Input/Output IO U2 gpio2_6 General-Purpose Input/Output IO U1 gpio2_7 General-Purpose Input/Output IO P3 gpio2_8 General-Purpose Input/Output IO R2 gpio2_9 General-Purpose Input/Output IO K7 gpio2_10 General-Purpose Input/Output IO M7 gpio2_11 General-Purpose Input/Output IO J5 gpio2_12 General-Purpose Input/Output IO K6 gpio2_13 General-Purpose Input/Output IO J7 gpio2_14 General-Purpose Input/Output IO J4 gpio2_15 General-Purpose Input/Output IO J6 gpio2_16 General-Purpose Input/Output IO H4 gpio2_17 General-Purpose Input/Output IO H5 gpio2_18 General-Purpose Input/Output IO H6 gpio2_19 General-Purpose Input/Output IO T1 gpio2_20 General-Purpose Input/Output IO P2 gpio2_21 General-Purpose Input/Output IO P1 gpio2_22 General-Purpose Input/Output IO P7 gpio2_23 General-Purpose Input/Output IO N1 gpio2_24 General-Purpose Input/Output IO M5 gpio2_25 General-Purpose Input/Output IO M3 gpio2_26 General-Purpose Input/Output IO N6 gpio2_27 General-Purpose Input/Output IO M4 gpio2_28 General-Purpose Input/Output IO N2 gpio2_29 General-Purpose Input/Output IO B17 GPIO 2 GPIO 3 112 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-24. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio3_28 DESCRIPTION General-Purpose Input/Output IO E1 gpio3_29 General-Purpose Input/Output IO G2 gpio3_30 General-Purpose Input/Output IO H7 gpio3_31 General-Purpose Input/Output IO G1 gpio4_0 General-Purpose Input/Output IO G6 gpio4_1 General-Purpose Input/Output IO F2 gpio4_2 General-Purpose Input/Output IO F3 gpio4_3 General-Purpose Input/Output IO D1 gpio4_4 General-Purpose Input/Output IO E2 gpio4_5 General-Purpose Input/Output IO D2 gpio4_6 General-Purpose Input/Output IO F4 gpio4_7 General-Purpose Input/Output IO C1 gpio4_8 General-Purpose Input/Output IO E4 GPIO 4 gpio4_9 General-Purpose Input/Output IO F5 gpio4_10 General-Purpose Input/Output IO E6 gpio4_11 General-Purpose Input/Output IO D3 gpio4_12 General-Purpose Input/Output IO F6 gpio4_13 General-Purpose Input/Output IO D5 gpio4_14 General-Purpose Input/Output IO C2 gpio4_15 General-Purpose Input/Output IO C3 gpio4_16 General-Purpose Input/Output IO C4 gpio4_17 General-Purpose Input/Output IO A12 gpio4_18 General-Purpose Input/Output IO E14 gpio4_19 General-Purpose Input/Output IO D11 gpio4_20 General-Purpose Input/Output IO B10 gpio4_21 General-Purpose Input/Output IO B11 gpio4_22 General-Purpose Input/Output IO C11 gpio4_23 General-Purpose Input/Output IO E11 gpio4_24 General-Purpose Input/Output IO B2 gpio4_25 General-Purpose Input/Output IO D6 gpio4_26 General-Purpose Input/Output IO C5 gpio4_27 General-Purpose Input/Output IO A3 gpio4_28 General-Purpose Input/Output IO B3 gpio4_29 General-Purpose Input/Output IO B4 gpio4_30 General-Purpose Input/Output IO B5 gpio4_31 General-Purpose Input/Output IO A4 gpio5_0 General-Purpose Input/Output IO B14 gpio5_1 General-Purpose Input/Output IO J14 gpio5_2 General-Purpose Input/Output IO G12 gpio5_3 General-Purpose Input/Output IO F12 gpio5_4 General-Purpose Input/Output IO G13 gpio5_5 General-Purpose Input/Output IO J11 gpio5_6 General-Purpose Input/Output IO E12 gpio5_7 General-Purpose Input/Output IO F13 gpio5_8 General-Purpose Input/Output IO C12 GPIO 5 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 113 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-24. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio5_9 DESCRIPTION General-Purpose Input/Output IO D12 gpio5_10 General-Purpose Input/Output IO B12 gpio5_11 General-Purpose Input/Output IO A11 gpio5_12 General-Purpose Input/Output IO B13 gpio5_13 General-Purpose Input/Output IO B18 gpio5_14 General-Purpose Input/Output IO F15 gpio5_15 General-Purpose Input/Output IO V1 gpio5_16 General-Purpose Input/Output IO U4 gpio5_17 General-Purpose Input/Output IO U3 gpio5_18 General-Purpose Input/Output IO V2 gpio5_19 General-Purpose Input/Output IO Y1 gpio5_20 General-Purpose Input/Output IO W9 gpio5_21 General-Purpose Input/Output IO V9 gpio5_22 General-Purpose Input/Output IO V7 gpio5_23 General-Purpose Input/Output IO U7 gpio5_24 General-Purpose Input/Output IO V6 gpio5_25 General-Purpose Input/Output IO U6 gpio5_26 General-Purpose Input/Output IO U5 gpio5_27 General-Purpose Input/Output IO V5 gpio5_28 General-Purpose Input/Output IO V4 gpio5_29 General-Purpose Input/Output IO V3 gpio5_30 General-Purpose Input/Output IO Y2 gpio5_31 General-Purpose Input/Output IO W2 gpio6_4 General-Purpose Input/Output IO A13 gpio6_5 General-Purpose Input/Output IO G14 gpio6_6 General-Purpose Input/Output IO F14 gpio6_7 General-Purpose Input/Output IO B16 gpio6_8 General-Purpose Input/Output IO C15 GPIO 6 114 gpio6_9 General-Purpose Input/Output IO A16 gpio6_10 General-Purpose Input/Output IO AC5 gpio6_11 General-Purpose Input/Output IO AB4 gpio6_12 General-Purpose Input/Output IO AB10 gpio6_13 General-Purpose Input/Output IO AC10 gpio6_14 General-Purpose Input/Output IO E21 gpio6_15 General-Purpose Input/Output IO F20 gpio6_16 General-Purpose Input/Output IO F21 gpio6_17 General-Purpose Input/Output IO D18 gpio6_18 General-Purpose Input/Output IO E17 gpio6_19 General-Purpose Input/Output IO B26 gpio6_20 General-Purpose Input/Output IO C23 gpio6_21 General-Purpose Input/Output IO W6 gpio6_22 General-Purpose Input/Output IO Y6 gpio6_23 General-Purpose Input/Output IO AA6 gpio6_24 General-Purpose Input/Output IO Y4 gpio6_25 General-Purpose Input/Output IO AA5 gpio6_26 General-Purpose Input/Output IO Y3 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-24. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio6_27 DESCRIPTION General-Purpose Input/Output IO W7 gpio6_28 General-Purpose Input/Output IO Y9 gpio6_29 General-Purpose Input/Output IO AD4 gpio6_30 General-Purpose Input/Output IO AC4 gpio6_31 General-Purpose Input/Output IO AC7 gpio7_0 General-Purpose Input/Output IO AC6 gpio7_1 General-Purpose Input/Output IO AC9 gpio7_2 General-Purpose Input/Output IO AC3 gpio7_3 General-Purpose Input/Output IO R6 gpio7_4 General-Purpose Input/Output IO T9 gpio7_5 General-Purpose Input/Output IO T6 gpio7_6 General-Purpose Input/Output IO T7 gpio7_7 General-Purpose Input/Output IO A25 gpio7_8 General-Purpose Input/Output IO F16 gpio7_9 General-Purpose Input/Output IO B25 gpio7_10 General-Purpose Input/Output IO A24 gpio7_11 General-Purpose Input/Output IO A22 gpio7_12 General-Purpose Input/Output IO B21 gpio7_13 General-Purpose Input/Output IO B20 gpio7_14 General-Purpose Input/Output IO A26 gpio7_15 General-Purpose Input/Output IO B22 gpio7_16 General-Purpose Input/Output IO G17 gpio7_17 General-Purpose Input/Output IO B24 gpio7_18 General-Purpose Input/Output IO L1 gpio7_19 General-Purpose Input/Output IO K2 gpio7_22 General-Purpose Input/Output IO B27 gpio7_23 General-Purpose Input/Output IO C26 gpio7_24 General-Purpose Input/Output IO E25 gpio7_25 General-Purpose Input/Output IO C27 gpio7_26 General-Purpose Input/Output IO D28 gpio7_27 General-Purpose Input/Output IO D26 gpio7_28 General-Purpose Input/Output IO J1 gpio7_29 General-Purpose Input/Output IO J2 gpio7_30 General-Purpose Input/Output IO D14 gpio7_31 General-Purpose Input/Output IO C14 gpio8_0 General-Purpose Input/Output IO F11 gpio8_1 General-Purpose Input/Output IO G10 gpio8_2 General-Purpose Input/Output IO F10 gpio8_3 General-Purpose Input/Output IO G11 gpio8_4 General-Purpose Input/Output IO E9 gpio8_5 General-Purpose Input/Output IO F9 gpio8_6 General-Purpose Input/Output IO F8 gpio8_7 General-Purpose Input/Output IO E7 gpio8_8 General-Purpose Input/Output IO E8 gpio8_9 General-Purpose Input/Output IO D9 GPIO 7 GPIO 8 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 115 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-24. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio8_10 DESCRIPTION General-Purpose Input/Output IO D7 gpio8_11 General-Purpose Input/Output IO D8 gpio8_12 General-Purpose Input/Output IO A5 gpio8_13 General-Purpose Input/Output IO C6 gpio8_14 General-Purpose Input/Output IO C8 gpio8_15 General-Purpose Input/Output IO C7 gpio8_16 General-Purpose Input/Output IO B7 gpio8_17 General-Purpose Input/Output IO B8 gpio8_18 General-Purpose Input/Output IO A7 gpio8_19 General-Purpose Input/Output IO A8 gpio8_20 General-Purpose Input/Output IO C9 gpio8_21 General-Purpose Input/Output IO A9 gpio8_22 General-Purpose Input/Output IO B9 gpio8_23 General-Purpose Input/Output IO A10 gpio8_27 General-Purpose Input I D23 gpio8_28 General-Purpose Input/Output IO F19 gpio8_29 General-Purpose Input/Output IO E18 gpio8_30 General-Purpose Input/Output IO G21 gpio8_31 General-Purpose Input/Output IO D24 4.4.22 Keyboard controller (KBD) NOTE For more information, see Keyboard Controller section of the device TRM. Table 4-25. Keyboard Signal Descriptions SIGNAL NAME 116 DESCRIPTION TYPE BALL kbd_row0 Keypad row 0 I E1 kbd_row1 Keypad row 1 I G2 kbd_row2 Keypad row 2 I G1 kbd_row3 Keypad row 3 I G6 kbd_row4 Keypad row 4 I F2 kbd_row5 Keypad row 5 I F3 kbd_row6 Keypad row 6 I D1 kbd_row7 Keypad row 7 I F6 kbd_row8 Keypad row 8 I C2 kbd_col0 Keypad column 0 O E2 kbd_col1 Keypad column 1 O D2 kbd_col2 Keypad column 2 O F4 kbd_col3 Keypad column 3 O C1 kbd_col4 Keypad column 4 O E4 kbd_col5 Keypad column 5 O F5 kbd_col6 Keypad column 6 O E6 kbd_col7 Keypad column 7 O D3 kbd_col8 Keypad column 8 O D5 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 4.4.23 Pulse Width Modulation (PWM) Interface NOTE For more information, see the Pulse-Width Modulation (PWM) SS section of the device TRM. Table 4-26. PWM Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL PWMSS1 eQEP1A_in EQEP1 Quadrature Input A I E1 eQEP1B_in EQEP1 Quadrature Input B I G2 eQEP1_index EQEP1 Index Input IO H7 eQEP1_strobe EQEP1 Strobe Input IO G1 ehrpwm1A EHRPWM1 Output A O G6 ehrpwm1B EHRPWM1 Output B O F2 EHRPWM1 Trip Zone Input IO F3 IO D1 ehrpwm1_tripzone_in put eCAP1_in_PWM1_out ECAP1 Capture Iniput / PWM Output ehrpwm1_synci EHRPWM1 Sync Input I E2 ehrpwm1_synco EHRPWM1 Sync Output O D2 eQEP2A_in EQEP2 Quadrature Input A I F4 eQEP2B_in EQEP2 Quadrature Input B I C1 E4 PWMSS2 eQEP2_index EQEP2 Index Input IO eQEP2_strobe EQEP2 Strobe Input IO F5 ehrpwm2A EHRPWM2 Output A O AC5 / E6 ehrpwm2B EHRPWM2 Output B O AB4 / D3 EHRPWM2 Trip Zone Input IO AD4 / F6 IO AC4 / D5 ehrpwm2_tripzone_in put eCAP2_in_PWM2_out ECAP2 Capture Iniput / PWM Output PWMSS3 eQEP3A_in EQEP3 Quadrature Input A I AC7 / C2 eQEP3B_in EQEP3 Quadrature Input B I AC6 / C3 AC9 / C4 eQEP3_index EQEP3 Index Input IO eQEP3_strobe EQEP3 Strobe Input IO AC3 / B2 ehrpwm3A EHRPWM3 Output A O AC8 / D6 ehrpwm3B EHRPWM3 Output B O AD6 / C5 EHRPWM3 Trip Zone Input IO AB8 / A3 IO AB5 / B3 ehrpwm3_tripzone_in put eCAP3_in_PWM3_out ECAP3 Capture Iniput / PWM Output 4.4.24 Audio Tracking Logic (ATL) NOTE For more information, see the Audio Tracking Logic (ATL) section of the device TRM. Table 4-27. ATL Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL atl_clk0 Audio Tracking Logic Clock 0 O D18 atl_clk1 Audio Tracking Logic Clock 1 O E17 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 117 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-27. ATL Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL atl_clk2 Audio Tracking Logic Clock 2 O B26 atl_clk3 Audio Tracking Logic Clock 3 O C23 4.4.25 Test Interfaces CAUTION The I/O timings provided in Section 7, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-145. NOTE For more information, see the On-Chip Debug Support / Debug Ports section of the device TRM. Table 4-28. Debug Signal Descriptions SIGNAL NAME 118 DESCRIPTION tms JTAG test port mode select. An external pullup resistor should be used on this ball. TYPE BALL IO F18 D23 tdi JTAG test data I tdo JTAG test port data O F19 tclk JTAG test clock I E20 trstn JTAG test reset I D20 rtck JTAG return clock O E18 emu0 Emulator pin 0 IO G21 emu1 Emulator pin 1 IO D24 emu2 Emulator pin 2 O F10 emu3 Emulator pin 3 O D7 emu4 Emulator pin 4 O A7 emu5 Emulator pin 5 O E1 / G11 emu6 Emulator pin 6 O G2 / E9 emu7 Emulator pin 7 O H7 / F9 emu8 Emulator pin 8 O G1 / F8 emu9 Emulator pin 9 O G6 / E7 emu10 Emulator pin 10 O F2 / D8 emu11 Emulator pin 11 O F3 / A5 emu12 Emulator pin 12 O D1 / C6 emu13 Emulator pin 13 O E2 / C8 emu14 Emulator pin 14 O D2 / C7 emu15 Emulator pin 15 O F4 / A8 emu16 Emulator pin 16 O C1 / C9 emu17 Emulator pin 17 O E4 / A9 emu18 Emulator pin 18 O F5 / B9 emu19 Emulator pin 19 O E6 / A10 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 4.4.26 System and Miscellaneous 4.4.26.1 Sysboot NOTE For more information, see the Initialization (ROM Code) section of the device TRM. Table 4-29. Sysboot Signal Descriptions SIGNAL NAME TYPE BALL sysboot0 DESCRIPTION Boot Mode Configuration 0. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I M6 sysboot1 Boot Mode Configuration 1. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I M2 sysboot2 Boot Mode Configuration 2. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L5 sysboot3 Boot Mode Configuration 3. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I M1 sysboot4 Boot Mode Configuration 4. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L6 sysboot5 Boot Mode Configuration 5. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L4 sysboot6 Boot Mode Configuration 6. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L3 sysboot7 Boot Mode Configuration 7. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L2 sysboot8 Boot Mode Configuration 8. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I L1 sysboot9 Boot Mode Configuration 9. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I K2 sysboot10 Boot Mode Configuration 10. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I J1 sysboot11 Boot Mode Configuration 11. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I J2 sysboot12 Boot Mode Configuration 12. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I H1 sysboot13 Boot Mode Configuration 13. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I J3 sysboot14 Boot Mode Configuration 14. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I H2 sysboot15 Boot Mode Configuration 15. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I H3 4.4.26.2 Power, Reset, and Clock Management (PRCM) NOTE For more information, see PRCM section of the device TRM. Table 4-30. PRCM Signal Descriptions SIGNAL NAME clkout1 DESCRIPTION Device Clock output 1. Can be used externally for devices with noncritical timing requirements, or for debug, or as a reference clock on GPMC as described in Table 7-23 GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default and Table 725 GPMC/NOR Flash Interface Switching Characteristics Synchronous Mode - Alternate. TYPE BALL O F21 / P7 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 119 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-30. PRCM Signal Descriptions (continued) SIGNAL NAME TYPE BALL clkout2 Device Clock output 2. Can be used externally for devices with noncritical timing requirements, or for debug. O D18 / N1 clkout3 Device Clock output 3. Can be used xternally for devices with noncritical timing requirements, or for debug. O C23 rstoutn Reset out (Active low). This pin asserts low in response to any global reset condition on the device. (2) O F23 resetn Device Reset Input I E23 Power on Reset (active low). This pin must be asserted low until all device supplies are valid (see reset sequence/requirements) I F22 xref_clk0 External Reference Clock 0. For Audio and other Peripherals. I D18 xref_clk1 External Reference Clock 1. For Audio and other Peripherals. I E17 xref_clk2 External Reference Clock 2. For Audio and other Peripherals. I B26 xref_clk3 External Reference Clock 3. For Audio and other Peripherals. I C23 xi_osc0 System Oscillator OSC0 Crystal input / LVCMOS clock input. Functions as the input connection to a crystal when the internal oscillator OSC0 is used. Functions as an LVCMOS-compatible input clock when an external oscillator is used. I AE15 xo_osc0 System Oscillator OSC0 Crystal output O AD15 xi_osc1 Auxiliary Oscillator OSC1 Crystal input / LVCMOS clock input. Functions as the input connection to a crystal when the internal oscillator OSC1 is used. Functions as an LVCMOS-compatible input clock when an external oscillator is used I AC15 xo_osc1 Auxiliary Oscillator OSC1 Crystal output O AC13 RMII Reference Clock (50MHz). This pin is an input when external reference is used or output when internal reference is used. IO U3 porz RMII_MHZ_50_CLK(1) DESCRIPTION (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. (2) Note that rstoutn is only valid after vddshv3 is valid. If the rstoutn signal will be used as a reset into other devices attached to the SOC, it must be AND'ed with porz. This will prevent glitches occurring during supply ramping being propagated. 4.4.26.3 Real-Time Clock (RTC) Interface NOTE For more information, see the Real-Time Clock (RTC) chapter of the device TRM. Table 4-31. RTC Signal Descriptions SIGNAL NAME TYPE BALL Wakeup0 RTC External Wakeup Input 0 I AD17 Wakeup3 RTC External Wakeup Input 3 I AC16 rtc_porz RTC Power Domain Power-On Reset Input I AB17 RTC Oscillator Input. Crystal connection to internal RTC oscillator. Functions as an RTC clock input when an external oscillator is used. I AE14 rtc_osc_xi_clkin32 rtc_osc_xo 120 DESCRIPTION RTC Oscillator Output O AD14 rtc_iso(1) RTC domain Isolation Signal I AF14 on_off RTC Power Enable output pin O Y11 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (1) This signal must be kept 0 if device power supplies are not valid during RTC mode and 1 during normal operation. This can typically be achieved by connecting rtc_iso to the same signal driving porz (not rtc_porz) with appropriate voltage level translation if necessary. 4.4.26.4 System Direct Memory Access (SDMA) NOTE For more information, see the DMA Controllers / System DMA section of the device TRM. Table 4-32. SDMA Signal Descriptions SIGNAL NAME TYPE BALL dma_evt1 DESCRIPTION System DMA Event Input 1 I P7 / P4 dma_evt2 System DMA Event Input 2 I N1 / R3 dma_evt3 System DMA Event Input 3 I N6 dma_evt4 System DMA Event Input 4 I M4 4.4.26.5 Interrupt Controllers (INTC) NOTE For more information, see the Interrupt Controllers section of the device TRM. Table 4-33. INTC Signal Descriptions SIGNAL NAME TYPE BALL nmin_dsp DESCRIPTION Non maskable interrupt input, active-low. This pin can be optionally routed to the DSP NMI input or as generic input to the ARM cores. Note that by default this pin has an internal pulldown resistor enabled. This internal pulldown should be disabled or countered by a stronger external pullup resistor before routing to the DSP or ARM processors. I D21 sys_nirq2 External interrupt event to any device INTC I AD17 sys_nirq1 External interrupt event to any device INTC I AC16 TYPE BALL 4.4.26.6 Observability NOTE For more information, see the Control Module section of the device TRM. Table 4-34. Observability Signal Descriptions SIGNAL NAME DESCRIPTION obs0 Observation Output 0 O F10 obs1 Observation Output 1 O G11 obs2 Observation Output 2 O E9 obs3 Observation Output 3 O F9 obs4 Observation Output 4 O F8 obs5 Observation Output 5 O D7 obs6 Observation Output 6 O D8 obs7 Observation Output 7 O A5 obs8 Observation Output 8 O C6 obs9 Observation Output 9 O C8 obs10 Observation Output 10 O C7 obs11 Observation Output 11 O A7 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 121 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-34. Observability Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL obs12 Observation Output 12 O A8 obs13 Observation Output 13 O C9 obs14 Observation Output 14 O A9 obs15 Observation Output 15 O B9 obs16 Observation Output 16 O F10 obs17 Observation Output 17 O G11 obs18 Observation Output 18 O E9 obs19 Observation Output 19 O F9 obs20 Observation Output 20 O F8 obs21 Observation Output 21 O D7 obs22 Observation Output 22 O D8 obs23 Observation Output 23 O A5 obs24 Observation Output 24 O C6 obs25 Observation Output 25 O C8 obs26 Observation Output 26 O C7 obs27 Observation Output 27 O A7 obs28 Observation Output 28 O A8 obs29 Observation Output 29 O C9 obs30 Observation Output 30 O A9 obs31 Observation Output 31 O B9 obs_dmarq1 DMA Request External Observation Output 1 O G11 obs_dmarq2 DMA Request External Observation Output 2 O D8 obs_irq1 IRQ External Observation Output 1 O F10 obs_irq2 IRQ External Observation Output 2 O D7 4.4.27 Power Supplies NOTE For more information, see Power, Reset, and Clock Management / PRCM Subsystem Environment / External Voltage Inputs section of the device TRM. Table 4-35. Power Supply Signal Descriptions SIGNAL NAME vdd 122 DESCRIPTION Core voltage domain supply Terminal Configuration and Functions TYPE BALL PWR H13 / H14 / J17 / J18 / L7 / L8 / N10 / N13 / P11 / P12 / P13 / R11 / R16 / R19 / T13 / T16 / T19 / U13 / U16 / U8 / U9 / V16 / V8 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-35. Power Supply Signal Descriptions (continued) SIGNAL NAME DESCRIPTION vss TYPE BALL GND A1 / A14 / A2 / A23 / A28 / A6 / AA14 / AA15 / AA20 / AA8 / AA9 / AB14 / AB20 / AD1 / AD24 / AG1 / AH1 / AH2 / AH20 / AH28 / B1 / D13 / D19 / E13 / E19 / F1 / F7 / G7 / G8 / G9 / H12 / J12 / J15 / J28 / K1 / K15 / K24 / K25 / K4 / K5 / L13 / L14 / M19 / N14 / N15 / N19 / N24 / N25 / P28 / R1 / R12 / R13 / R21 / T10 / T11 / T12 / T14 / T15 / T17 / T18 / T21 / U14 / U15 / U17 / U20 / U21 / V15 / V17 / W1 / W15 / W24 / W25 / W28 Ground cap_vbbldo_gpu(1) External capacitor connection for the GPU vbb ldo output CAP Y14 cap_vbbldo_iva(1) External capacitor connection for the IVA vbb ldo output CAP J10 cap_vbbldo_mpu(1) External capacitor connection for the MPU vbb ldo output CAP J16 (1) External capacitor connection for the DSP vbb ldo output CAP K9 cap_vddram_core1(1) cap_vbbldo_dsp External capacitor connection for the Core SRAM array ldo1 output CAP T20 cap_vddram_core3(1) External capacitor connection for the Core SRAM array ldo3 output CAP L9 (1) cap_vddram_core4 External capacitor connection for the Core SRAM array ldo4 output CAP J19 cap_vddram_mpu(1) External capacitor connection for the MPU SRAM array ldo output CAP K19 cap_vddram_gpu(1) External capacitor connection for the GPU SRAM array ldo output CAP Y13 cap_vddram_iva(1) External capacitor connection for the IVA SRAM array ldo output CAP K16 (1) cap_vddram_dsp External capacitor connection for the DSP CAP J9 DSP PLL and IVA PLL analog power supply PWR N12 DPLL_CORE and CORE HSDIVIDER analog power supply PWR P14 DPLL_SPARE analog power supply PWR P15 DPLL_ABE, DPLL_PER, and PER HSDIVIDER analog power supply PWR M14 vdda_mpu_abe MPU_ABE PLL analog power supply PWR N16 vdda33v_usb1 HS USB1 3.3V analog power supply. If USB1 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb1_dm/usb1_dp pins are left unconnected - The USB1 PHY is kept powered down PWR AA12 vdda33v_usb2 HS USB2 3.3V analog power supply. If USB2 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb2_dm/usb2_dp pins are left unconnected - The USB2 PHY is kept powered down PWR Y12 DPLL_DDR and DDR HSDIVIDER analog power supply PWR R17 DPLL_DEBUG analog power supply PWR N11 vdda_gpu DPLL_GPU analog power supply PWR R14 vdda_hdmi vdda_dsp_iva vdda_core_gmac vdda_pll_spare vdda_per vdda_ddr vdda_debug PLL_HDMI and HDMI analog power supply PWR Y17 vdda_osc HFOSC analog power supply PWR AD16 / AE16 vdda_pcie DPLL_PCIe_REF and PCIe analog power supply PWR AA17 vdda_pcie0 PCIe ch0 RX/TX analog power supply PWR AA16 AB13 RTC bias and RTC LFOSC analog power supply PWR vdda_sata vdda_rtc DPLL_SATA and SATA RX/TX analog power supply PWR V13 vdda_usb1 DPLL_USB and HS USB1 1.8V analog power supply PWR AA13 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 123 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 4-35. Power Supply Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL vdda_usb2 HS USB2 1.8V analog power supply PWR AB12 vdda_usb3 DPLL_USB_OTG_SS and USB3.0 RX/TX analog power supply PWR W14 CSI Interface 1.8v Supply PWR W12 VIDEO1 and VIDEO2 PLL analog power supply PWR P16 1.8V power supply PWR G18 / H17 / M8 / M9 / N8 / P8 / R8 / T8 / V21 / V22 / W17 / W18 EMIF1 bias power supply PWR AA18 / AA19 / N21 / P20 / P21 / W21 / Y21 vddshv1 Dual Voltage (1.8V or 3.3V) power supply for the VIN2 Power Group pins PWR E3 / E5 / G4 / G5 / H8 / H9 vddshv2 Dual Voltage (1.8V or 3.3V) power supply for the VOUT Power Group pins PWR B6 / D10 / E10 / H10 / H11 vddshv3 Dual Voltage (1.8V or 3.3V) power supply for the GENERAL Power Group pins PWR B23 / D16 / D22 / E16 / E22 / G15 / H15 / H16 / H18 / H19 vddshv4 Dual Voltage (1.8V or 3.3V) power supply for the MMC4 Power Group pins PWR C24 vddshv5 Dual Voltage (1.8V or 3.3V) power supply for the RTC Power Group pins PWR V12 vddshv6 Dual Voltage (1.8V or 3.3V) power supply for the VIN1 Power Group pins PWR AD5 / AD7 / AE7 / AF5 vddshv7 Dual Voltage (1.8V or 3.3V) power supply for the WIFI Power Group pins PWR AB6 / AB7 vddshv8 Dual Voltage (1.8V or 3.3V) power supply for the MMC1 Power Group pins PWR W8 / Y8 vddshv9 Dual Voltage (1.8V or 3.3V) power supply for the RGMII Power Group pins PWR U10 / W4 / W5 vddshv10 Dual Voltage (1.8V or 3.3V) power supply for the GPMC Power Group pins PWR N4 / N5 / P10 / R10 / R7 / T4 / T5 vddshv11 Dual Voltage (1.8V or 3.3V) power supply for the MMC2 Power Group pins PWR J8 / K8 vdds_ddr1 EMIF1 power supply (1.5V for DDR3 mode / 1.35V DDR3L mode) PWR AA21 / AA22 / AB21 / AB22 / AB24 / AB25 / AC22 / AD26 / AG20 / AG28 / AH27 / T24 / T25 / W16 / W27 vdds_mlbp vdda_csi vdda_video vdds18v vdds18v_ddr1 124 MLBP IO power supply PWR AA7 / Y7 vdd_dsp DSP voltage domain supply PWR K10 / K11 / L10 / L11 / M10 / M11 vdd_gpu GPU voltage domain supply PWR U11 / U12 / V10 / V11 / V14 / W10 / W11 / W13 vdd_iva IVA voltage domain supply PWR J13 / K12 / K13 / L12 / M12 / M13 vdd_mpu MPU voltage domain supply PWR K17 / K18 / L15 / L16 / L17 / L18 / L19 / M15 / M16 / M17 / M18 / N17 / N18 / P17 / P18 / R18 vdd_rtc RTC voltage domain supply PWR AB15 vssa_hdmi DPLL_HDMI and HDMI PHY analog ground GND AD19 / AE19 vssa_osc0 OSC0 analog ground GND AF15 vssa_osc1 OSC1 analog ground GND AC14 Terminal Configuration and Functions Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 4-35. Power Supply Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL vssa_pcie PCIe analog ground GND AD13 / AE13 vssa_sata SATA analog ground GND AE10 vssa_usb HS USB1 and HS USB2 analog ground GND AA11 / AB11 vssa_usb3 DPLL_USB and USB3.0 RX/TX analog ground GND AD10 CSI Interface 0v Supply GND AA10 / AH8 DPLL_VIDEO1 analog ground GND R15 vssa_csi vssa_video (1) This pin must always be connected via a 1-µF capacitor to vss. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 125 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 5 Specifications NOTE For more information, see Power, Reset, and Clock Management / PRCM Subsystem Environment / External Voltage Inputs or Initialization / Preinitialization / Power Requirements section of the Device TRM. NOTE The index numbers 1 and 2 which is part of the EMIF1 signal prefixes (ddr1_*) listed in Table 4-8, EMIF Signal Descriptions, column "SIGNAL NAME" not to be confused with DDR1 type of SDRAM memories. NOTE Audio Back End (ABE) module is not supported for this family of devices, but “ABE” name is still present in some clock or DPLL names. CAUTION All IO Cells are NOT Fail-safe compliant and should not be externally driven in absence of their IO supply. 5.1 Absolute Maximum Ratings Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Section 5.4, Recommended Operating Conditions, is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Table 5-1. Absolute Maximum Rating Over Junction Temperature Range PARAMETER(1) VSUPPLY (Steady-State) 126 Specifications Supply Voltage Ranges (SteadyState) MIN MAX UNIT Core (vdd, vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva, vdd_rtc) -0.3 1.5 V Analog (vdda_usb1, vdda_usb2, vdda_per, vdda_ddr, vdda_debug, vdda_mpu_abe, vdda_usb3, vdda_csi, vdda_core_gmac, vdda_pll_spare, vdda_dsp_iva, vdda_gpu, dda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_video, vdda_osc, vdda_rtc) -0.3 2.0 V Analog 3.3V (vdda33v_usb1, vdda33v_usb2) -0.3 3.8 V vdds18v, vdds18v_ddr1, vdds_mlbp, vdds_ddr1 -0.3 2.1 V vddshv1-11 (1.8V mode) -0.3 2.1 V vddshv1-7 (3.3V mode), vddshv9-11 (3.3V mode) -0.3 3.8 V vddshv8 (3.3V mode) -0.3 3.6 V Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-1. Absolute Maximum Rating Over Junction Temperature Range (continued) PARAMETER(1) VIO (Steady-State) Input and Output Voltage Ranges (Steady-State) MIN MAX UNIT Core I/Os -0.3 1.5 V Analog I/Os (except HDMI) -0.3 2.0 V HDMI I/Os -0.3 3.5 V I/O 1.35V -0.3 1.65 V I/O 1.5V -0.3 1.8 V 1.8V I/Os -0.3 2.1 V 3.3V I/Os (except those powered by vddshv8) -0.3 3.8 V 3.3V I/Os (powered by vddshv8) -0.3 SR Maximum slew rate, all supplies VIO (Transient Overshoot / Undershoot) Input and Output Voltage Ranges (Transient Overshoot/Undershoot) Note: valid for up to 20% of the signal period TJ Operating junction temperature range TSTG Storage temperature range after soldered onto PC Board Automotive (3) 3.6 V 105 V/s 0.2*VDD V -40 +125 °C -55 +150 °C (2) Latch-up I-Test I-test , All I/Os (if different levels then one line per level) -100 100 mA Latch-up OV-Test Over-voltage Test(4), All supplies (if different levels then one line per level) N/A 1.5*Vsup ply max V (1) See I/Os supplied by this power pin in Table 4-2 Ball Characteristics (2) VDD is the voltage on the corresponding power-supply pin(s) for the IO. (3) Per JEDEC JESD78 at 125°C with specified I/O pin injection current and clamp voltage of 1.5 times maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage. (4) Per JEDEC JESD78 at 125°C. 5.2 ESD Ratings Table 5-2. ESD Ratings VALUE Human-Body model (HBM), per AEC Q100-002(1) VESD Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 UNIT ±1000 HDMIPHY Pins (AG16, AH16, AG19, AH19, AG18, AH18, AG17, AH17) ±200 All Pins (other than HDMIPHY) ±250 Corner pins (A1, AH1, A28, AH28) ±750 V (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 5.3 Power on Hour (POH) Limits The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. NOTE POH is a functional of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH to achieve the same reliability performance. For assessment of alternate use cases, contact your local TI representative. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 127 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-3. Power on Hour (POH) Limits IP Duty Cycle Voltage Domain Voltage (V) (max) Frequency (MHz) (max) Tj(°C) POH ARM 70% vdd_mpu OPP_HIGH 1500 Automotive Profile(1) 20000 30% vdd_mpu Retention 0 40% vdd_mpu OPP_HIGH 1500 Automotive Profile(1) 20000 60% vdd_mpu OPP_HIGH 1000 55% vdd_mpu OPP_HIGH 1500 Automotive Profile(1) 20000 Others(2) 45% vdd_mpu OPP_NOM 1000 100% vdd_mpu OPP_HIGH 1176 Automotive Profile(1) 20000 100% vdd_mpu OPP_NOM 1000 Automotive Profile(1) 20000 100% All Automotive Profile(1) 20000 All Support OPPs (1) Automotive profile is defined as 20000 power on hours with junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C, 10%@125°C. (2) Others covers all other IP's voltage and temperature combinations that are not specified in the table, and are constrained by other sections of this data manual. 5.4 Recommended Operating Conditions The device is used under the recommended operating conditions described in Table 5-4. NOTE Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. Table 5-4. Recommended Operating Conditions PARAMETER DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) UNIT Input Power Supply Voltage Range vdd Core voltage domain supply See Section 5.5 V vdd_mpu Supply voltage range for MPU domain See Section 5.5 V vdd_gpu GPU voltage domain supply See Section 5.5 V vdd_dsp DSP voltage domain supply See Section 5.5 V vdd_iva IVA voltage domain supply See Section 5.5 V vdd_rtc RTC voltage domain supply See Section 5.5 vdda_usb1 DPLL_USB and HS USB1 1.8V analog power supply 1.71 1.80 1.71 1.80 Maximum noise (peak-peak) vdda_usb2 HS USB2 1.8V analog power supply HS USB1 3.3V analog power supply.If USB1 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb1_dm/usb1_dp pins are left unconnected - The USB1 PHY is kept powered down Maximum noise (peak-peak) 128 Specifications 1.89 1.836 1.89 50 Maximum noise (peak-peak) vdda33v_usb1 V 1.836 mVPPmax 50 3.135 3.3 50 V V mVPPmax 3.366 3.465 V mVPPmax Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-4. Recommended Operating Conditions (continued) PARAMETER vdda33v_usb2 DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) HS USB2 3.3V analog power supply. If USB2 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb2_dm/usb2_dp pins are left unconnected - The USB2 PHY is kept powered down 3.135 3.3 3.366 3.465 Maximum noise (peak-peak) vdda_per PER PLL and PER HSDIVIDER analog power supply 50 1.71 Maximum noise (peak-peak) vdda_ddr DPLL_DDR and DDR HSDIVIDER analog power supply 1.71 1.80 DPLL_DEBUG analog power supply 1.71 1.80 DPLL_DSP and DPLL_IVA analog power supply 1.71 1.80 DPLL_CORE and CORE HSDIVIDER analog power supply 1.71 1.80 DPLL_SPARE analog power supply vdda_gpu DPLL_GPU analog power supply 1.71 PLL_HDMI and HDMI analog power supply DPLL_PCIe_REF and PCIe analog power supply 1.80 1.71 1.80 PCIe ch0 RX/TX analog power supply 1.71 1.80 DPLL_SATA and SATA RX/TX analog power supply DPLL_USB_OTG_SS and USB3.0 RX/TX analog power supply 1.71 DPLL_VIDEO1 analog power supply MLBP IO power supply 1.80 1.71 1.80 DPLL_MPU analog power supply 1.71 1.80 HFOSC analog power supply RTC bias and RTC LFOSC analog power supply Maximum noise (peak-peak) 1.89 1.836 1.89 1.836 1.89 1.836 1.89 1.71 1.80 1.80 50 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 V mVPPmax V mVPPmax 1.89 V mVPPmax 1.836 1.89 1.836 1.89 1.836 1.89 V mVPPmax V mVPPmax V mVPPmax 1.89 V mVPPmax 1.836 1.89 V mVPPmax 1.89 50 1.71 V mVPPmax 1.80 1.80 V mVPPmax 50 Maximum noise (peak-peak) vdda_rtc 1.836 50 1.71 V mVPPmax 50 1.71 V mVPPmax 50 Maximum noise (peak-peak) vdda_osc 1.89 50 Maximum noise (peak-peak) vdda_mpu_abe 1.836 V mVPPmax 1.80 1.71 Maximum noise (peak-peak) vdds_mlbp 1.89 50 Maximum noise (peak-peak) vdda_video 1.836 V mVPPmax 50 Maximum noise (peak-peak) vdda_usb3 1.89 50 Maximum noise (peak-peak) vdda_sata 1.836 50 Maximum noise (peak-peak) vdda_pcie0 1.80 1.71 Maximum noise (peak-peak) vdda_pcie 1.89 50 Maximum noise (peak-peak) vdda_hdmi 1.836 50 Maximum noise (peak-peak) V mVPPmax 50 Maximum noise (peak-peak) vdda_pll_spare 1.89 50 Maximum noise (peak-peak) vdda_core_gmac 1.836 50 Maximum noise (peak-peak) vdda_dsp_iva V mVPPmax 50 Maximum noise (peak-peak) vdda_debug 1.80 UNIT V mVPPmax 1.89 V mVPPmax Specifications 129 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-4. Recommended Operating Conditions (continued) PARAMETER vdda_csi DESCRIPTION CSI Interface 1.8v Supply MIN (2) NOM MAX DC (3) MAX (2) 1.71 1.80 1.836 1.89 1.71 1.80 1.836 1.89 Maximum noise (peak-peak) vdds18v 1.8V power supply 50 Maximum noise (peak-peak) vdds18v_ddr1 EMIF1 bias power supply 1.71 vdds_ddr1 1.80 V mVPPmax 50 Maximum noise (peak-peak) UNIT V mVPPmax 1.836 1.89 50 V mVPPmax EMIF1 power supply (1.5V for DDR3 mode / 1.35V DDR3L mode) 1.35-V Mode 1.28 1.35 1.377 1.42 1.5-V Mode 1.43 1.50 1.53 1.57 Maximum noise (peakpeak) 1.35-V Mode 50 V mVPPmax 1.5-V Mode vddshv5 vddshv1 vddshv10 vddshv11 vddshv2 vddshv3 vddshv4 130 Specifications Dual Voltage (1.8V or 3.3V) power supply for the RTC Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the VIN2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode Dual Voltage (1.8V or 1.8-V Mode 3.3V) power supply for 3.3-V Mode the GPMC Power Group pins 1.71 1.80 1.836 1.89 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 Dual Voltage (1.8V or 3.3V) power supply for the MMC2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the VOUT Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the GENERAL Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the MMC4 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-4. Recommended Operating Conditions (continued) PARAMETER vddshv6 vddshv7 vddshv8 vddshv9 DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) Dual Voltage (1.8V or 3.3V) power supply for the VIN1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the WIFI Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the MMC1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the RGMII Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 UNIT V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode V 50 mVPPmax 3.3-V Mode vss Ground supply 0 V vssa_hdmi DPLL_HDMI and HDMI PHY analog ground 0 V vssa_pcie PCIe analog ground 0 V vssa_usb HS USB1 and HS USB2 analog ground 0 V vssa_usb3 DPLL_USB and USB3.0 RX/TX analog ground 0 V vssa_csi CSI Interface 0v Supply 0 V vssa_sata SATA TX ground 0 V vssa_video DPLL_VIDEO1 analog ground 0 V vssa_osc0 OSC0 analog ground 0 V vssa_osc1 OSC1 analog ground 0 V (1) TJ Operating junction temperature range Automotive ddr1_vref0 Reference Power Supply EMIF1 -40 +125 0.5*vdds_ddr1 °C V (1) Refer to Power on Hours table Table 5-3 for limitations. (2) The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc. (3) The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball. 5.5 Operating Performance Points This section describes the operating conditions of the device. This section also contains the description of each OPP (operating performance point) for processor clocks and device core clocks. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 131 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com CAUTION The OPP voltage and frequency values may change following the silicon characterization result. Table 5-5 describes the maximum supported frequency per speed grade for DRA72x devices. Table 5-5. Speed Grade Maximum Frequency Device Speed Maximum frequency (MHz) MPU DSP IVA GPU IPU L3 DDR3/DDR3L DRA72xxP 1500 700 532 532 212.8 266 667 (DDR3-1333) DRA72xxL 1176 700 532 532 212.8 266 667 (DDR3-1333) DRA72xxJ 1000 700 532 532 212.8 266 667 (DDR3-1333) DRA72xxH 800 700 532 532 212.8 266 667 (DDR3-1333) (1) N/A in this table stands for Not Applicable. 5.5.1 AVS and ABB Requirements Adaptive Voltage Scaling (AVS) and Adaptive Body Biasing (ABB) are required on most of the vdd_* supplies as defined in Table 5-6. Table 5-6. AVS and ABB Requirements per vdd_* Supply Supply AVS Required? vdd_core Yes, for all OPPs No vdd_mpu Yes, for all OPPs Yes, for all OPPs vdd_iva Yes, for all OPPs Yes, for all OPPs vdd_dsp Yes, for all OPPs Yes, for all OPPs vdd_gpu Yes, for all OPPs Yes, for all OPPs vdd_rtc No No 5.5.2 ABB Required? Voltage And Core Clock Specifications Table 5-7 shows the recommended OPP per voltage domain. Table 5-7. Voltage Domains Operating Performance Points (1) DOMAIN CONDITION OPP_NOM MIN (3) VD_CORE (V) BOOT (Before AVS is enabled) (5) After AVS is enabled BOOT (Before AVS is enabled) (5) After AVS is enabled (5) VD_RTC (V) 132 (7) Specifications - 1.15 AVS AVS Voltage Voltage (6) (6) – 3.5% (5) VD_MPU (V) 1.11 1.11 1.15 AVS AVS Voltage Voltage (6) (6) – 3.5% 0.84 OPP_OD NOM (2) MAX (3) 0.88 to 1.06 MIN (3) OPP_HIGH NOM (2) MAX (3) MIN (3) NOM (2) MAX DC (4) 1.2 Not Applicable Not Applicable 1.16 Not Applicable Not Applicable 1.2 Not Applicable Not Applicable 1.16 1.16 AVS AVS AVS AVS AVS Voltage Voltage Voltage Voltage Voltage (6) (6) (6) (6) – + 5% (6) – 3.5% 3.5% Not Applicable AVS Voltage (6) +2% MAX (3) AVS Voltage + 5% (6) Not Applicable Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-7. Voltage Domains Operating Performance Points (1) (continued) DOMAIN CONDITION OPP_NOM MIN (3) Others (V) BOOT (Before AVS is enabled) (5) After AVS is enabled (5) 1.02 OPP_OD NOM (2) MAX (3) 1.06 AVS AVS Voltage Voltage (6) (6) – 3.5% 1.16 1.16 MIN (3) NOM (2) MAX (3) Not Applicable OPP_HIGH MIN (3) NOM (2) MAX DC (4) MAX (3) Not Applicable AVS AVS AVS AVS AVS Voltage Voltage Voltage Voltage Voltage (6) (6) (6) (6) (6) – + 5% – 3.5% 3.5% AVS Voltage (6) +2% AVS Voltage + 5% (6) (1) The voltage ranges in this table are preliminary, and final voltage ranges may be different than shown. Systems should be designed with the ability to modify the voltage to comply with future recommendations. (2) In a typical implementation, the power supply should target the NOM voltage. (3) The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc. (4) The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball. (5) For all OPPs, AVS must be enabled to avoid impact on device reliability, lifetime POH (Power-On-Hours), and device power. (6) The AVS voltages are device-dependent, voltage domain-dependent, and OPP-dependent. They must be read from the STD_FUSE_OPP Registers. For information about STD_FUSE_OPP Registers address, please refer to Control Module Section of the TRM. The power supply should be adjustable over the following ranges for each required OPP: – OPP_NOM for MPU: 0.85 V – 1.15 V – OPP_NOM for CORE and Others: 0.85 V - 1.15 V – OPP_OD: 0.94 V - 1.15 V – OPP_HIGH: 1.05 V - 1.25 V The AVS voltages will be within the above specified ranges. (7) VD_RTC can optionally be tied to VD_CORE and operate at the VD_CORE AVS voltages. (8) The power supply must be programmed with the AVS voltages for the MPU and the CORE voltage domain, either just after the ROM boot or at the earliest possible time in the secondary boot loader before there is significant activity seen on these domains. Table 5-8 describes the standard processor clocks speed characteristics vs OPP of the device. Table 5-8. Supported OPP vs Max Frequency (2) DESCRIPTION OPP_NOM OPP_OD OPP_HIGH Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz) MPU_CLK 1000 1176 1500 DSP_CLK 600 700 700 IVA_GCLK 388.3 430 532 GPU_CLK 425.6 500 532 CORE_IPUx_CLK 212.8 N/A N/A L3_CLK 266 N/A N/A DDR3 / DDR3L 667 (DDR3-1333) N/A N/A RTC_FCLK 0.034 N/A N/A VD_MPU VD_DSP VD_IVA VD_GPU VD_CORE VD_RTC Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 133 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) N/A in this table stands for Not Applicable. (2) Maximum supported frequency is limited according to the Device Speed Grade (see Table 5-5). 5.5.3 Maximum Supported Frequency Device modules either receive their clock directly from an external clock input, directly from a PLL, or from a PRCM. Table 5-9 lists the clock source options for each module on this device, along with the maximum frequency that module can accept. To ensure proper module functionality, the device PLLs and dividers must be programmed not to exceed the maximum frequencies listed in this table. Table 5-9. Maximum Supported Frequency Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name AES1 AES1_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE AES2 AES2_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE ATL ATL_ICLK_L3 Int 266 ATL_L3_GICLK CORE_X2_CLK DPLL_CORE ATLPCLK Func 266 ATL_GFCLK CORE_X2_CLK DPLL_CORE PER_ABE_X1_GF CLK DPLL_ABE FUNC_32K_CLK OSC1 RTC Oscillator BB2D HDMI_CLK DPLL_HDMI VIDEO1_CLK DPLL_VIDEO1 BB2D_FCLK Func 354.6 BB2D_GFCLK BB2D_GFCLK DPLL_CORE BB2D_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE COUNTER_32K_F CLK Func 0.032 FUNC_32K_CLK SYS_CLK1/610 OSC1 COUNTER_32K_IC LK Int 38.4 WKUPAON_GICLK CTRL_MODULE_B ANDGAP L3INSTR_TS_GCL K Int CTRL_MODULE_C ORE L4CFG_L4_GICLK Int 133 L4CFG_L4_GICLK CTRL_MODULE_ WKUP WKUPAON_GICLK Int 38.4 WKUPAON_GICLK DCAN1 DCAN1_FCLK COUNTER_32K Func DCAN1_ICLK 134 Int 4.8 38.4 266 SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE L3INSTR_TS_GCLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC1 SYS_CLK2 OSC2 SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE DCAN1_SYS_CLK WKUPAON_GICLK DCAN2 DCAN2_FCLK Func 38.4 DCAN2_SYS_CLK SYS_CLK1 OSC1 DCAN2_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE DES3DES DES_CLK_L3 Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE DLL EMIF_DLL_FCLK Func EMIF_DLL_FC LK EMIF_DLL_GCLK EMIF_DLL_GCLK DPLL_DDR DLL_AGING FCLK Int 38.4 L3INSTR_DLL_AGING _GCLK Specifications SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name DMA_CRYPTO DMA_CRYPTO_FC LK Int & Func 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE DMA_CRYPTO_IC LK Int 133 L4SEC_L4_GICLK CORE_X2_CLK DPLL_CORE DMM_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE DMM DPLL_DEBUG SYSCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC1 DSP1 DSP1_FICLK Int & Func DSP_CLK DSP1_GFCLK DSP_GFCLK DPLL_DSP DSS DSS_HDMI_CEC_ CLK Func 0.032 HDMI_CEC_GFCLK SYS_CLK1/610 OSC1 DSS_HDMI_PHY_ CLK Func 48 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER DSS_CLK Func 192 DSS_GFCLK DSS_CLK DPLL_PER HDMI_CLKINP Func 38.4 HDMI_DPLL_CLK SYS_CLK1 OSC1 DSS DISPC SYS_CLK2 OSC2 DSS_L3_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE VIDEO1_CLKINP Func 38.4 VIDEO1_DPLL_CLK SYS_CLK1 OSC1 SYS_CLK2 OSC2 SYS_CLK1 OSC1 VIDEO2_CLKINP Func 38.4 VIDEO2_DPLL_CLK DPLL_DSI1_A_CL K1 Func 209.3 N/A DPLL_DSI1_B_CL K1 Func 209.3 DPLL_DSI1_C_CL K1 Func 209.3 DPLL_HDMI_CLK1 Func 185.6 LCD1_CLK Func LCD2_CLK N/A SYS_CLK2 OSC2 HDMI_CLK DPLL_HDMI VIDEO1_CLKOUT1 DPLL_VIDEO1 VIDEO1_CLKOUT3 DPLL_VIDEO1 HDMI_CLK DPLL_HDMI DPLL_ABE_X2_CL K DPLL_ABE N/A HDMI_CLK DPLL_HDMI VIDEO1_CLKOUT3 DPLL_VIDEO1 N/A HDMI_CLK DPLL_HDMI 209.3 N/A DPLL_DSI1_A_CL K1 See DSS data in the rows above Func 209.3 N/A DPLL_DSI1_B_CL K1 LCD3_CLK Func 209.3 N/A DPLL_DSI1_C_CL K1 F_CLK Func 209.3 N/A DPLL_DSI1_A_CL K1 DSS_CLK DSS_CLK DSS_CLK DPLL_DSI1_B_CL K1 DPLL_DSI1_C_CL K1 DSS_CLK DPLL_HDMI_CLK1 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 135 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources PLL / OSC / Source Clock Name PLL / OSC / Source Name CUSTEFUSE_L4_GICL K CORE_X2_CLK DPLL_CORE 38.4 CUSTEFUSE_SYS_GF CLK SYS_CLK1 OSC1 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE DPLL_CORE Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) EFUSE_CTRL_CU ST ocp_clk Int 133 sys_clk Func ELM_ICLK Int ELM PRCM Clock Name EMIF_OCP_FW L3_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK EMIF_PHY1 EMIF_PHY1_FCLK Func DDR EMIF_PHY_GCLK EMIF_PHY_GCLK DPLL_DDR EMIF1 EMIF1_ICLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE FPKA PKA_CLK Int & Func 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE GMAC_SW CPTS_RFT_CLK Func 266 GMAC_RFT_CLK PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 GPIO1 GPIO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE MAIN_CLK Int 125 GMAC_MAIN_CLK GMAC_250M_CLK DPLL_GMAC MHZ_250_CLK Func 250 GMII_250MHZ_CLK GMII_250MHZ_CL K DPLL_GMAC MHZ_5_CLK Func 5 RGMII_5MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC MHZ_50_CLK Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC RMII1_MHZ_50_CL K Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC RMII2_MHZ_50_CL K Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC GPIO1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE OSC1 GPIO1_DBCLK Func 0.032 WKUPAON_SYS_GFC LK WKUPAON_32K_G FCLK GPIO2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO2_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1 GPIO3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO3_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1 GPIO4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK GPIO4_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK PIDBCLK Func 0.032 GPIO_GFCLK RTC Oscillator RTC Oscillator GPIO3 RTC Oscillator GPIO4 GPIO5 GPIO6 136 Specifications DPLL_CORE OSC1 RTC Oscillator GPIO5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK GPIO5_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK PIDBCLK Func 0.032 GPIO_GFCLK DPLL_CORE OSC1 RTC Oscillator GPIO6_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK GPIO6_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK PIDBCLK Func 0.032 GPIO_GFCLK DPLL_CORE OSC1 RTC Oscillator Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name GPIO7 GPIO7_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO7_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK PIDBCLK Func 0.032 GPIO_GFCLK GPIO8 OSC1 RTC Oscillator GPIO8_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO8_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC1 PIDBCLK Func 0.032 GPIO_GFCLK GPMC GPMC_FCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE GPU GPU_FCLK1 Func GPU_CLK GPU_CORE_GCLK CORE_GPU_CLK DPLL_CORE GPU_FCLK2 Func GPU_CLK GPU_HYD_GCLK RTC Oscillator PER_GPU_CLK DPLL_PER GPU_GCLK DPLL_GPU CORE_GPU_CLK DPLL_CORE PER_GPU_CLK DPLL_PER GPU_GCLK DPLL_GPU GPU_ICLK Int 266 GPU_L3_GICLK CORE_X2_CLK DPLL_CORE HDMI PHY DSS_HDMI_PHY_ CLK Func 38.4 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER HDQ1W HDQ1W_ICLK Int & Func 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE HDQ1W_FCLK Func 12 PER_12M_GFCLK FUNC_192M_CLK DPLL_PER I2C1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE I2C1_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE I2C2_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE I2C3_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER DPLL_CORE I2C1 I2C2 I2C3 I2C4 I2C5 I2C6 I2C4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK I2C4_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE I2C5_FCLK Func 96 IPU_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C6_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE I2C6_FCLK Func 96 IPU_96M_GFCLK FUNC_192M_CLK DPLL_PER IEEE1500_2_OCP PI_L3CLK Int & Func 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE IPU1 IPU1_GFCLK Int & Func 425.6 IPU1_GFCLK DPLL_ABE_X2_CL K DPLL_ABE CORE_IPU_ISS_B OOST_CLK DPLL_CORE CORE_IPU_ISS_B OOST_CLK DPLL_CORE IPU2 IPU2_GFCLK Int & Func 425.6 IPU2_GFCLK IVA IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA KBD KBD_FCLK Func 0.032 WKUPAON_SYS_GFC LK WKUPAON_32K_G FCLK OSC1 PICLKKBD Func 0.032 WKUPAON_SYS_GFC LK L3_INSTR RTC Oscillator KBD_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 PICLKOCP Int 38.4 WKUPAON_GICLK DPLL_ABE_X2_CL K DPLL_ABE L3_CLK Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 137 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name L3_MAIN L3_CLK1 Int L3_CLK L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE L3_CLK2 Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE L4_CFG L4_CFG_CLK Int 133 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE L4_PER1 L4_PER1_CLK Int 133 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE L4_PER2 L4_PER2_CLK Int 133 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE L4_PER3 L4_PER3_CLK Int 133 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE L4_WKUP L4_WKUP_CLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE 138 MAILBOX1 MAILBOX1_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX2 MAILBOX2_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX3 MAILBOX3_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX4 MAILBOX4_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX5 MAILBOX5_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX6 MAILBOX6_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX7 MAILBOX7_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX8 MAILBOX8_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX9 MAILBOX9_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX10 MAILBOX10_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX11 MAILBOX11_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX12 MAILBOX12_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX13 MAILBOX13_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name McASP1 MCASP1_AHCLKR Func 100 MCASP1_AHCLKR MCASP1_AHCLKX MCASP1_FCLK MCASP1_ICLK Func Func Int 100 192 266 MCASP1_AHCLKX MCASP1_AUX_GFCLK PLL / OSC / Source Clock Name DPLL_ABE_X2_CL K PLL / OSC / Source Name DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATLCLK0 Module ATL ATLCLK1 Module ATL ATLCLK2 Module ATL ATLCLK3 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATLCLK0 Module ATL ATLCLK1 Module ATL ATLCLK2 Module ATL ATLCLK3 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE IPU_L3_GICLK Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 139 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name McASP2 MCASP2_AHCLKR Func 100 MCASP2_AHCLKR MCASP2_AHCLKX MCASP2_FCLK MCASP2_ICLK 140 Specifications Func Func Int 100 192 266 MCASP2_AHCLKX MCASP2_AUX_GFCLK PLL / OSC / Source Clock Name DPLL_ABE_X2_CL K PLL / OSC / Source Name DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE L4PER2_L3_GICLK Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name McASP3 MCASP3_AHCLKX Func 100 MCASP3_AHCLKX MCASP3_FCLK McASP4 Func 192 MCASP3_AUX_GFCLK PLL / OSC / Source Clock Name DPLL_ABE_X2_CL K PLL / OSC / Source Name DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI MCASP3_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP4_AHCLKX Func 100 MCASP4_AHCLKX DPLL_ABE_X2_CL K DPLL_ABE MCASP4_FCLK MCASP4_ICLK Func Int 192 266 MCASP4_AUX_GFCLK SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE L4PER2_L3_GICLK Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Specifications 141 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name McASP5 MCASP5_AHCLKX Func 100 MCASP5_AHCLKX MCASP5_FCLK McASP6 MCASP5_AUX_GFCLK DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP6_AHCLKX Func 100 MCASP6_AHCLKX DPLL_ABE_X2_CL K DPLL_ABE FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL MCASP6_ICLK Specifications 192 DPLL_ABE_X2_CL K PLL / OSC / Source Name MCASP5_ICLK MCASP6_FCLK 142 Func PLL / OSC / Source Clock Name Func Int 192 266 MCASP6_AUX_GFCLK MLB_CLK Module MLB MLBP_CLK Module MLB SYS_CLK1 OSC1 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 PER_ABE_X1_GF CLK DPLL_ABE L4PER2_L3_GICLK VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name McASP7 MCASP7_AHCLKX Func 100 MCASP7_AHCLKX MCASP7_FCLK McASP8 MCASP7_AUX_GFCLK DPLL_ABE SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP8_AHCLKX Func 100 MCASP8_AHCLKX DPLL_ABE_X2_CL K DPLL_ABE MCASP8_ICLK McSPI2 192 DPLL_ABE_X2_CL K PLL / OSC / Source Name MCASP7_ICLK MCASP8_FCLK McSPI1 Func PLL / OSC / Source Clock Name Func 192 Int 266 MCASP8_AUX_GFCLK SYS_CLK1 OSC1 FUNC_96M_AON_ CLK DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE L4PER2_L3_GICLK VIDEO1_CLK DPLL_ABE HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE DPLL_CORE SPI1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK SPI1_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER SPI2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI2_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 143 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McSPI3 SPI3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI3_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER McSPI4 SPI4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI4_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER MLB_SS MLB_L3_ICLK Int 266 MLB_SHB_L3_GICLK CORE_X2_CLK DPLL_CORE MLB_L4_ICLK Int 133 MLB_SPB_L4_GICLK CORE_X2_CLK DPLL_CORE MLB_FCLK Func 266 MLB_SYS_L3_GFCLK CORE_X2_CLK DPLL_CORE CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER CAL_FCLK Int & Func 266 CAL_GICLK CORE_ISS_MAIN_ CLK DPLL_CORE L3_ICLK CM_CORE_AON CSI2_0 CSI2_1 MMC1 CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER CAL_FCLK Int & Func 266 CAL_GICLK CORE_ISS_MAIN_ CLK DPLL_CORE L3_ICLK CM_CORE_AON MMC1_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC1 MMC1_FCLK Func 192 MMC1_GFCLK FUNC_192M_CLK DPLL_PER FUNC_256M_CLK DPLL_PER MMC1_ICLK1 Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE MMC1_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE MMC2_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC1 MMC2_FCLK Func 192 MMC2_GFCLK FUNC_192M_CLK DPLL_PER FUNC_256M_CLK DPLL_PER 128 MMC2 128 MMC3 MMC2_ICLK1 Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE MMC2_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE MMC3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE MMC3_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC1 MMC3_FCLK Func 48 MMC3_GFCLK FUNC_192M_CLK DPLL_PER CORE_X2_CLK DPLL_CORE 192 MMC4 MMC4_ICLK Int 266 L4PER_L3_GICLK MMC4_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC1 MMC4_FCLK Func 48 MMC4_GFCLK FUNC_192M_CLK DPLL_PER 192 MMU_EDMA MMU1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE MMU_PCIESS MMU2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE MPU MPU_CLK Int & Func MPU_CLK MPU_GCLK MPU_GCLK DPLL_MPU MPU_EMU_DBG FCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC1 MPU_GCLK DPLL_MPU OCMC_RAM1 OCMC1_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCMC_ROM OCMC_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCP_WP_NOC PICLKOCPL3 Int 266 L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE OCP2SCP1 L4CFG1_ADAPTE R_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE 144 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name L4CFG2_ADAPTE R_CLKIN Int 133 L4CFG_L4_GICLK CORE_X2_CLK DPLL_CORE OCP2SCP3 L4CFG3_ADAPTE R_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE PCIESS1 PCIE1_PHY_WKU P_CLK Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK RTC Oscillator Instance Name Input Clock Name OCP2SCP2 PCIESS2 PRCM_MPU PCIe_SS1_FICLK Int 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE PCIEPHY_CLK_DI V Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_G CLK APLL_PCIE PCIE1_REF_CLKI N Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE PCIE1_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC1 PCIE2_PHY_WKU P_CLK Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK RTC Oscillator PCIe_SS2_FICLK Func 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE PCIEPHY_CLK_DI V Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_G CLK APLL_PCIE PCIE2_REF_CLKI N Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE PCIE2_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC1 32K_CLK Func 0.032 FUNC_32K_CLK SYS_CLK1/610 OSC1 SYS_CLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE PWMSS1 PWMSS1_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE PWMSS2 PWMSS2_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE PWMSS3 PWMSS3_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE QSPI QSPI_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE QSPI_FCLK Func 128 QSPI_GFCLK FUNC_256M_CLK DPLL_PER PER_QSPI_CLK DPLL_PER RNG RNG_ICLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE RTC_SS RTC_ICLK Int 133 RTC_L4_GICLK CORE_X2_CLK DPLL_CORE RTC_FCLK Func RTC_FCLK RTC Oscillator SAR_ROM SATA PRCM_ROM_CLO CK Int 266 RTC_AUX_CLK SYS_32K FUNC_32K_CLK SYS_CLK1/610 OSC1 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE SATA_FICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE SATA_PMALIVE_F CLK Func 48 L3INIT_48M_GFCLK FUNC_192M_CLK DPLL_PER REF_CLK Func 38 SATA_REF_GFCLK SYS_CLK1 OSC1 SDMA SDMA_FCLK Int & Func 266 DMA_L3_GICLK CORE_X2_CLK DPLL_CORE SHA2MD51 SHAM_1_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE SHA2MD52 SHAM_2_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE SL2 IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 145 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name SMARTREFLEX_C ORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE SYSCLK Func 38.4 WKUPAON_ICLK SMARTREFLEX_D SP SMARTREFLEX_G PU SMARTREFLEX_IV AHD SMARTREFLEX_M PU MCLK Int 133 COREAON_L4_GICLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE SPINLOCK SPINLOCK_ICLK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER1 TIMER1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 TIMER1_FCLK Func 100 TIMER1_GFCLK RTC Oscillator 146 Specifications SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER2 TIMER2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER2_FCLK Func 100 TIMER2_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER3 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI TIMER3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER3_FCLK Func 100 TIMER3_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER4 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI TIMER4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER4_FCLK Func 100 TIMER4_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 147 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER5 TIMER5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER5_FCLK Func 100 TIMER5_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER6 TIMER6_ICLK Int 266 IPU_L3_GICLK TIMER6_FCLK Func 100 TIMER6_GFCLK SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER7 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] TIMER7_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER7_FCLK Func 100 TIMER7_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator 148 Specifications SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER8 TIMER8_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER8_FCLK Func 100 TIMER8_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER9 TIMER9_ICLK Int 266 L4PER_L3_GICLK TIMER9_FCLK Func 100 TIMER9_GFCLK SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER10 TIMER10_ICLK Int 266 L4PER_L3_GICLK TIMER10_FCLK Func 100 TIMER10_GFCLK SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 149 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER11 TIMER11_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER11_FCLK Func 100 TIMER11_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER12 TIMER13 TIMER12_ICLK Int 38.4 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE TIMER12_FCLK Func 0.032 OSC_32K_CLK RC_CLK RC oscillator TIMER13_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER13_FCLK Func 100 TIMER13_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER14 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI TIMER14_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER14_FCLK Func 100 TIMER14_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator 150 Specifications SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER15 TIMER15_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER15_FCLK Func 100 TIMER15_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator TIMER16 SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI TIMER16_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER16_FCLK Func 100 TIMER16_GFCLK SYS_CLK1 OSC1 FUNC_32K_CLK OSC1 RTC Oscillator SYS_CLK2 OSC2 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 HDMI_CLK DPLL_HDMI TPCC TPCC_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE TPTC1 TPTC0_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE TPTC2 TPTC1_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE UART1 UART1_FCLK Func 48 UART1_GFCLK FUNC_192M_CLK DPLL_PER UART1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART2 UART2_FCLK Func 48 UART2_GFCLK FUNC_192M_CLK DPLL_PER UART2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART3 UART3_FCLK Func 48 UART3_GFCLK FUNC_192M_CLK DPLL_PER UART3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART4_FCLK Func 48 UART4_GFCLK FUNC_192M_CLK DPLL_PER UART4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART5 UART5_FCLK Func 48 UART5_GFCLK FUNC_192M_CLK DPLL_PER UART5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART6 UART6_FCLK Func 48 UART6_GFCLK FUNC_192M_CLK DPLL_PER UART6_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE UART7 UART7_FCLK Func 48 UART7_GFCLK FUNC_192M_CLK DPLL_PER UART7_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART8 UART8_FCLK Func 48 UART8_GFCLK FUNC_192M_CLK DPLL_PER UART8_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART4 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 151 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-9. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name UART9 UART9_FCLK Func 48 UART9_GFCLK FUNC_192M_CLK DPLL_PER UART9_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART10 UART10_FCLK Func 48 UART10_GFCLK FUNC_192M_CLK DPLL_PER UART10_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE USB1 USB2 USB1_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB3PHY_REF_C LK Func 34.3 USB_LFPS_TX_GFCL K CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE USB2PHY1_TREF _CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC1 USB2PHY1_REF_ CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCL K DPLL_USB USB2_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB2PHY2_TREF _CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC1 USB2PHY2_REF_ CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCL K DPLL_USB USB3_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB3PHY_PWRS_ CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC1 USB_PHY1_CORE USB2PHY1_WKUP _CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC1 USB_PHY2_CORE USB2PHY2_WKUP _CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC1 USB_PHY3_CORE USB3PHY_WKUP_ CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC1 USB3 VCP1 VCP1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE VCP2 VCP2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE VIP1 L3_CLK_PROC_CL K Int & Func 266 VIP1_GCLK CORE_X2_CLK DPLL_CORE CORE_ISS_MAIN_ CLK DPLL_CORE VPE L3_CLK_PROC_CL K Int & Func 300 VPE_GCLK CORE_ISS_MAIN_ CLK DPLL_CORE VIDEO1_CLKOUT4 DPLL_VIDEO1 WD_TIMER1 PIOCPCLK Int 38.4 WKUPAON_GICLK WD_TIMER2 Specifications OSC1 DPLL_ABE_X2_CL K DPLL_ABE PITIMERCLK Func 0.032 OSC_32K_CLK RC_CLK RC oscillator WD_TIMER2_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC1 DPLL_ABE_X2_CL K DPLL_ABE WKUPAON_32K_G FCLK RTC Oscillator WD_TIMER2_FCL K 152 SYS_CLK1 Func 0.032 WKUPAON_SYS_GFC LK Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 5.6 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Power Consumption Summary NOTE Maximum power consumption for this SoC depends on the specific use conditions for the end system. Contact your TI representative for assistance in estimating maximum power consumption for the end system use case. 5.7 Electrical Characteristics NOTE The data specified in Section 5.7.1 through Section 5.7.14 are subject to change. NOTE The interfaces or signals described in Section 5.7.1 through Section 5.7.14 correspond to the interfaces or signals available in multiplexing mode 0 (Function 1). All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical characteristics, unless multiplexing involves a PHY/GPIO combination in which case different DC electrical characteristics are specified for the different multiplexing modes (Functions). 5.7.1 LVCMOS DDR DC Electrical Characteristics Table 5-10 summarizes the DC electrical characteristics for LVCMOS DDR Buffers. NOTE For more information on the I/O cell configurations (i[2:0], sr[1:0]), see the Chapter Control Module of the Device TRM. Table 5-10. LVCMOS DDR DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0 (Single-Ended Signals): ddr1_d[31:0], ddr1_a[15:0], ddr1_dqm[3:0], ddr1_ba[2:0], ddr1_csn[1:0], ddr1_cke, ddr1_odt[1:0], ddr1_casn, ddr1_rasn, ddr1_wen, ddr1_rst, ddr1_ecc_d[7:0], ddr1_dqm_ecc; Balls: AH23 / AB16 / AG22 / AE20 / AC17 / AC18 / AF20 /AH21 / AG21 / AF17 / AE18 / AB18 / AD20 / AC19 / AC20 / AB19 / AF21 / AH22 / AG23 / AE21 / AF22 / AE22 / AD21 / AD22 / AC21 / AF18 / AE17 / AD18 / AF25 / AF26 / AG26 / AH26 / AF24 / AE24 / AF23 / AE23 / AC23 / AF27 / AG27 / AF28 / AE26 / AC25 / AC24 / AD25 / V20 / W20 / AB28 / AC28 / AC27 / Y19 / AB27 / Y20 / AA23 / Y22 / Y23 / AA24 / Y24 / AA26 / AA25 / AA28 / W22 / V23 / W19 / W23 / Y25 / V24 / V25 / Y26 / AD23 / AB23 / AC26 / AA27 / V26; Driver Mode VOH High-level output threshold (IOH = 0.1 mA) VOL Low-level output threshold (IOL = 0.1 mA) CPAD Pad capacitance (including package capacitance) ZO Output impedance (drive strength) 0.9*VDDS V l[2:0] = 000 (Imp80) 80 l[2:0] = 001 (Imp60) 60 l[2:0] = 010 (Imp48) 48 l[2:0] = 011 (Imp40) 40 l[2:0] = 100 (Imp34) 34 0.1*VDDS V 3 pF Ω Single-Ended Receiver Mode Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 153 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-10. LVCMOS DDR DC Electrical Characteristics (continued) PARAMETER MIN VIH High-level input threshold DDR3/DDR3L DDR3/DDR3L VIL Low-level input threshold VCM Input common-mode voltage CPAD Pad capacitance (including package capacitance) NOM MAX UNIT VREF+0.1 VDDS+0.2 V -0.2 VREF-0.1 V VREF 10%vdds VREF+ 10%vdds V 3 pF Signal Names in MUXMODE 0 (Differential Signals): ddr1_dqs[3:0], ddr1_dqsn[3:0], ddr1_ck, ddr1_nck, ddr1_dqs_ecc, ddr1_dqsn_ecc Bottom Balls: AH25 / AG25 / AE27 / AE28 / AD27 / AD28 / Y28 / Y27 / V27 / V28 / AG24 / AH24 Driver Mode VOH High-level output threshold (IOH = 0.1 mA) VOL Low-level output threshold (IOL = 0.1 mA) CPAD Pad capacitance (including package capacitance) ZO Output impedance (drive strength) 0.9*VDDS V l[2:0] = 000 (Imp80) 80 l[2:0] = 001 (Imp60) 60 l[2:0] = 010 (Imp48) 48 l[2:0] = 011 (Imp40) 40 l[2:0] = 100 (Imp34) 34 0.1*VDDS V 3 pF Ω Single-Ended Receiver Mode VIH High-level input threshold DDR3/DDR3L VREF+0.1 VDDS+0.2 V VIL Low-level input threshold DDR3/DDR3L -0.2 VREF-0.1 V VCM Input common-mode voltage VREF 10%vdds VREF+ 10%vdds V CPAD Pad capacitance (including package capacitance) 3 pF 0.2 vdds+0.4 V VREF 10%vdds VREF+ 10%vdds V 3 pF Differential Receiver Mode VSWING Input voltage swing DDR3/DDR3L VCM Input common-mode voltage CPAD Pad capacitance (including package capacitance) (1) VDDS in this table stands for corresponding power supply (i.e. vdds_ddr1). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column. (2) VREF in this table stands for corresponding Reference Power Supply (i.e. ddr1_vref0). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column. 5.7.2 HDMIPHY DC Electrical Characteristics The HDMIPHY DC Electrical Characteristics are compliant with the HDMI 1.4a specification and are not reproduced here. 5.7.3 Dual Voltage LVCMOS I2C DC Electrical Characteristics Table 5-11 summarizes the DC electrical characteristics for Dual Voltage LVCMOS I2C Buffers. NOTE For more information on the I/O cell configurations, see the Control Module section of the Device TRM. 154 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-11. Dual Voltage LVCMOS I2C DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: i2c2_scl; i2c1_scl; i2c1_sda; i2c2_sda; Balls: F17 / C20 / C21 / C25 I2C Standard Mode – 1.8 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7*VDDS V 0.3*VDDS 0.1*VDDS V V IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 12 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA CIN Input capacitance 10 pF 0.2*VDDS V VOL3 Output low-level threshold open-drain at 3-mA sink current IOLmin Low-level output current @VOL=0.2*VDDS tOF 3 Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF mA 250 ns I2C Fast Mode – 1.8 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7*VDDS V 0.3*VDDS V 0.1*VDDS V IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 12 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA CIN Input capacitance 10 pF 0.2*VDDS V VOL3 Output low-level threshold open-drain at 3-mA sink current IOLmin Low-level output current @VOL=0.2*VDDS tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF 3 20+0.1*Cb mA 250 ns I2C Standard Mode – 3.3 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7*VDDS V 0.3*VDDS V 0.05*VDDS V IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDS 31 80 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA CIN Input capacitance 10 pF VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V IOLmin Low-level output current @VOL=0.4V 3 mA IOLmin Low-level output current @VOL=0.6V for full drive load (400pF/400KHz) 6 mA Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 155 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-11. Dual Voltage LVCMOS I2C DC Electrical Characteristics (continued) PARAMETER tOF MIN NOM Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF MAX UNIT 250 ns I2C Fast Mode – 3.3 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7*VDDS V 0.3*VDDS V 0.05*VDDS V IIN Input current at each I/O pin with an input voltage between 0.1*VDDS to 0.9*VDDSS 31 80 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA CIN Input capacitance 10 pF VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V IOLmin Low-level output current @VOL=0.4V 3 mA IOLmin Low-level output current @VOL=0.6V for full drive load (400pF/400KHz) 6 mA tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 200 pF (Proper External Resistor Value should be used as per I2C spec) 20+0.1*Cb 250 Output fall time from VIHmin to VILmax with a bus capacitance CB from 300 pF to 400 pF (Proper External Resistor Value should be used as per I2C spec) 40 290 ns (1) VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column. 5.7.4 IQ1833 Buffers DC Electrical Characteristics Table 5-12 summarizes the DC electrical characteristics for IQ1833 Buffers. Table 5-12. IQ1833 Buffers DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: tclk; Balls: E20; 1.8-V Mode VIH Input high-level threshold (Does not meet JEDEC VIH) VIL Input low-level threshold (Does not meet JEDEC VIL) VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 0.75 * VDDS V 0.25 * VDDS 100 2 V mV 11 µA 1 pF 3.3-V Mode VIH Input high-level threshold (Does not meet JEDEC VIH) VIL Input low-level threshold (Does not meet JEDEC VIL) VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 156 Specifications 2.0 V 0.6 400 5 V mV 11 µA 1 pF Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 5.7.5 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 IHHV1833 Buffers DC Electrical Characteristics Table 5-13 summarizes the DC electrical characteristics for IHHV1833 Buffers. Table 5-13. IHHV1833 Buffers DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: porz / rtc_porz / wakeup3 / wakeup0; Balls: F22 / AB17 / AD17 / AC16; 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 1.2 V 0.4 V 40 mV 0.02 1 µA 1 pF 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 5.7.6 1.2 V 0.4 V 40 mV 5 8 µA 1 pF LVCMOS OSC Buffers DC Electrical Characteristics Table 5-14 summarizes the DC electrical characteristics for LVCMOS OSC Buffers. Table 5-14. LVCMOS OSC Buffers DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: rtc_osc_xi_clkin32 / rtc_osc_xo; Balls: AE14 / AD14; 1.8-V Mode 5.7.7 VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage CPAD Pad capacitance (including package capacitance) 0.65 * VDDS V 0.35 * VDDS V 150 mV 3 pF LVCMOS CSI2 DC Electrical Characteristics Table 5-15 summarizes the DC electrical characteristics for LVSMOS CSI2 Buffers. Table 5-15. LVCMOS CSI2 DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signals MUXMODE0 : csi2_0_dx[4:0]; csi2_0_dy[4:0]; csi2_1_dx[2:0]; csi2_1_dy[2:0]; Bottom Balls: AE1 / AD2 / AF1 / AE2 / AF2 / AF3 / AH4 / AG4 / AH3 / AG3 / AG5 / AH5 / AG6 / AH6 / AH7 / AG7 MIPI D-PHY Mode Low-Power Receiver (LP-RX) VIH Input high-level voltage 1350 mV VIL Input low-level voltage 880 550 mV VITH Input high-level threshold 880 mV VITL Input low-level threshold 550 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 mV Specifications 157 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 5-15. LVCMOS CSI2 DC Electrical Characteristics (continued) PARAMETER VHYS Input hysteresis MIN NOM MAX UNIT 25 mV MIPI D-PHY Mode Ultralow Power Receiver (ULP-RX) VIH Input high-level voltage VIL Input low-level voltage 880 VITH Input high-level threshold VITL Input low-level threshold VHYS Input hysteresis mV 300 mV 880 mV 300 mV 25 mV MIPI D-PHY Mode High-Speed Receiver (HS-RX) VIDTH Differential input high-level threshold VIDTL Differential input low-level threshold –70 mV VIDMAX Maximum differential input voltage 270 mV VIHHS Single-ended input high voltage 460 mV VILHS Single-ended input low voltage VCMRXDC ZID 70 mV –40 Differential input common-mode voltage 70 Differential input impedance 80 mV 100 330 mV 125 Ω (1) VITH is the voltage at which the receiver is required to detect a high state in the input signal. (2) VITL is the voltage at which the receiver is required to detect a low state in the input signal. VITL is larger than the maximum single-ended line high voltage during HS transmission. Therefore, both low-power (LP) receivers will detect low during HS signaling. (3) To reduce noise sensitivity on the received signal, the LP receiver is required to incorporate a hysteresis, VHYST. VHYST is the difference between the VITH threshold and the VITL threshold. (4) VITL is the voltage at which the receiver is required to detect a low state in the input signal. Specification is relaxed for detecting 0 during ultralow power (ULP) state. The LP receiver is not required to detect HS single-ended voltage as 0 in this state. (5) Excluding possible additional RF interference of 200 mVPP beyond 450 MHz. (6) This value includes a ground difference of 50 mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450 MHz. (7) This number corresponds to the VODMAX transmitter. (8) Common mode is defined as the average voltage level of X and Y: VCMRX = (VX + VY) / 2. (9) Common mode ripple may be due to tR or tF and transmission line impairments in the PCB. (10) For more information regarding the pin name (or ball name) and corresponding signal name, see Table 4-7 CSI 2 Signal Descriptions. 5.7.8 BMLB18 Buffers DC Electrical Characteristics Table 5-16 summarizes the DC electrical characteristics for BMLB18 Buffers. Table 5-16. BMLB18 Buffers DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: mlbp_dat_n / mlbp_dat_p / mlbp_sig_n / mlbp_sig_p / mlbp_clk_n / mlbp_clk_p; Balls: AA2 / AA1 / AC2 / AC1 / AB2 / AB1; 1.8-V Mode VIH/VIL Input high-level threshold VHYS Input hysteresis voltage VOD Differential output voltage (measured with 50ohm resistor between PAD and PADN) VCM Common mode output voltage CPAD Pad capacitance (including package capacitance) 158 Specifications VCM ± 50mV V NONE mV 300 500 mV 1 1.5 V 4 pF Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 5.7.9 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 BC1833IHHV Buffers DC Electrical Characteristics Table 5-17 summarizes the DC electrical characteristics for BC1833IHHV Buffers. Table 5-17. BC1833IHHV Buffers DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: on_off; Balls: Y11; 1.8-V Mode VOH Output high-level threshold (IOH = 2 mA) VDDS0.45 VOL Output low-level threshold (IOL = 2 mA) IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V 6 IIN Input current at each I/O pin 6 IOZ CPAD V 0.45 V mA 12 µA IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 6 µA Pad capacitance (including package capacitance) 4 pF 3.3-V Mode VOH Output high-level threshold (IOH = 100 µA) VOL Output low-level threshold (IOL = 100 µA) VDDS-0.2 V IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V IIN Input current at each I/O pin 60 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 60 µA CPAD Pad capacitance (including package capacitance) 4 pF 0.2 6 V mA 5.7.10 USBPHY DC Electrical Characteristics NOTE USB1 instance is compliant with the USB3.0 SuperSpeed Transmitter and Receiver Normative Electrical Parameters as defined in the USB3.0 Specification Rev 1.0 dated Jun 6, 2011. NOTE USB1 and USB2 Electrical Characteristics are compliant with USB2.0 Specification Rev 2.0 dated April 27, 2000 including ECNs and Errata as applicable. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 159 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 5.7.11 Dual Voltage SDIO1833 DC Electrical Characteristics Table 5-18 summarizes the DC electrical characteristics for Dual Voltage SDIO1833 Buffers. Table 5-18. Dual Voltage SDIO1833 DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT Signal Names in Mode 0: mmc1_clk, mmc1_cmd, mmc1_data[3:0] Bottom Balls: W6 / Y6 / AA6 / Y4 / AA5 / Y3 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin 30 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 30 µA IIN with Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA 5 pF pulldown enabled IIN with pullup enabled 1.27 V 0.58 50 CPAD Pad capacitance (including package capacitance) VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) (2) V mV 1.4 V 0.45 V 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin 110 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 110 µA IIN with Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 290 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA 5 pF pulldown enabled IIN with pullup enabled 0.625 × VDDS V 0.25 × VDDS 40 CPAD Pad capacitance (including package capacitance) VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) (2) V mV 0.75 × VDDS V 0.125 × VDDS V (1) VDDS in this table stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column. (2) Hysteresis is enabled/disabled with CTRL_CORE_CONTROL_HYST_1.SDCARD_HYST register. 5.7.12 Dual Voltage LVCMOS DC Electrical Characteristics Table 5-19 summarizes the DC electrical characteristics for Dual Voltage LVCMOS Buffers. 160 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 5-19. Dual Voltage LVCMOS DC Electrical Characteristics PARAMETER MIN NOM MAX UNIT 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V IIN Input current at each I/O pin 16 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 16 µA IIN with pulldown Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA enabled CPAD Pad capacitance (including package capacitance) 4 pF ZO Output impedance (drive strength) enabled IIN with pullup 0.65*VDDS V 0.35*VDDS 100 V mV VDDS-0.45 V 0.45 6 V mA 40 Ω 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage VOH Output high-level threshold (IOH = 100 µA) VOL Output low-level threshold (IOL = 100 µA) IDRIVE Pin Drive strength at PAD Voltage = 0.45V or VDDS-0.45V IIN Input current at each I/O pin 65 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 65 µA IIN with pulldown Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 200 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA enabled CPAD Pad capacitance (including package capacitance) 4 pF ZO Output impedance (drive strength) enabled IIN with pullup 2 V 0.8 200 V mV VDDS-0.2 V 0.2 6 V mA 40 Ω (1) VDDS in this table stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table 4-2, POWER [10] column. 5.7.13 SATAPHY DC Electrical Characteristics NOTE The SATA module is compliant with the electrical parameters specified in the SATA-IO SATA Specification, Revision 3.2, August 7, 2013. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 161 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 5.7.14 PCIEPHY DC Electrical Characteristics NOTE The PCIe interfaces are compliant with the electrical parameters specified in PCI Express® Base Specification Revision 3.0. 5.8 Thermal Characteristics For reliability and operability concerns, the maximum junction temperature of the Device has to be at or below the TJ value identified in Table 5-4, Recommended Operating Conditions. A BCI compact thermal model for this Device is available and recommended for use when modeling thermal performance in a system. Therefore, it is recommended to perform thermal simulations at the system level with the worst case device power consumption. 5.8.1 Package Thermal Characteristics Table 5-20 provides the thermal resistance characteristics for the package used on this device. NOTE Power dissipation of 1.5 W and an ambient temperature of 85ºC is assumed for ABC package. Table 5-20. Thermal Resistance Characteristics PARAMETER DESCRIPTION °C/W(1) AIR FLOW (m/s)(2) T1 RΘJC Junction-to-case 0.41 N/A T2 RΘJB Junction-to-board 4.74 N/A Junction-to-free air 11.9 0 8.9 1 8.0 2 T6 7.4 3 T7 0.22 0 T8 0.22 1 0.22 2 T10 0.23 3 T11 4.12 0 T12 3.73 1 3.59 2 3.48 3 NO. T3 T4 T5 T9 T13 RΘJA ΨJT ΨJB Junction-to-moving air Junction-to-package top Junction-to-board T14 (1) These measurements were conducted in a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] measurement, which was conducted in a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: – JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) – JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages – JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages – JESD51-9, Test Boards for Area Array Surface Mount Packages (2) m/s = meters per second 162 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 5.9 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Power Supply Sequences This section describes the power-up and power-down sequence required to ensure proper device operation. The power supply names described in this section comprise a superset of a family of compatible devices. Some members of this family will not include a subset of these power supplies and their associated device modules. Refer to the Section 4.2, Ball Characteristics of the Section 4, Terminal Configuration and Functions to determine which power supplies are applicable. Figure 5-1 and Figure 5-2 describe the device Power Sequencing when RTC-mode is used. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 163 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Note 4 vdda_rtc Note 5 (3) vdds18v, vdds_mlbp, vdds18v_ddr1 vdda_per, vdda_ddr, vdda_debug, vdda_core_gmac, vdda_gpu, vdda_dsp_iva, vdda_video, vdda_mpu_abe, vdda_osc, vdda_csi vdd_rtc (3) vdds_ddr1, ddr1_vref0 VD_CORE BOOT voltage vdd VD_MPU BOOT voltage vdd_mpu VD_IVA BOOT voltage vdd_iva VD_GPU BOOT voltage vdd_gpu VD_DSPEVE BOOT voltage vdd_dsp vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie1, vdda_sata, vdda_usb3 vddshv5 (3) Note 6 vddshv1, vddshv2, vddshv3, vddshv4, vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 vdda33v_usb1, vdda33v_usb2 Note 7 vddshv8 xi_osc0 Note 9 rtc_porz Note 11 resetn/porz Note 12 sysboot[15:0] Note 13 Valid Config Note 14 rstoutn SPRS906_ELCH_01 Figure 5-1. Power-Up Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. 164 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) If RTC-mode is used then vdda_rtc, vdd_rtc and vddshv5 must be individually powered with separate power supplies and cannot be combined with other rails. (4) vdd must ramp before or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (5) vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered. (6) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. (7) vddshv8 is separated out to show support for dual voltage. If single voltage is used then vddshv8 can be combined with other vddshvn rails but vddshv8 must ramp after vdd. (8) vdds and vdda rails must not be combined together. (9) Pulse duration: rtc_porz must remain low 1ms after vdda_rtc, vddshv5, and vdd_rtc are ramped and stable. (10) The SYS_32K source must be stable and at a valid frequency 1ms prior to de-asserting rtc_porz high. (11) Pulse duration: resetn/porz must remain low a minimum of 12P(15) after xi_osc0 is stable and at a valid frequency. (12) Setup time: sysboot[15:0] pins must be valid 2P(15) before porz is de-asserted high. (13) Hold time: sysboot[15:0] pins must be valid 15P(15) after porz is de-asserted high. (14) resetn to rstoutn delay is 2ms. (15) P = 1/(SYS_CLK1/610) frequency in ns. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 165 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Note 5 Note 6 porz Note 8 vddshv8 vdda33v_usb1, vdda33v_usb2 Note 7 vddshv1, vddshv2, vddshv3, vddshv4, vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_usb3 vddshv5 (4) vdd_dsp vdd_gpu vdd_iva vdd_mpu vdd vdds_ddr1, ddr1_vref0 vdda_per, vdda_ddr, vdda_debug, vdda_dsp_iva, vdda_core_gmac, vdda_gpu, vdda_video, vdda_mpu_abe, vdda_osc, vdda_csi vdd_rtc (4) vdds18v, vdds_mlbp, vdds18v_ddr1 vdda_rtc (4) xi_osc0 SPRS906_ELCH_02 Figure 5-2. Power-Down Sequencing (1) xi_osc0 can be turned off anytime after porz assertion and must be turned off before vdda_osc voltage rail is shutdown. (2) Grey shaded areas are windows where it is valid to ramp the voltage rail. (3) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (4) If RTC-mode is supported then vdda_rtc, vdd_rtc and vddshv5 must be individually powered with separate power supplies and cannot be combined with other rails. (5) vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered. 166 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (6) vdd must ramp after or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (7) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. vddshv[1-7,9-11] is allowed to ramp down at either of the two points shown in the timing diagram in either 1.8V mode or in 3.3V mode. If vddshv[1-7,9-11] ramps down at the later time in the diagram then the board design must guarantee that the vddshv[1-7,9-11] rail is never higher than 2.0 V above the vdds18v rail. (8) vddshv8 is separated out to show support for dual voltage. If a dedicated LDO/supply source is used for vddshv8, then vddshv8 ramp down should occur at one of the two earliest points in the timing diagram. If vddshv8 is powered by the same supply source as the other vddshvn rails, then it is allowed to ramp down at either of the last two points in the timing diagram. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 167 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Figure 5-3 describes the RTC-mode Power Sequencing. Note 5 Note 4 Note 4 Note 3 vdds18v, vdds_mlbp, vdds18v_ddr1 vdda_rtc vdda_per, vdda_ddr, vdda_debug, vdda_dsp_iva, vdda_core_gmac, vdda_gpu, vdda_video, vdda_mpu, vdda_osc, vdda_csi vdd_rtc vdds_ddr1, ddr1_vref0 vdd R T C vdd_mpu M O D E vdd_iva vdd_gpu vdd_dsp vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_usb3 vddshv5 vddshv1, vddshv2, vddshv3, vddshv4, vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 Note 6 Note 8 vdda33v_usb1, vdda33v_usb2 Note 9 Note 7 vddshv8 rtc_porz resetn/porz SPRS906_ELCH_03 Figure 5-3. RTC Mode Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. 168 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) vdd must ramp down after or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (4) vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered. (5) vdd must ramp up before or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (6) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. (7) vddshv8 is separated out to show support for dual voltage. If single voltage is used then vddshv8 can be combined with other vddshvn rails but vddshv8 must ramp down before vdd and must ramp up after vdd. (8) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. vddshv[1-7,9-11] is allowed to ramp down at either of the two points shown in the timing diagram in either 1.8V mode or in 3.3V mode. If vddshv[1-7,9-11] ramps down at the later time in the diagram then the board design must guarantee that the vddshvn rail is never higher than 2.0 V above the vdds18v rail. (9) vddshv8 is separated out to show support for dual voltage. If a dedicated LDO/supply source is used for vddshv8, then vddshv8 ramp down should occur at one of the two earliest points in the timing diagram. If vddshv8 is powered by the same supply source as the other vddshvn rails, then it is allowed to ramp down at either of the last two points in the timing diagram. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 169 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Figure 5-4 and Figure 5-5, describe the device Power Sequencing when RTC-mode is NOT used. Note 4 Note 5 vdds18v, vdds_mlbp, vdds18v_ddr1, vdda_rtc(3) vdda_per, vdda_ddr, vdda_debug, vdda_dsp_iva, vdda_core_gmac, vdda_gpu, vdda_video, vdda_mpu, vdda_osc, vdda_csi vdds_ddr1, ddr1_vref0 VD_CORE BOOT voltage vdd, vdd_rtc (3) VD_MPU BOOT voltage vdd_mpu VD_IVA BOOT voltage vdd_iva VD_GPU BOOT voltage vdd_gpu VD_DSP BOOT voltage vdd_dsp vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_usb3 vddshv1, vddshv2, vddshv3, vddshv4, (3) vddshv5 , vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 Note 6 vdda33v_usb1, vdda33v_usb2 Note 7 vddshv8 xi_osc0 Note 9 rtc_porz Note 11 resetn/porz Note 12 sysboot[15:0] Note 13 Valid Config Note 14 rstoutn SPRS906_ELCH_04 Figure 5-4. Power-Up Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) If RTC-mode is not supported then the following combinations are approved: 170 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 - vdda_rtc can be combined with vdds18v - vdd_rtc can be combined with vdd - vddshv5 can be combined with other 1.8V or 3.3V vddshvn rails. If combinations listed above are not followed then sequencing for these 3 voltage rails should follow the RTC mode timing requirements. (4) vdd must ramp before or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (5) vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered. (6) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. (7) vddshv8 is separated out to show support for dual voltage. If single voltage is used then vddshv8 can be combined with other vddshvn rails but vddshv8 must ramp after vdd. (8) vdds and vdda rails must not be combined together, with the one exception of vdda_rtc when RTC-mode is not supported. (9) Pulse duration: rtc_porz must remain low 1ms after vdda_rtc, vddshv5, and vdd_rtc are ramped and stable. (10) The SYS_32K source must be stable and at a valid frequency 1ms prior to de-asserting rtc_porz high. (11) Pulse duration: resetn/porz must remain low a minimum of 12P(15) after xi_osc0 is stable and at a valid frequency. (12) Setup time: sysboot[15:0] pins must be valid 2P(15) before porz is de-asserted high. (13) Hold time: sysboot[15:0] pins must be valid 15P(15) after porz is de-asserted high. (14) resetn to rstoutn delay is 2ms. (15) P = 1/(SYS_CLK1/610) frequency in ns. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 171 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Note 5 Note 6 porz Note 8 vddshv8 vdda33v_usb1, vdda33v_usb2 Note 7 vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_sata, vdda_usb3 vdd_dsp vdd_gpu vdd_iva vdd_mpu vdd, vdd_rtc (4) vdds_ddr1, ddr1_vref0 vdda_per, vdda_ddr, vdda_debug, vdda_dsp_iva, vdda_core_gmac, vdda_gpu, vdda_video, vdda_mpu, vdda_osc, vdda_csi vdds18v, vdds_mlbp, vdds18v_ddr1, (4) vdda_rtc xi_osc0 SPRS906_ELCH_05 Figure 5-5. Power-Down Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) xi_osc0 can be turned off anytime after porz assertion and must be turned off before vdda_osc voltage rail is shutdown. (4) If RTC-mode is not used then the following combinations are approved: - vdda_rtc can be combined with vdds18v - vdd_rtc can be combined with vdd - vddshv5 can be combined with other 1.8V or 3.3V vddshvn rails If combinations listed above are not followed then sequencing for these 3 voltage rails should follow the RTC mode timing requirements. (5) vdd_mpu, vdd_gpu, vdd_dsp, vdd_iva can be ramped at the same time or can be staggered. (6) vdd must ramp after or at the same time as vdd_mpu, vdd_gpu, vdd_dsp and vdd_iva. (7) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. vddshv[1-7,9-11] is allowed to ramp down at either of the two points shown in the timing diagram in either 1.8V mode or in 3.3V mode. If vddshv[1-7,9-11] ramps down at the later time in the diagram then the board design must guarantee that the vddshv[1-7,9-11] rail is never higher than 2.0 V above the vdds18v rail. 172 Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (8) vddshv8 is separated out to show support for dual voltage. If a dedicated LDO/supply source is used for vddshv8, then vddshv8 ramp down should occur at one of the two earliest points in the timing diagram. If vddshv8 is powered by the same supply source as the other vddshvn rails, then it is allowed to ramp down at either of the last two points in the timing diagram. Figure 5-6 describes vddshv[1-7,9-11] Supplies Falling Before vdds18v Supplies Delta. Figure 5-6. vddshv* Supplies Falling After vdds18v Supplies Delta (1) Vdelta MAX = 2V (2) If vddshv8 is powered by the same supply source as the other vddshv[1-7,9-11] rails. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Specifications 173 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 6 Clock Specifications NOTE For more information, see Power Reset and Clock Management / PRCM Environment / External Clock Signal and Power Reset / PRCM Functional Description / PRCM Clock Manager Functional Description section of the Device TRM. NOTE Audio Back End (ABE) module is not supported for this family of devices, but “ABE” name is still present in some clock or DPLL names. The device operation requires the following clocks: • The 32 kHz frequency is used for low frequency operation. It supplies the wake-up domain for operation in lowest power mode. This is an optional clock and will be supplied by on chip divider + mux (FUNC_32K_CLK) incase it is not available on external pin. • The system clocks, SYS_CLKIN1(Mandatory) and SYS_CLKIN2(Optional) are the main clock sources of the device. They supply the reference clock to the DPLLs as well as functional clock to several modules. The Device also embeds an internal free-running 32-kHz oscillator that is always active as long as the the wake-up (WKUP) domain is supplied. Figure 6-1 shows the external input clock sources and the output clocks to peripherals. 174 Clock Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 DEVICE From quartz (32 kHz) or from CMOS square clock source (32 kHz). rtc_osc_xi_clkin32 To quartz (from oscillator output). rtc_osc_xo rstoutn Warm reset output. resetn Device reset input. porz Power ON Reset. From quartz (19.2, 20 or 27 MHz) or from CMOS square clock source (19.2, 20 or 27MHz). xi_osc0 xo_osc0 To quartz (from oscillator output). xi_osc1 From quartz (range from 19.2 to 32 MHz) or from CMOS square clock source(range from 12 to 38.4 MHz). xo_osc1 To quartz (from oscillator output). clkout1 Output clkout[3:1] clocks come from: • Either the input system clock and alternate clock (xi_osc0 or xi_osc1) • Or a CORE clock (from CORE output) • Or a 192-MHz clock (from PER DPLL output). clkout2 clkout3 xref_clk0 xref_clk1 External Reference Clock [3:0]. For Audio and other Peripherals xref_clk2 xref_clk3 Boot Mode Configuration sysboot[15:0] Figure 6-1. Clock Interface 6.1 Input Clock Specifications 6.1.1 Input Clock Requirements • • • The source of the internal system clock (SYS_CLK1) could be either: – A CMOS clock that enters on the xi_osc0 ball (with xo_osc0 left unconnected on the CMOS clock case). – A crystal oscillator clock managed by xi_osc0 and xo_osc0. The source of the internal system clock (SYS_CLK2) could be either: – A CMOS clock that enters on the xi_osc1 ball (with xo_osc1 left unconnected on the CMOS clock case). – A crystal oscillator clock managed by xi_osc1 and xo_osc1. The source of the internal system clock (SYS_32K) could be either: – A CMOS clock that enters on the rtc_osc_xi_clkin32 ball and supports external LVCMOS clock generators – A crystal oscillator clock managed by rtc_osc_xi_clkin32 and rtc_osc_xo. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 175 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 6.1.2 www.ti.com System Oscillator OSC0 Input Clock SYS_CLKIN1 is received directly from oscillator OSC0. For more information about SYS_CLKIN1 see Device TRM, Chapter: Power, Reset, and Clock Management. 6.1.2.1 OSC0 External Crystal An external crystal is connected to the device pins. Figure 6-2 describes the crystal implementation. Device xo_osc0 xi_osc0 vssa_osc0 Rd (Optional) Crystal Cf2 Cf1 SPRS906_CLK_03 Figure 6-2. OSC0 Crystal Implementation NOTE The load capacitors, Cf1 and Cf2 in Figure 6-2, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator xi_osc0, xo_osc0, and vssa_osc0 pins. CL= Cf1Cf2 (Cf1+Cf2) Figure 6-3. Load Capacitance Equation The crystal must be in the fundamental mode of operation and parallel resonant. Table 6-1 summarizes the required electrical constraints. and Table 6-5 Table 6-1. OSC0 Crystal Electrical Characteristics NAME fp MIN TYP MAX 19.2, 20, 27 UNIT MHz Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF 100 Ω ESR(Cf1,Cf2) (1) 176 DESCRIPTION Parallel resonance crystal frequency Crystal ESR Clock Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 6-1. OSC0 Crystal Electrical Characteristics (continued) NAME DESCRIPTION ESR = 30 Ω ESR = 40 Ω ESR = 50 Ω CO ESR = 60 Ω Crystal shunt capacitance ESR = 80 Ω ESR = 100 Ω LM Crystal motional inductance for fp = 20 MHz CM Crystal motional capacitance MIN TYP MAX 19.2 MHz, 20 MHz, 27 MHz 7 pF 19.2 MHz, 20 MHz 7 pF 27 MHz 5 pF 7 pF 5 pF 19.2 MHz, 20 MHz 27 MHz Not Supported 19.2 MHz, 20 MHz 27 MHz - Not Supported 19.2 MHz, 20 MHz 3 27 MHz pF Not Supported - 10.16 mH 3.42 fF Ethernet and MLB not used tj(xiosc0) UNIT (1) Frequency accuracy , xi_osc0 ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 ppm MLB using derived clock ±50 (1) Crystal characteristics should account for tolerance+stability+aging. When selecting a crystal, the system design must take into account the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 6-2 details the switching characteristics of the oscillator and the requirements of the input clock. Table 6-2. Oscillator Switching Characteristics—Crystal Mode NAME DESCRIPTION fp Oscillation frequency tsX Start-up time 6.1.2.2 MIN TYP MAX 19.2, 20, 27 MHz UNIT MHz 4 ms OSC0 Input Clock A 1.8-V LVCMOS-Compatible Clock Input can be used instead of the internal oscillator to provide the SYS_CLKIN1 clock input to the system. The external connections to support this are shown in Figure 6-4. The xi_osc0 pin is connected to the 1.8-V LVCMOS-Compatible clock source. The xi_osc0 pin is left unconnected. The vssa_osc0 pin is connected to board ground (VSS). Device xi_osc0 xo_osc0 vssa_osc0 NC SPRS906_CLK_04 Figure 6-4. 1.8-V LVCMOS-Compatible Clock Input Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 177 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 6-3 summarizes the OSC0 input clock electrical characteristics. Table 6-3. OSC0 Input Clock Electrical Characteristics—Bypass Mode NAME DESCRIPTION f MIN Frequency TYP MAX UNIT 19.2, 20, 27 CIN Input capacitance IIN Input current (3.3V mode) MHz 2.184 2.384 2.584 pF 4 6 10 µA Table 6-4 details the OSC0 input clock timing requirements. Table 6-4. OSC0 Input Clock Timing Requirements NAME DESCRIPTION 1/ CK0 tc(xiosc0) CK1 MIN Frequency, xi_osc0 TYP 19.2, 20, 27 tw(xiosc0) Pulse duration, xi_osc0 low or high tj(xiosc0) Period jitter(1), xi_osc0 tR(xiosc0) Rise time, xi_osc0 tF(xiosc0) Fall time, xi_osc0 0.45 * tc(xiosc0) Ethernet and MLB not used tj(xiosc0) MAX (2) Frequency accuracy , xi_osc0 UNIT MHz 0.55 * tc(xiosc0) ns 0.01 × tc(xiosc0) ns 5 ns 5 ns ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 ppm MLB using derived clock ±50 (1) Period jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period (2) Crystal characteristics should account for tolerance+stability+aging. CK0 CK1 CK1 xi_osc0 SPRS906_CLK_05 Figure 6-5. xi_osc0 Input Clock 6.1.3 Auxiliary Oscillator OSC1 Input Clock SYS_CLKIN2 is received directly from oscillator OSC1. For more information about SYS_CLKIN2 see Device TRM, Chapter: Power, Reset, and Clock Management. 6.1.3.1 OSC1 External Crystal An external crystal is connected to the device pins. Figure 6-6 describes the crystal implementation. 178 Clock Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Device xo_osc1 xi_osc1 vssa_osc1 Rd (Optional) Crystal Cf2 Cf1 SPRS906_CLK_06 Figure 6-6. Crystal Implementation NOTE The load capacitors, Cf1 and Cf2 in Figure 6-6, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator xi_osc1, xo_osc1, and vssa_osc1 pins. CL= Cf1Cf2 (Cf1+Cf2) Figure 6-7. Load Capacitance Equation The crystal must be in the fundamental mode of operation and parallel resonant. Table 6-5 summarizes the required electrical constraints. Table 6-5. OSC1 Crystal Electrical Characteristics NAME fp DESCRIPTION MIN Parallel resonance crystal frequency TYP Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 ESR(Cf1,Cf2) Crystal ESR MHz 24 pF 24 pF 100 Ω 19.2 MHz ≤ fp ≤ 32 MHz 7 pF ESR = 40 Ω 19.2 MHz ≤ fp ≤ 32 MHz 5 pF 19.2 MHz ≤ fp ≤ 25 MHz 7 pF 25 MHz < fp ≤ 27 MHz 5 pF 27 MHz < fp ≤ 32 MHz Crystal shunt capacitance UNIT ESR = 30 Ω ESR = 50 Ω CO MAX Range from 19.2 to 32 ESR = 60 Ω 7 pF 23 MHz < fp ≤ 25 MHz 5 pF LM Crystal motional inductance for fp = 20 MHz CM Crystal motional capacitance Not Supported - 19.2 MHz ≤ fp ≤ 23 MHz 5 pF 23 MHz ≤ fp ≤ 25 MHz 3 pF 25 MHz < fp ≤ 32 MHz ESR = 100 Ω - 19.2 MHz ≤ fp ≤ 23 MHz 25 MHz < fp ≤ 32 MHz ESR = 80 Ω Not Supported Not Supported 19.2 MHz ≤ fp ≤ 20 MHz 20 MHz < fp ≤ 32 MHz Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 3 Not Supported pF - 10.16 mH 3.42 fF Clock Specifications 179 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 6-5. OSC1 Crystal Electrical Characteristics (continued) NAME DESCRIPTION MIN TYP Ethernet and MLB not used tj(xiosc1) (1) Frequency accuracy , xi_osc1 MAX UNIT ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 ppm MLB using derived clock ±50 (1) Crystal characteristics should account for tolerance+stability+aging. When selecting a crystal, the system design must take into account the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 6-6 details the switching characteristics of the oscillator and the requirements of the input clock. Table 6-6. Oscillator Switching Characteristics—Crystal Mode NAME DESCRIPTION fp Oscillation frequency tsX Start-up time 6.1.3.2 MIN TYP MAX Range from 19.2 to 32 UNIT MHz 4 ms OSC1 Input Clock A 1.8-V LVCMOS-Compatible Clock Input can be used instead of the internal oscillator to provide the SYS_CLKIN2 clock input to the system. The external connections to support this are shown in, Figure 6-8. The xi_osc1 pin is connected to the 1.8-V LVCMOS-Compatible clock sources. The xo_osc1 pin is left unconnected. The vssa_osc1 pin is connected to board ground (vss). Device xi_osc1 xo_osc1 vssa_osc1 NC SPRS906_CLK_07 Figure 6-8. 1.8-V LVCMOS-Compatible Clock Input Table 6-7 summarizes the OSC1 input clock electrical characteristics. Table 6-7. OSC1 Input Clock Electrical Characteristics—Bypass Mode NAME f 180 DESCRIPTION Frequency TYP MAX Range from 12 to 38.4 CIN Input capacitance IIN Input current (3.3V mode) tsX Start-up time(1) Clock Specifications MIN UNIT MHz 2.819 3.019 3.219 pF 4 6 10 µA See(2) ms Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (1) To switch from bypass mode to crystal or from crystal mode to bypass mode, there is a waiting time about 100 μs; however, if the chip comes from bypass mode to crystal mode the crystal will start-up after time mentioned in Table 6-6, tsX parameter. (2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in application mode and receives a wave. The switching time in this case is about 100 μs. Table 6-8 details the OSC1 input clock timing requirements. Table 6-8. OSC1 Input Clock Timing Requirements NAME DESCRIPTION MIN CK0 1/ tc(xiosc1) Frequency, xi_osc1 CK1 tw(xiosc1) Pulse duration, xi_osc1 low or high tj(xiosc1) Period jitter(1), xi_osc1 tR(xiosc1) Rise time, xi_osc1 tF(xiosc1) Fall time, xi_osc1 TYP Range from 12 to 38.4 0.45 * tc(xiosc1) UNIT MHz 0.55 * tc(xiosc1) ns 0.01 × tc(xiosc1) ns 5 ns 5 ns (3) Ethernet and MLB not used tj(xiosc1) MAX (2) Frequency accuracy , xi_osc1 ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 ppm MLB using derived clock ±50 (1) Period jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period (2) Crystal characteristics should account for tolerance+stability+aging. (3) The Period jitter requirement for osc1 can be relaxed to 0.02*tc(xiosc1) under the following constraints: a.The osc1/SYS_CLK2 clock bypasses all device PLLs b.The osc1/SYS_CLK2 clock is only used to source the DSS pixel clock outputs CK0 CK1 CK1 xi_osc1 SPRS906_CLK_08 Figure 6-9. xi_osc1 Input Clock 6.1.4 RTC Oscillator Input Clock SYS_32K is received directly from RTC Oscillator. For more information about SYS_32K see the Device TRM, Power, Reset, and Clock Management chapter. 6.1.4.1 RTC Oscillator External Crystal An external crystal is connected to the device pins. Figure 6-10 describes the crystal implementation. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 181 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Device rtc_osc_xo rtc_osc_xi_clkin32 Rd (Optional) Crystal Cf2 Cf1 SPRS906_CLK_01 Figure 6-10. Crystal Implementation NOTE The load capacitors, Cf1 and Cf2 in Figure 6-10, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator rtc_osc_xi_clkin32 and rtc_osc_xo pins. CL= Cf1Cf2 (Cf1+Cf2) Figure 6-11. Load Capacitance Equation The crystal must be in the fundamental mode of operation and parallel resonant. Table 6-9 summarizes the required electrical constraints. Table 6-9. RTC Crystal Electrical Characteristics NAME DESCRIPTION fp MIN TYP Parallel resonance crystal frequency MAX 32.768 UNIT kHz Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF 80 kΩ 5 pF ESR(Cf1,Cf2) Crystal ESR CO Crystal shunt capacitance LM Crystal motional inductance for fp = 32,768 kHz CM Crystal motional capacitance tj(rtc_osc_xi_clkin32) 10.7 mH 2.2 Frequency accuracy, rtc_osc_xi_clkin32 pF fF ±200 ppm When selecting a crystal, the system design must take into account the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 6-10 details the switching characteristics of the oscillator and the requirements of the input clock. Table 6-10. Oscillator Switching Characteristics—Crystal Mode NAME fp 182 DESCRIPTION Oscillation frequency Clock Specifications MIN TYP 32.768 MAX UNIT kHz Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 6-10. Oscillator Switching Characteristics—Crystal Mode (continued) NAME tsX 6.1.4.2 DESCRIPTION MIN TYP MAX Start-up time UNIT 4 ms RTC Oscillator Input Clock A 1.8-V LVCMOS-Compatible Clock Input can be used instead of the internal oscillator to provide the SYS_32K clock input to the system. The external connections to support this are shown in Figure 6-12. The rtc_osc_xi_clkin32 pin is connected to the 1.8-V LVCMOS-Compatible clock sources. The rtc_osc_xo pin is left unconnected. Device rtc_osc_xi_clkin32 rtc_osc_xo NC SPRS906_CLK_10 Figure 6-12. LVCMOS-Compatible Clock Input Table 6-11 summarizes the RTC Oscillator input clock electrical characteristics. Table 6-11. RTC Oscillator Input Clock Electrical Characteristics—Bypass Mode NAME CK0 CK1 DESCRIPTION 1/tc(rtc_osc_xi_clkin32) tw(rtc_osc_xi_clkin32) MIN Frequency, rtc_osc_xi_clkin32 Pulse duration, rtc_osc_xi_clkin32 low or high CIN Input capacitance IIN Input current (3.3V mode) tsX Start-up time TYP MAX 32.768 UNIT kHz 0.45 * 0.55 * tc(rtc_osc_xi_clkin32) tc(rtc_osc_xi_clkin32) ns 2.178 2.378 2.578 pF 4 6 10 µA See (1) ms (1) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is inapplication mode and receives a wave. The switching time in this case is about 100 μs. CK0 CK1 CK1 rtc_osc_xi_clkin32 SPRS906_CLK_11 Figure 6-13. rtc_osc_xi_clkin32 Input Clock 6.2 DPLLs, DLLs Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 183 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE For more information, see: • Power, Reset, and Clock Management / Clock Management Functional / Internal Clock Sources / Generators / Generic DPLL Overview Section and • Display Subsystem / Display Subsystem Overview section of the Device TRM. To generate high-frequency clocks, the device supports multiple on-chip DPLLs controlled directly by the PRCM module. They are of two types: type A and type B DPLLs. • They have their own independent power domain (each one embeds its own switch and can be controlled as an independent functional power domain) • They are fed with ALWAYS ON system clock, with independent control per DPLL. The different DPLLs managed by the PRCM are listed below: • DPLL_MPU: It supplies the MPU subsystem clocking internally. • DPLL_IVA: It feeds the IVA subsystem clocking. • DPLL_CORE: It supplies all interface clocks and also few module functional clocks. • DPLL_PER: It supplies several clock sources: a 192-MHz clock for the display functional clock, a 96-MHz functional clock to subsystems and peripherals. • DPLL_ABE: It provides clocks to various modules within the device. • DPLL_USB: It provides 960M clock for USB modules (USB1/2/3/4). • DPLL_GMAC: It supplies several clocks for the Gigabit Ethernet Switch (GMAC_SW). • DPLL_DSP: It feeds the DSP Subsystem clocking. • DPLL_GPU: It supplies clock for the GPU Subsystem. • DPLL_DDR: It generates clocks for the two External Memory Interface (EMIF) controllers and their associated EMIF PHYs. • DPLL_PCIE_REF: It provides reference clock for the APLL_PCIE in PCIE Subsystem. • APLL_PCIE: It feeds clocks for the device Peripheral Component Interconnect Express (PCIe) controllers. NOTE The following DPLLs are controlled by the clock manager located in the always-on Core power domain (CM_CORE_AON): • DPLL_MPU, DPLL_IVA, DPLL_CORE, DPLL_ABE, DPLL_DDR, DPLL_GMAC, DPLL_PCIE_REF, DPLL_PER, DPLL_USB, DPLL_DSP, DPLL_GPU, APLL_PCIE_REF. For more information on CM_CORE_AON and CM_CORE or PRCM DPLLs, see the Power, Reset, and Clock Management (PRCM) chapter of the Device TRM. The following DPLLs are not managed by the PRCM: • • • • • DPLL_VIDEO1; (It is controlled from DSS) DPLL_HDMI; (It is controlled from DSS) DPLL_SATA; (It is controlled from SATA) DPLL_DEBUG; (It is controlled from DEBUGSS) DPLL_USB_OTG_SS; (It is controlled from OCP2SCP1) NOTE For more information for not controlled from PRCM DPLL’s see the related chapters in TRM. 184 Clock Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 6.2.1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 DPLL Characteristics The DPLL has three relevant input clocks. One of them is the reference clock (CLKINP) used to generated the synthesized clock but can also be used as the bypass clock whenever the DPLL enters a bypass mode. It is therefore mandatory. The second one is a fast bypass clock (CLKINPULOW) used when selected as the bypass clock and is optional. The third clock (CLKINPHIF) is explained in the next paragraph. The DPLL has three output clocks (namely CLKOUT, CLKOUTX2, and CLKOUTHIF). CLKOUT and CLKOUTX2 run at the bypass frequency whenever the DPLL enters a bypass mode. Both of them are generated from the lock frequency divided by a post-divider (namely M2 post-divider). The third clock, CLKOUTHIF, has no automatic bypass capability. It is an output of a post-divider (M3 post-divider) with the input clock selectable between the internal lock clock (Fdpll) and CLKINPHIF input of the PLL through an asynchronous multplexing. For more information, see the Power Reset Controller Management chapter of the Device TRM. Table 6-12 summarizes DPLL type described in Section 6.2, DPLLs, DLLs Specifications introduction. Table 6-12. DPLL Control Type DPLL NAME TYPE CONTROLLED BY PRCM DPLL_ABE Table 6-13 (Type A) Yes(1) DPLL_CORE Table 6-13 (Type A) Yes(1) DPLL_DEBUGSS Table 6-13 (Type A) No(2) DPLL_DSP Table 6-13 (Type A) Yes(1) DPLL_GMAC Table 6-13 (Type A) Yes(1) DPLL_HDMI Table 6-14 (Type B) No(2) DPLL_IVA Table 6-13 (Type A) Yes(1) DPLL_MPU Table 6-13 (Type A) Yes(1) DPLL_PER Table 6-13 (Type A) Yes(1) APLL_PCIE Table 6-13 (Type A) Yes(1) DPLL_PCIE_REF Table 6-14 (Type B) Yes(1) DPLL_SATA Table 6-14 (Type B) No(2) DPLL_USB Table 6-14 (Type B) Yes(1) DPLL_USB_OTG_SS Table 6-14 (Type B) No(2) DPLL_VIDEO1 Table 6-13 (Type A) No(2) DPLL_DDR Table 6-13 (Type A) Yes(1) DPLL_GPU Table 6-13 (Type A) Yes(1) (1) DPLL is in the always-on domain. (2) DPLL is not controlled by the PRCM. Table 6-13 and Table 6-14 summarize the DPLL characteristics and assume testing over recommended operating conditions. Table 6-13. DPLL Type A Characteristics NAME finput DESCRIPTION CLKINP input frequency MIN 0.032 TYP MAX UNIT 52 MHz FINP COMMENTS finternal Internal reference frequency 0.15 52 MHz REFCLK fCLKINPHIF CLKINPHIF input frequency 10 1400 MHz FINPHIF 0.001 600 MHz Bypass mode: fCLKOUT = fCLKINPULOW / (M1 + 1) if ulowclken = 1(6) 20(1) 1400(2) MHz [M / (N + 1)] × FINP × [1 / M2] (in locked condition) fCLKINPULOW fCLKOUT CLKINPULOW input frequency CLKOUT output frequency Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 185 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 6-13. DPLL Type A Characteristics (continued) NAME fCLKOUTx2 DESCRIPTION MIN CLKOUTx2 output frequency TYP MAX UNIT COMMENTS 40(1) 2200(2) MHz 2 × [M / (N + 1)] × FINP × [1 / M2] (in locked condition) 20 (4) 1400 MHz FINPHIF / M3 if clkinphifsel = 1 40(3) 2200(4) MHz 2 × [M / (N + 1)] × FINP × [1 / M3] if clkinphifsel = 0 40 2800 MHz 2 × [M / (N + 1)] × FINP (in locked condition) (3) fCLKOUTHIF CLKOUTHIF output frequency fCLKDCOLDO DCOCLKLDO output frequency tlock Frequency lock time 6 + 350 × REFCLK µs plock Phase lock time 6 + 500 × REFCLK µs 6 + 70 × REFCLK µs DPLL in LP relock time: lowcurrstdby = 1 6 + 120 × REFCLK µs DPLL in LP relock time: lowcurrstdby = 1 3.55 + 70 × REFCLK µs DPLL in fast relock time: lowcurrstdby = 0 3.55 + 120 × REFCLK µs DPLL in fast relock time: lowcurrstdby = 0 trelock-L Relock time—Frequency lock(5) (LP relock time from bypass) prelock-L Relock time—Phase lock(5) (LP relock time from bypass) trelock-F Relock time—Frequency lock(5) (fast relock time from bypass) prelock-F Relock time—Phase lock(5) (fast relock time from bypass) (1) The minimum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. For M2 > 1, the minimum frequency on these clocks will further scale down by factor of M2. (2) The maximum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. (3) The minimum frequency on CLKOUTHIF is assuming M3 = 1. For M3 > 1, the minimum frequency on this clock will further scale down by factor of M3. (4) The maximum frequency on CLKOUTHIF is assuming M3 = 1. (5) Relock time assumes typical operating conditions, 10°C maximum temperature drift. (6) Bypass mode: fCLKOUT = FINP if ulowclken = 0. For more information, see the Device TRM. Table 6-14. DPLL Type B Characteristics NAME MAX UNIT CLKINP input clock frequency 0.62 60 MHz FINP finternal REFCLK internal reference clock frequency 0.62 2.5 MHz [1 / (N + 1)] × FINP fCLKINPULOW CLKINPULOW bypass input clock frequency 0.001 600 MHz Bypass mode: fCLKOUT = fCLKINPULOW / (M1 + 1) If ulowclken = 1(4) fCLKLDOOUT CLKOUTLDO output clock frequency 20(1)(5) 2500(2)(5) MHz M / (N + 1)] × FINP × [1 / M2] (in locked condition) CLKOUT output clock frequency 20(1)(5) 1450(2)(5) MHz [M / (N + 1)] × FINP × [1 / M2] (in locked condition) 750(5) finput fCLKOUT fCLKDCOLDO DESCRIPTION MIN Internal oscillator (DCO) output clock frequency TYP 1500(5) MHz (5) 2500(5) MHz –2.5% 2.5% 1250 COMMENTS [M / (N + 1)] × FINP (in locked condition) CLKOUTLDO period jitter tJ CLKOUT period jitter The period jitter at the output clocks is ± 2.5% peak to peak CLKDCOLDO period jitter tlock Frequency lock time 350 × REFCLKs µs plock Phase lock time 500 × REFCLKs µs 9 + 30 × REFCLKs µs (3) trelock-L 186 Relock time—Frequency lock (LP relock time from bypass) Clock Specifications Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 6-14. DPLL Type B Characteristics (continued) NAME DESCRIPTION prelock-L Relock time—Phase lock(3) (LP relock time from bypass) MIN TYP MAX UNIT 9 + 125 × REFCLKs COMMENTS µs (1) The minimum frequency on CLKOUT is assuming M2 = 1. For M2 > 1, the minimum frequency on this clock will further scale down by factor of M2. (2) The maximum frequency on CLKOUT is assuming M2 = 1. (3) Relock time assumes typical operating conditions, 10°C maximum temperature drift. (4) Bypass mode: fCLKOUT = FINP if ULOWCLKEN = 0. For more information, see the Device TRM. (5) For output clocks, there are two frequency ranges according to the SELFREQDCO setting. For more information, see the Device TRM. 6.2.2 DLL Characteristics Table 6-15 summarizes the DLL characteristics and assumes testing over recommended operating conditions. Table 6-15. DLL Characteristics NAME MAX UNIT finput Input clock frequency (EMIF_DLL_FCLK) 266 MHz tlock Lock time 50k cycles Relock time (a change of the DLL frequency implies that DLL must relock) 50k cycles trelock 6.2.3 DESCRIPTION MIN TYP DPLL and DLL Noise Isolation NOTE For more information on DPLL and DLL decoupling capacitor requirements, see the External Capacitors / Voltage Decoupling Capacitors / I/O and Analog Voltage Decoupling / VDDA Power Domain section. Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Clock Specifications 187 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 7 Timing Requirements and Switching Characteristics 7.1 Timing Test Conditions All timing requirements and switching characteristics are valid over the recommended operating conditions unless otherwise specified. 7.2 7.2.1 Interface Clock Specifications Interface Clock Terminology The interface clock is used at the system level to sequence the data and/or to control transfers accordingly with the interface protocol. 7.2.2 Interface Clock Frequency The two interface clock characteristics are: • The maximum clock frequency • The maximum operating frequency The interface clock frequency documented in this document is the maximum clock frequency, which corresponds to the maximum frequency programmable on this output clock. This frequency defines the maximum limit supported by the Device IC and does not take into account any system consideration (PCB, peripherals). The system designer will have to consider these system considerations and the Device IC timing characteristics as well to define properly the maximum operating frequency that corresponds to the maximum frequency supported to transfer the data on this interface. 7.3 Timing Parameters and Information The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some of pin names and other related terminologies have been abbreviated as follows: Table 7-1. Timing Parameters SUBSCRIPTS 188 SYMBOL PARAMETER c Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time v Valid time w Pulse duration (width) X Unknown, changing, or don't care level F Fall time H High L Low R Rise time V Valid IV Invalid Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-1. Timing Parameters (continued) SUBSCRIPTS 7.3.1 SYMBOL PARAMETER AE Active Edge FE First Edge LE Last Edge Z High impedance Parameter Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see Note) 4.0 pF 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see Note) NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. pm_tstcirc_prs403 Figure 7-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 7.3.1.1 1.8V and 3.3V Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. Vref = (VDD I/O)/2. Vref pm_io_volt_prs403 Figure 7-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH MIN for output clocks. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 189 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) pm_transvolt_prs403 Figure 7-3. Rise and Fall Transition Time Voltage Reference Levels 7.3.1.2 1.8V and 3.3V Signal Transition Rates The default SLEWCONTROL settings in each pad configuration register must be used to guaranteed timings, unless specific instructions otherwise are given in the individual timing sub-sections of the datasheet. All timings are tested with an input edge rate of 4 volts per nanosecond (4 V/ns). 7.3.1.3 Timing Parameters and Board Routing Analysis The timing parameter values specified in this data manual do not include delays by board routes. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences. 7.4 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. Monotonic transitions are more easily guaranteed with faster switching signals. Slower input transitions are more susceptible to glitches due to noise and special care should be taken for slow input clocks. 7.5 Virtual and Manual I/O Timing Modes Some of the timings described in the following sections require the use of Virtual or Manual I/O Timing Modes. Table 7-2 provides a summary of the Virtual and Manual I/O Timing Modes across all device interfaces. The individual interface timing sections found later in this document provide the full description of each applicable Virtual and Manual I/O Timing Mode. Refer to the "Pad Configuration" section of the TRM for the procedure on implementing the Virtual and Manual Timing Modes in a system. Table 7-2. Modes Summary Virtual or Manual IO Mode Name Data Manual Timing Mode DPI Video Output No Virtual or Manual IO Timing Mode Required DPI1/3 Video Output Default Timings - Rising-edge Clock Reference DSS_VIRTUAL1 DPI1/3 Video Output Default Timings - Falling-edge Clock Reference VOUT1_MANUAL1 DPI1 Video Output Alternate Timings VOUT2_IOSET1_MANUAL1 DPI2 Video Output IOSET1 Alternate Timings VOUT2_IOSET1_MANUAL2 DPI2 Video Output IOSET1 Default Timings - Rising-edge Clock Reference VOUT2_IOSET1_MANUAL3 DPI2 Video Output IOSET1 Default Timings - Falling-edge Clock Reference VOUT2_IOSET2_MANUAL1 DPI2 Video Output IOSET2 Alternate Timings VOUT2_IOSET2_MANUAL2 DPI2 Video Output IOSET2 Default Timings - Rising-edge Clock Reference VOUT2_IOSET2_MANUAL3 DPI2 Video Output IOSET2 Default Timings - Falling-edge Clock Reference VOUT3_MANUAL1 DPI3 Video Output Alternate Timings GPMC No Virtual or Manual IO Timing Mode Required 190 GPMC Asynchronous Mode Timings and Synchronous Mode - Default Timings Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-2. Modes Summary (continued) Virtual or Manual IO Mode Name Data Manual Timing Mode GPMC_VIRTUAL1 GPMC Synchronous Mode - Alternate Timings McASP No Virtual or Manual IO Timing Mode Required McASP1 Asynchronous and Synchronous Transmit Timings MCASP1_VIRTUAL1_SYNC_RX See Table 7-52 MCASP1_VIRTUAL2_ASYNC_RX See Table 7-52 No Virtual or Manual IO Timing Mode Required McASP2 Asynchronous and Synchronous Transmit Timings MCASP2_VIRTUAL1_SYNC_RX_80M See Table 7-53 MCASP2_VIRTUAL2_ASYNC_RX See Table 7-53 MCASP2_VIRTUAL3_SYNC_RX See Table 7-53 MCASP2_VIRTUAL4_ASYNC_RX_80M See Table 7-53 No Virtual or Manual IO Timing Mode Required McASP3 Synchronous Transmit Timings MCASP3_VIRTUAL2_SYNC_RX See Table 7-54 No Virtual or Manual IO Timing Mode Required McASP4 Synchronous Transmit Timings MCASP4_VIRTUAL1_SYNC_RX See Table 7-55 No Virtual or Manual IO Timing Mode Required McASP5 Synchronous Transmit Timings MCASP5_VIRTUAL1_SYNC_RX See Table 7-56 No Virtual or Manual IO Timing Mode Required McASP6 Synchronous Transmit Timings MCASP6_VIRTUAL1_SYNC_RX See Table 7-57 No Virtual or Manual IO Timing Mode Required McASP7 Synchronous Transmit Timings MCASP7_VIRTUAL2_SYNC_RX See Table 7-58 No Virtual or Manual IO Timing Mode Required McASP8 Synchronous Transmit Timings MCASP8_VIRTUAL1_SYNC_RX See Table 7-59 eMMC/SD/SDIO No Virtual or Manual IO Timing Mode Required MMC1 DS (Pad Loopback), HS (Internal Loopback and Pad Loopback), SDR12 (Internal Loopback and Pad Loopback), and SDR25 Timings (Internal Loopback and Pad Loopback) Timings MMC1_VIRTUAL1 MMC1 SDR50 (Pad Loopback) Timings MMC1_VIRTUAL4 MMC1 DS (Internal Loopback) Timings MMC1_VIRTUAL5 MMC1 SDR50 (Internal Loopback) Timings MMC1_VIRTUAL6 MMC1 DDR50 (Internal Loopback) Timings MMC1_MANUAL1 MMC1 DDR50 (Pad Loopback) Timings MMC1_MANUAL2 MMC1 SDR104 Timings No Virtual or Manual IO Timing Mode Required MMC2 Standard (Pad Loopback), High Speed (Pad Loopback) Timings MMC2_VIRTUAL2 MMC2 Standard (Internal Loopback), High Speed (Internal Loopback) Timings MMC2_MANUAL1 MMC2 DDR (Pad Loopback) Timings MMC2_MANUAL2 MMC2 DDR (Internal Loopback Manual) Timings MMC2_MANUAL3 MMC2 HS200 Timings No Virtual or Manual IO Timing Mode Required MMC3 DS, SDR12, HS, SDR25 Timings MMC3_MANUAL1 MMC3 SDR50 Timings No Virtual or Manual IO Timing Mode Required MMC4 DS, SDR12, HS, SDR25 Timings QSPI No Virtual or Manual IO Timing Mode Required QSPI Mode 3 Timings QSPI1_MANUAL1 QSPI Mode 0 Timings GMAC No Virtual or Manual IO Timing Mode Required GMAC MII0/1 Timings GMAC_RGMII0_MANUAL1 GMAC RGMII0 with Transmit Clock Internal Delay Enabled GMAC_RGMII1_MANUAL1 GMAC RGMII1 with Transmit Clock Internal Delay Enabled GMAC_RMII0_MANUAL1 GMAC RMII0 Timings Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 191 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-2. Modes Summary (continued) Virtual or Manual IO Mode Name Data Manual Timing Mode GMAC_RMII1_MANUAL1 GMAC RMII1 Timings VIP VIP_MANUAL1 VIN2A (IOSET10) Rise-Edge Capture Mode Timings VIP_MANUAL2 VIN2A (IOSET10) Fall-Edge Capture Mode Timings VIP_MANUAL3 VIN2A (IOSET4/5/6) Rise-Edge Capture Mode Timings VIP_MANUAL4 VIN2B (IOSET1/2/7) Rise-Edge Capture Mode Timings VIP_MANUAL5 VIN2A (IOSET4/5/6) Fall-Edge Capture Mode Timings VIP_MANUAL6 VIN2B (IOSET1/2/7) Fall-Edge Capture Mode Timings VIP_MANUAL7 VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) Rise-Edge Capture Mode Timings VIP_MANUAL8 VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) Rise-Edge Capture Mode Timings VIP_MANUAL9 VIN1B (IOSET6) Rise-Edge Capture Mode Timings VIP_MANUAL10 VIN1B (IOSET5) and VIN2B (IOSET9) Rise-Edge Capture Mode Timings VIP_MANUAL11 VIN1B (IOSET5) and VIN2B (IOSET9) Fall-Edge Capture Mode Timings VIP_MANUAL12 VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) Fall-Edge Capture Mode Timings VIP_MANUAL13 VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) Fall-Edge Capture Mode Timings VIP_MANUAL14 VIN1B (IOSET6) Fall-Edge Capture Mode Timings VIP_MANUAL15 VIN1A (IOSET8/9/10) Rise-Edge Capture Mode Timings VIP_MANUAL16 VIN1A (IOSET8/9/10) Fall-Edge Capture Mode Timings HDMI, EMIF, Timers, I2C, HDQ/1-Wire, UART, McSPI, USB, SATA, PCIe, DCAN, GPIO, KBD, PWM, ATL, JTAG, TPIU, RTC, SDMA, INTC, MLB No Virtual or Manual IO Timing Mode Required 7.6 All Modes Video Input Ports (VIP) The Device includes 1 Video Input Ports (VIP). Table 7-3, Figure 7-4 and Figure 7-5 present timings and switching characteristics of the VIPs. CAUTION The I/O timings provided in this section are valid only for VIN1 and VIN2 if signals within a single IOSET are used. The IOSETs are defined in Table 7-4. Table 7-3. Timing Requirements for VIP (3)(4)(5) NO. PARAMETER DESCRIPTION V1 tc(CLK) Cycle time, vinx_clki (3) (5) MIN V2 tw(CLKH) Pulse duration, vinx_clki high (3) (5) 6.06 (3) (5) MAX (2) UNIT ns 0.45*P (2) ns 0.45*P (2) ns V3 tw(CLKL) Pulse duration, vinx_clki low V4 tsu(CTL/DATA-CLK) Input setup time, Control (vinx_dei, vinx_vsynci, vinx_fldi, vinx_hsynci) and Data (vinx_dn) valid to vinx_clki transition (3) (4) (5) 3.11 (2) ns V6 th(CLK-CTL/DATA) Input hold time, Control (vinx_dei, vinx_vsynci, vinx_fldi, vinx_hsynci) and Data (vinx_dn) valid from vinx_clki transition (3) (4) (5) -0.05 (2) ns (1) For maximum frequency of 165 MHz. (2) P = vinx_clki period. (3) x in vinx = 1a, 1b, 2a, 2b. (4) n in dn = 0 to 7 when x = 1b, 2b. n = 0 to 23 when x = 1a, 2a. (5) i in clki, dei, vsynci, hsynci and fldi = 0 or 1. 192 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 V3 V2 V1 vinx_clki SPRS906_TIMING_VIP_01 Figure 7-4. Video Input Ports clock signal vinx_clki (positive-edge clocking) vinx_clki (negative-edge clocking) V5 V4 vinx_d[23:0]/sig SPRS8xx_VIP_02 Figure 7-5. Video Input Ports timings Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 193 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com In Table 7-4 and Table 7-5 are presented the specific groupings of signals (IOSET) for use with vin1 and vin2. Table 7-4. VIN1 IOSETs SIGNALS IOSET2 BALL IOSET4 (1) IOSET3 MUX BALL MUX BALL MUX IOSET5 (1) BALL MUX IOSET6 (1) BALL IOSET7 (1) IOSET8 IOSET9 IOSET10 MUX BALL MUX BALL MUX BALL MUX BALL MUX vin1a vin1a_clk0 P1 2 B11 4 B11 3 P4 4 P4 4 B26 8 AC5 9 E17 7 E17 7 vin1a_hsync0 N7 2 C11 4 C11 3 R3 4 P7 4 E21 8 AB8 9 F12 7 F12 7 vin1a_vsync0 R4 2 E11 4 E11 3 T2 4 N1 4 F20 8 AB5 9 G12 7 G12 7 vin1a_fld0 P9 2 D11 4 D11 3 P9 4 J7 4 F21 8 C17 9 C14 7 C14 7 vin1a_de0 N9 2 B10 4 B10 3 P7 5 H6 4 C23 8 AB4 9 D14 7 D14 7 vin1a_d0 M6 2 B7 4 B7 3 R6 4 R6 4 B14 8 AD6 9 D18 7 C17 7 vin1a_d1 M2 2 B8 4 B8 3 T9 4 T9 4 J14 8 AC8 9 B19 7 B19 7 vin1a_d2 L5 2 A7 4 A7 3 T6 4 T6 4 G13 8 AC3 9 F15 7 F15 7 vin1a_d3 M1 2 A8 4 A8 3 T7 4 T7 4 J11 8 AC9 9 B18 7 B18 7 vin1a_d4 L6 2 C9 4 C9 3 P6 4 P6 4 E12 8 AC6 9 A16 7 A16 7 vin1a_d5 L4 2 A9 4 A9 3 R9 4 R9 4 F13 8 AC7 9 C15 7 C15 7 vin1a_d6 L3 2 B9 4 B9 3 R5 4 R5 4 C12 8 AC4 9 A18 7 A18 7 vin1a_d7 L2 2 A10 4 A10 3 P5 4 P5 4 D12 8 AD4 9 A19 7 A19 7 vin1a_d8 L1 2 E8 4 E8 3 U2 4 U2 4 E15 8 AA4 9 F14 7 F14 7 vin1a_d9 K2 2 D9 4 D9 3 U1 4 U1 4 A20 8 AB3 9 G14 7 G14 7 vin1a_d10 J1 2 D7 4 D7 3 P3 4 P3 4 B15 8 AB9 9 A13 7 A13 7 vin1a_d11 J2 2 D8 4 D8 3 R2 4 R2 4 A15 8 AA3 9 E14 7 E14 7 vin1a_d12 H1 2 A5 4 A5 3 K7 4 K7 4 D15 8 D17 9 A12 7 A12 7 vin1a_d13 J3 2 C6 4 C6 3 M7 4 M7 4 B16 8 G16 9 B13 7 B13 7 vin1a_d14 H2 2 C8 4 C8 3 J5 4 J5 4 B17 8 A21 9 A11 7 A11 7 vin1a_d15 H3 2 C7 4 C7 3 K6 4 K6 4 A17 8 C18 9 B12 7 B12 7 vin1a_d16 R6 2 F11 4 F11 3 C18 8 vin1a_d17 T9 2 G10 4 G10 3 A21 8 vin1a_d18 T6 2 F10 4 F10 3 G16 8 vin1a_d19 T7 2 G11 4 G11 3 D17 8 vin1a_d20 P6 2 E9 4 E9 3 AA3 8 vin1a_d21 R9 2 F9 4 F9 3 AB9 8 vin1a_d22 R5 2 F8 4 F8 3 AB3 8 vin1a_d23 P5 2 E7 4 E7 3 AA4 8 194 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-4. VIN1 IOSETs (continued) SIGNALS IOSET2 BALL MUX IOSET3 BALL MUX IOSET4 (1) BALL MUX IOSET5 (1) BALL MUX IOSET6 (1) BALL IOSET7 (1) MUX BALL MUX IOSET8 BALL IOSET9 MUX BALL IOSET10 MUX BALL MUX vin1b vin1b_clk1 P7 6 M4 4 V1 5 N9 6 vin1b_hsync1 H5 6 H5 6 U7 5 N7 6 vin1b_vsync1 H6 6 H6 6 V6 5 R4 6 vin1b_fld1 M4 6 W2 5 P4 6 vin1b_de1 N6 6 N6 6 V7 5 P9 6 vin1b_d0 K7 6 K7 6 U4 5 R6 6 vin1b_d1 M7 6 M7 6 V2 5 T9 6 vin1b_d2 J5 6 J5 6 Y1 5 T6 6 vin1b_d3 K6 6 K6 6 W9 5 T7 6 vin1b_d4 J7 6 J7 6 V9 5 P6 6 vin1b_d5 J4 6 J4 6 U5 5 R9 6 vin1b_d6 J6 6 J6 6 V5 5 R5 6 vin1b_d7 H4 6 H4 6 V4 5 P5 6 (1) The IOSET under this column is only applicable for pins with alternate functionality which allows either VIN1 or VIN2 signals to be mapped to the pins. These alternate functions are controlled via CTRL_CORE_VIP_MUX_SELECT register. For more information on how to use these options, please refer to Device TRM, chapter Control Module, section Pad Configuration Registers. Table 7-5. VIN2 IOSETs SIGNALS IOSET1 BALL MUX IOSET2 BALL MUX IOSET4 BALL IOSET5 MUX BALL IOSET7 (1) IOSET6 MUX BALL IOSET8 (1) IOSET9 (1) IOSET10 (1) MUX BALL MUX BALL MUX BALL MUX BALL MUX P4 4 B26 8 vin2a vin2a_clk0 E1 0 E1 0 V1 4 B11 3 P4 4 vin2a_hsync0 G1 0 G1 0 U7 4 C11 3 R3 4 P7 4 E21 8 vin2a_vsync0 G6 0 G6 0 V6 4 E11 3 T2 4 N1 4 F20 8 vin2a_fld0 H7 0 G2 1 W2 4 D11 3 P9 4 J7 4 F21 8 vin2a_de0 G2 0 V7 4 B10 3 P7 5 H6 4 C23 8 vin2a_d0 F2 0 F2 0 U4 4 B7 3 R6 4 R6 4 B14 8 vin2a_d1 F3 0 F3 0 V2 4 B8 3 T9 4 T9 4 J14 8 vin2a_d2 D1 0 D1 0 Y1 4 A7 3 T6 4 T6 4 G13 8 vin2a_d3 E2 0 E2 0 W9 4 A8 3 T7 4 T7 4 J11 8 vin2a_d4 D2 0 D2 0 V9 4 C9 3 P6 4 P6 4 E12 8 vin2a_d5 F4 0 F4 0 U5 4 A9 3 R9 4 R9 4 F13 8 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 195 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-5. VIN2 IOSETs (continued) SIGNALS IOSET1 BALL IOSET2 MUX BALL IOSET4 MUX IOSET5 IOSET7 (1) IOSET6 IOSET8 (1) IOSET9 (1) IOSET10 (1) BALL MUX BALL MUX BALL MUX BALL MUX BALL MUX BALL MUX BALL MUX vin2a_d6 C1 0 C1 0 V5 4 B9 3 R5 4 R5 4 C12 8 vin2a_d7 E4 0 E4 0 V4 4 A10 3 P5 4 P5 4 D12 8 vin2a_d8 F5 0 F5 0 V3 4 E8 3 U2 4 U2 4 E15 8 vin2a_d9 E6 0 E6 0 Y2 4 D9 3 U1 4 U1 4 A20 8 vin2a_d10 D3 0 D3 0 U6 4 D7 3 P3 4 P3 4 B15 8 vin2a_d11 F6 0 F6 0 U3 4 D8 3 R2 4 R2 4 A15 8 vin2a_d12 D5 0 D5 0 A5 3 K7 4 K7 4 D15 8 vin2a_d13 C2 0 C2 0 C6 3 M7 4 M7 4 B16 8 vin2a_d14 C3 0 C3 0 C8 3 J5 4 J5 4 B17 8 vin2a_d15 C4 0 C4 0 C7 3 K6 4 K6 4 A17 8 vin2a_d16 B2 0 B2 0 F11 3 C18 8 vin2a_d17 D6 0 D6 0 G10 3 A21 8 vin2a_d18 C5 0 C5 0 F10 3 G16 8 vin2a_d19 A3 0 A3 0 G11 3 D17 8 vin2a_d20 B3 0 B3 0 E9 3 AA3 8 vin2a_d21 B4 0 B4 0 F9 3 AB9 8 vin2a_d22 B5 0 B5 0 F8 3 AB3 8 vin2a_d23 A4 0 A4 0 E7 3 AA4 8 vin2b vin2b_clk1 P7 6 M4 4 H7 2 H7 2 AB5 4 vin2b_hsync1 H5 6 H5 6 G1 3 G1 3 AC5 4 vin2b_vsync1 H6 6 H6 6 G6 3 G6 3 AB4 4 G2 2 vin2b_fld1 M4 6 vin2b_de1 N6 6 N6 6 G2 3 AB8 4 vin2b_d0 K7 6 K7 6 A4 2 A4 2 AD6 4 vin2b_d1 M7 6 M7 6 B5 2 B5 2 AC8 4 vin2b_d2 J5 6 J5 6 B4 2 B4 2 AC3 4 vin2b_d3 K6 6 K6 6 B3 2 B3 2 AC9 4 vin2b_d4 J7 6 J7 6 A3 2 A3 2 AC6 4 vin2b_d5 J4 6 J4 6 C5 2 C5 2 AC7 4 vin2b_d6 J6 6 J6 6 D6 2 D6 2 AC4 4 vin2b_d7 H4 6 H4 6 B2 2 B2 2 AD4 4 196 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (1) The IOSET under this column is only applicable for pins with alternate functionality which allows either VIN1 or VIN2 signals to be mapped to the pins. These alternate functions are controlled via CTRL_CORE_VIP_MUX_SELECT register. For more information on how to use these options, please refer to Device TRM, chapter Control Module, section Pad Configuration Registers. Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 197 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module chapter in the Device TRM. 198 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Manual Functions Mapping for VIP1 2A IOSET10 for a definition of the Manual modes. Table 7-6 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-6. Manual Functions Mapping for VIP1 2A IOSET10 BALL BALL NAME VIP_MANUAL1 VIP_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) E21 gpio6_14 1400 240 1767 0 CFG_GPIO6_14_IN vin2a_hsync0 F20 gpio6_15 1170 240 1522 0 CFG_GPIO6_15_IN vin2a_vsync0 8 F21 gpio6_16 1470 0 1600 0 CFG_GPIO6_16_IN vin2a_fld0 B14 mcasp1_aclkr 2145 200 2509 0 CFG_MCASP1_ACLKR_IN vin2a_d0 G13 mcasp1_axr2 2740 900 2680 1180 CFG_MCASP1_AXR2_IN vin2a_d2 J11 mcasp1_axr3 2933 200 2700 600 CFG_MCASP1_AXR3_IN vin2a_d3 E12 mcasp1_axr4 2901 240 2660 700 CFG_MCASP1_AXR4_IN vin2a_d4 F13 mcasp1_axr5 2600 840 2640 920 CFG_MCASP1_AXR5_IN vin2a_d5 C12 mcasp1_axr6 2718 240 3081 0 CFG_MCASP1_AXR6_IN vin2a_d6 D12 mcasp1_axr7 2983 240 2540 800 CFG_MCASP1_AXR7_IN vin2a_d7 J14 mcasp1_fsr 2203 240 2566 0 CFG_MCASP1_FSR_IN vin2a_d1 E15 mcasp2_aclkr 2143 240 2492 0 CFG_MCASP2_ACLKR_IN vin2a_d8 B15 mcasp2_axr0 2543 240 2905 0 CFG_MCASP2_AXR0_IN vin2a_d10 A15 mcasp2_axr1 2664 240 2730 400 CFG_MCASP2_AXR1_IN vin2a_d11 D15 mcasp2_axr4 2792 240 2750 400 CFG_MCASP2_AXR4_IN vin2a_d12 B16 mcasp2_axr5 2621 300 2983 0 CFG_MCASP2_AXR5_IN vin2a_d13 B17 mcasp2_axr6 1903 100 2086 0 CFG_MCASP2_AXR6_IN vin2a_d14 A17 mcasp2_axr7 2928 200 2670 700 CFG_MCASP2_AXR7_IN vin2a_d15 A20 mcasp2_fsr 2291 200 2654 0 CFG_MCASP2_FSR_IN vin2a_d9 C18 mcasp4_aclkx 1433 0 1540 0 CFG_MCASP4_ACLKX_IN vin2a_d16 G16 mcasp4_axr0 2500 0 2560 0 CFG_MCASP4_AXR0_IN vin2a_d18 D17 mcasp4_axr1 2379 100 2599 0 CFG_MCASP4_AXR1_IN vin2a_d19 A21 mcasp4_fsx 1500 1400 1900 1040 CFG_MCASP4_FSX_IN vin2a_d17 AA3 mcasp5_aclkx 3740 1850 3900 1700 CFG_MCASP5_ACLKX_IN vin2a_d20 AB3 mcasp5_axr0 3800 2760 3800 2800 CFG_MCASP5_AXR0_IN vin2a_d22 AA4 mcasp5_axr1 4099 2500 3900 2870 CFG_MCASP5_AXR1_IN vin2a_d23 AB9 mcasp5_fsx 3740 2100 3860 2060 CFG_MCASP5_FSX_IN vin2a_d21 B26 xref_clk2 0 0 0 0 CFG_XREF_CLK2_IN vin2a_clk0 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 199 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-6. Manual Functions Mapping for VIP1 2A IOSET10 (continued) BALL BALL NAME C23 xref_clk3 VIP_MANUAL1 VIP_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 1440 0 1623 0 CFG REGISTER MUXMODE CFG_XREF_CLK3_IN vin2a_de0 8 Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-7 Manual Functions Mapping for VIN2A (IOSET4/5/6) for a definition of the Manual modes. Table 7-7 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-7. Manual Functions Mapping for VIN2A (IOSET4/5/6) BAL L BALL NAME U3 VIP_MANUAL3 VIP_MANUAL5 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) RMII_MHZ_50 _CLK 2616 1379 2798 1294 U4 mdio_d 2558 1105 2790 954 CFG REGISTER MUXMODE 0 1 2 3 4 CFG_RMII_MHZ_50_CLK_I N - - - - vin2a_d11 CFG_MDIO_D_IN - - - - vin2a_d0 V1 mdio_mclk 998 463 1029 431 CFG_MDIO_MCLK_IN - - - - vin2a_clk0 U5 rgmii0_rxc 2658 862 2896 651 CFG_RGMII0_RXC_IN - - - - vin2a_d5 V5 rgmii0_rxctl 2658 1628 2844 1518 CFG_RGMII0_RXCTL_IN - - - - vin2a_d6 W2 rgmii0_rxd0 2638 1123 2856 888 CFG_RGMII0_RXD0_IN - - - - vin2a_fld0 Y2 rgmii0_rxd1 2641 1737 2804 1702 CFG_RGMII0_RXD1_IN - - - - vin2a_d9 V3 rgmii0_rxd2 2641 1676 2801 1652 CFG_RGMII0_RXD2_IN - - - - vin2a_d8 V4 rgmii0_rxd3 2644 1828 2807 1790 CFG_RGMII0_RXD3_IN - - - - vin2a_d7 W9 rgmii0_txc 2638 1454 2835 1396 CFG_RGMII0_TXC_IN - - - - vin2a_d3 V9 rgmii0_txctl 2672 1663 2831 1640 CFG_RGMII0_TXCTL_IN - - - - vin2a_d4 U6 rgmii0_txd0 2604 1442 2764 1417 CFG_RGMII0_TXD0_IN - - - - vin2a_d10 V6 rgmii0_txd1 2683 1598 2843 1600 CFG_RGMII0_TXD1_IN - - - - vin2a_vsync 0 U7 rgmii0_txd2 2563 1483 2816 1344 CFG_RGMII0_TXD2_IN - - - - vin2a_hsync 0 V7 rgmii0_txd3 2717 1461 2913 1310 CFG_RGMII0_TXD3_IN - - - - vin2a_de0 V2 uart3_rxd 2445 1145 2743 923 CFG_UART3_RXD_IN - - - - vin2a_d1 Y1 uart3_txd 2650 1197 2842 1080 CFG_UART3_TXD_IN - - - - vin2a_d2 E1 vin2a_clk0 0 0 0 0 CFG_VIN2A_CLK0_IN vin2a_clk0 - - - - F2 vin2a_d0 1812 102 1936 0 CFG_VIN2A_D0_IN vin2a_d0 - - - - F3 vin2a_d1 1701 439 2229 10 CFG_VIN2A_D1_IN vin2a_d1 - - - - D3 vin2a_d10 1720 215 2031 0 CFG_VIN2A_D10_IN vin2a_d10 - - - - 200 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-7. Manual Functions Mapping for VIN2A (IOSET4/5/6) (continued) BAL L BALL NAME F6 VIP_MANUAL3 VIP_MANUAL5 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) vin2a_d11 1622 0 1702 0 D5 vin2a_d12 1350 412 1819 C2 vin2a_d13 1613 147 1476 C3 vin2a_d14 1149 516 1701 C4 vin2a_d15 1530 450 CFG REGISTER MUXMODE 0 1 2 3 4 CFG_VIN2A_D11_IN vin2a_d11 - - - - 0 CFG_VIN2A_D12_IN vin2a_d12 - - - - 260 CFG_VIN2A_D13_IN vin2a_d13 - - - - 0 CFG_VIN2A_D14_IN vin2a_d14 - - - - 2021 0 CFG_VIN2A_D15_IN vin2a_d15 - - - - B2 vin2a_d16 1512 449 2044 11 CFG_VIN2A_D16_IN vin2a_d16 - vin2b_d7 - - D6 vin2a_d17 1293 488 1839 5 CFG_VIN2A_D17_IN vin2a_d17 - vin2b_d6 - - C5 vin2a_d18 2140 371 2494 0 CFG_VIN2A_D18_IN vin2a_d18 - vin2b_d5 - - A3 vin2a_d19 2041 275 1699 611 CFG_VIN2A_D19_IN vin2a_d19 - vin2b_d4 - - D1 vin2a_d2 1675 35 1736 0 CFG_VIN2A_D2_IN vin2a_d2 - - - - B3 vin2a_d20 1972 441 2412 88 CFG_VIN2A_D20_IN vin2a_d20 - vin2b_d3 - - B4 vin2a_d21 1957 556 2391 161 CFG_VIN2A_D21_IN vin2a_d21 - vin2b_d2 - - B5 vin2a_d22 2011 433 2446 102 CFG_VIN2A_D22_IN vin2a_d22 - vin2b_d1 - - A4 vin2a_d23 1962 523 2395 145 CFG_VIN2A_D23_IN vin2a_d23 - vin2b_d0 - - E2 vin2a_d3 1457 361 1943 0 CFG_VIN2A_D3_IN vin2a_d3 - - - - D2 vin2a_d4 1535 0 1601 0 CFG_VIN2A_D4_IN vin2a_d4 - - - - F4 vin2a_d5 1676 271 2052 0 CFG_VIN2A_D5_IN vin2a_d5 - - - - C1 vin2a_d6 1513 0 1571 0 CFG_VIN2A_D6_IN vin2a_d6 - - - - E4 vin2a_d7 1616 141 1855 0 CFG_VIN2A_D7_IN vin2a_d7 - - - - F5 vin2a_d8 1286 437 1224 618 CFG_VIN2A_D8_IN vin2a_d8 - - - - E6 vin2a_d9 1544 265 1373 509 CFG_VIN2A_D9_IN vin2a_d9 - - - - G2 vin2a_de0 1732 208 1949 0 CFG_VIN2A_DE0_IN vin2a_de0 vin2a_fld0 vin2b_fld1 vin2b_de1 - H7 vin2a_fld0 1461 562 1983 151 CFG_VIN2A_FLD0_IN vin2a_fld0 - vin2b_clk1 - - G1 vin2a_hsync0 1877 0 1943 0 CFG_VIN2A_HSYNC0_IN vin2a_hsync 0 - - vin2b_hsync 1 - G6 vin2a_vsync0 1566 0 1612 0 CFG_VIN2A_VSYNC0_IN vin2a_vsync 0 - - vin2b_vsync 1 - Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-8 Manual Functions Mapping for VIN2B (IOSET1/2/7) for a definition of the Manual modes. Table 7-8 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 201 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-8. Manual Functions Mapping for VIN2B (IOSET1/2/7) BALL AC5 BALL NAME VIP_MANUAL4 VIP_MANUAL6 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) gpio6_10 2829 884 3009 892 MUXMODE 2 3 4 CFG_GPIO6_10_IN - - vin2b_hsync1 AB4 gpio6_11 2648 1033 2890 1096 CFG_GPIO6_11_IN - - vin2b_vsync1 AD4 mmc3_clk 2794 1074 2997 1089 CFG_MMC3_CLK_IN - - vin2b_d7 AC4 mmc3_cmd 2789 1162 2959 1210 CFG_MMC3_CMD_IN - - vin2b_d6 AC7 mmc3_dat0 2689 1180 2897 1269 CFG_MMC3_DAT0_IN - - vin2b_d5 AC6 mmc3_dat1 2605 1219 2891 1219 CFG_MMC3_DAT1_IN - - vin2b_d4 AC9 mmc3_dat2 2616 703 2947 590 CFG_MMC3_DAT2_IN - - vin2b_d3 AC3 mmc3_dat3 2760 1235 2931 1342 CFG_MMC3_DAT3_IN - - vin2b_d2 AC8 mmc3_dat4 2757 880 2979 891 CFG_MMC3_DAT4_IN - - vin2b_d1 AD6 mmc3_dat5 2688 1177 2894 1262 CFG_MMC3_DAT5_IN - - vin2b_d0 AB8 mmc3_dat6 2638 1165 2894 1187 CFG_MMC3_DAT6_IN - - vin2b_de1 AB5 mmc3_dat7 995 182 1202 107 CFG_MMC3_DAT7_IN - - vin2b_clk1 B2 vin2a_d16 1423 0 1739 0 CFG_VIN2A_D16_IN vin2b_d7 - - D6 vin2a_d17 1253 0 1568 0 CFG_VIN2A_D17_IN vin2b_d6 - - C5 vin2a_d18 2080 0 2217 0 CFG_VIN2A_D18_IN vin2b_d5 - - A3 vin2a_d19 1849 0 2029 0 CFG_VIN2A_D19_IN vin2b_d4 - - B3 vin2a_d20 1881 50 2202 0 CFG_VIN2A_D20_IN vin2b_d3 - - B4 vin2a_d21 1917 167 2313 0 CFG_VIN2A_D21_IN vin2b_d2 - - B5 vin2a_d22 1955 79 2334 0 CFG_VIN2A_D22_IN vin2b_d1 - - A4 vin2a_d23 1899 145 2288 0 CFG_VIN2A_D23_IN vin2b_d0 - - G2 vin2a_de0 1568 261 2048 0 CFG_VIN2A_DE0_IN vin2b_fld1 vin2b_de1 - H7 vin2a_fld0 0 0 0 0 CFG_VIN2A_FLD0_IN vin2b_clk1 - - G1 vin2a_hsync0 1793 0 2011 0 CFG_VIN2A_HSYNC0_IN - vin2b_hsync1 - G6 vin2a_vsync0 1382 0 1632 0 CFG_VIN2A_VSYNC0_IN - vin2b_vsync1 - Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-9 Manual Functions Mapping for VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) for a definition of the Manual modes. Table 7-9 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. 202 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-9. Manual Functions Mapping for VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) BA BALL NAME LL VIP_MANUAL7 VIP_MANUAL12 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 2 3(1) 3(1) 4(1) 4(1) 5 6 vin1b_d0 R6 gpmc_a0 3080 1792 3376 1632 CFG_GPMC_A0_IN vin1a_d16 - - vin2a_d0 - - T9 gpmc_a1 2958 1890 3249 1749 CFG_GPMC_A1_IN vin1a_d17 - - vin2a_d1 - - vin1b_d1 N9 gpmc_a10 3073 1653 3388 1433 CFG_GPMC_A10_IN vin1a_de0 - - - - - vin1b_clk1 P9 gpmc_a11 3014 1784 3290 1693 CFG_GPMC_A11_IN vin1a_fld0 - - vin2a_fld0 vin1a_fld0 - vin1b_de1 K7 gpmc_a19 1385 0 1246 0 CFG_GPMC_A19_IN - - - vin2a_d12 - - vin2b_d0 T6 gpmc_a2 3041 1960 3322 1850 CFG_GPMC_A2_IN vin1a_d18 - - vin2a_d2 - - vin1b_d2 M7 gpmc_a20 859 0 720 0 CFG_GPMC_A20_IN - - - vin2a_d13 - - vin2b_d1 J5 gpmc_a21 1465 0 1334 0 CFG_GPMC_A21_IN - - - vin2a_d14 - - vin2b_d2 K6 gpmc_a22 1210 0 1064 0 CFG_GPMC_A22_IN - - - vin2a_d15 - - vin2b_d3 J7 gpmc_a23 1111 0 954 0 CFG_GPMC_A23_IN - - - vin2a_fld0 - - vin2b_d4 J4 gpmc_a24 1137 0 1051 0 CFG_GPMC_A24_IN - - - - - - vin2b_d5 J6 gpmc_a25 1402 0 1283 0 CFG_GPMC_A25_IN - - - - - - vin2b_d6 H4 gpmc_a26 1298 0 1153 0 CFG_GPMC_A26_IN - - - - - - vin2b_d7 H5 gpmc_a27 934 0 870 0 CFG_GPMC_A27_IN - - - - - - vin2b_hsyn c1 T7 gpmc_a3 3019 2145 3296 2050 CFG_GPMC_A3_IN vin1a_d19 - - vin2a_d3 - - vin1b_d3 P6 gpmc_a4 3063 1981 3357 1829 CFG_GPMC_A4_IN vin1a_d20 - - vin2a_d4 - - vin1b_d4 R9 gpmc_a5 3021 1954 3304 1840 CFG_GPMC_A5_IN vin1a_d21 - - vin2a_d5 - - vin1b_d5 R5 gpmc_a6 3062 1716 3348 1592 CFG_GPMC_A6_IN vin1a_d22 - - vin2a_d6 - - vin1b_d6 P5 gpmc_a7 3260 1889 3583 1631 CFG_GPMC_A7_IN vin1a_d23 - - vin2a_d7 - - vin1b_d7 N7 gpmc_a8 3033 1702 3328 1547 CFG_GPMC_A8_IN vin1a_hsyn c0 - - - - - vin1b_hsyn c1 R4 gpmc_a9 2991 1905 3281 1766 CFG_GPMC_A9_IN vin1a_vsyn c0 - - - - - vin1b_vsyn c1 M6 gpmc_ad0 2907 1342 3181 1255 CFG_GPMC_AD0_IN vin1a_d0 - - - - - - M2 gpmc_ad1 2858 1321 3132 1234 CFG_GPMC_AD1_IN vin1a_d1 - - - - - - J1 gpmc_ad10 2920 1384 3223 1204 CFG_GPMC_AD10_IN vin1a_d10 - - - - - - J2 gpmc_ad11 2719 1310 3019 1198 CFG_GPMC_AD11_IN vin1a_d11 - - - - - - H1 gpmc_ad12 2845 1135 3160 917 CFG_GPMC_AD12_IN vin1a_d12 - - - - - - J3 gpmc_ad13 2765 1225 3045 1119 CFG_GPMC_AD13_IN vin1a_d13 - - - - - - H2 gpmc_ad14 2845 1150 3153 952 CFG_GPMC_AD14_IN vin1a_d14 - - - - - - H3 gpmc_ad15 2766 1453 3044 1355 CFG_GPMC_AD15_IN vin1a_d15 - - - - - - L5 gpmc_ad2 2951 1296 3226 1209 CFG_GPMC_AD2_IN vin1a_d2 - - - - - - Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 203 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-9. Manual Functions Mapping for VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) (continued) BA BALL NAME LL VIP_MANUAL7 VIP_MANUAL12 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 2 3 (1) 3 (1) 4(1) 4(1) 5 6 M1 gpmc_ad3 2825 1154 3121 997 CFG_GPMC_AD3_IN vin1a_d3 - - - - - - L6 gpmc_ad4 2927 1245 3246 1014 CFG_GPMC_AD4_IN vin1a_d4 - - - - - - L4 gpmc_ad5 2923 1251 3217 1098 CFG_GPMC_AD5_IN vin1a_d5 - - - - - - L3 gpmc_ad6 2958 1342 3238 1239 CFG_GPMC_AD6_IN vin1a_d6 - - - - - - L2 gpmc_ad7 2900 1244 3174 1157 CFG_GPMC_AD7_IN vin1a_d7 - - - - - - L1 gpmc_ad8 2845 1585 3125 1482 CFG_GPMC_AD8_IN vin1a_d8 - - - - - K2 gpmc_ad9 2779 1343 3086 1223 CFG_GPMC_AD9_IN vin1a_d9 - - - - - - N6 gpmc_ben0 1555 0 1425 0 CFG_GPMC_BEN0_IN - - - - - - vin2b_de1 M4 gpmc_ben1 1501 0 1397 0 CFG_GPMC_BEN1_IN - - - vin2b_clk1 - - vin2b_fld1 P7 gpmc_clk 0 0 0 0 CFG_GPMC_CLK_IN - - - vin2a_hsyn c0 - vin2a_de0 vin2b_clk1 H6 gpmc_cs1 1192 0 1102 0 CFG_GPMC_CS1_IN - - - vin2a_de0 - - vin2b_vsyn c1 P1 gpmc_cs3 1324 374 1466 353 CFG_GPMC_CS3_IN vin1a_clk0 - - - - - - D1 1 vout1_clk 1648 885 1762 928 CFG_VOUT1_CLK_IN - vin2a_fld0 vin1a_fld0 vin1a_fld0 - - - F11 vout1_d0 2197 565 2734 215 CFG_VOUT1_D0_IN - vin2a_d16 vin1a_d16 vin1a_d16 - - - G1 0 vout1_d1 2221 576 2750 230 CFG_VOUT1_D1_IN - vin2a_d17 vin1a_d17 vin1a_d17 - - - D7 vout1_d10 1800 863 1910 916 CFG_VOUT1_D10_IN - vin2a_d10 vin1a_d10 vin1a_d10 - - - D8 vout1_d11 1656 931 1780 945 CFG_VOUT1_D11_IN - vin2a_d11 vin1a_d11 vin1a_d11 - - - A5 vout1_d12 1719 1086 1866 1041 CFG_VOUT1_D12_IN - vin2a_d12 vin1a_d12 vin1a_d12 - - - C6 vout1_d13 1757 928 1851 1022 CFG_VOUT1_D13_IN - vin2a_d13 vin1a_d13 vin1a_d13 - - - C8 vout1_d14 2279 345 2788 0 CFG_VOUT1_D14_IN - vin2a_d14 vin1a_d14 vin1a_d14 - - - C7 vout1_d15 1810 874 2786 69 CFG_VOUT1_D15_IN - vin2a_d15 vin1a_d15 vin1a_d15 - - - B7 vout1_d16 1763 774 1880 807 CFG_VOUT1_D16_IN - vin2a_d0 vin1a_d0 vin1a_d0 - - - B8 vout1_d17 1695 788 1805 838 CFG_VOUT1_D17_IN - vin2a_d1 vin1a_d1 vin1a_d1 - - - A7 vout1_d18 1777 590 1871 684 CFG_VOUT1_D18_IN - vin2a_d2 vin1a_d2 vin1a_d2 - - - A8 vout1_d19 2047 22 2196 0 CFG_VOUT1_D19_IN - vin2a_d3 vin1a_d3 vin1a_d3 - - - F10 vout1_d2 1809 941 2759 178 CFG_VOUT1_D2_IN - vin2a_d18 vin1a_d18 vin1a_d18 - - - C9 vout1_d20 1676 944 1795 973 CFG_VOUT1_D20_IN - vin2a_d4 vin1a_d4 vin1a_d4 - - - A9 vout1_d21 1712 688 1848 670 CFG_VOUT1_D21_IN - vin2a_d5 vin1a_d5 vin1a_d5 - - - B9 vout1_d22 1698 557 2443 0 CFG_VOUT1_D22_IN - vin2a_d6 vin1a_d6 vin1a_d6 - - - 204 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-9. Manual Functions Mapping for VIN1A (IOSET2/3) and VIN1B (IOSET4) and VIN2B (IOSET8) (continued) BA BALL NAME LL VIP_MANUAL7 VIP_MANUAL12 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 2 3 (1) 3 (1) 4(1) 4(1) 5 6 A1 0 vout1_d23 1627 1035 1726 1116 CFG_VOUT1_D23_IN - vin2a_d7 vin1a_d7 vin1a_d7 - - - G1 1 vout1_d3 2427 429 2853 167 CFG_VOUT1_D3_IN - vin2a_d19 vin1a_d19 vin1a_d19 - - - E9 vout1_d4 2351 412 2845 85 CFG_VOUT1_D4_IN - vin2a_d20 vin1a_d20 vin1a_d20 - - - F9 vout1_d5 1634 983 1729 1076 CFG_VOUT1_D5_IN - vin2a_d21 vin1a_d21 vin1a_d21 - - - F8 vout1_d6 1776 880 2736 107 CFG_VOUT1_D6_IN - vin2a_d22 vin1a_d22 vin1a_d22 - - - E7 vout1_d7 2272 351 2757 53 CFG_VOUT1_D7_IN - vin2a_d23 vin1a_d23 vin1a_d23 - - - E8 vout1_d8 1724 898 1819 990 CFG_VOUT1_D8_IN - vin2a_d8 vin1a_d8 vin1a_d8 - - - D9 vout1_d9 2281 566 2804 195 CFG_VOUT1_D9_IN - vin2a_d9 vin1a_d9 vin1a_d9 - - - B1 0 vout1_de 1734 749 1828 842 CFG_VOUT1_DE_IN - vin2a_de0 vin1a_de0 vin1a_de0 - - - B1 1 vout1_fld 0 0 0 0 CFG_VOUT1_FLD_IN - vin2a_clk0 vin1a_clk0 vin1a_clk0 - - - C1 1 vout1_hsync 1634 606 2399 0 CFG_VOUT1_HSYNC_I N - vin2a_hsyn vin1a_hsyn vin1a_hsyn c0 c0 c0 - - - E1 1 vout1_vsync 1887 0 2068 0 CFG_VOUT1_VSYNC_I N - vin2a_vsyn vin1a_vsyn vin1a_vsyn c0 c0 c0 - - - (1) Some signals listed are virtual functions that present alternate multiplexing options. These virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT registers. For more information on how to use these options, please refer to Device TRM, Chapter Control Module, Section Pad Configuration Registers. Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-10 Manual Functions Mapping for VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) for a definition of the Manual modes. Table 7-10 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-10. Manual Functions Mapping for VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) BALL BALL NAME VIP_MANUAL8 VIP_MANUAL13 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 3 4 5 R6 gpmc_a0 1891 427 2176 0 CFG_GPMC_A0_IN - vin2a_d0 - T9 gpmc_a1 1713 513 2109 0 CFG_GPMC_A1_IN - vin2a_d1 - P9 gpmc_a11 1797 317 2036 0 CFG_GPMC_A11_IN - vin2a_fld0 - P4 gpmc_a12 0 0 0 0 CFG_GPMC_A12_IN - vin2a_clk0 - R3 gpmc_a13 1876 391 2144 0 CFG_GPMC_A13_IN - vin2a_hsync0 - Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 205 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-10. Manual Functions Mapping for VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) (continued) BALL BALL NAME VIP_MANUAL8 VIP_MANUAL13 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 3 4 5 T2 gpmc_a14 1720 756 2384 38 CFG_GPMC_A14_IN - vin2a_vsync0 - U2 gpmc_a15 1502 368 1804 0 CFG_GPMC_A15_IN - vin2a_d8 - U1 gpmc_a16 1651 355 1902 0 CFG_GPMC_A16_IN - vin2a_d9 - P3 gpmc_a17 1642 338 1862 0 CFG_GPMC_A17_IN - vin2a_d10 - R2 gpmc_a18 1612 0 1406 0 CFG_GPMC_A18_IN - vin2a_d11 - K7 gpmc_a19 1463 152 1418 0 CFG_GPMC_A19_IN - vin2a_d12 - T6 gpmc_a2 1789 646 2310 0 CFG_GPMC_A2_IN - vin2a_d2 - M7 gpmc_a20 1124 0 933 0 CFG_GPMC_A20_IN - vin2a_d13 - J5 gpmc_a21 1491 206 1483 0 CFG_GPMC_A21_IN - vin2a_d14 - K6 gpmc_a22 1218 245 1254 0 CFG_GPMC_A22_IN - vin2a_d15 - J7 gpmc_a23 1216 0 1021 0 CFG_GPMC_A23_IN - vin2a_fld0 - T7 gpmc_a3 1789 766 2451 8 CFG_GPMC_A3_IN - vin2a_d3 - P6 gpmc_a4 1842 646 2329 0 CFG_GPMC_A4_IN - vin2a_d4 - R9 gpmc_a5 1778 556 2215 0 CFG_GPMC_A5_IN - vin2a_d5 - R5 gpmc_a6 1783 443 2088 0 CFG_GPMC_A6_IN - vin2a_d6 - P5 gpmc_a7 2207 370 2393 0 CFG_GPMC_A7_IN - vin2a_d7 N1 gpmc_advn_ale 1755 116 1745 0 CFG_GPMC_ADVN_ALE_IN - vin2a_vsync0 - P7 gpmc_clk 1896 351 2152 0 CFG_GPMC_CLK_IN - vin2a_hsync0 vin2a_de0 H6 gpmc_cs1 1337 74 1288 0 CFG_GPMC_CS1_IN - vin2a_de0 - D11 vout1_clk 1939 332 2486 0 CFG_VOUT1_CLK_IN vin2a_fld0 - - F11 vout1_d0 2140 647 2617 386 CFG_VOUT1_D0_IN vin2a_d16 - - G10 vout1_d1 2104 615 2620 314 CFG_VOUT1_D1_IN vin2a_d17 - - D7 vout1_d10 2139 406 2675 85 CFG_VOUT1_D10_IN vin2a_d10 - - D8 vout1_d11 1944 534 2569 125 CFG_VOUT1_D11_IN vin2a_d11 - - A5 vout1_d12 1966 659 2646 154 CFG_VOUT1_D12_IN vin2a_d12 - - C6 vout1_d13 2048 447 2624 87 CFG_VOUT1_D13_IN vin2a_d13 - - C8 vout1_d14 2222 548 2700 286 CFG_VOUT1_D14_IN vin2a_d14 - - C7 vout1_d15 2072 443 2664 67 CFG_VOUT1_D15_IN vin2a_d15 - - B7 vout1_d16 2044 455 2634 82 CFG_VOUT1_D16_IN vin2a_d0 - - B8 vout1_d17 1971 246 2433 0 CFG_VOUT1_D17_IN vin2a_d1 - - A7 vout1_d18 2104 120 2440 0 CFG_VOUT1_D18_IN vin2a_d2 - - A8 vout1_d19 1888 0 2105 0 CFG_VOUT1_D19_IN vin2a_d3 - - 206 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-10. Manual Functions Mapping for VIN1A (IOSET4/5/6) and VIN2A (IOSET7/8/9) (continued) BALL BALL NAME VIP_MANUAL8 VIP_MANUAL13 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 3 4 5 F10 vout1_d2 2170 237 2624 0 CFG_VOUT1_D2_IN vin2a_d18 - - C9 vout1_d20 1942 512 2579 91 CFG_VOUT1_D20_IN vin2a_d4 - - A9 vout1_d21 1997 141 2324 0 CFG_VOUT1_D21_IN vin2a_d5 - - B9 vout1_d22 1949 0 2165 0 CFG_VOUT1_D22_IN vin2a_d6 - - A10 vout1_d23 1871 704 2522 269 CFG_VOUT1_D23_IN vin2a_d7 - - G11 vout1_d3 2319 417 2740 191 CFG_VOUT1_D3_IN vin2a_d19 - - E9 vout1_d4 2300 369 2739 137 CFG_VOUT1_D4_IN vin2a_d20 - - F9 vout1_d5 1923 579 2527 191 CFG_VOUT1_D5_IN vin2a_d21 - - F8 vout1_d6 2148 396 2622 138 CFG_VOUT1_D6_IN vin2a_d22 - - E7 vout1_d7 2212 335 2653 110 CFG_VOUT1_D7_IN vin2a_d23 - - E8 vout1_d8 1962 573 2573 178 CFG_VOUT1_D8_IN vin2a_d8 - - D9 vout1_d9 2312 335 2725 138 CFG_VOUT1_D9_IN vin2a_d9 - - B10 vout1_de 1973 414 2551 52 CFG_VOUT1_DE_IN vin2a_de0 - - B11 vout1_fld 0 0 0 0 CFG_VOUT1_FLD_IN vin2a_clk0 - - C11 vout1_hsync 1813 261 2277 0 CFG_VOUT1_HSYNC_IN vin2a_hsync0 - - E11 vout1_vsync 1665 0 1881 0 CFG_VOUT1_VSYNC_IN vin2a_vsync0 - - Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-11 Manual Functions Mapping for VIN1B (IOSET6) for a definition of the Manual modes. Table 7-11 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-11. Manual Functions Mapping for VIN1B (IOSET6) BALL BALL NAME VIP_MANUAL9 VIP_MANUAL14 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 5 6 R6 gpmc_a0 1873 702 2202 441 CFG_GPMC_A0_IN - vin1b_d0 T9 gpmc_a1 1629 772 2057 413 CFG_GPMC_A1_IN - vin1b_d1 N9 gpmc_a10 0 0 0 0 CFG_GPMC_A10_IN - vin1b_clk1 P9 gpmc_a11 1851 1011 2126 856 CFG_GPMC_A11_IN - vin1b_de1 P4 gpmc_a12 2009 601 2289 327 CFG_GPMC_A12_IN - vin1b_fld1 T6 gpmc_a2 1734 898 2131 573 CFG_GPMC_A2_IN - vin1b_d2 T7 gpmc_a3 1757 1076 2106 812 CFG_GPMC_A3_IN - vin1b_d3 P6 gpmc_a4 1794 893 2164 559 CFG_GPMC_A4_IN - vin1b_d4 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 207 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-11. Manual Functions Mapping for VIN1B (IOSET6) (continued) BALL BALL NAME VIP_MANUAL9 VIP_MANUAL14 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 5 6 R9 gpmc_a5 1726 853 2120 523 CFG_GPMC_A5_IN - vin1b_d5 R5 gpmc_a6 1792 612 2153 338 CFG_GPMC_A6_IN - vin1b_d6 P5 gpmc_a7 2117 610 2389 304 CFG_GPMC_A7_IN - vin1b_d7 N7 gpmc_a8 1758 653 2140 308 CFG_GPMC_A8_IN - vin1b_hsync1 R4 gpmc_a9 1705 899 2067 646 CFG_GPMC_A9_IN - vin1b_vsync1 U4 mdio_d 1945 671 2265 414 CFG_MDIO_D_IN vin1b_d0 - V1 mdio_mclk 255 119 337 0 CFG_MDIO_MCLK_IN vin1b_clk1 - U5 rgmii0_rxc 2057 909 2341 646 CFG_RGMII0_RXC_IN vin1b_d5 - V5 rgmii0_rxctl 2121 1139 2323 988 CFG_RGMII0_RXCTL_IN vin1b_d6 - W2 rgmii0_rxd0 2070 655 2336 340 CFG_RGMII0_RXD0_IN vin1b_fld1 - V4 rgmii0_rxd3 2092 1357 2306 1216 CFG_RGMII0_RXD3_IN vin1b_d7 - W9 rgmii0_txc 2088 1205 2328 1079 CFG_RGMII0_TXC_IN vin1b_d3 - V9 rgmii0_txctl 2143 1383 2312 1311 CFG_RGMII0_TXCTL_IN vin1b_d4 - V6 rgmii0_txd1 2078 1189 2324 1065 CFG_RGMII0_TXD1_IN vin1b_vsync1 - U7 rgmii0_txd2 1928 1125 2306 763 CFG_RGMII0_TXD2_IN vin1b_hsync1 - V7 rgmii0_txd3 2255 971 2401 846 CFG_RGMII0_TXD3_IN vin1b_de1 - V2 uart3_rxd 1829 747 2220 400 CFG_UART3_RXD_IN vin1b_d1 - Y1 uart3_txd 2030 837 2324 568 CFG_UART3_TXD_IN vin1b_d2 - Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-12 Manual Functions Mapping for VIN1B (IOSET5) and VIN2B (IOSET9) for a definition of the Manual modes. Table 7-12 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-12. Manual Functions Mapping for VIN1B (IOSET5) and VIN2B (IOSET9) BALL BALL NAME VIP_MANUAL10 VIP_MANUAL11 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 4 6 K7 gpmc_a19 1600 943 2023 477 CFG_GPMC_A19_IN vin2a_d12 vin2b_d0 M7 gpmc_a20 1440 621 1875 136 CFG_GPMC_A20_IN vin2a_d13 vin2b_d1 J5 gpmc_a21 1602 1066 2021 604 CFG_GPMC_A21_IN vin2a_d14 vin2b_d2 K6 gpmc_a22 1395 983 1822 519 CFG_GPMC_A22_IN vin2a_d15 vin2b_d3 J7 gpmc_a23 1571 716 2045 200 CFG_GPMC_A23_IN vin2a_fld0 vin2b_d4 J4 gpmc_a24 1463 832 1893 396 CFG_GPMC_A24_IN - vin2b_d5 208 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-12. Manual Functions Mapping for VIN1B (IOSET5) and VIN2B (IOSET9) (continued) BALL BALL NAME VIP_MANUAL10 VIP_MANUAL11 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 4 6 J6 gpmc_a25 1426 1166 1842 732 CFG_GPMC_A25_IN - vin2b_d6 H4 gpmc_a26 1362 1094 1797 584 CFG_GPMC_A26_IN - vin2b_d7 H5 gpmc_a27 1283 809 1760 338 CFG_GPMC_A27_IN - vin2b_hsync1 N6 gpmc_ben0 1978 780 2327 389 CFG_GPMC_BEN0_IN - vin2b_de1 M4 gpmc_ben1 0 0 0 0 CFG_GPMC_BEN1_IN vin2b_clk1 vin2b_fld1 H6 gpmc_cs1 1411 982 1857 536 CFG_GPMC_CS1_IN vin2a_de0 vin2b_vsync1 Manual IO Timings Modes must be used to guaranteed some IO timings for VIP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-13 Manual Functions Mapping for VIN1A (IOSET8/9/10) for a definition of the Manual modes. Table 7-13 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-13. Manual Functions Mapping for VIN1A (IOSET8/9/10) BALL BALL NAME VIP_MANUAL15 VIP_MANUAL16 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 7 9 AC5 gpio6_10 2131 2198 2170 2180 CFG_GPIO6_10_IN - vin1a_clk0 AB4 gpio6_11 3720 2732 4106 2448 CFG_GPIO6_11_IN - vin1a_de0 C14 mcasp1_aclkx 2447 0 3042 0 CFG_MCASP1_ACLKX_IN vin1a_fld0 - G12 mcasp1_axr0 3061 0 3380 292 CFG_MCASP1_AXR0_IN vin1a_vsync0 - F12 mcasp1_axr1 3113 0 3396 304 CFG_MCASP1_AXR1_IN vin1a_hsync0 - B13 mcasp1_axr10 2803 0 3362 0 CFG_MCASP1_AXR10_IN vin1a_d13 - A12 mcasp1_axr11 3292 0 3357 546 CFG_MCASP1_AXR11_IN vin1a_d12 - E14 mcasp1_axr12 2854 0 3145 320 CFG_MCASP1_AXR12_IN vin1a_d11 - A13 mcasp1_axr13 2813 0 3229 196 CFG_MCASP1_AXR13_IN vin1a_d10 - G14 mcasp1_axr14 2471 0 3053 0 CFG_MCASP1_AXR14_IN vin1a_d9 - F14 mcasp1_axr15 2815 0 3225 201 CFG_MCASP1_AXR15_IN vin1a_d8 - B12 mcasp1_axr8 2965 0 3427 83 CFG_MCASP1_AXR8_IN vin1a_d15 - A11 mcasp1_axr9 3082 0 3253 440 CFG_MCASP1_AXR9_IN vin1a_d14 - D14 mcasp1_fsx 2898 0 3368 139 CFG_MCASP1_FSX_IN vin1a_de0 - A19 mcasp2_aclkx 2413 0 2972 0 CFG_MCASP2_ACLKX_IN vin1a_d7 - C15 mcasp2_axr2 2478 0 3062 0 CFG_MCASP2_AXR2_IN vin1a_d5 - A16 mcasp2_axr3 2806 0 3175 242 CFG_MCASP2_AXR3_IN vin1a_d4 - A18 mcasp2_fsx 2861 78 2936 599 CFG_MCASP2_FSX_IN vin1a_d6 - Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 209 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-13. Manual Functions Mapping for VIN1A (IOSET8/9/10) (continued) BALL BALL NAME A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 7 9 B18 mcasp3_aclkx 1583 0 1878 0 CFG_MCASP3_ACLKX_IN vin1a_d3 - B19 mcasp3_axr0 2873 0 3109 375 CFG_MCASP3_AXR0_IN vin1a_d1 - C17 mcasp3_axr1 1625 1400 2072 1023 CFG_MCASP3_AXR1_IN vin1a_d0 vin1a_fld0 F15 mcasp3_fsx 2792 0 3146 257 CFG_MCASP3_FSX_IN vin1a_d2 - C18 mcasp4_aclkx 1547 268 1776 0 CFG_MCASP4_ACLKX_IN - vin1a_d15 G16 mcasp4_axr0 2362 587 2815 193 CFG_MCASP4_AXR0_IN - vin1a_d13 D17 mcasp4_axr1 2326 667 2769 304 CFG_MCASP4_AXR1_IN - vin1a_d12 A21 mcasp4_fsx 924 2573 1338 2219 CFG_MCASP4_FSX_IN - vin1a_d14 AA3 mcasp5_aclkx 3731 2106 4130 1708 CFG_MCASP5_ACLKX_IN - vin1a_d11 AB3 mcasp5_axr0 3800 3013 4159 2776 CFG_MCASP5_AXR0_IN - vin1a_d9 AA4 mcasp5_axr1 3828 2951 4179 2733 CFG_MCASP5_AXR1_IN - vin1a_d8 AB9 mcasp5_fsx 3675 2447 4074 2142 CFG_MCASP5_FSX_IN - vin1a_d10 AD4 mmc3_clk 3907 2744 4260 2450 CFG_MMC3_CLK_IN - vin1a_d7 AC4 mmc3_cmd 3892 2768 4242 2470 CFG_MMC3_CMD_IN - vin1a_d6 AC7 mmc3_dat0 3786 2765 4156 2522 CFG_MMC3_DAT0_IN - vin1a_d5 AC6 mmc3_dat1 3673 2961 4053 2667 CFG_MMC3_DAT1_IN - vin1a_d4 AC9 mmc3_dat2 3818 2447 4209 2096 CFG_MMC3_DAT2_IN - vin1a_d3 AC3 mmc3_dat3 3902 2903 4259 2672 CFG_MMC3_DAT3_IN - vin1a_d2 AC8 mmc3_dat4 3905 2622 4259 2342 CFG_MMC3_DAT4_IN - vin1a_d1 AD6 mmc3_dat5 3807 2824 4167 2595 CFG_MMC3_DAT5_IN - vin1a_d0 AB8 mmc3_dat6 3724 2818 4123 2491 CFG_MMC3_DAT6_IN - vin1a_hsync0 AB5 mmc3_dat7 3775 2481 4159 2161 CFG_MMC3_DAT7_IN - vin1a_vsync0 D18 xref_clk0 1971 0 2472 0 CFG_XREF_CLK0_IN vin1a_d0 - E17 xref_clk1 0 192 0 603 CFG_XREF_CLK1_IN vin1a_clk0 - 210 VIP_MANUAL15 VIP_MANUAL16 CFG REGISTER Timing Requirements and Switching Characteristics MUXMODE Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 7.7 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Display Subsystem - Video Output Ports Three Display Parallel Interfaces (DPI) channels are available in DSS named DPI Video Output 1, DPI Video Output 2 and DPI Video Output 3. NOTE The DPI Video Output i (i = 1 to 3) interface is also referred to as VOUTi. Every VOUT interface consists of: • 24-bit data bus (data[23:0]) • Horizontal synchronization signal (HSYNC) • Vertical synchronization signal (VSYNC) • Data enable (DE) • Field ID (FID) • Pixel clock (CLK) NOTE For more information, see the Display Subsystem chapter of the Device TRM. CAUTION The I/O timings provided in this section are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-16. CAUTION The I/O Timings provided in this section are valid only for some DSS usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. CAUTION All pads/balls configured as vouti_* signals must be programmed to use slow slew rate by setting the corresponding CTRL_CORE_PAD_*[SLEWCONTROL] register field to SLOW (0b1). Table 7-14, Table 7-15 and Figure 7-6 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 7-14. DPI Video Output i (i = 1..3) Default Switching Characteristics(1)(2) NO. D1 PARAMETE R tc(clk) DESCRIPTION Cycle time, output pixel clock vouti_clk MODE MIN MAX UNIT DPI1/2/3 in 1.8V mode DPI2 in 3.3V mode 11.76 (3) ns DPI1/3 in 3.3V mode 13.33(3) ns D2 tw(clkL) Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns D3 tw(clkH) Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI1 -2.5 2.5 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated ns 211 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-14. DPI Video Output i (i = 1..3) Default Switching Characteristics(1)(2) (continued) NO. PARAMETE R D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid D5 td(clk-ctlV) D6 DESCRIPTION MODE MIN MAX UNIT DPI1 -2.5 2.5 ns Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI2 (vin2a_fld0 clock reference) -2.5 2.5 ns td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI2 (vin2a_fld0 clock reference) -2.5 2.5 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI2 (xref_clk2 clock reference) -2.5 2.5 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI2 (xref_clk2 clock reference) -2.5 2.5 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI3 -2.5 2.5 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI3 -2.5 2.5 ns (1) P = output vouti_clk period in ns. (2) All pads/balls configured as vouti_* signals must be programmed to use slow slew rate by setting the corresponding CTRL_CORE_PAD_*[SLEWCONTROL] register field to SLOW (0b1). (3) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. Table 7-15. DPI Video Output i (i = 1..3) Alternate Switching Characteristics(2) NO. D1 PARAMETE R tc(clk) DESCRIPTION Cycle time, output pixel clock vouti_clk MODE MIN MAX (3) UNIT DPI1/2/3 in 1.8V mode DPI2 in 3.3V mode 6.06 ns DPI1/3 in 3.3V mode 13.33(3) ns D2 tw(clkL) Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns D3 tw(clkH) Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI1 1.51 4.55 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI1 1.51 4.55 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI2 (vin2a_fld0 clock reference) 1.51 4.55 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI2 (vin2a_fld0 clock reference) 1.51 4.55 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI2 (xref_clk2 clock reference) 1.51 4.55 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI2 (xref_clk2 clock reference) 1.51 4.55 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid DPI3 1.51 4.55 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid DPI3 1.51 4.55 ns 212 (1) (1) Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (1) P = output vouti_clk period in ns. (2) All pads/balls configured as vouti_* signals must be programmed to use slow slew rate by setting the corresponding CTRL_CORE_PAD_*[SLEWCONTROL] register field to SLOW (0b1). (3) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. D2 D3 D1 D4 Falling-edge Clock Reference vouti_clk D6 Rising-edge Clock Reference vouti_clk vouti_vsync D6 vouti_hsync D5 vouti_d[23:0] data_1 data_2 data_n D6 vouti_de D6 vouti_fld even odd SWPS049-018 (1)(2)(3) Figure 7-6. DPI Video Output (1) The configuration of assertion of the data can be programmed on the falling or rising edge of the pixel clock. (2) The polarity and the pulse width of vouti_hsync and vouti_vsync are programmable, refer to the DSS section of the device TRM. (3) The vouti_clk frequency can be configured, refer to the DSS section of the device TRM. In Table 7-16 are presented the specific groupings of signals (IOSET) for use with VOUT2. Table 7-16. VOUT2 IOSETs SIGNALS IOSET1 IOSET2 BALL MUX BALL MUX F2 4 AA4 6 vout2_d22 F3 4 AB3 6 vout2_d21 D1 4 AB9 6 vout2_d20 E2 4 AA3 6 vout2_d19 D2 4 D17 6 vout2_d18 F4 4 G16 6 vout2_d17 C1 4 A21 6 vout2_d16 E4 4 C18 6 vout2_d15 F5 4 A17 6 vout2_d14 E6 4 B17 6 vout2_d13 D3 4 B16 6 vout2_d12 F6 4 D15 6 vout2_d11 D5 4 A15 6 vout2_d10 C2 4 B15 6 vout2_d23 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 213 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-16. VOUT2 IOSETs (continued) SIGNALS IOSET1 IOSET2 BALL MUX BALL MUX vout2_d9 C3 4 A20 6 vout2_d8 C4 4 E15 6 vout2_d7 B2 4 D12 6 vout2_d6 D6 4 C12 6 vout2_d5 C5 4 F13 6 vout2_d4 A3 4 E12 6 vout2_d3 B3 4 J11 6 vout2_d2 B4 4 G13 6 vout2_d1 B5 4 J14 6 vout2_d0 A4 4 B14 6 vout2_vsync G6 4 F20 6 vout2_hsync G1 4 E21 6 vout2_clk H7 4 B26 6 vout2_fld E1 4 F21 6 vout2_de G2 4 C23 6 NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. Virtual IO Timings Modes must be used to guaranteed some IO timings for VOUT1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-17 Virtual Functions Mapping for VOUT1 for a definition of the Virtual modes. Table 7-17 presents the values for DELAYMODE bitfield. Table 7-17. Virtual Functions Mapping for DSS VOUT1 BALL BALL NAME Delay Mode Value DSS_VIRTUAL1 214 MUXMODE 0 3 H3 gpmc_ad15 14 vout3_d15 D9 vout1_d9 15 N7 gpmc_a8 15 L6 gpmc_ad4 14 E8 vout1_d8 15 M6 gpmc_ad0 14 F9 vout1_d5 15 J3 gpmc_ad13 14 vout3_d13 vout3_d18 vout1_d9 vout3_hsync vout3_d4 vout1_d8 vout3_d0 vout1_d5 T6 gpmc_a2 15 M2 gpmc_ad1 14 vout3_d1 P6 gpmc_a4 15 vout3_d20 B10 vout1_de 15 vout1_de vout1_d16 B7 vout1_d16 15 R5 gpmc_a6 15 A9 vout1_d21 15 H2 gpmc_ad14 14 vout3_d22 vout1_d21 vout3_d14 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-17. Virtual Functions Mapping for DSS VOUT1 (continued) BALL BALL NAME Delay Mode Value DSS_VIRTUAL1 MUXMODE 0 T9 gpmc_a1 15 E7 vout1_d7 15 vout1_d7 C11 vout1_hsync 15 vout1_hsync D11 vout1_clk 15 vout1_clk P1 gpmc_cs3 15 B9 vout1_d22 15 vout1_d22 G11 vout1_d3 15 vout1_d3 R4 gpmc_a9 15 D8 vout1_d11 15 J2 gpmc_ad11 14 3 vout3_d17 vout3_clk vout3_vsync vout1_d11 vout3_d11 L3 gpmc_ad6 14 D7 vout1_d10 15 vout3_d6 L5 gpmc_ad2 14 F10 vout1_d2 15 M1 gpmc_ad3 14 vout3_d3 P5 gpmc_a7 15 vout3_d23 T7 gpmc_a3 15 A7 vout1_d18 15 vout1_d18 C7 vout1_d15 15 vout1_d15 J1 gpmc_ad10 14 vout3_d10 vout3_d7 vout1_d10 vout3_d2 vout1_d2 vout3_d19 L2 gpmc_ad7 14 N9 gpmc_a10 15 F11 vout1_d0 15 vout1_d0 G10 vout1_d1 15 vout1_d1 R9 gpmc_a5 15 vout3_d21 L1 gpmc_ad8 14 vout3_d8 F8 vout1_d6 15 L4 gpmc_ad5 14 A10 vout1_d23 15 vout1_d23 E11 vout1_vsync 15 vout1_vsync C9 vout1_d20 15 vout1_d20 R6 gpmc_a0 15 A8 vout1_d19 15 vout1_d19 vout1_d4 vout3_de vout1_d6 vout3_d5 vout3_d16 E9 vout1_d4 15 H1 gpmc_ad12 14 B11 vout1_fld 15 P9 gpmc_a11 15 vout3_fld K2 gpmc_ad9 14 vout3_d9 C6 vout1_d13 15 vout1_d13 B8 vout1_d17 15 vout1_d17 A5 vout1_d12 15 vout1_d12 C8 vout1_d14 15 vout1_d14 vout3_d12 vout1_fld Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 215 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. Manual IO Timings Modes must be used to guaranteed some IO timings for VOUT1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-18 Manual Functions Mapping for DSS VOUT1 for a definition of the Manual modes. Table 7-18 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-18. Manual Functions Mapping for DSS VOUT1 216 BALL BALL NAME VOUT1_MANUAL1 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) D11 vout1_clk 0 212 CFG_VOUT1_CLK_OUT vout1_clk 0 F11 vout1_d0 2502 0 CFG_VOUT1_D0_OUT vout1_d0 G10 vout1_d1 2402 0 CFG_VOUT1_D1_OUT vout1_d1 D7 vout1_d10 2147 0 CFG_VOUT1_D10_OUT vout1_d10 D8 vout1_d11 2249 0 CFG_VOUT1_D11_OUT vout1_d11 A5 vout1_d12 2410 0 CFG_VOUT1_D12_OUT vout1_d12 C6 vout1_d13 2129 0 CFG_VOUT1_D13_OUT vout1_d13 C8 vout1_d14 2279 0 CFG_VOUT1_D14_OUT vout1_d14 C7 vout1_d15 2266 23 CFG_VOUT1_D15_OUT vout1_d15 B7 vout1_d16 1798 0 CFG_VOUT1_D16_OUT vout1_d16 B8 vout1_d17 2243 0 CFG_VOUT1_D17_OUT vout1_d17 A7 vout1_d18 2127 0 CFG_VOUT1_D18_OUT vout1_d18 A8 vout1_d19 2096 0 CFG_VOUT1_D19_OUT vout1_d19 F10 vout1_d2 2375 0 CFG_VOUT1_D2_OUT vout1_d2 C9 vout1_d20 2105 0 CFG_VOUT1_D20_OUT vout1_d20 A9 vout1_d21 2120 0 CFG_VOUT1_D21_OUT vout1_d21 B9 vout1_d22 2013 65 CFG_VOUT1_D22_OUT vout1_d22 A10 vout1_d23 1887 0 CFG_VOUT1_D23_OUT vout1_d23 G11 vout1_d3 2429 0 CFG_VOUT1_D3_OUT vout1_d3 E9 vout1_d4 2639 0 CFG_VOUT1_D4_OUT vout1_d4 F9 vout1_d5 2319 0 CFG_VOUT1_D5_OUT vout1_d5 F8 vout1_d6 2227 0 CFG_VOUT1_D6_OUT vout1_d6 E7 vout1_d7 2309 0 CFG_VOUT1_D7_OUT vout1_d7 E8 vout1_d8 1999 0 CFG_VOUT1_D8_OUT vout1_d8 D9 vout1_d9 2276 0 CFG_VOUT1_D9_OUT vout1_d9 B10 vout1_de 1933 0 CFG_VOUT1_DE_OUT vout1_de B11 vout1_fld 1825 0 CFG_VOUT1_FLD_OUT vout1_fld C11 vout1_hsync 1741 13 CFG_VOUT1_HSYNC_OUT vout1_hsync E11 vout1_vsync 2338 0 CFG_VOUT1_VSYNC_OUT vout1_vsync Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Manual IO Timings Modes must be used to guaranteed some IO timings for VOUT2. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-19 Manual Functions Mapping for DSS VOUT2 IOSET1 for a definition of the Manual modes. Table 7-19 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 217 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-19. Manual Functions Mapping for DSS VOUT2 IOSET1 BALL BALL NAME VOUT2_IOSET1_MANUAL1 A_DELAY (ps) G_DELAY (ps) 218 VOUT2_IOSET1_MANUAL2 VOUT2_IOSET1_MANUAL3 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 4 E1 vin2a_clk0 2571 0 1059 0 1025 0 CFG_VIN2A_CLK0_OUT vout2_fld F2 vin2a_d0 2124 0 589 0 577 0 CFG_VIN2A_D0_OUT vout2_d23 F3 vin2a_d1 2103 0 568 0 557 0 CFG_VIN2A_D1_OUT vout2_d22 D3 vin2a_d10 2091 0 557 0 545 0 CFG_VIN2A_D10_OUT vout2_d13 F6 vin2a_d11 2142 0 608 0 596 0 CFG_VIN2A_D11_OUT vout2_d12 D5 vin2a_d12 2920 385 1816 255 1783 276 CFG_VIN2A_D12_OUT vout2_d11 C2 vin2a_d13 2776 322 1872 192 1838 213 CFG_VIN2A_D13_OUT vout2_d10 C3 vin2a_d14 2904 0 1769 0 1757 0 CFG_VIN2A_D14_OUT vout2_d9 C4 vin2a_d15 2670 257 1665 127 1632 148 CFG_VIN2A_D15_OUT vout2_d8 B2 vin2a_d16 2814 155 1908 31 1878 43 CFG_VIN2A_D16_OUT vout2_d7 D6 vin2a_d17 3002 199 1897 69 1865 89 CFG_VIN2A_D17_OUT vout2_d6 C5 vin2a_d18 1893 0 358 0 347 0 CFG_VIN2A_D18_OUT vout2_d5 A3 vin2a_d19 1698 0 163 0 151 0 CFG_VIN2A_D19_OUT vout2_d4 D1 vin2a_d2 2193 0 658 0 646 0 CFG_VIN2A_D2_OUT vout2_d21 B3 vin2a_d20 1736 0 202 0 190 0 CFG_VIN2A_D20_OUT vout2_d3 B4 vin2a_d21 1636 0 101 0 89 0 CFG_VIN2A_D21_OUT vout2_d2 B5 vin2a_d22 1628 0 93 0 81 0 CFG_VIN2A_D22_OUT vout2_d1 A4 vin2a_d23 1538 0 0 0 0 0 CFG_VIN2A_D23_OUT vout2_d0 E2 vin2a_d3 1997 0 462 0 450 0 CFG_VIN2A_D3_OUT vout2_d20 D2 vin2a_d4 2528 0 993 0 982 0 CFG_VIN2A_D4_OUT vout2_d19 F4 vin2a_d5 2038 0 503 0 492 0 CFG_VIN2A_D5_OUT vout2_d18 C1 vin2a_d6 1746 0 211 0 200 0 CFG_VIN2A_D6_OUT vout2_d17 E4 vin2a_d7 2213 0 678 0 666 0 CFG_VIN2A_D7_OUT vout2_d16 F5 vin2a_d8 2268 0 733 0 721 0 CFG_VIN2A_D8_OUT vout2_d15 vout2_d14 E6 vin2a_d9 2170 0 635 0 623 0 CFG_VIN2A_D9_OUT G2 vin2a_de0 2102 0 568 0 556 0 CFG_VIN2A_DE0_OUT vout2_de H7 vin2a_fld0 0 983 1398 1185 1385 1202 CFG_VIN2A_FLD0_OUT vout2_clk G1 vin2a_hsync0 2482 0 974 0 936 0 CFG_VIN2A_HSYNC0_ OUT vout2_hsync G6 vin2a_vsync0 2296 0 784 0 750 0 CFG_VIN2A_VSYNC0_ OUT vout2_vsync Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Manual IO Timings Modes must be used to guaranteed some IO timings for VOUT2. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-20 Manual Functions Mapping for DSS VOUT2 IOSET2 for a definition of the Manual modes. Table 7-20 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-20. Manual Functions Mapping for DSS VOUT2 IOSET2 BALL BALL NAME VOUT2_IOSET2_MANUAL1 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) E21 gpio6_14 1983 0 79 0 68 F20 gpio6_15 2159 0 158 0 A_DELAY (ps) G_DELAY (ps) VOUT2_IOSET2_MANUAL2 VOUT2_IOSET2_MANUAL3 CFG REGISTER MUXMODE 0 CFG_GPIO6_14_OUT vout2_hsync 148 0 CFG_GPIO6_15_OUT vout2_vsync 6 F21 gpio6_16 1864 0 0 0 0 0 CFG_GPIO6_16_OUT vout2_fld B14 mcasp1_aclkr 2614 0 1255 0 1270 0 CFG_MCASP1_ACLKR _OUT vout2_d0 G13 mcasp1_axr2 2705 0 1350 0 1360 0 CFG_MCASP1_AXR2_ OUT vout2_d2 J11 mcasp1_axr3 2865 0 1210 0 1219 0 CFG_MCASP1_AXR3_ OUT vout2_d3 E12 mcasp1_axr4 2759 0 1404 0 1413 0 CFG_MCASP1_AXR4_ OUT vout2_d4 F13 mcasp1_axr5 2980 0 1325 0 1335 0 CFG_MCASP1_AXR5_ OUT vout2_d5 C12 mcasp1_axr6 2634 0 1275 0 1289 0 CFG_MCASP1_AXR6_ OUT vout2_d6 D12 mcasp1_axr7 2658 0 1302 0 1311 0 CFG_MCASP1_AXR7_ OUT vout2_d7 J14 mcasp1_fsr 2818 0 1163 0 1172 0 CFG_MCASP1_FSR_O UT vout2_d1 E15 mcasp2_aclkr 2728 0 1373 0 1382 0 CFG_MCASP2_ACLKR _OUT vout2_d8 B15 mcasp2_axr0 2513 0 319 534 308 560 CFG_MCASP2_AXR0_ OUT vout2_d10 A15 mcasp2_axr1 2712 0 1357 0 1366 0 CFG_MCASP2_AXR1_ OUT vout2_d11 D15 mcasp2_axr4 2529 0 1169 0 1184 0 CFG_MCASP2_AXR4_ OUT vout2_d12 B16 mcasp2_axr5 2376 0 543 478 1029 0 CFG_MCASP2_AXR5_ OUT vout2_d13 B17 mcasp2_axr6 2620 0 1265 0 1274 0 CFG_MCASP2_AXR6_ OUT vout2_d14 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 219 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-20. Manual Functions Mapping for DSS VOUT2 IOSET2 (continued) BALL BALL NAME VOUT2_IOSET2_MANUAL1 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A17 mcasp2_axr7 2492 0 354 483 845 0 CFG_MCASP2_AXR7_ OUT vout2_d15 A20 mcasp2_fsr 2358 0 12 487 513 0 CFG_MCASP2_FSR_O UT vout2_d9 C18 mcasp4_aclkx 2524 0 1165 0 1179 0 CFG_MCASP4_ACLKX_ OUT vout2_d16 G16 mcasp4_axr0 2578 0 797 0 806 0 CFG_MCASP4_AXR0_ OUT vout2_d18 D17 mcasp4_axr1 2253 0 750 0 759 0 CFG_MCASP4_AXR1_ OUT vout2_d19 A21 mcasp4_fsx 2478 0 823 0 832 0 CFG_MCASP4_FSX_O UT vout2_d17 AA3 mcasp5_aclkx 4672 1737 3256 1798 3226 1837 CFG_MCASP5_ACLKX_ OUT vout2_d20 AB3 mcasp5_axr0 4642 1286 3226 1347 3196 1386 CFG_MCASP5_AXR0_ OUT vout2_d22 AA4 mcasp5_axr1 4625 725 3209 786 3179 825 CFG_MCASP5_AXR1_ OUT vout2_d23 AB9 mcasp5_fsx 4565 1062 3149 1123 3119 1162 CFG_MCASP5_FSX_O UT vout2_d21 B26 xref_clk2 0 49 1359 466 1341 512 CFG_XREF_CLK2_OUT vout2_clk C23 xref_clk3 1947 0 36 0 45 0 CFG_XREF_CLK3_OUT vout2_de A_DELAY (ps) G_DELAY (ps) 220 VOUT2_IOSET2_MANUAL2 VOUT2_IOSET2_MANUAL3 Timing Requirements and Switching Characteristics 6 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Manual IO Timings Modes must be used to guaranteed some IO timings for VOUT3. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-21 Manual Functions Mapping for DSS VOUT3 for a definition of the Manual modes. Table 7-21 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-21. Manual Functions Mapping for DSS VOUT3 BALL 7.8 BALL NAME VOUT3_MANUAL1 CFG REGISTER A_DELAY (ps) G_DELAY (ps) MUXMODE 3 R6 gpmc_a0 2395 0 CFG_GPMC_A0_OUT vout3_d16 T9 gpmc_a1 2412 0 CFG_GPMC_A1_OUT vout3_d17 N9 gpmc_a10 2473 0 CFG_GPMC_A10_OUT vout3_de P9 gpmc_a11 2906 0 CFG_GPMC_A11_OUT vout3_fld T6 gpmc_a2 2360 0 CFG_GPMC_A2_OUT vout3_d18 T7 gpmc_a3 2391 0 CFG_GPMC_A3_OUT vout3_d19 P6 gpmc_a4 2626 0 CFG_GPMC_A4_OUT vout3_d20 R9 gpmc_a5 2338 0 CFG_GPMC_A5_OUT vout3_d21 R5 gpmc_a6 2374 0 CFG_GPMC_A6_OUT vout3_d22 P5 gpmc_a7 2432 0 CFG_GPMC_A7_OUT vout3_d23 N7 gpmc_a8 3155 0 CFG_GPMC_A8_OUT vout3_hsync R4 gpmc_a9 2309 0 CFG_GPMC_A9_OUT vout3_vsync M6 gpmc_ad0 2360 0 CFG_GPMC_AD0_OUT vout3_d0 M2 gpmc_ad1 2420 0 CFG_GPMC_AD1_OUT vout3_d1 J1 gpmc_ad10 2235 0 CFG_GPMC_AD10_OU T vout3_d10 J2 gpmc_ad11 2253 0 CFG_GPMC_AD11_OU T vout3_d11 H1 gpmc_ad12 1949 427 CFG_GPMC_AD12_OU T vout3_d12 J3 gpmc_ad13 2318 0 CFG_GPMC_AD13_OU T vout3_d13 H2 gpmc_ad14 2123 0 CFG_GPMC_AD14_OU T vout3_d14 H3 gpmc_ad15 2195 29 CFG_GPMC_AD15_OU T vout3_d15 L5 gpmc_ad2 2617 0 CFG_GPMC_AD2_OUT vout3_d2 M1 gpmc_ad3 2350 0 CFG_GPMC_AD3_OUT vout3_d3 L6 gpmc_ad4 2324 0 CFG_GPMC_AD4_OUT vout3_d4 L4 gpmc_ad5 2371 0 CFG_GPMC_AD5_OUT vout3_d5 L3 gpmc_ad6 2231 0 CFG_GPMC_AD6_OUT vout3_d6 L2 gpmc_ad7 2440 0 CFG_GPMC_AD7_OUT vout3_d7 L1 gpmc_ad8 2479 0 CFG_GPMC_AD8_OUT vout3_d8 K2 gpmc_ad9 2355 0 CFG_GPMC_AD9_OUT vout3_d9 P1 gpmc_cs3 0 641 CFG_GPMC_CS3_OUT vout3_clk Display Subsystem - High-Definition Multimedia Interface (HDMI) The High-Definition Multimedia Interface is provided for transmitting digital television audiovisual signals from DVD players, set-top boxes and other audiovisual sources to television sets, projectors and other video displays. The HDMI interface is aligned with the HDMI TMDS single stream standard v1.4a (720p @60Hz to 1080p @24Hz) and the HDMI v1.3 (1080p @60Hz): 3 data channels, plus 1 clock channel is supported (differential). Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 221 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE For more information, see the High-Definition Multimedia Interface chapter of the device TRM 7.9 Camera Serial Interface 2 CAL bridge (CSI2) NOTE For more information, see the Camera Serial Interface 2 CAL Bridge chapter of the device TRM The camera adaptation layer (CAL) deals with the processing of the pixel data coming from an external image sensor, data from memory. The CAL is a key component for the following multimedia applications: camera viewfinder, video record, and still image capture. The CAL has two serial camera interfaces (primary and secondary): • The primary serial interface (CSI2 Port A) is compliant with MIPI CSI-2 protocol with four data lanes. • The secondary serial interface (CSI2 Port B) is compliant with MIPI CSI-2 protocol with two data lanes. 7.9.1 CSI-2 MIPI D-PHY-1.5 V and 1.8 V The CSI-2 port A is compliant with the MIPI D-PHY RX specification v1.00.00 and the MIPI CSI-2 specification v1.00, with 4 data differential lanes plus 1 clock differential lane in synchronous mode, double data rate: • 1.5 Gbps (750 MHz) @OPP_NOM for each lane. The CSI-2 port B is compliant with the MIPI D-PHY RX specification v1.00.00 and the MIPI CSI-2 specification v1.00, with 2 data lanes plus 1 clock lane (differential) in synchronous mode, double data rate: • 1.5 Gbps (750 MHz) @OPP_NOM for each lane, in synchronous mode. 7.10 External Memory Interface (EMIF) The device has a dedicated interface to DDR3 and DDR3L SDRAM. It supports JEDEC standard compliant DDR3 and DDR3L SDRAM devices with the following features: • 16-bit or 32-bit data path to external SDRAM memory • Memory device capacity: 128Mb, 256Mb, 512Mb, 1Gb, 2Gb, 4Gb and 8Gb devices • One interface with associated DDR3/DDR3L PHYs NOTE For more information, see the EMIF Controller section of the Device TRM. 7.11 General-Purpose Memory Controller (GPMC) The GPMC is the unified memory controller that interfaces external memory devices such as: • Asynchronous SRAM-like memories and ASIC devices • Asynchronous page mode and synchronous burst NOR flash • NAND flash NOTE For more information, see the General-Purpose Memory Controller section of the Device TRM. 222 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 7.11.1 GPMC/NOR Flash Interface Synchronous Timing CAUTION The I/O Timings provided in this section are valid only for some GPMC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-22 and Table 7-23 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 7-7, Figure 7-8, Figure 7-9, Figure 7-10, Figure 7-11 and Figure 7-12). Table 7-22. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Default NO. PARAMETER DESCRIPTION F12 tsu(dV-clkH) Setup time, read gpmc_ad[15:0] valid before gpmc_clk high F13 th(clkH-dV) F21 tsu(waitV-clkH) F22 th(clkH-waitV) MIN MAX UNIT 3 ns Hold time, read gpmc_ad[15:0] valid after gpmc_clk high 1.1 ns Setup time, gpmc_wait[1:0] valid before gpmc_clk high 2.5 ns Hold Time, gpmc_wait[1:0] valid after gpmc_clk high 1.3 ns NOTE Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the Device TRM. Table 7-23. GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default NO. PARAMETER F0 tc(clk) Cycle time, output clock gpmc_clk period DESCRIPTION F2 td(clkH-nCSV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] transition MIN MAX 11.3 F-1.7 (7) (6) F3 td(clkH-nCSIV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] invalid E-1.7 F4 td(ADDV-clk) Delay time, gpmc_a[27:0] address bus valid to gpmc_clk first edge B-1.8 (3) F5 td(clkH-ADDIV) Delay time, gpmc_clk rising edge to gpmc_a[27:0] gpmc address bus invalid UNIT ns F+4.3 (7) ns E+4.2 (6) ns B+4.3 (3) ns -1.8 ns (3) (3) F6 td(nBEV-clk) Delay time, gpmc_ben[1:0] valid to gpmc_clk rising edge B-4.3 B+1.5 ns F7 td(clkH-nBEIV) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] invalid D-1.5(5) D+4.3(5) ns F8 td(clkH-nADV) Delay time, gpmc_clk rising edge to gpmc_advn_ale transition G-1.3 (8) G+4.2 (8) ns (5) (5) ns F9 td(clkH-nADVIV) Delay time, gpmc_clk rising edge to gpmc_advn_ale invalid D-1.3 F10 td(clkH-nOE) Delay time, gpmc_clk rising edge to gpmc_oen_ren transition H-1.0 (9) H+3.2 (9) ns F11 td(clkH-nOEIV) Delay time, gpmc_clk rising edge to gpmc_oen_ren invalid E-1.0 (6) E+3.2 (6) ns F14 td(clkH-nWE) Delay time, gpmc_clk rising edge to gpmc_wen transition I-0.9 (10) I+4.2 (10) ns J+4.6 (11) ns J+4.3 (11) ns F15 td(clkH-Data) Delay time, gpmc_clk rising edge to gpmc_ad[15:0] data bus transition J-2.1 (11) F17 td(clkH-nBE) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] transition J-1.5 (11) F18 tw(nCSV) Pulse duration, gpmc_cs[7:0] low G+4.2 A (2) ns ns F19 tw(nBEV) Pulse duration, gpmc_ben[1:0] low C (4) F20 tw(nADVV) Pulse duration, gpmc_advn_ale low K (12) F23 td(CLK-GPIO) Delay time, gpmc_clk transition to gpio6_16 transition 0.5 ns 7.5 ns Table 7-24. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Alternate NO. PARAMETER DESCRIPTION MIN MAX UNIT F12 tsu(dV-clkH) Setup time, read gpmc_ad[15:0] valid before gpmc_clk high 2.5 ns F13 th(clkH-dV) Hold time, read gpmc_ad[15:0] valid after gpmc_clk high 1.9 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 223 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-24. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Alternate (continued) NO. PARAMETER DESCRIPTION MIN MAX UNIT F21 tsu(waitV-clkH) Setup time, gpmc_wait[1:0] valid before gpmc_clk high 2.5 ns F22 th(clkH-waitV) Hold Time, gpmc_wait[1:0] valid after gpmc_clk high 1.9 ns Table 7-25. GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate NO. F0 PARAMETER tc(clk) DESCRIPTION MIN Cycle time, output clock gpmc_clk period (13) MAX 15.04 (7) UNIT ns F+7.0 (7) ns F2 td(clkH-nCSV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] transition F+0.6 F3 td(clkH-nCSIV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] invalid E+0.6 (6) E+7.0 (6) ns F4 td(ADDV-clk) Delay time, gpmc_a[27:0] address bus valid to gpmc_clk first edge B-0.7 (3) B+7.0 (3) ns F5 td(clkH-ADDIV) Delay time, gpmc_clk rising edge to gpmc_a[27:0] gpmc address bus invalid F6 td(nBEV-clk) Delay time, gpmc_ben[1:0] valid to gpmc_clk rising edge B-7.0 B+0.4 ns F7 td(clkH-nBEIV) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] invalid D-0.4 D+7.0 ns -0.7 ns (8) G+6.1 (8) ns F8 td(clkH-nADV) Delay time, gpmc_clk rising edge to gpmc_advn_ale transition G+0.7 F9 td(clkH-nADVIV) Delay time, gpmc_clk rising edge to gpmc_advn_ale invalid D+0.7 (5) D+6.1 (5) ns F10 td(clkH-nOE) Delay time, gpmc_clk rising edge to gpmc_oen_ren transition H+0.7 (9) H+5.1 (9) ns F11 td(clkH-nOEIV) Delay time, gpmc_clk rising edge to gpmc_oen_ren invalid E+0.7 (6) E+5.1 (6) ns ns F14 td(clkH-nWE) Delay time, gpmc_clk rising edge to gpmc_wen transition I+0.7 (10) I+6.1 (10) F15 td(clkH-Data) Delay time, gpmc_clk rising edge to gpmc_ad[15:0] data bus transition J-0.4 (11) J+4.9 (11) ns F17 td(clkH-nBE) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] transition J-0.4 (11) J+4.9 (11) ns F18 tw(nCSV) Pulse duration, gpmc_cs[7:0] low A (2) F19 tw(nBEV) Pulse duration, gpmc_ben[1:0] low C (4) ns F20 tw(nADVV) Pulse duration, gpmc_advn_ale low K (12) ns F23 td(CLK-GPIO) Delay time, gpmc_clk transition to gpio6_16.clkout1 transition (14) 0.5 7.5 ns ns (1) Total GPMC load on any signal at 3.3V must not exceed 10pF. (2) For single read: A = (CSRdOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period with n the page burst access number. (3) B = ClkActivationTime * GPMC_FCLK (4) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: C = (RdCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For Burst write: C = (WrCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n the page burst access number. (5) For single read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: D = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: D = (WrCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK (6) For single read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: E = (CSRdOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: E = (CSWrOffTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK (7) For nCS falling edge (CS activated): Case GpmcFCLKDivider = 0 : F = 0.5 * CSExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even) F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime - ClkActivationTime) is a multiple of 3) F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3) F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime - ClkActivationTime) is a multiple of 4) F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 1) is a multiple of 4) F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 2) is a multiple of 4) F = (3 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime - ClkActivationTime - 3) is a multiple of 4) 224 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (8) For ADV falling edge (ADV activated): Case GpmcFCLKDivider = 0 : G = 0.5 * ADVExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime - ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3) For ADV rising edge (ADV desactivated) in Reading mode: Case GpmcFCLKDivider = 0: G = 0.5 * ADVExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime) is a multiple of 4) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 4) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 4) G = (3 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime - ClkActivationTime - 3) is a multiple of 4) For ADV rising edge (ADV desactivated) in Writing mode: Case GpmcFCLKDivider = 0: G = 0.5 * ADVExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime) is a multiple of 4) G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 4) G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 4) G = (3 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime - ClkActivationTime - 3) is a multiple of 4) (9) For OE falling edge (OE activated): Case GpmcFCLKDivider = 0: - H = 0.5 * OEExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: - H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime - ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3) - H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime - ClkActivationTime) is a multiple of 4) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 1) is a multiple of 4) - H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 2) is a multiple of 4) - H = (3 + 0.5 * OEExtraDelay)) * GPMC_FCLK if ((OEOnTime - ClkActivationTime - 3) is a multiple of 4) For OE rising edge (OE desactivated): Case GpmcFCLKDivider = 0: - H = 0.5 * OEExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: - H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime - ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3) - H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime - ClkActivationTime) is a multiple of 4) - H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 1) is a multiple of 4) - H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 2) is a multiple of 4) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 225 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com - H = (3 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime - ClkActivationTime - 3) is a multiple of 4) (10) For WE falling edge (WE activated): Case GpmcFCLKDivider = 0: - I = 0.5 * WEExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: - I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime - ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3) - I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime - ClkActivationTime) is a multiple of 4) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 1) is a multiple of 4) - I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 2) is a multiple of 4) - I = (3 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime - ClkActivationTime - 3) is a multiple of 4) For WE rising edge (WE desactivated): Case GpmcFCLKDivider = 0: - I = 0.5 * WEExtraDelay * GPMC_FCLK Case GpmcFCLKDivider = 1: - I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime - ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3) - I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime - ClkActivationTime) is a multiple of 4) - I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 1) is a multiple of 4) - I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 2) is a multiple of 4) - I = (3 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime - ClkActivationTime - 3) is a multiple of 4) (11) J = GPMC_FCLK period, where GPMC_FCLK is the General Purpose Memory Controller internal functional clock (12) For read: K = (ADVRdOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK For write: K = (ADVWrOffTime - ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK (13) The gpmc_clk output clock maximum and minimum frequency is programmable in the I/F module by setting the GPMC_CONFIG1_CSx configuration register bit fields GpmcFCLKDivider (14) gpio6_16 programmed to MUXMODE=9 (clkout1), CM_CLKSEL_CLKOUTMUX1 programmed to 7 (CORE_DPLL_OUT_DCLK), CM_CLKSEL_CORE_DPLL_OUT_CLK_CLKOUTMUX programmed to 1. (15) CSEXTRADELAY = 0, ADVEXTRADELAY = 0, WEEXTRADELAY = 0, OEEXTRADELAY = 0. Extra half-GPMC_FCLK cycle delay mode is not timed. 226 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 F1 F0 F1 gpmc_clk F2 F3 F18 gpmc_csi F4 Address (MSB) gpmc_a[10:1] gpmc_a[27] F6 F7 F19 gpmc_ben1 F6 F7 F19 gpmc_ben0 F8 F8 F20 F9 gpmc_advn_ale F10 F11 gpmc_oen_ren F13 F4 gpmc_ad[15:0] F5 F12 Address (LSB) D0 F22 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_01 Figure 7-7. GPMC / Multiplexed 16bits NOR Flash - Synchronous Single Read (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 227 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com F1 F0 F1 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[27:1] Address F6 F7 F19 gpmc_ben1 F6 F7 F19 gpmc_ben0 F8 F8 F9 F20 gpmc_advn_ale F10 F11 gpmc_oen_ren F13 F12 D0 gpmc_ad[15:0] F22 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_02 Figure 7-8. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Single Read (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. 228 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[10:1] gpmc_a[27] Address (MSB) F7 F6 F19 Valid gpmc_ben1 F7 F6 F19 Valid gpmc_ben0 F8 F8 F9 F20 gpmc_advn_ale F10 F11 gpmc_oen_ren F12 F4 gpmc_ad[15:0] F5 F13 D0 Address (LSB) F22 D1 F12 D2 D3 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_03 Figure 7-9. GPMC / Multiplexed 16bits NOR Flash - Synchronous Burst Read 4x16 bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i= 0 to 7. (2) In gpmc_waitj, j = 0 to 1. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 229 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[27:1] Address F7 F6 F19 Valid gpmc_ben1 F7 F6 F19 Valid gpmc_ben0 F8 F8 F20 F9 gpmc_advn_ale F10 F11 gpmc_oen_ren F12 F13 gpmc_ad[15:0] D0 D1 F12 D2 D3 F21 F22 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_04 Figure 7-10. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Burst Read 4x16 bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. 230 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[10:1] gpmc_a[27] Address (MSB) F17 F6 F17 F6 F17 F17 gpmc_ben1 F17 F17 gpmc_ben0 F8 F8 F20 F9 gpmc_advn_ale F14 F14 gpmc_wen F15 gpmc_ad[15:0] Address (LSB) D0 F22 D1 F15 D2 F15 D3 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_05 Figure 7-11. GPMC / Multiplexed 16bits NOR Flash - Synchronous Burst Write 4x16bits (GpmcFCLKDivider = 0)(1)(2) (1) In “gpmc_csi”, i = 0 to 7. (2) In “gpmc_waitj”, j = 0 to 1. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 231 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 Address gpmc_a[27:1] F17 F6 F17 F17 gpmc_ben1 F17 F6 F17 F17 gpmc_ben0 F8 F8 F20 F9 gpmc_advn_ale F14 F14 gpmc_wen F15 gpmc_ad[15:0] D0 D1 F15 F15 D2 D3 F21 F22 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_06 Figure 7-12. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Burst Write 4x16bits (GpmcFCLKDivider = 0)(1)(2) (1) In “gpmc_csi”, i = 1 to 7. (2) In “gpmc_waitj”, j = 0 to 1. 7.11.2 GPMC/NOR Flash Interface Asynchronous Timing CAUTION The I/O Timings provided in this section are valid only for some GPMC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-26 and Table 7-27 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 7-13, Figure 7-14, Figure 7-15, Figure 7-16, Figure 7-17 and Figure 7-18). Table 7-26. GPMC/NOR Flash Interface Timing Requirements - Asynchronous Mode NO. FA5 232 PARAMETER tacc(DAT) DESCRIPTION Data Maximum Access Time (GPMC_FCLK cycles) MIN MAX UNIT (1) cycles H Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-26. GPMC/NOR Flash Interface Timing Requirements - Asynchronous Mode (continued) NO. PARAMETER DESCRIPTION FA20 tacc1-pgmode(DAT) Page Mode Successive Data Maximum Access Time (GPMC_FCLK cycles) FA21 tacc2-pgmode(DAT) Page Mode First Data Maximum Access Time (GPMC_FCLK cycles) - tsu(DV-OEH) Setup time, read gpmc_ad[15:0] valid before gpmc_oen_ren high - th(OEH-DV) Hold time, read gpmc_ad[15:0] valid after gpmc_oen_ren high MIN MAX UNIT P (2) cycles H (1) cycles 1.9 ns 1 ns (1) H = Access Time * (TimeParaGranularity + 1) (2) P = PageBurstAccessTime * (TimeParaGranularity + 1) Table 7-27. GPMC/NOR Flash Interface Switching Characteristics - Asynchronous Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT - tr(DO) Rising time, gpmc_ad[15:0] output data 0.447 4.067 ns - tf(DO) Fallling time, gpmc_ad[15:0] output data 0.43 4.463 ns FA0 tw(nBEV) Pulse duration, gpmc_ben[1:0] valid time N (1) FA1 tw(nCSV) Pulse duration, gpmc_cs[7:0] low A (2) FA3 td(nCSV-nADVIV) Delay time, gpmc_cs[7:0] valid to gpmc_advn_ale invalid FA4 td(nCSV-nOEIV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren invalid (Single read) FA9 td(AV-nCSV) ns ns B-2 (3) B+4 (3) C-2 (4) ns C+4 (4) Delay time, address bus valid to gpmc_cs[7:0] valid J-2 ns (5) J+4 (5) ns J-2 (5) J+4 (5) FA10 td(nBEV-nCSV) Delay time, gpmc_ben[1:0] valid to gpmc_cs[7:0] valid FA12 td(nCSV-nADVV) Delay time, gpmc_cs[7:0] valid to gpmc_advn_ale valid ns K-2 (6) K+4 (6) FA13 td(nCSV-nOEV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren valid ns L-2 (7) L+4 (7) ns FA16 tw(AIV) Pulse duration, address invalid between 2 successive R/W accesses G FA18 td(nCSV-nOEIV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren invalid (Burst read) I-2 (9) I+4 (9) FA20 tw(AV) Pulse duration, address valid : 2nd, 3rd and 4th accesses FA25 td(nCSV-nWEV) Delay time, gpmc_cs[7:0] valid to gpmc_wen valid E-2 (11) E+4 (11) ns FA27 td(nCSV-nWEIV) Delay time, gpmc_cs[7:0] valid to gpmc_wen invalid F-2 (12) F+4 (12) ns FA28 td(nWEV-DV) Delay time, gpmc_ wen valid to data bus valid FA29 td(DV-nCSV) Delay time, data bus valid to gpmc_cs[7:0] valid FA37 td(nOEV-AIV) Delay time, gpmc_oen_ren valid to gpmc_ad[15:0] multiplexed address bus phase end D ns (8) 2 J-2 ns ns (10) (5) J+4 ns (5) 2 ns ns (1) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: N = (RdCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: N = (WrCycleTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK (2) For single read: A = (CSRdOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK For single write: A = (CSWrOffTime - CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK (3) For reading: B = ((ADVRdOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK For writing: B = ((ADVWrOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK (4) C = ((OEOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK (5) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK (6) K = ((ADVOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - CSExtraDelay)) * GPMC_FCLK (7) L = ((OEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK (8) G = Cycle2CycleDelay * GPMC_FCLK * (TimeParaGranularity +1) (9) I = ((OEOffTime + (n - 1) * PageBurstAccessTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK (10) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK (11) E = ((WEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK (12) F = ((WEOffTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 233 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com GPMC_FCLK gpmc_clk FA5 FA1 gpmc_csi FA9 Valid Address gpmc_a[27:1] FA0 FA10 gpmc_ben0 Valid gpmc_ben1 Valid FA0 FA10 FA3 FA12 gpmc_advn_ale FA4 FA13 gpmc_oen_ren gpmc_ad[15:0] Data IN 0 Data IN 0 gpmc_waitj FA15 FA14 DIR OUT IN OUT GPMC_07 Figure 7-13. GPMC / NOR Flash - Asynchronous Read - Single Word Timing(1)(2)(3) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 234 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 GPMC_FCLK gpmc_clk FA5 FA5 FA1 FA1 gpmc_csi FA16 FA9 FA9 gpmc_a[27:1] Address 0 Address 1 FA0 FA0 FA10 FA10 gpmc_ben0 Valid FA0 FA0 gpmc_ben1 Valid Valid Valid FA10 FA10 FA3 FA3 FA12 FA12 gpmc_advn_ale FA4 FA4 FA13 FA13 gpmc_oen_ren gpmc_ad[15:0] Data Upper gpmc_waitj FA15 FA15 FA14 DIR OUT FA14 IN OUT IN GPMC_08 (1)(2)(3) Figure 7-14. GPMC / NOR Flash - Asynchronous Read - 32-bit Timing (1) In “gpmc_csi”, i = 0 to 7. In “gpmc_waitj”, j = 0 to 1. (2) FA5 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value should be stored inside AccessTime register bits field (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 235 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com GPMC_FCLK gpmc_clk FA21 FA20 FA20 FA20 FA1 gpmc_csi FA9 Add0 gpmc_a[27:1] Add1 Add2 Add3 D0 D1 D2 Add4 FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA12 gpmc_advn_ale FA18 FA13 gpmc_oen_ren gpmc_ad[15:0] D3 D3 gpmc_waitj FA15 FA14 DIR OUT IN OUT SPRS91v_GPMC_09 Figure 7-15. GPMC / NOR Flash - Asynchronous Read - Page Mode 4x16-bit Timing(1)(2)(3)(4) (1) In “gpmc_csi”, i = 0 to 7. In “gpmc_waitj”, j = 0 to 1 (2) FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data will be internally sampled by active functional clock edge. FA21 calculation is detailled in a separated application note and should be stored inside AccessTime register bits field. (3) FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of GPMC functional clock cycles. After each access to input Page Data, next input Page Data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input Page Data (excluding first input Page Data). FA20 value should be stored in PageBurstAccessTime register bits field. (4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally (5) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 236 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 gpmc_fclk gpmc_clk FA1 gpmc_csi FA9 Valid Address gpmc_a[27:1] FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA3 FA12 gpmc_advn_ale FA27 FA25 gpmc_wen FA29 Data OUT gpmc_ad[15:0] gpmc_waitj DIR OUT GPMC_10 Figure 7-16. GPMC / NOR Flash - Asynchronous Write - Single Word Timing(1) (1) In “gpmc_csi”, i = 0 to 7. In “gpmc_waitj”, j = 0 to 1. (2) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 237 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com GPMC_FCLK gpmc_clk FA1 FA5 gpmc_csi FA9 gpmc_a27 gpmc_a[10:1] Address (MSB) FA0 FA10 gpmc_ben0 Valid FA0 FA10 Valid gpmc_ben1 FA3 FA12 gpmc_advn_ale FA4 FA13 gpmc_oen_ren FA29 gpmc_ad[15:0] FA37 Address (LSB) Data IN Data IN FA15 FA14 DIR OUT IN OUT gpmc_waitj GPMC_11 Figure 7-17. GPMC / Multiplexed NOR Flash - Asynchronous Read - Single Word Timing(1)(2)(3) (1) In “gpmc_csi”, i = 0 to 7. In “gpmc_waitj”, j = 0 to 1 (2) FA5 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value should be stored inside AccessTime register bits field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 238 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 gpmc_fclk gpmc_clk FA1 gpmc_csi FA9 gpmc_a27 gpmc_a[10:1] Address (MSB) FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA3 FA12 gpmc_advn_ale FA27 FA25 gpmc_wen FA29 FA28 Valid Address (LSB) gpmc_ad[15:0] Data OUT gpmc_waitj OUT DIR GPMC_12 Figure 7-18. GPMC / Multiplexed NOR Flash - Asynchronous Write - Single Word Timing(1) (1) In “gpmc_csi”, i = 0 to 7. In “gpmc_waitj”, j = 0 to 1. (2) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 7.11.3 GPMC/NAND Flash Interface Asynchronous Timing CAUTION The I/O Timings provided in this section are valid only for some GPMC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-28 and Table 7-29 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 7-19, Figure 7-20, Figure 7-21 and Figure 7-22). Table 7-28. GPMC/NAND Flash Interface Timing Requirements NO. GNF12 PARAMETER DESCRIPTION tacc(DAT) Data maximum access time (GPMC_FCLK Cycles) - tsu(DV-OEH) Setup time, read gpmc_ad[15:0] valid before gpmc_oen_ren high - th(OEH-DV) Hold time, read gpmc_ad[15:0] valid after gpmc_oen_ren high MIN MAX J (1) UNIT cycles 1.9 ns 1 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 239 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) J = AccessTime * (TimeParaGranularity + 1) Table 7-29. GPMC/NAND Flash Interface Switching Characteristics NO. MIN MAX UNIT - tr(DO) PARAMETER Rising time, gpmc_ad[15:0] output data DESCRIPTION 0.447 4.067 ns - 0.43 4.463 ns tf(DO) Fallling time, gpmc_ad[15:0] output data GNF0 tw(nWEV) Pulse duration, gpmc_wen valid time GNF1 td(nCSV-nWEV) Delay time, gpmc_cs[7:0] valid to gpmc_wen valid A B-2 (2) (1) ns B+4 (2) ns ns GNF2 td(CLEH-nWEV) Delay time, gpmc_ben[1:0] high to gpmc_wen valid C-2 (3) C+4 (3) GNF3 td(nWEV-DV) Delay time, gpmc_ad[15:0] valid to gpmc_wen valid D-2 (4) D+4 (4) ns GNF4 td(nWEIV-DIV) Delay time, gpmc_wen invalid to gpmc_ad[15:0] invalid E-2 (5) E+4 (5) ns GNF5 td(nWEIV-CLEIV) Delay time, gpmc_wen invalid to gpmc_ben[1:0] invalid F-2 (6) F+4 (6) ns ns GNF6 td(nWEIV-nCSIV) Delay time, gpmc_wen invalid to gpmc_cs[7:0] invalid G-2 (7) G+4 (7) GNF7 td(ALEH-nWEV) Delay time, gpmc_advn_ale high to gpmc_wen valid C-2 (3) C+4 (3) ns GNF8 td(nWEIV-ALEIV) Delay time, gpmc_wen invalid to gpmc_advn_ale invalid F-2 (6) F+4 (6) ns GNF9 tc(nWE) Cycle time, write cycle time GNF10 td(nCSV-nOEV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren valid GNF13 tw(nOEV) Pulse duration, gpmc_oen_ren valid time GNF14 tc(nOE) Cycle time, read cycle time GNF15 td(nOEIV-nCSIV) Delay time, gpmc_oen_ren invalid to gpmc_cs[7:0] invalid H I-2 M-2 (9) (12) (8) I+4 (9) ns ns K (10) ns L (11) ns M+4 (12) ns (1) A = (WEOffTime - WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK (2) B = ((WEOnTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - CSExtraDelay)) * GPMC_FCLK (3) C = ((WEOnTime - ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay - ADVExtraDelay)) * GPMC_FCLK (4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK (5) E = (WrCycleTime - WEOffTime * (TimeParaGranularity + 1) - 0.5 * WEExtraDelay ) * GPMC_FCLK (6) F = (ADVWrOffTime - WEOffTime * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay - WEExtraDelay ) * GPMC_FCLK (7) G = (CSWrOffTime - WEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay - WEExtraDelay ) * GPMC_FCLK (8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK (9) I = ((OEOffTime + (n - 1) * PageBurstAccessTime - CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay - CSExtraDelay)) * GPMC_FCLK (10) K = (OEOffTime - OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK (11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK (12) M = (CSRdOffTime - OEOffTime * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay - OEExtraDelay ) * GPMC_FCLK 240 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 GPMC_FCLK GNF1 GNF6 GNF2 GNF5 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF0 gpmc_wen GNF3 GNF4 Command gpmc_ad[15:0] GPMC_13 (1) Figure 7-19. GPMC / NAND Flash - Command Latch Cycle Timing (1) In gpmc_csi, i = 0 to 7. GPMC_FCLK GNF1 GNF6 GNF7 GNF8 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF9 GNF0 gpmc_wen GNF3 gpmc_ad[15:0] GNF4 Address GPMC_14 Figure 7-20. GPMC / NAND Flash - Address Latch Cycle Timing(1) (1) In gpmc_csi, i = 0 to 7. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 241 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com GPMC_FCLK GNF12 GNF10 GNF15 gpmc_csi gpmc_ben0 gpmc_advn_ale GNF14 GNF13 gpmc_oen_ren gpmc_ad[15:0] DATA gpmc_waitj GPMC_15 Figure 7-21. GPMC / NAND Flash - Data Read Cycle Timing(1)(2)(3) (1) GNF12 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field. (2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (3) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. GPMC_FCLK GNF1 GNF6 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF9 GNF0 gpmc_wen GNF3 GNF4 gpmc_ad[15:0] DATA GPMC_16 (1) Figure 7-22. GPMC / NAND Flash - Data Write Cycle Timing (1) In gpmc_csi, i = 0 to 7. NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. 242 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Virtual IO Timings Modes must be used to guaranteed some IO timings for GPMC. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-30 Virtual Functions Mapping for GPMC for a definition of the Virtual modes. Table 7-30 presents the values for DELAYMODE bitfield. Table 7-30. Virtual Functions Mapping for GPMC BALL BALL NAME Delay Mode Value MUXMODE GPMC_VIRTUAL1 0 1 gpmc_cs6 N1 gpmc_advn_al e 15 gpmc_advn_al e H3 gpmc_ad15 13 gpmc_ad15 L3 gpmc_ad6 13 gpmc_ad6 L5 gpmc_ad2 13 gpmc_ad2 E6 vin2a_d9 9 M3 gpmc_wen 15 gpmc_wen H2 gpmc_ad14 13 gpmc_ad14 R3 gpmc_a13 15 gpmc_a13 N7 gpmc_a8 14 gpmc_a8 T2 gpmc_a14 15 gpmc_a14 L6 gpmc_ad4 13 gpmc_ad4 H4 gpmc_a26 15 gpmc_a26 M6 gpmc_ad0 13 gpmc_ad0 N2 gpmc_wait0 15 gpmc_wait0 F6 vin2a_d11 9 M2 gpmc_ad1 13 gpmc_ad1 J3 gpmc_ad13 13 gpmc_ad13 T6 gpmc_a2 14 gpmc_a2 gpmc_ad5 L4 gpmc_ad5 13 F5 vin2a_d8 9 T1 gpmc_cs0 15 G1 vin2a_hsync0 9 2 3 5 6 gpmc_wait1 gpmc_a2 gpmc_a23 14(1) 14(1) gpmc_a25 gpmc_a20 gpmc_a23 gpmc_a26 gpmc_cs0 gpmc_a27 P6 gpmc_a4 14 gpmc_a4 N6 gpmc_ben0 15 gpmc_ben0 R5 gpmc_a6 14 gpmc_a6 U2 gpmc_a15 15 gpmc_a15 J2 gpmc_ad11 13 gpmc_ad11 gpmc_cs4 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 243 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-30. Virtual Functions Mapping for GPMC (continued) BALL 244 BALL NAME Delay Mode Value MUXMODE GPMC_VIRTUAL1 0 1 2 U1 gpmc_a16 15 gpmc_a16 T9 gpmc_a1 14 gpmc_a1 J4 gpmc_a24 15 gpmc_a24 gpmc_a18 J7 gpmc_a23 15 gpmc_a23 gpmc_a17 L1 gpmc_ad8 13 gpmc_ad8 J1 gpmc_ad10 13 gpmc_ad10 H1 gpmc_ad12 13 gpmc_ad12 M7 gpmc_a20 15 gpmc_a20 D3 vin2a_d10 9 3 5 6 14(1) 14(1) gpmc_a14 gpmc_a24 P1 gpmc_cs3 14 gpmc_cs3 M5 gpmc_oen_ren 15 gpmc_oen_ren R4 gpmc_a9 14 gpmc_a9 gpmc_a1 H6 gpmc_cs1 15 gpmc_cs1 M1 gpmc_ad3 13 gpmc_ad3 gpmc_a22 L2 gpmc_ad7 13 gpmc_ad7 P5 gpmc_a7 14 gpmc_a7 T7 gpmc_a3 14 gpmc_a3 M4 gpmc_ben1 15 gpmc_ben1 gpmc_cs5 P7 gpmc_clk 15 gpmc_clk gpmc_cs7 K6 gpmc_a22 15 gpmc_a22 P2 gpmc_cs2 15 gpmc_cs2 H7 vin2a_fld0 11 N9 gpmc_a10 14 gpmc_a10 P4 gpmc_a12 15 gpmc_a12 P3 gpmc_a17 15 gpmc_a17 R9 gpmc_a5 14 gpmc_a5 J5 gpmc_a21 15 gpmc_a21 gpmc_a15 H5 gpmc_a27 15 gpmc_a27 gpmc_a21 K2 gpmc_ad9 13 gpmc_ad9 K7 gpmc_a19 15 gpmc_a19 gpmc_a13 J6 gpmc_a25 15 gpmc_a25 gpmc_a19 R6 gpmc_a0 14 gpmc_a0 gpmc_a3 gpmc_wait1 gpmc_a16 gpmc_a27 gpmc_a18 gpmc_a0 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-30. Virtual Functions Mapping for GPMC (continued) BALL BALL NAME Delay Mode Value GPMC_VIRTUAL1 MUXMODE 0 1 E1 vin2a_clk0 11 R2 gpmc_a18 15 gpmc_a18 P9 gpmc_a11 14 gpmc_a11 2 3 5 6 14(1) 14(1) gpmc_a27 gpmc_a17 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 245 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) Some signals listed are virtual functions that present alternate multiplexing options. These virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT registers. For more information on how to use these options, please refer to Device TRM, Chapter Control Module, Section Pad Configuration Registers. 7.12 Timers The device has 16 general-purpose (GP) timers (TIMER1 - TIMER16), two watchdog timers, and a 32-kHz synchronized timer (COUNTER_32K) that have the following features: • Dedicated input trigger for capture mode and dedicated output trigger/pulse width modulation (PWM) signal • Interrupts generated on overflow, compare, and capture • Free-running 32-bit upward counter • Supported modes: – Compare and capture modes – Auto-reload mode – Start-stop mode • On-the-fly read/write register (while counting) The device has two system watchdog timer (WD_TIMER1 and WD_TIMER2) that have the following features: • Free-running 32-bit upward counter • On-the-fly read/write register (while counting) • Reset upon occurrence of a timer overflow condition The device includes one instance of the 32-bit watchdog timer: WD_TIMER2, also called the MPU watchdog timer. The watchdog timer is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop. NOTE For additional information on the Timer Module, see the Device TRM. 7.13 Inter-Integrated Circuit Interface (I2C) The device includes 6 inter-integrated circuit (I2C) modules which provide an interface to other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus™) specification version 2.1. External components attached to this 2-wire serial bus can transmit/receive 8-bit data to/from the device through the I2C module. NOTE Note that, on I2C1 and I2C2, due to characteristics of the open drain IO cells, HS mode is not supported. NOTE Inter-integrated circuit i (i=1 to 6) module is also referred to as I2Ci. NOTE For more information, see the Multimaster High-Speed I2C Controller section of the Device TRM. 246 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-31, Table 7-32 and Figure 7-23 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-31. Timing Requirements for I2C Input Timings(1) NO. 1 PARAMETER STANDARD MODE DESCRIPTION MIN FAST MODE MAX MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 µs 2 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs 3 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 µs 4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs 5 tw(SCLH) Pulse duration, SCL high 4 0.6 µs (2) 6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 7 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0(3) 8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300(3) ns 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300(3) ns 11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300(3) ns 12 tf(SCL) Fall time, SCL 300 20 + 0.1Cb 300(3) ns 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 14 tw(SP) Pulse duration, spike (must be suppressed) 15 (5) Cb 100 3.45(4) ns 0(3) 0.9(4) 1.3 µs (5) (5) (5) (5) 4 0.6 µs 0 Capacitive load for each bus line µs 400 50 ns 400 pF (1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. (2) A Fast-mode I2C-bus™ device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH)= 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. (3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. (4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. (5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Table 7-32. Timing Requirements for I2C HS-Mode (I2C3/4/5/6 Only)(1) NO. PARAMETER DESCRIPTION 1 tc(SCL) Cycle time, SCL 2 tsu(SCLH-SDAL) 3 Cb = 100 pF MAX MIN MAX Cb = 400 pF (2) MIN UNIT MAX 0.294 0.588 µs Set-up time, SCL high before SDA low (for a repeated START condition) 160 160 ns th(SDAL-SCLL) Hold time, SCL low after SDA low (for a repeated START condition) 160 160 ns 4 tw(SCLL) LOW period of the SCLH clock 160 320 ns 5 tw(SCLH) HIGH period of the SCLH clock 60 120 ns 6 tsu(SDAV-SCLH) Setup time, SDA valid vefore SCL high 10 10 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 247 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-32. Timing Requirements for I2C HS-Mode (I2C3/4/5/6 Only)(1) (continued) NO. PARAMETER DESCRIPTION Cb = 400 pF (2) Cb = 100 pF MAX MIN MAX (3) 7 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for a STOP condition) 160 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb (2) Capacitive load for SDAH and SCLH lines 16 Cb Capacitive load for SDAH + SDA line and SCLH + SCL line MIN 70 0 UNIT MAX (3) 150 ns 160 0 10 ns 0 10 ns 100 400 pF 400 400 pF (1) I2C HS-Mode is only supported on I2C3/4/5/6. I2C HS-Mode is not supported on I2C1/2. (2) For bus line loads Cb between 100 and 400 pF the timing parameters must be linearly interpolated. (3) A device must internally provide a Data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time. 9 11 I2Ci_SDA 6 8 14 4 13 5 10 I2Ci_SCL 1 12 3 7 2 3 Stop Start Repeated Start Stop SPRS906_TIMING_I2C_01 Figure 7-23. I2C Receive Timing Table 7-33 and Figure 7-24 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-33. Switching Characteristics Over Recommended Operating Conditions for I2C Output Timings(2) NO. 16 PARAMETER DESCRIPTION STANDARD MODE MIN MAX FAST MODE MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 µs 17 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs 18 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 µs 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs 20 tw(SCLH) Pulse duration, SCL high 4 0.6 µs 21 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 100 ns 22 th(SCLL-SDAV) Hold time, SDA valid after SCL low (for I2C bus devices) 23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 248 0 4.7 3.45 0 1.3 0.9 µs µs Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-33. Switching Characteristics Over Recommended Operating Conditions for I2C Output Timings(2) (continued) NO. PARAMETER STANDARD MODE DESCRIPTION MIN FAST MODE MAX MIN MAX UNIT 24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300(3) ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300(3) ns 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300(3) ns 27 tf(SCL) Fall time, SCL 300 20 + 0.1Cb 300(3) ns 28 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 29 Cp Capacitance for each I2C pin (1) (3) (1) (3) (1) (3) (1) (3) 4 0.6 µs 10 10 pF (1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. (2) Software must properly configure the I2C module registers to achieve the timings shown in this table. See the Device TRM for details. (3) These timings apply only to I2C1 and I2C2. I2C3, I2C4, I2C5 and I2C6 use standard LVCMOS buffers to emulate open-drain buffers and their rise/fall times should be referenced in the device IBIS model. NOTE I2C emulation is achieved by configuring the LVCMOS buffers to output Hi-Z instead of driving high when transmitting logic-1. 24 26 I2Ci_SDA 21 23 19 28 20 25 I2Ci_SCL 27 16 18 22 17 18 Stop Start Repeated Start Stop SPRS906_TIMING_I2C_02 Figure 7-24. I2C Transmit Timing 7.14 HDQ / 1-Wire Interface (HDQ1W) The module is intended to work with both HDQ and 1-Wire protocols. The protocols use a single wire to communicate between the master and the slave. The protocols employ an asynchronous return to one mechanism where, after any command, the line is pulled high. NOTE For more information, see the HDQ / 1-Wire section of the Device TRM. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 249 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 7.14.1 HDQ / 1-Wire - HDQ Mode Table 7-34 and Table 7-35 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 7-25, Figure 7-26, Figure 7-27 and Figure 7-28). Table 7-34. HDQ/1-Wire Timing Requirements-HDQ Mode NO. MIN MAX UNIT 1 tCYCH PARAMETER Read bit window timing DESCRIPTION 190 250 µs 2 tHW1 Read one data valid after HDQ low 32(2) 66(2) µs (2) 3 tHW0 Read zero data hold after HDQ low 70 4 tRSPS Response time from HDQ slave device(1) 190 (2) 145 320 µs µs (1) Defined by software. (2) If the HDQ slave device drives a logic-low state after tHW0 maximum, it can be interpreted as a break pulse. For more information see "HDQ / 1-Wire Switching Characteristics - HDQ Mode" and the HDQ/1-Wire chapter of the TRM. Table 7-35. HDQ / 1-Wire Switching Characteristics - HDQ Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT 5 tB Break timing 190 µs 6 tBR Break recovery time 40 µs 7 tCYCD Write bit windows timing 190 8 tDW1 Write one data valid after HDQ low 0.5 50 µs 9 tDW0 Write zero data hold after HDQ low 86 145 µs tB µs tBR HDQ SPRS906_TIMING_HDQ1W_01 Figure 7-25. HDQ Break and Break Recovery Timing - HDQ Interface Writing to Slave tCYCH tHW0 tHW1 HDQ SPRS906_TIMING_HDQ1W_02 Figure 7-26. Device HDQ Interface Bit Read Timing (Data) tCYCD tDW0 tDW1 HDQ SPRS906_TIMING_HDQ1W_03 Figure 7-27. Device HDQ Interface Bit Write Timing (Command / Address or Data) 250 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Command_byte_written Data_byte_received tRSPS 0_(LSB) Break 1 6 1 7_(MSB) 0_(LSB) 6 HDQ SPRS906_TIMING_HDQ1W_04 Figure 7-28. HDQ Communication Timing 7.14.2 HDQ/1-Wire-1-Wire Mode Table 7-36 and Table 7-37 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 7-29, Figure 7-30 and Figure 7-31). Table 7-36. HDQ / 1-Wire Timing Requirements - 1-Wire Mode NO. MIN MAX UNIT 10 tPDH PARAMETER Presence pulse delay high DESCRIPTION 15 60 µs 11 tPDL Presence pulse delay low 60 240 µs 12 tRDV Read data valid time tLOWR 15 µs 13 tREL Read data release time 0 45 µs Table 7-37. HDQ / 1-Wire Switching Characteristics - 1-Wire Mode NO. MIN MAX UNIT 14 tRSTL PARAMETER Reset time low DESCRIPTION 480 960 µs 15 tRSTH Reset time high 480 16 tSLOT Bit cycle time 60 120 µs 17 tLOW1 Write bit-one time 1 15 µs 18 tLOW0 Write bit-zero time(2) 60 120 µs 19 tREC Recovery time 1 20 tLOWR Read bit strobe time(1) 1 µs µs 15 µs (1) tLOWR (low pulse sent by the master) must be short as possible to maximize the master sampling window. (2) tLOWR must be less than tSLOT. tRSTH tPDH tRTSL tPDL 1-WIRE SPRS906_TIMING_HDQ1W_05 Figure 7-29. 1-Wire-Break (Reset) tSLOT_and_tREC tRDV_and_tREL tLOWR 1-WIRE SPRS906_TIMING_HDQ1W_06 Figure 7-30. 1-Wire-Read Bit (Data) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 251 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com tSLOT_and_tREC tLOW0 tLOW1 1-WIRE SPRS906_TIMING_HDQ1W_07 Figure 7-31. 1-Wire-Write Bit-One Timing (Command / Address or Data) 7.15 Universal Asynchronous Receiver Transmitter (UART) The UART performs serial-to-parallel conversions on data received from a peripheral device and parallelto-serial conversion on data received from the CPU. There are 10 UART modules in the device. Only one UART supports IrDA features. Each UART can be used for configuration and data exchange with a number of external peripheral devices or interprocessor communication between devices The UARTi (where i = 1 to 10) include the following features: • 16C750 compatibility • 64-byte FIFO buffer for receiver and 64-byte FIFO for transmitter • Baud generation based on programmable divisors N (where N = 1…16 384) operating from a fixed functional clock of 48 MHz or 192 MHz • Break character detection and generation • Configurable data format: – Data bit: 5, 6, 7, or 8 bits – Parity bit: Even, odd, none – Stop-bit: 1, 1.5, 2 bit(s) • Flow control: Hardware (RTS/CTS) or software (XON/XOFF) • Only UART1 module has extended modem control signals (CD, RI, DTR, DSR) • Only UART3 supports IrDA NOTE For more information, see the UART section of the Device TRM. Table 7-38, Table 7-39 and Figure 7-32 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-38. Timing Requirements for UART NO. PARAMETER DESCRIPTION MIN (1) MAX UNIT (1) ns 1.05U(1) ns 4 tw(RX) Pulse width, receive data bit, 15/30/100pF high or low 0.96U 5 tw(CTS) Pulse width, receive start bit, 15/30/100pF high or low 0.96U(1) 1.05U td(RTS-TX) Delay time, transmit start bit to transmit data P(2) ns td(CTS-TX) Delay time, receive start bit to transmit data P(2) ns (1) U = UART baud time = 1/programmed baud rate (2) P = Clock period of the reference clock (FCLK, usually 48 MHz or 192MHz). Table 7-39. Switching Characteristics Over Recommended Operating Conditions for UART NO. PARAMETER DESCRIPTION MIN 15 pF f(baud) 2 252 tw(TX) Maximum programmable baud rate MAX 30 pF 0.23 100 pF 0.115 Pulse width, transmit data bit, 15/30/100 pF high or low UNIT 12 U - 2(1) U + 2(1) MHz ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-39. Switching Characteristics Over Recommended Operating Conditions for UART (continued) NO. 3 PARAMETER tw(RTS) DESCRIPTION Pulse width, transmit start bit, 15/30/100 pF high or low MIN MAX UNIT U - 2(1) U + 2(1) ns (1) U = UART baud time = 1/programmed baud rate 3 2 UARTi_TXD Start Bit Data Bits 5 4 UARTi_RXD Start Bit Data Bits SPRS906_TIMING_UART_01 Figure 7-32. UART Timing 7.16 Multichannel Serial Peripheral Interface (McSPI) The McSPI is a master/slave synchronous serial bus. There are four separate McSPI modules (SPI1, SPI2, SPI3, and SPI4) in the device. All these four modules support up to four external devices (four chip selects) and are able to work as both master and slave. The McSPI modules include the following main features: • Serial clock with programmable frequency, polarity, and phase for each channel • Wide selection of SPI word lengths, ranging from 4 to 32 bits • Up to four master channels, or single channel in slave mode • Master multichannel mode: – Full duplex/half duplex – Transmit-only/receive-only/transmit-and-receive modes – Flexible input/output (I/O) port controls per channel – Programmable clock granularity – SPI configuration per channel. This means, clock definition, polarity enabling and word width • Power management through wake-up capabilities • Programmable timing control between chip select and external clock generation • Built-in FIFO available for a single channel. • Each SPI module supports multiple chip select pins spim_cs[i], where i = 1 to 4. NOTE For more information, see the Serial Communication Interface section of the device TRM. NOTE The McSPIm module (m = 1 to 4) is also referred to as SPIm. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 253 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com CAUTION The I/O timings provided in this section are applicable for all combinations of signals for SPI1 and SPI2. However, the timings are valid only for SPI3 and SPI4 if signals within a single IOSET are used. The IOSETS are defined in Table 7-42. Table 7-40, Figure 7-33 and Figure 7-34 present Timing Requirements for McSPI - Master Mode. Table 7-40. Timing Requirements for SPI - Master Mode (1) NO. PARAMETER DESCRIPTION MODE (1) (2) SM1 tc(SPICLK) Cycle time, spi_sclk SPI1/2/3/ 4 SM2 tw(SPICLKL) Typical Pulse duration, spi_sclk low SM3 tw(SPICLKH) Typical Pulse duration, spi_sclk high SM4 tsu(MISO-SPICLK) Setup time, spi_d[x] valid before spi_sclk active edge (1) (1) MIN MAX ns 0.5*P-1 ns 0.5*P-1 ns 3.5 ns 20.8 (4) (1) (4) (1) SM5 th(SPICLK-MISO) Hold time, spi_d[x] valid after spi_sclk active edge SM6 td(SPICLK-SIMO) Delay time, spi_sclk active edge to spi_d[x] transition 3.7 (1) SM7 td(CS-SIMO) Delay time, spi_cs[x] active edge to spi_d[x] transition SM8 td(CS-SPICLK) Delay time, spi_cs[x] active to spi_sclk first edge (1) UNIT (3) ns SPI1 -3.57 4.1 ns SPI2 -3.9 3.6 ns SPI3 -4.9 4.7 SPI4 -4.3 4.5 MASTER _PHA0 B-4.2 (6) ns MASTER _PHA1 A-4.2 (7) ns MASTER _PHA0 A-4.2 (7) ns MASTER _PHA1 B-4.2 (6) ns 5 ns (5) (5) SM9 td(SPICLK-CS) Delay time, spi_sclk last edge to spi_cs[x] inactive (1) (5) (5) (1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data. (2) Related to the SPI_CLK maximum frequency. (3) 20.8ns cycle time = 48MHz (4) P = SPICLK period. (5) SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register. (6) B = (TCS + 0.5) * TSPICLKREF * Fratio, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even ≥2. (7) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A = (TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. 254 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 PHA=0 EPOL=1 spim_cs(OUT) SM1 SM3 SM8 spim_sclk(OUT) SM2 SM9 POL=0 SM3 SM1 SM2 POL=1 spim_sclk(OUT) SM7 SM6 Bit n-1 spim_d(OUT) SM6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(OUT) SM2 SM1 SM8 spim_sclk(OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 spim_sclk(OUT) SM6 Bit n-1 spim_d(OUT) SM6 Bit n-2 SM6 Bit n-3 SM6 Bit 1 Bit0 SPRS906_TIMING_McSPI_01 Figure 7-33. McSPI - Master Mode Transmit Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 255 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com PHA=0 EPOL=1 spim_cs(OUT) SM1 SM3 SM8 spim_sclk(OUT) SM2 SM9 POL=0 SM3 SM1 SM2 POL=1 spim_sclk(OUT) SM5 SM5 spim_d(IN) SM4 SM4 Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(OUT) SM2 SM1 SM8 spim_sclk(OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 spim_sclk(OUT) SM5 SM4 SM4 Bit n-1 spim_d(IN) SM5 Bit n-2 Bit n-3 Bit 1 Bit 0 SPRS906_TIMING_McSPI_02 Figure 7-34. McSPI - Master Mode Receive Table 7-41, Figure 7-35 and Figure 7-36 present Timing Requirements for McSPI - Slave Mode. Table 7-41. Timing Requirements for SPI - Slave Mode PARAMETER DESCRIPTION SS1 (1) NO. tc(SPICLK) Cycle time, spi_sclk MODE MIN SS2 (1) tw(SPICLKL) Typical Pulse duration, spi_sclk low 0.45*P (4) ns SS3 (1) tw(SPICLKH) Typical Pulse duration, spi_sclk high 0.45*P (4) ns SS4 (1) 62.5 tsu(SIMO-SPICLK) Setup time, spi_d[x] valid before spi_sclk active edge 5 th(SPICLK-SIMO) Hold time, spi_d[x] valid after spi_sclk active edge 5 SS6 (1) td(SPICLK-SOMI) Delay time, spi_sclk active edge to mcspi_somi transition SS7 256 td(CS-SOMI) Delay time, spi_cs[x] active edge to mcspi_somi transition UNIT ns (3) SS5 (1) (5) MAX (2) ns ns SPI1/2/3 2 26.6 ns SPI4 2 20.1 ns 20.95 ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-41. Timing Requirements for SPI - Slave Mode (continued) NO. SS8 (1) SS9 (1) PARAMETER DESCRIPTION tsu(CS-SPICLK) Setup time, spi_cs[x] valid before spi_sclk first edge MODE th(SPICLK-CS) Hold time, spi_cs[x] valid after spi_sclk last edge MIN MAX UNIT 5 ns SPI1/2 5 ns SPI3 7.5 ns SPI4 6 ns (1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data. (2) When operating the SPI interface in RX-only mode, the minimum Cycle time is 26ns (38.4MHz) (3) 62.5ns Cycle time = 16 MHz (4) P = SPICLK period. (5) PHA = 0; SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register. PHA=0 EPOL=1 spim_cs(IN) SS2 SS1 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS2 SS1 SS3 POL=1 spim_sclk(IN) SS7 SS6 Bit n-1 spim_d(OUT) SS6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(IN) SS2 SS1 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS3 SS1 SS2 POL=1 spim_sclk(IN) SS6 spim_d(OUT) Bit n-1 SS6 Bit n-2 SS6 Bit n-3 SS6 Bit 1 Bit 0 SPRS906_TIMING_McSPI_03 Figure 7-35. McSPI - Slave Mode Transmit Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 257 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com PHA=0 EPOL=1 spim_cs(IN) SS2 SS1 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS2 SS1 SS3 POL=1 spim_sclk(IN) SS5 SS4 SS4 SS5 Bit n-1 spim_d(IN) Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(IN) SS2 SS1 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS3 SS1 SS2 POL=1 spim_sclk(IN) SS4 SS5 SS4 SS5 Bit n-1 spim_d(IN) Bit n-2 Bit n-3 Bit 1 Bit0 SPRS906_TIMING_McSPI_04 Figure 7-36. McSPI - Slave Mode Receive In Table 7-42 are presented the specific groupings of signals (IOSET) for use with SPI3 and SPI4. Table 7-42. McSPI3/4 IOSETs SIGNALS IOSET1 IOSET2 IOSET3 BALL MUX BALL MUX spi3_cs0 D11 8 V9 7 spi3_cs1 B11 8 AC3 1 spi3_cs2 F11 spi3_cs3 A10 spi3_d0 C11 8 W9 spi3_d1 B10 8 spi3_sclk E11 8 BALL IOSET4 IOSET5 MUX BALL MUX BALL MUX A12 3 D17 2 AC9 1 E14 3 B11 8 AC3 1 8 F11 8 F11 8 8 A10 8 A10 8 7 B13 3 G16 2 AC6 1 Y1 7 A11 3 A21 2 AC7 1 V2 7 B12 3 C18 2 AC4 1 7 AA4 2 AB5 1 McSPI3 McSPI4 spi4_cs0 258 P9 8 F3 8 U6 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-42. McSPI3/4 IOSETs (continued) SIGNALS IOSET1 IOSET2 BALL MUX spi4_cs1 P4 spi4_cs2 R3 spi4_cs3 IOSET3 BALL MUX 8 P4 8 R3 T2 8 spi4_d0 N9 spi4_d1 R4 spi4_sclk N7 IOSET4 BALL MUX 8 Y1 8 W9 T2 8 8 F2 8 G6 8 G1 IOSET5 BALL MUX BALL MUX 8 Y1 8 W9 8 Y1 8 8 W9 V9 8 8 V9 8 V9 8 8 V6 8 U7 7 AB3 2 AB8 1 7 AB9 2 AD6 8 V7 1 7 AA3 2 AC8 1 7.17 Quad Serial Peripheral Interface (QSPI) The Quad SPI (QSPI) module is a type of SPI module that allows single, dual or quad read access to external SPI devices. This module has a memory mapped register interface, which provides a direct interface for accessing data from external SPI devices and thus simplifying software requirements. It works as a master only. There is one QSPI module in the device and it is primary intended for fast booting from quad-SPI flash memories. General SPI features: • Programmable clock divider • Six pin interface (DCLK, CS_N, DOUT, DIN, QDIN1, QDIN2) • 4 external chip select signals • Support for 3-, 4- or 6-pin SPI interface • Programmable CS_N to DOUT delay from 0 to 3 DCLKs • Programmable signal polarities • Programmable active clock edge • Software controllable interface allowing for any type of SPI transfer NOTE For more information, see the Quad Serial Peripheral Interface section of the Device TRM. CAUTION The I/O Timings provided in this section are only valid when all QSPI Chip Selects used in a system are configured to use the same Clock Mode (either Clock Mode 0 or Clock Mode 3). CAUTION The I/O Timings provided in this section are valid only for some QSPI usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-43 and Table 7-44 Present Timing and Switching Characteristics for Quad SPI Interface. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 259 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-43. Switching Characteristics for QSPI NO. PARAMETER DESCRIPTION MODE MIN Q1 tc(SCLK) Cycle time, sclk Default Timing Mode, Clock Mode 0 11.71 MAX UNIT ns Default Timing Mode, Clock Mode 3 20.8 ns Q2 tw(SCLKL) Pulse duration, sclk low Y*P-1 ns Q3 tw(SCLKH) Pulse duration, sclk high Y*P-1 ns Q4 td(CS-SCLK) Delay time, sclk falling edge to cs active edge, CS3:0 (1) (1) Default Timing Mode -M*P1.6 (2) M*P+2. 6 (2) (3) ns (3) Q5 td(SCLK-CS) Delay time, sclk falling edge to cs inactive edge, CS3:0 Default Timing Mode N*P-1.6 (2) (3) N*P+2. 6 (2) (3) ns Q6 td(SCLK-D0) Delay time, sclk falling edge to d[0] transition Default Timing Mode -1.6 2.6 ns Q7 tena(CS-D0LZ) Enable time, cs active edge to d[0] driven (lo-z) -P-3.5 -P+2.5 ns Q8 tdis(CS-D0Z) Disable time, cs active edge to d[0] tri-stated (hi-z) -P-2.5 -P+2.0 ns Q9 td(SCLK-D0) Delay time, sclk first falling edge to first d[0] transition -1.6 2.6 ns PHA=0 Only, Default Timing Mode (1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals (DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle distortion. The HSDIVIDER on CLKOUTX2_H13 output of DPLL_PER can be used to achieve the desired clock divider ratio. All required details about clock division factor DCLK_DIV can be found in the device-specific Technical Reference Manual. (2) P = SCLK period. (3) M=QSPI_SPI_DC_REG.DDx + 1 when Clock Mode 0. M=QSPI_SPI_DC_REG.DDx when Clock Mode 3. N = 2 when Clock Mode 0. N = 3 when Clock Mode 3. PHA=1 cs Q5 Q1 POL=1 Q4 Q3 Q2 sclk Q15 Q14 Q7 d[0] d[3:1] Q6 Q6 Command Bit n-1 Command Bit n-2 Q12 Q13 Read Data Read Data Bit 1 Bit 0 Q14 Q15 Q12 Q13 Read Data Read Data Bit 1 Bit 0 SPRS85v_TIMING_OSPI1_01 Figure 7-37. QSPI Read (Clock Mode 3) 260 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 PHA=0 cs Q5 Q4 Q1 Q2 POL=0 Q3 sclk POL=0 rtclk Q7 d[0] Q6 Q9 Command Command Bit n-1 Bit n-2 Q12 Q13 Read Data Bit 1 Q12 Q13 Read Data Bit 0 Q12 Q13 Read Data Bit 1 d[3:1] Q12 Q13 Read Data Bit 0 SPRS85v_TIMING_OSPI1_02 Figure 7-38. QSPI Read (Clock Mode 0) CAUTION The I/O Timings provided in this section are valid only for some QSPI usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-44. Timing Requirements for QSPI(3)(2) NO. PARAMETER DESCRIPTION MODE MIN Q2 tsu(D-RTCLK) Setup time, d[3:0] valid before falling rtclk edge Default Timing Mode, Clock Mode 0 4.6 ns tsu(D-SCLK) Setup time, d[3:0] valid before falling sclk edge Default Timing Mode, Clock Mode 3 12.3 ns th(RTCLK-D) Hold time, d[3:0] valid after falling rtclk edge Default Timing Mode, Clock Mode 0 -0.1 ns th(SCLK-D) Hold time, d[3:0] valid after falling sclk edge Default Timing Mode, Clock Mode 3 0.1 ns Q14 tsu(D-SCLK) Setup time, final d[3:0] bit valid before final falling sclk edge Default Timing Mode, Clock Mode 3 12.3-P ns Q15 th(SCLK-D) Hold time, final d[3:0] bit valid after final falling sclk edge Default Timing Mode, Clock Mode 3 0.1+P ns Q13 MAX (1) (1) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated UNIT 261 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) P = SCLK period. (2) Clock Modes 1 and 2 are not supported. (3) The Device captures data on the falling clock edge in Clock Mode 0 and 3, as opposed to the traditional rising clock edge. Although non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that launch data on the falling edge in Clock Modes 0 and 3. PHA=1 cs Q5 POL=1 Q1 Q4 Q3 Q2 sclk Q7 d[0] Command Bit n-1 Write Data Bit 1 Command Bit n-2 Q8 Q6 Q6 Q6 Q6 Write Data Bit 0 d[3:1] SPRS85v_TIMING_OSPI1_03 Figure 7-39. QSPI Write (Clock Mode 3) PHA=0 cs Q5 Q4 POL=0 Q1 Q2 Q3 sclk Q7 d[0] Q9 Q6 Command Command Bit n-1 Bit n-2 Q6 Q8 Q6 Write Data Bit 1 Write Data Bit 0 d[3:1] SPRS85v_TIMING_OSPI1_04 Figure 7-40. QSPI Write (Clock Mode 0) CAUTION The I/O Timings provided in this section are valid only for some QSPI usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. 262 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guaranteed some IO timings for QSPI. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-45 Manual Functions Mapping for QSPI for a definition of the Manual modes. Table 7-45 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-45. Manual Functions Mapping for QSPI BALL BALL NAME QSPI1_MANUAL1 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) T7 gpmc_a3 0 0 CFG_GPMC_A3_OUT qspi1_cs2 1 P6 gpmc_a4 0 0 CFG_GPMC_A4_OUT qspi1_cs3 R3 gpmc_a13 0 0 CFG_GPMC_A13_IN qspi1_rtclk T2 gpmc_a14 2247 1186 CFG_GPMC_A14_IN qspi1_d3 U2 gpmc_a15 2176 1197 CFG_GPMC_A15_IN qspi1_d2 U1 gpmc_a16 2229 1268 CFG_GPMC_A16_IN qspi1_d0 U1 gpmc_a16 0 0 CFG_GPMC_A16_OUT qspi1_d0 P3 gpmc_a17 2251 1217 CFG_GPMC_A17_IN qspi1_d1 R2 gpmc_a18 0 0 CFG_GPMC_A18_OUT qspi1_sclk P2 gpmc_cs2 0 0 CFG_GPMC_CS2_OUT qspi1_cs0 P1 gpmc_cs3 0 0 CFG_GPMC_CS3_OUT qspi1_cs1 7.18 Multichannel Audio Serial Port (McASP) The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I2S) protocols, and intercomponent digital audio interface transmission (DIT). The device have integrated 8 McASP modules (McASP1-McASP8) with: • McASP1 and McASP2 modules supporting 16 channels with independent TX/RX clock/sync domain • McASP3 through McASP8 modules supporting 4 channels with independent TX/RX clock/sync domain NOTE For more information, see the Serial Communication Interface section of the Device TRM. CAUTION The I/O Timings provided in this section are valid only for some McASP usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-46, Table 7-47, Table 7-48 and Figure 7-41 present Timing Requirements for McASP1 to McASP8. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 263 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-46. Timing Requirements for McASP1(1) NO. 1 PARAMETER DESCRIPTION tc(AHCLKRX) Cycle time, AHCLKR/X MODE tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X 4 tw(ACLKRX) Pulse duration, ACLKR/X high or low 5 tsu(AFSRX-ACLK) Setup time, AFSR/X input valid before ACLKR/X 7 8 th(ACLK-AFSRX) Hold time, AFSR/X input valid after ACLKR/X tsu(AXR-ACLK) Setup time, AXR input valid before ACLKR/X th(ACLK-AXR) Hold time, AXR input valid after ACLKR/X MAX 20 2 6 MIN UNIT ns (2) 0.35P ns 20 ns 0.5R - 3 ns ACLKR/X int 20.5 ns ACLKR/X ext in ACLKR/X ext out 4 ns (3) ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 1.7 ns ACLKR/X int 21.6 ns ACLKR/X ext in ACLKR/X ext out 11.5 ns ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 1.8 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. (3) R = ACLKR/X period in ns. Table 7-47. Timing Requirements for McASP2(1) NO. PARAMETER DESCRIPTION 1 tc(AHCLKRX) Cycle time, AHCLKR/X 2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X 4 5 264 tw(ACLKRX) tsu(AFSRX-ACLK) Pulse duration, ACLKR/X high or low Setup time, AFSR/X input valid before ACLKR/X MODE MIN MAX UNIT 20 ns 0.35P ns (2) Any Other Conditions 20 ns ACLKX/AFSX (In Sync Mode), ACLKR/AFSR (In Async Mode), and AXR are all inputs "80M" Virtual IO Timing Modes 12.5 ns Any Other Conditions 0.5R - 3 ns ACLKX/AFSX (In Sync Mode), ACLKR/AFSR (In Async Mode), and AXR are all inputs "80M" Virtual IO Timing Modes 0.38R ns (3) (3) ACLKR/X int 20.3 ns ACLKR/X ext in ACLKR/X ext out 4.5 ns ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes 3 ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-47. Timing Requirements for McASP2(1) (continued) NO. PARAMETER DESCRIPTION 6 th(ACLK-AFSRX) Hold time, AFSR/X input valid after ACLKR/X 7 8 tsu(AXR-ACLK) th(ACLK-AXR) MODE MIN ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 1.8 ns ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes 3 ns Setup time, AXR input valid before ACLKR/X MAX UNIT ACLKR/X int 21.1 ns ACLKR/X ext in ACLKR/X ext out 4.5 ns ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes 3 ns Hold time, AXR input valid after ACLKR/X ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 1.8 ns ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes 3 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. (3) R = ACLKR/X period in ns. Table 7-48. Timing Requirements for McASP3/4/5/6/7/8(1) NO. PARAMETER DESCRIPTION 1 tc(AHCLKRX) Cycle time, AHCLKR/X 2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X 4 tw(ACLKRX) Pulse duration, ACLKR/X high or low 5 tsu(AFSRX-ACLK) Setup time, AFSR/X input valid before ACLKR/X 6 th(ACLK-AFSRX) tsu(AXR-ACLK) 8 th(ACLK-AXR) Hold time, AFSR/X input valid after ACLKR/X Setup time, AXR input valid before ACLKX Hold time, AXR input valid after ACLKX MODE MIN MAX UNIT 20 ns 0.35P ns 20 ns 0.5R - 3 ns (2) (3) ACLKR/X int 19.7 ns ACLKR/X ext in ACLKR/X ext out 5.6 ns ACLKR/X int -1.1 ns ACLKR/X ext in ACLKR/X ext out 2.5 ns ACLKX int (ASYNC=0) 20.3 ns ACLKR/X ext in ACLKR/X ext out 5.1 ns ACLKX int (ASYNC=0) -0.8 ns ACLKR/X ext in ACLKR/X ext out 2.5 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 (NOT SUPPORTED) ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 265 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (3) R = ACLKR/X period in ns. 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0) (A) ACLKR/X (CLKRP = CLKXP = 1) (B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 SPRS906_TIMING_McASP_01 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 7-41. McASP Input Timing Table 7-49, Table 7-50, Table 7-51 and Figure 7-42 present Switching Characteristics Over Recommended Operating Conditions for McASP1 to McASP8. Table 7-49. Switching Characteristics Over Recommended Operating Conditions for McASP1(1) NO. PARAMETER DESCRIPTION 9 tc(AHCLKRX) Cycle time, AHCLKR/X 10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 11 tc(ACLKRX) Cycle time, ACLKR/X 266 MODE MIN MAX UNIT 20 ns 0.5P 2.5 (2) ns 20 ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-49. Switching Characteristics Over Recommended Operating Conditions for McASP1(1) (continued) NO. PARAMETER DESCRIPTION 12 tw(ACLKRX) Pulse duration, ACLKR/X high or low 13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid 14 td(ACLK-AXR) Delay time, ACLKR/X transmit edge to AXR output valid MODE MIN MAX UNIT 0.5P 2.5 (3) ns ACLKR/X int -0.9 6 ns ACLKR/X ext in ACLKR/X ext out 2 23.1 ns ACLKR/X int -1.4 6 ns ACLKR/X ext in ACLKR/X ext out 2 24.2 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. (3) R = ACLKR/X period in ns. Table 7-50. Switching Characteristics Over Recommended Operating Conditions for McASP2 NO. PARAMETER DESCRIPTION 9 tc(AHCLKRX) Cycle time, AHCLKR/X 10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 11 tc(ACLKRX) Cycle time, ACLKR/X 12 tw(ACLKRX) Pulse duration, ACLKR/X high or low 13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid 14 td(ACLK-AXR) Delay time, ACLKR/X transmit edge to AXR output valid MODE MIN (1) MAX UNIT 20 ns 0.5P 2.5 (2) ns 20 ns 0.5P 2.5 (3) ns ACLKR/X int -1 6 ns ACLKR/X ext in ACLKR/X ext out 2 23.2 ns ACLKR/X int -1.3 6 ns ACLKR/X ext in ACLKR/X ext out 2 23.7 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. (3) R = ACLKR/X period in ns. Table 7-51. Switching Characteristics Over Recommended Operating Conditions for McASP3/4/5/6/7/8(1) NO. PARAMETER DESCRIPTION 9 tc(AHCLKRX) Cycle time, AHCLKR/X 10 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 11 tc(ACLKRX) Cycle time, ACLKR/X 12 tw(ACLKRX) Pulse duration, ACLKR/X high or low MODE MIN MAX ns 0.5P 2.5 (2) ns 20 ns 0.5P 2.5 (3) ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated UNIT 20 267 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-51. Switching Characteristics Over Recommended Operating Conditions for McASP3/4/5/6/7/8(1) (continued) NO. PARAMETER DESCRIPTION 13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid 14 td(ACLK-AXR) Delay time, ACLKR/X transmit edge to AXR output valid MODE MIN MAX UNIT ACLKR/X int -0.5 6 ns ACLKR/X ext in ACLKR/X ext out 1.9 24.5 ns ACLKR/X int -1.4 7.1 ns ACLKR/X ext in ACLKR/X ext out 1.1 24.2 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKR/X period in ns. (3) R = ACLKR/X period in ns. 268 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1) (A) ACLKR/X (CLKRP = CLKXP = 0) (B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/T ransmit) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 SPRS906_TIMING_McASP_02 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 7-42. McASP Output Timing Table 7-52 through Table 7-59 explain all cases with Virtual Mode Details for McASP1/2/3/4/5/6/7/8 (see Figure 7-43 through Figure 7-50). Table 7-52. Virtual Mode Case Details for McASP1 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL2_ASYNC_RX See Figure 7-43 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 269 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-52. Virtual Mode Case Details for McASP1 (continued) No. CASE CASE Description Virtual Mode Settings Signals 2 COIFIO Notes Virtual Mode Value CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL2_ASYNC_RX MCASP1_VIRTUAL2_ASYNC_RX 3 CIOFIO CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKR/FSR Default (No Virtual Mode) 4 CIOFOI CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL2_ASYNC_RX AXR(Inputs)/CLKR/FSR Default (No Virtual Mode) See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP1_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP1_VIRTUAL1_SYNC_RX AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- CLKX: Output FSX: Input See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 Table 7-53. Virtual Mode Case Details for McASP2 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input 3 4 COIFIO CIOFIO CIOFOI See Figure 7-43 (1) AXR(Inputs)/CLKR/FSR AXR(Inputs)/CLKR/FSR 2 Default (No Virtual Mode)(1) AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) MCASP2_VIRTUAL4_ASYNC_RX_80M (2) CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP2_VIRTUAL2_ASYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL2_ASYNC_RX AXR(Inputs)/CLKR/FSR Default (No Virtual Mode) CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL2_ASYNC_RX AXR(Inputs)/CLKR/FSR Default (No Virtual Mode) See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) MCASP2_VIRTUAL3_SYNC_RX 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKX/FSX MCASP2_VIRTUAL3_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL3_SYNC_RX(1) AXR(Inputs)/CLKX/FSX MCASP2_VIRTUAL3_SYNC_RX(1) AXR(Inputs)/CLKX/FSX MCASP2_VIRTUAL1_SYNC_RX_80M(2) AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- CLKX: Output FSX: Input See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 (1) Used up to 50MHz. Should also be used in a CI-FI- mixed case where AXR operate as both inputs and outputs (that is, AXR are bidirectional). (2) Used in 80MHz input only mode when AXR, CLKX and FSX are all inputs. 270 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-54. Virtual Mode Case Details for McASP3 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 6 7 8 CO-FOCI-FOCI-FICO-FI- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 Table 7-55. Virtual Mode Case Details for McASP4 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX 7 CI-FI- Default (No Virtual Mode) See Figure 7-47 See Figure 7-48 See Figure 7-49 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 271 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-55. Virtual Mode Case Details for McASP4 (continued) No. 8 CASE CO-FI- CASE Description CLKX: Output FSX: Input Virtual Mode Settings Notes Signals Virtual Mode Value AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 7-50 Table 7-56. Virtual Mode Case Details for McASP5 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 7 8 CI-FICO-FI- Default (No Virtual Mode) See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 Table 7-57. Virtual Mode Case Details for McASP6 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 272 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 7-47 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-57. Virtual Mode Case Details for McASP6 (continued) No. 6 CASE CI-FO- CASE Description Virtual Mode Settings Signals Virtual Mode Value FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX 8 CO-FI- CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) Notes See Figure 7-48 See Figure 7-49 See Figure 7-50 Table 7-58. Virtual Mode Case Details for McASP7 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 Table 7-59. Virtual Mode Case Details for McASP8 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 COIFOI COIFIO CIOFIO CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX See Figure 7-43 See Figure 7-44 See Figure 7-45 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 273 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-59. Virtual Mode Case Details for McASP8 (continued) No. 4 CASE CIOFOI CASE Description Virtual Mode Settings CLKR / FSX: Output CLKX / FSR: Input Notes Signals Virtual Mode Value AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX See Figure 7-46 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- McASP See Figure 7-47 See Figure 7-48 See Figure 7-49 See Figure 7-50 SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_01 Figure 7-43. McASP1-8 COIFOI - ASYNC Mode 274 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_02 Figure 7-44. McASP1-8 COIFIO - ASYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_03 Figure 7-45. McASP1-8 CIOFIO - ASYNC Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 275 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 McASP www.ti.com SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_04 Figure 7-46. McASP1-8 CIOFOI - ASYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_05 Figure 7-47. McASP1-8 CO-FO- - SYNC Mode 276 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_06 Figure 7-48. McASP1-8 CI-FO- - SYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_07 Figure 7-49. McASP1-8 CI-FI- - SYNC Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 277 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 McASP www.ti.com SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA SPRS906_MCASP_uc_08 Figure 7-50. McASP1-8 CO-FI- - SYNC Mode NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. CAUTION The I/O Timings provided in this section are valid only for some McASP usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. 278 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Virtual IO Timings Modes must be used to guaranteed some IO timings for McASP1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-60 Virtual Functions Mapping for McASP1 for a definition of the Virtual modes. Table 7-60 presents the values for DELAYMODE bitfield. Table 7-60. Virtual Functions Mapping for McASP1 BALL BALL NAME Delay Mode Value MUXMODE MCASP1_VIRTUAL1_SYNC_RX MCASP1_VIRTUAL2_ASYNC_RX 0 C14 mcasp1_aclkx 15 14 mcasp1_aclkx E21 gpio6_14 14 13 A13 mcasp1_axr13 15 14 mcasp1_axr13 E12 mcasp1_axr4 14 13 mcasp1_axr4 B26 xref_clk2 14 13 A11 mcasp1_axr9 15 14 D12 mcasp1_axr7 14 13 mcasp1_axr7 E14 mcasp1_axr12 15 14 mcasp1_axr12 F21 gpio6_16 14 13 mcasp1_axr10 mcasp1_axr9 1 2 3 mcasp1_axr8 mcasp1_axr6 mcasp1_axr9 F20 gpio6_15 14 13 C23 xref_clk3 14 13 C12 mcasp1_axr6 14 13 mcasp1_axr6 B13 mcasp1_axr10 15 14 mcasp1_axr10 J14 mcasp1_fsr N/A 14 mcasp1_fsr B12 mcasp1_axr8 15 14 mcasp1_axr8 A12 mcasp1_axr11 15 14 mcasp1_axr11 G13 mcasp1_axr2 14 13 mcasp1_axr2 D14 mcasp1_fsx 15 14 mcasp1_fsx G14 mcasp1_axr14 15 14 mcasp1_axr14 F14 mcasp1_axr15 15 14 mcasp1_axr15 F12 mcasp1_axr1 15 14 mcasp1_axr1 B14 mcasp1_aclkr N/A 14 mcasp1_aclkr mcasp1_axr5 mcasp1_axr7 F13 mcasp1_axr5 14 13 E17 xref_clk1 15 14 G12 mcasp1_axr0 15 14 mcasp1_axr0 J11 mcasp1_axr3 14 13 mcasp1_axr3 D18 xref_clk0 15 14 mcasp1_axr5 mcasp1_axr4 mcasp1_ahclkx Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 279 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Virtual IO Timings Modes must be used to guaranteed some IO timings for McASP2. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-61 Virtual Functions Mapping for McASP2 for a definition of the Virtual modes. Table 7-61 presents the values for DELAYMODE bitfield. Table 7-61. Virtual Functions Mapping for McASP2 BALL BALL NAME Delay Mode Value MUXMODE MCASP2_VIRTUAL1 _SYNC_RX_80M MCASP2_VIRTUAL2 _ASYNC_RX MCASP2_VIRTUAL3 _SYNC_RX MCASP2_VIRTUAL4 _ASYNC_RX_80M 0 B19 mcasp3_axr0 15 14 10 9 B17 mcasp2_axr6 14 13 12 11 mcasp2_axr6 B16 mcasp2_axr5 14 13 12 11 mcasp2_axr5 A18 mcasp2_fsx 15 14 10 9 mcasp2_fsx B26 xref_clk2 12 11 10 9 1 2 mcasp2_axr1 4 mcasp2_axr1 0 A16 mcasp2_axr3 15 14 10 9 mcasp2_axr3 E15 mcasp2_aclkr N/A 14 N/A 13 mcasp2_aclkr B18 mcasp3_aclkx 15 14 10 9 A19 mcasp2_aclkx 15 14 10 9 mcasp2_aclkx mcasp2_axr7 mcasp2_axr1 2 A17 mcasp2_axr7 14 13 12 11 C23 xref_clk3 12 11 10 9 C17 mcasp3_axr1 15 14 10 8 mcasp2_axr1 5 F15 mcasp3_fsx 15 14 10 9 mcasp2_axr1 3 C15 mcasp2_axr2 15 14 10 9 mcasp2_axr2 D15 mcasp2_axr4 14 13 12 11 mcasp2_axr4 A20 mcasp2_fsr N/A 14 N/A 13 mcasp2_fsr E17 xref_clk1 10 9 8 6 A15 mcasp2_axr1 14 13 12 11 mcasp2_axr1 B15 mcasp2_axr0 14 13 12 11 mcasp2_axr0 D18 xref_clk0 10 9 8 6 280 Timing Requirements and Switching Characteristics 3 mcasp2_axr1 1 mcasp2_axr9 mcasp2_ahclkx mcasp2_axr8 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Virtual IO Timings Modes must be used to guaranteed some IO timings for McASP3/4/5/6/7/8. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-62 Virtual Functions Mapping for McASP3/4/5/6/7/8 for a definition of the Virtual modes. Table 7-62 presents the values for DELAYMODE bitfield. Table 7-62. Virtual Functions Mapping for McASP3/4/5/6/7/8 BALL BALL NAME Delay Mode Value MUXMODE 0 1 2 MCASP3_VIRTUAL2_SYNC_RX A16 mcasp2_axr3 8 B18 mcasp3_aclkx 8 mcasp3_aclkx mcasp3_axr3 B19 mcasp3_axr0 8 mcasp3_axr0 C17 mcasp3_axr1 6 mcasp3_axr1 F15 mcasp3_fsx 8 mcasp3_fsx C15 mcasp2_axr2 8 A21 mcasp4_fsx 14 mcasp4_fsx mcasp4_fsr C18 mcasp4_aclkx 14 mcasp4_aclkx mcasp4_aclkr G16 mcasp4_axr0 14 mcasp4_axr0 D17 mcasp4_axr1 14 mcasp4_axr1 F13 mcasp1_axr5 12 mcasp4_axr3 E12 mcasp1_axr4 12 mcasp4_axr2 AA3 mcasp5_aclkx 14 mcasp5_aclkx mcasp5_aclkr AB9 mcasp5_fsx 14 mcasp5_fsx mcasp5_fsr AA4 mcasp5_axr1 14 mcasp5_axr1 C12 mcasp1_axr6 12 AB3 mcasp5_axr0 14 D12 mcasp1_axr7 12 G13 mcasp1_axr2 12 mcasp6_axr2 J11 mcasp1_axr3 12 mcasp6_axr3 B13 mcasp1_axr10 10 mcasp6_aclkx A11 mcasp1_axr9 10 mcasp6_axr1 B12 mcasp1_axr8 10 mcasp6_axr0 A12 mcasp1_axr11 10 mcasp6_fsx mcasp3_aclkr mcasp3_fsr mcasp3_axr2 MCASP4_VIRTUAL1_SYNC_RX MCASP5_VIRTUAL1_SYNC_RX mcasp5_axr2 mcasp5_axr0 mcasp5_axr3 MCASP6_VIRTUAL1_SYNC_RX mcasp6_aclkr mcasp6_fsr Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 281 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-62. Virtual Functions Mapping for McASP3/4/5/6/7/8 (continued) BALL BALL NAME Delay Mode Value MUXMODE 0 1 2 MCASP7_VIRTUAL2_SYNC_RX E14 mcasp1_axr12 10 mcasp7_axr0 F14 mcasp1_axr15 10 mcasp7_fsx mcasp7_fsr G14 mcasp1_axr14 10 mcasp7_aclkx mcasp7_aclkr A13 mcasp1_axr13 10 mcasp7_axr1 B14 mcasp1_aclkr 13 mcasp7_axr2 J14 mcasp1_fsr 13 mcasp7_axr3 MCASP8_VIRTUAL1_SYNC_RX 282 D15 mcasp2_axr4 10 A17 mcasp2_axr7 10 mcasp8_fsx mcasp8_fsr B17 mcasp2_axr6 10 mcasp8_aclkx mcasp8_aclkr A20 mcasp2_fsr 12 mcasp8_axr3 B16 mcasp2_axr5 10 mcasp8_axr1 E15 mcasp2_aclkr 12 mcasp8_axr2 Timing Requirements and Switching Characteristics mcasp8_axr0 Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 7.19 Universal Serial Bus (USB) SuperSpeed USB DRD Subsystem has four instances in the device providing the following functions: • USB1: SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with integrated SS (USB3.0) PHY and HS/FS (USB2.0) PHY. • USB2: High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with integrated HS/FS PHY. • USB3: HS USB 2.0 Dual-Role-Device (DRD) subsystem with ULPI (SDR) interface to external HS/FS PHYs. NOTE For more information, see the SuperSpeed USB DRD section of the Device TRM. 7.19.1 USB1 DRD PHY The USB1 DRD interface supports the following applications: • USB2.0 High-Speed PHY port (1.8 V and 3.3 V): this asynchronous high-speed interface is compliant with the USB2.0 PHY standard with an internal transceiver (USB2.0 standard v2.0), for a maximum data rate of 480 Mbps. • USB3.0 Super-Speed PHY port (1.8 V): this asynchronous differential super-speed interface is compliant with the USB3.0 RX/TX PHY standard (USB3.0 standard v1.0) for a maximum data bit rate of 5Gbps. 7.19.2 USB2 PHY The USB2 interface supports the following applications: • USB2.0 High-Speed PHY port (1.8 V and 3.3 V): this asynchronous high-speed interface is compliant with the USB2.0 PHY standard with an internal transceiver (USB2.0 standard v2.0), for a maximum data rate of 480 Mbps. 7.19.3 USB3 DRD ULPI-SDR-Slave Mode-12-pin Mode TheUSB3 DRD interfaces support the following application: • USB ULPI port: this synchronous interface is compliant with the USB2.0 ULPI SDR standard (UTMI+ v1.22), for alternative off-chip USB2.0 PHY interface; that is, with external transceiver with a maximum frequency of 60 MHz (synchronous slave mode, SDR, 12-pin, 8-data-bit). NOTE The Universal Serial Bus k ULPI modules are also refered as USBk where k = 3, 4. Table 7-63, Table 7-64 and Figure 7-51 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 7-63. Timing Requirements for ULPI SDR Slave Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT US1 tc(clk) Cycle time, usb_ulpi_clk period 16.66 ns US5 tsu(ctrlV-clkH) Setup time, usb_ulpi_dir/usb_ulpi_nxt valid before usb_ulpi_clk rising edge 6.73 ns US6 th(clkH-ctrlV) Hold time, usb_ulpi_dir/usb_ulpi_nxt valid after usb_ulpi_clk rising edge -0.41 ns US7 tsu(dV-clkH) Setup time, usb_ulpi_d[7:0] valid before usb_ulpi_clk rising edge 6.73 ns US8 th(clkH-dV) Hold time, usb_ulpi_d[7:0] valid after usb_ulpi_clk rising edge -0.41 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 283 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-64. Switching Characteristics for ULPI SDR Slave Mode MIN MAX UNIT US4 NO. td(clkH-stpV) PARAMETER Delay time, usb_ulpi_clk rising edge high to output usb_ulpi_stp valid DESCRIPTION 0.44 8.35 ns US9 td(clkL-doV) Delay time, usb_ulpi_clk rising edge high to output usb_ulpi_d[7:0] valid 0.44 8.35 ns US1 US2 US3 usbk_ulpi_clk US4 US4 usbk_ulpi_stp US6 US5 usbk_ulpi_dir_&_nxt US7 US9 US8 usbk_ulpi_d[7:0] Data_IN US9 Data_OUT SPRS906_TIMING_USB_01 Figure 7-51. HS USB3 ULPI -SDR-Slave Mode-12-pin Mode In Table 7-65 are presented the specific groupings of signals (IOSET) for use with USB3 signals. Table 7-65. USB3 IOSETs SIGNALS IOSET2 IOSET3 BALL MUX BALL MUX AC5 4 W2 6 usb3_ulpi_d6 AB4 4 Y2 6 usb3_ulpi_d5 AD4 4 V3 6 usb3_ulpi_d4 AC4 4 V4 6 usb3_ulpi_d3 AC7 4 V5 6 usb3_ulpi_d2 AC6 4 U5 6 usb3_ulpi_d1 AC9 4 U6 6 usb3_ulpi_d7 usb3_ulpi_d0 AC3 4 V6 6 usb3_ulpi_nxt AC8 4 U7 6 usb3_ulpi_dir AD6 4 V7 6 usb3_ulpi_stp AB8 4 V9 6 usb3_ulpi_clk AB5 4 W9 6 7.20 Serial Advanced Technology Attachment (SATA) The SATA RX/TX PHY interface is compliant with the SATA standard v2.6 for a maximum data rate: • Gen2i, Gen2m, Gen2x: 3Gbps. • Gen1i, Gen1m, Gen1x: 1.5Gbps. NOTE For more information, see the SATA Controller section of the Device TRM. 7.21 Peripheral Component Interconnect Express (PCIe) 284 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 The device supports connections to PCIe-compliant devices via the integrated PCIe master/slave bus interface. The PCIe module is comprised of a dual-mode PCIe core and a SerDes PHY. Each PCIe subsystem controller has support for PCIe Gen-II mode (5.0 Gbps /lane) and Gen-I mode (2.5 Gbps/lane) (Single Lane and Flexible dual lane configuration). The device PCIe supports the following features: • 16-bit operation @250 MHz on PIPE interface (per 16-bit lane) • Supports 2 ports x 1 lane or 1 port x 2 lanes configuration • Single virtual channel (VC0), single traffic class (TC0) • Single function in end-point mode • Automatic width and speed negotiation • Max payload: 128 byte outbound, 256 byte inbound • Automatic credit management • ECRC generation and checking • Configurable BAR filtering • Legacy interrupt reception (RC) and generation (EP) • MSI generation and reception • PCI Express Active State Power Management (ASPM) state L0s and L1 (with exceptions) • All PCI Device Power Management D-states with the exception of D3cold / L2 state The PCIe controller on this device conforms to the PCI Express Base 3.0 Specification, revision 1.0 and the PCI Local Bus Specification, revision 3.0 NOTE For more information, see the PCIe Controller section of the Device TRM. 7.22 Controller Area Network Interface (DCAN) The device provides two DCAN interfaces for supporting distributed realtime control with a high level of security. The DCAN interfaces implement the following features: • Supports CAN protocol version 2.0 part A, B • Bit rates up to 1 MBit/s • 64 message objects • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loop-back modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after Bus-Off state by a programmable 32-bit timer • Direct access to Message RAM during test mode • CAN Rx/Tx pins are configurable as general-purpose IO pins • Two interrupt lines (plus additional parity-error interrupts line) • RAM initialization • DMA support NOTE For more information, see the DCAN section of the Device TRM. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 285 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE The Controller Area Network Interface x (x = 1 to 2) is also referred to as DCANx. Table 7-66, Table 7-67 and Figure 7-52 present timing and switching characteristics for DCANx Interface. Table 7-66. Timing Requirements for DCANx Receive(1) NO. 1 PARAMETER DESCRIPTION MIN f(baud) Maximum programmable baud rate tw(DCANRX) Pulse duration, receive data bit (DCANx_RX) NOM H - 15 MAX UNIT 1 Mbps H + 15 ns (1) H = period of baud rate, 1/programmed baud rate. Table 7-67. Switching Characteristics Over Recommended Operating Conditions for DCANx Transmit NO. 2 PARAMETER DESCRIPTION f(baud) Maximum programmable baud rate tw(DCANTX) Pulse duration, transmit data bit (DCANx_TX) MIN H - 15 (1) MAX UNIT 1 Mbps H + 15 ns (1) H = period of baud rate, 1/programmed baud rate. 1 DCANx_RX 2 DCANx_TX SPRS906_TIMING_DCAN_01 Figure 7-52. DCANx Timings 7.23 Ethernet Interface (GMAC_SW) The three-port gigabit ethernet switch subsystem (GMAC_SW) provides ethernet packet communication and can be configured as an ethernet switch. It provides the Gigabit Media Independent Interface (G/MII) in MII mode, Reduced Gigabit Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII), and the Management Data Input/Output (MDIO) for physical layer device (PHY) management. NOTE For more information, see the Ethernet Subsystem section of the Device TRM. NOTE The Gigabit, Reduced and Media Independent Interface n (n = 0 to 1) are also referred to as MIIn, RMIIn and RGMIIn. CAUTION The I/O timings provided in this section are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-72, Table 7-75, Table 780 and Table 7-87. 286 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 CAUTION The I/O Timings provided in this section are valid only for some GMAC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-68 and Figure 7-53 present timing requirements for MIIn in receive operation. 7.23.1 GMAC MII Timings Table 7-68. Timing Requirements for miin_rxclk - MII Operation NO. PARAMETER DESCRIPTION 1 tc(RX_CLK) Cycle time, miin_rxclk 2 3 4 tw(RX_CLKH) tw(RX_CLKL) tt(RX_CLK) Pulse duration, miin_rxclk high Pulse duration, miin_rxclk low Transition time, miin_rxclk SPEED MIN MAX UNIT 10 Mbps 400 100 Mbps 40 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns ns 4 1 3 2 miin_rxclk 4 SPRS906_TIMING_GMAC_MIIRXCLK_01 Figure 7-53. Clock Timing (GMAC Receive) - MIIn operation Table 7-69 and Figure 7-54 present timing requirements for MIIn in transmit operation. Table 7-69. Timing Requirements for miin_txclk - MII Operation NO. PARAMETER DESCRIPTION SPEED MIN 1 tc(TX_CLK) Cycle time, miin_txclk 10 Mbps 400 ns 100 Mbps 40 ns 2 3 4 tw(TX_CLKH) tw(TX_CLKL) tt(TX_CLK) Pulse duration, miin_txclk high Pulse duration, miin_txclk low Transition time, miin_txclk MAX 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated UNIT 287 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 4 1 3 2 miin_txclk 4 SPRS906_TIMING_GMAC_MIITXCLK_02 Figure 7-54. Clock Timing (GMAC Transmit) - MIIn operation Table 7-70 and Figure 7-55 present timing requirements for GMAC MIIn Receive 10/100Mbit/s. Table 7-70. Timing Requirements for GMAC MIIn Receive 10/100 Mbit/s NO. PARAMETER DESCRIPTION MIN MAX UNIT tsu(RXD-RX_CLK) 1 tsu(RX_DV-RX_CLK) Setup time, receive selected signals valid before miin_rxclk 8 ns Hold time, receive selected signals valid after miin_rxclk 8 ns tsu(RX_ER-RX_CLK) th(RX_CLK-RXD) 2 th(RX_CLK-RX_DV) th(RX_CLK-RX_ER) 1 2 miin_rxclk (Input) miin_rxd3−miin_rxd0, miin_rxdv, miin_rxer (Inputs) SPRS906_TIMING_GMAC_MIIRCV_03 Figure 7-55. GMAC Receive Interface Timing MIIn operation Table 7-71 and Figure 7-56 present timing requirements for GMAC MIIn Transmit 10/100Mbit/s. Table 7-71. Switching Characteristics Over Recommended Operating Conditions for GMAC MIIn Transmit 10/100 Mbits/s NO. 1 PARAMETER td(TX_CLK-TXD) td(TX_CLK-TX_EN) DESCRIPTION Delay time, miin_txclk to transmit selected signals valid MIN MAX UNIT 0 25 ns 1 miin_txclk (input) miin_txd3 − miin_txd0, miin_txen (outputs) SPRS906_TIMING_GMAC_MIITX_04 Figure 7-56. GMAC Transmit Interface Timing MIIn operation In Table 7-72 are presented the specific groupings of signals (IOSET) for use with GMAC MII signals. 288 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-72. GMAC MII IOSETs SIGNALS IOSET5 IOSET6 BALL MUX BALL mii1_txd3 C5 8 MUX mii1_txd2 D6 8 mii1_txd1 B2 8 mii1_txd0 C4 8 mii1_rxd3 F5 8 mii1_rxd2 E4 8 mii1_rxd1 C1 8 mii1_rxd0 E6 8 mii0_txd3 V5 3 mii0_txd2 V4 3 mii0_txd1 Y2 3 mii0_txd0 W2 3 mii0_rxd3 W9 3 mii0_rxd2 V9 3 mii0_rxd1 V6 3 mii0_rxd0 U6 3 mii0_txclk U5 3 mii1_col B4 8 mii1_rxer B3 8 mii1_txer A3 8 mii1_txen A4 8 mii1_crs B5 8 mii1_rxclk D5 8 mii1_txclk C3 8 mii1_rxdv C2 8 mii0_txer U4 3 mii0_rxer U7 3 mii0_rxdv V2 3 mii0_crs V7 3 mii0_col V1 3 mii0_rxclk Y1 3 mii0_txen V3 3 7.23.2 GMAC MDIO Interface Timings CAUTION The I/O Timings provided in this section are valid only for some GMAC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-73, Table 7-73 and Figure 7-57 present timing requirements for MDIO. Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 289 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-73. Timing Requirements for MDIO Input No PARAMETER MDIO1 tc(MDC) MDIO2 DESCRIPTION MIN MAX UNIT Cycle time, MDC 400 ns tw(MDCH) Pulse Duration, MDC High 160 ns MDIO3 tw(MDCL) Pulse Duration, MDC Low 160 ns MDIO4 tsu(MDIO-MDC) Setup time, MDIO valid before MDC High 90 ns MDIO5 th(MDIO_MDC) Hold time, MDIO valid from MDC High 0 ns Table 7-74. Switching Characteristics Over Recommended Operating Conditions for MDIO Output NO PARAMETER DESCRIPTION MDIO6 tt(MDC) Transition time, MDC MIN MDIO7 td(MDC-MDIO) Delay time, MDC High to MDIO valid 10 MAX UNIT 5 ns 390 ns 1 MDIO2 MDIO3 MDCLK MDIO6 MDIO6 MDIO4 MDIO5 MDIO (input) MDIO7 MDIO (output) SPRS906_TIMING_GMAC_MDIO_05 Figure 7-57. GMAC MDIO diagrams In Table 7-75 are presented the specific groupings of signals (IOSET) for use with GMAC MDIO signals. Table 7-75. GMAC MDIO IOSETs SIGNALS IOSET7 IOSET8 IOSET9 BALL MUX BALL MUX mdio_d F6 3 U4 mdio_mclk D3 3 V1 IOSET10 BALL MUX BALL MUX 0 AB4 1 B20 5 0 AC5 1 B21 5 7.23.3 GMAC RMII Timings The main reference clock REF_CLK (RMII_50MHZ_CLK) of RMII interface is internally supplied from PRCM. The source of this clock could be either externally sourced from the RMII_MHZ_50_CLK pin of the device or internally generated from DPLL_GMAC output clock GMAC_RMII_HS_CLK. Please see the PRCM chapter of the device TRM for full details about RMII reference clock. 290 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 CAUTION The I/O Timings provided in this section are valid only for some GMAC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-76, Table 7-77 and Figure 7-58 present timing requirements for GMAC RMIIn Receive. Table 7-76. Timing Requirements for GMAC REF_CLK - RMII Operation NO. PARAMETER DESCRIPTION MIN MAX UNIT RMII1 tc(REF_CLK) Cycle time, REF_CLK 20 RMII2 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns ns RMII3 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII4 ttt(REF_CLK) Transistion time, REF_CLK 3 ns Table 7-77. Timing Requirements for GMAC RMIIn Receive NO. PARAMETER DESCRIPTION RMII5 tsu(RXD-REF_CLK) Setup time, receive selected signals valid before REF_CLK MIN 4 MAX UNIT ns Hold time, receive selected signals valid after REF_CLK 2 ns tsu(CRS_DV-REF_CLK) tsu(RX_ER-REF_CLK) RMII6 th(REF_CLK-RXD) th(REF_CLK-CRS_DV) th(REF_CLK-RX_ER) RMII1 RMII3 RMII4 RMII2 RMII5 RMII6 REF_CLK (PRCM) rmiin_rxd1−rmiin_rxd0, rmiin_crs, rmin_rxer (inputs) SPRS906_TIMING_GMAC_RGMIITX_09 Figure 7-58. GMAC Receive Interface Timing RMIIn operation Table 7-78, Table 7-78 and Figure 7-59 present switching characteristics for GMAC RMIIn Transmit 10/100Mbit/s. Table 7-78. Switching Characteristics Over Recommended Operating Conditions for GMAC REF_CLK RMII Operation NO. PARAMETER DESCRIPTION MIN MAX UNIT RMII7 tc(REF_CLK) Cycle time, REF_CLK 20 RMII8 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns ns RMII9 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII10 tt(REF_CLK) Transistion time, REF_CLK 3 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 291 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-79. Switching Characteristics Over Recommended Operating Conditions for GMAC RMIIn Transmit 10/100 Mbits/s NO. PARAMETER DESCRIPTION td(REF_CLK-TXD) RMII11 tdd(REF_CLK-TXEN) RMIIn MIN MAX UNIT RMII0 2 13.5 ns RMII1 2 13.8 ns Delay time, REF_CLK high to selected transmit signals valid td(REF_CLK-TXD) tdd(REF_CLK-TXEN) RMII7 RMII8 RMII9 RMII11 RMII10 REF_CLK (PRCM) rmiin_txd1−rmiin_txd0, rmiin_txen (Outputs) SPRS906_TIMING_GMAC_RMIITX_07 Figure 7-59. GMAC Transmit Interface Timing RMIIn Operation In Table 7-80 are presented the specific groupings of signals (IOSET) for use with GMAC RMII signals. Table 7-80. GMAC RMII IOSETs SIGNALS IOSET1 IOSET2 BALL MUX BALL MUX RMII_MHZ_50_CLK U3 0 U3 0 rmii1_txd1 V5 2 rmii1_txd0 V4 2 rmii1_rxd1 W9 2 rmii1_rxd0 V9 2 rmii0_txd1 Y2 1 rmii0_txd0 W2 1 rmii0_rxd1 V6 1 rmii0_rxd0 U6 1 rmii0_txen V3 1 rmii0_rxer U7 1 rmii0_crs V7 1 rmii1_rxer Y1 2 rmii1_txen U5 2 rmii1_crs V2 2 Manual IO Timings Modes must be used to guaranteed some IO timings for GMAC. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-81 Manual Functions Mapping for GMAC RMII0 for a definition of the Manual modes. Table 7-81 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. 292 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-81. Manual Functions Mapping for GMAC RMII0 BALL BALL NAME GMAC_RMII0_MANUAL1 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 1 U3 RMII_MHZ_50_CLK 0 0 CFG_RMII_MHZ_50_CLK_IN RMII_MHZ_50_CLK U6 rgmii0_txd0 2444 804 CFG_RGMII0_TXD0_IN rmii0_rxd0 V6 rgmii0_txd1 2453 981 CFG_RGMII0_TXD1_IN rmii0_rxd1 U7 rgmii0_txd2 2356 847 CFG_RGMII0_TXD2_IN rmii0_rxer V7 rgmii0_txd3 2415 993 CFG_RGMII0_TXD3_IN rmii0_crs Manual IO Timings Modes must be used to guaranteed some IO timings for GMAC. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-82 Manual Functions Mapping for GMAC RMII1 for a definition of the Manual modes. Table 7-82 list the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-82. Manual Functions Mapping for GMAC RMII1 BALL BALL NAME GMAC_RMII1_MANUAL1 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 U3 RMII_MHZ_50_CLK 0 0 CFG_RMII_MHZ_50_CLK_IN 2 RMII_MHZ_50_CLK V9 rgmii0_txctl 2450 909 CFG_RGMII0_TXCTL_IN rmii1_rxd0 W9 rgmii0_txc 2327 926 CFG_RGMII0_TXC_IN rmii1_rxd1 Y1 uart3_txd 2553 443 CFG_UART3_TXD_IN rmii1_rxer V2 uart3_rxd 1943 1110 CFG_UART3_RXD_IN rmii1_crs 7.23.4 GMAC RGMII Timings CAUTION The I/O Timings provided in this section are valid only for some GMAC usage modes when the corresponding Virtual I/O Timings or Manual I/O Timings are configured as described in the tables found in this section. Table 7-83, Table 7-84 and Figure 7-60 present timing requirements for receive RGMIIn operation. Table 7-83. Timing Requirements for rgmiin_rxc - RGMIIn Operation NO. 1 2 3 4 PARAMETER DESCRIPTION tc(TXC) Cycle time, rgmiin_txc tw(TXCH) tw(TXCL) tt(TXC) Pulse duration, rgmiin_txc high Pulse duration, rgmiin_txc low Transition time, rgmiin_txc SPEED MIN MAX UNIT 10 Mbps 360 440 ns 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 1000 Mbps 0.75 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 293 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-84. Timing Requirements for GMAC RGMIIn Input Receive for 10/100/1000 Mbps (1) NO. PARAMETER DESCRIPTION MODE 5 tsu(RXD-RXCH) Setup time, receive selected signals valid before rgmiin_rxc high/low RGMII0/1 MIN 1 MAX UNIT ns 6 th(RXCH-RXD) Hold time, receive selected signals valid after rgmiin_rxc high/low RGMII0/1 1 ns (1) For RGMII, receive selected signals include: rgmiin_rxd[3:0] and rgmiin_rxctl. 1 4 2 rgmiin_rxc 4 3 (A) 5 1st Half-byte 6 2nd Half-byte rgmiin_rxd[3:0] rgmiin_rxctl (B) (B) RGRXD[3:0] RGRXD[7:4] RXDV RXERR SPRS906_TIMING_GMAC_RGMIIRX_08 A. B. rgmiin_rxc must be externally delayed relative to the data and control pins. Data and control information is received using both edges of the clocks. rgmiin_rxd[3:0] carries data bits 3-0 on the rising edge of rgmiin_rxc and data bits 7-4 on the falling edge ofrgmiin_rxc. Similarly, rgmiin_rxctl carries RXDV on rising edge of rgmiin_rxc and RXERR on falling edge of rgmiin_rxc. Figure 7-60. GMAC Receive Interface Timing, RGMIIn operation Table 7-85, Table 7-86 and Figure 7-61 present switching characteristics for transmit - RGMIIn for 10/100/1000Mbit/s. Table 7-85. Switching Characteristics Over Recommended Operating Conditions for rgmiin_txctl - RGMIIn Operation for 10/100/1000 Mbit/s NO. 1 2 3 4 294 PARAMETER DESCRIPTION tc(TXC) Cycle time, rgmiin_txc tw(TXCH) tw(TXCL) tt(TXC) Pulse duration, rgmiin_txc high Pulse duration, rgmiin_txc low Transition time, rgmiin_txc SPEED MIN MAX UNIT 10 Mbps 360 440 ns 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 1000 Mbps 0.75 ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (1) Table 7-86. Switching Characteristics for GMAC RGMIIn Output Transmit for 10/100/1000 Mbps NO. 5 6 PARAMETER DESCRIPTION tosu(TXD-TXC) Output Setup time, transmit selected signals valid to rgmiin_txc high/low toh(TXC-TXD) Output Hold time, transmit selected signals valid after rgmiin_txc high/low MODE MIN RGMII0, Internal Delay Enabled, 1000 Mbps 1.05 MAX UNIT ns RGMII0, Internal Delay Enabled, 10/100 Mbps 1.2 ns RGMII1, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII1, Internal Delay Enabled, 10/100 Mbps 1.2 ns RGMII0, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII0, Internal Delay Enabled, 10/100 Mbps 1.2 ns RGMII1, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII1, Internal Delay Enabled, 10/100 Mbps 1.2 ns (2) (3) (2) (3) (1) For RGMII, transmit selected signals include: rgmiin_txd[3:0] and rgmiin_txctl. (2) RGMII0 requires that the 4 data pins rgmii0_txd[3:0] and rgmii0_txctl have their board propagation delays matched within 50pS of rgmii0_txc. (3) RGMII1 requires that the 4 data pins rgmii1_txd[3:0] and rgmii1_txctl have their board propagation delays matched within 50pS of rgmii1_txc. 1 4 2 3 4 (A) rgmiin_txc [internal delay enabled] 5 (B) 1st Half-byte rgmiin_txd[3:0] 2nd Half-byte 6 (B) rgmiin_txctl TXEN TXERR SPRS906_TIMING_GMAC_RGMIITX_09 A. B. TXC is delayed internally before being driven to the rgmiin_txc pin. This internal delay is always enabled. Data and control information is transmitted using both edges of the clocks. rgmiin_txd[3:0] carries data bits 3-0 on the rising edge of rgmiin_txc and data bits 7-4 on the falling edge of rgmiin_txc. Similarly, rgmiin_txctl carries TXEN on rising edge of rgmiin_txc and TXERR of falling edge of rgmiin_txc. Figure 7-61. GMAC Transmit Interface Timing RGMIIn operation In Table 7-87 are presented the specific groupings of signals (IOSET) for use with GMAC RGMII signals. Table 7-87. GMAC RGMII IOSETs SIGNALS IOSET3 IOSET4 BALL MUX rgmii1_txd3 C3 3 rgmii1_txd2 C4 3 rgmii1_txd1 B2 3 rgmii1_txd0 D6 3 rgmii1_rxd3 B3 3 rgmii1_rxd2 B4 3 BALL MUX Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 295 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-87. GMAC RGMII IOSETs (continued) SIGNALS IOSET3 IOSET4 BALL MUX BALL MUX rgmii1_rxd1 B5 3 rgmii1_rxd0 A4 3 rgmii1_rxctl A3 3 rgmii0_txd3 V7 0 rgmii0_txd2 U7 0 rgmii0_txd1 V6 0 rgmii0_txd0 U6 0 rgmii0_rxd3 V4 0 rgmii0_rxd2 V3 0 rgmii0_rxd1 Y2 0 rgmii0_rxd0 W2 0 rgmii0_txc W9 0 rgmii0_rxctl V5 0 rgmii0_rxc U5 0 rgmii0_txctl V9 0 rgmii1_txc D5 3 rgmii1_txctl C2 3 rgmii1_rxc C5 3 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. 296 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Manual IO Timings Modes must be used to guaranteed some IO timings for GMAC. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-88 Manual Functions Mapping for GMAC RGMII0 for a definition of the Manual modes. Table 7-88 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-88. Manual Functions Mapping for GMAC RGMII0 BALL BALL NAME GMAC_RGMII0_MANUAL1 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) U5 rgmii0_rxc 413 0 CFG_RGMII0_RXC_IN rgmii0_rxc V5 rgmii0_rxctl 27 2296 CFG_RGMII0_RXCTL_IN rgmii0_rxctl W2 Y2 rgmii0_rxd0 3 1721 CFG_RGMII0_RXD0_IN rgmii0_rxd0 rgmii0_rxd1 134 1786 CFG_RGMII0_RXD1_IN rgmii0_rxd1 V3 rgmii0_rxd2 40 1966 CFG_RGMII0_RXD2_IN rgmii0_rxd2 V4 rgmii0_rxd3 0 2057 CFG_RGMII0_RXD3_IN rgmii0_rxd3 W9 rgmii0_txc 0 60 CFG_RGMII0_TXC_OUT rgmii0_txc V9 rgmii0_txctl 0 60 CFG_RGMII0_TXCTL_OUT rgmii0_txctl U6 rgmii0_txd0 0 60 CFG_RGMII0_TXD0_OUT rgmii0_txd0 0 V6 rgmii0_txd1 0 0 CFG_RGMII0_TXD1_OUT rgmii0_txd1 U7 rgmii0_txd2 0 60 CFG_RGMII0_TXD2_OUT rgmii0_txd2 V7 rgmii0_txd3 0 120 CFG_RGMII0_TXD3_OUT rgmii0_txd3 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 297 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Manual IO Timings Modes must be used to guaranteed some IO timings for GMAC. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-89 Manual Functions Mapping for GMAC RGMII1 for a definition of the Manual modes. Table 7-89 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-89. Manual Functions Mapping for GMAC RGMII1 BALL BALL NAME A_DELAY (ps) G_DELAY (ps) C5 vin2a_d18 530 A3 vin2a_d19 B3 B4 298 GMAC_RGMII1_MANUAL1 CFG REGISTER MUXMODE 0 CFG_VIN2A_D18_IN rgmii1_rxc 71 1099 CFG_VIN2A_D19_IN rgmii1_rxctl vin2a_d20 142 1337 CFG_VIN2A_D20_IN rgmii1_rxd3 vin2a_d21 114 1517 CFG_VIN2A_D21_IN rgmii1_rxd2 B5 vin2a_d22 171 1331 CFG_VIN2A_D22_IN rgmii1_rxd1 A4 vin2a_d23 0 1328 CFG_VIN2A_D23_IN rgmii1_rxd0 D5 vin2a_d12 0 0 CFG_VIN2A_D12_OUT rgmii1_txc C2 vin2a_d13 170 0 CFG_VIN2A_D13_OUT rgmii1_txctl C3 vin2a_d14 150 0 CFG_VIN2A_D14_OUT rgmii1_txd3 C4 vin2a_d15 0 0 CFG_VIN2A_D15_OUT rgmii1_txd2 B2 vin2a_d16 60 0 CFG_VIN2A_D16_OUT rgmii1_txd1 D6 vin2a_d17 60 0 CFG_VIN2A_D17_OUT rgmii1_txd0 3 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 7.24 Media Local Bus (MLB) interface The MLBSS allows connection to a MOST (Media Oriented Systems Transport) network controller for transport of media and control data between multimedia nodes. The MLBSS supports the following features: • 3 pin mode compliant to MediaLB Physical Layer Specification v4.0 • 6 pin mode (3 differential pairs) compliant to MediaLB Physical Layer Specification v4.0 • Supports 256/512/1024Fs in 3 pin mode and 2048Fs in 6 pin mode • Supports all types of transfer (Sync, Isoc, Async/Packet, Control) over 64 logical channels • 16KB buffering for synchronous /isochronous/control/packet data in the subsystem NOTE For more information, see the Media Local Bus (MLB) section of the Device TRM. NOTE MLB in 6-pin mode may require pull ups/ downs on SIG and DAT bus signals. For additional details, please consult the MLB bus interface specification. Table 7-90 and Figure 7-62 present Timing Requirements for MLKCLK 3-Pin Option. Table 7-90. Timing Requirements for MLBCLK 3-Pin Option (1) NO. PARAMETER DESCRIPTION MODE MIN 1 tc(MLBCLK) Cycle time, MLB_CLK 512FS 39 ns 1024FS 19.5 ns 512FS 14 ns 1024FS 9.3 ns 512FS 14 ns 1024FS 6.1 ns 2 tw(MLBCLK) Pulse duration, MLB_CLK high 3 tw(MLBCLK) Pulse duration, MLB_CLK low MAX UNIT (1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN. 2 4 1 MLB_CLK 3 4 SPRS906_TIMING_MLB_01 Figure 7-62. MLB_CLK Timing Table 7-91 and Table 7-92 present Timing Requirements and Switching Characteristics for MLB 3-Pin Option. Table 7-91. Timing Requirements for Receive Data for the MLB 3-Pin Option NO. PARAMETER DESCRIPTION 5 tsu(MLBDAT-MLBCLKL) Setup time, MLB_DAT/MLB_SIG input valid before MLB_CLK low 6 th(MLBCLKL-MLBDAT) Hold time, MLB_DAT/MLB_SIG input valid after MLB_CLK low MODE MIN MAX 512FS 1 ns 1024FS 1 ns 512FS 4 ns 1024FS 2 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated UNIT 299 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-92. Switching Characteristics Over Recommended Operating Conditions for MLB 3-Pin Option NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT 7 td(MLBCLKH-MLBDATV) Delay time, MLBCLKH rising to MLB_DAT/MLB_SIG valid 512FS 0 10 ns 1024FS 0 7 ns 512FS 0 14 ns 1024FS 0 6.1 ns MAX UNIT 8 tdis(MLBCLKL- Disable time, MLBCLKH falling to MLB_DAT/MLB_SIG Hi-Z MLBDATZ) Table 7-93 and Figure 7-62 present Timing Requirements for MLKCLK 6-Pin Option. Table 7-93. Timing Requirements for MLBCLK 6-Pin Option (1) NO. PARAMETER DESCRIPTION MODE MIN 1 tc(MLBCLKx) Cycle time, MLB_CLKP/N 2048FS, 4096FS 10 ns 2 tw(MLBCLKx) Pulse duration, MLB_CLKP/N high 2048FS, 4096FS 4.5 ns 3 tw(MLBCLKx) Pulse duration, MLB_CLKP/N low 2048FS, 4096FS 4.5 ns (1) The reference points for the rise and fall transitions are measured at 20%/80% of Vin+/-. Table 7-94 and Table 7-95 present Timing Requirements and Switching Characteristics for MLB 6-Pin Option. Table 7-94. Timing Requirements for Receive Data for the MLB 6-Pin Option NO. PARAMETER DESCRIPTION MODE MIN 5 tsu(DATx-CLKxH) Setup time, MLBP_DATx/MLBP_SIGx input valid before MLBP_CLKx rising 2048FS 1 ns 4096FS 0.5 n*P/2(1)(2) ns Hold time, MLBP_DATx/MLBP_SIGx input valid after MLBP_CLKx rising 2048FS 0.5 ns 4096FS 0.6 + n*P/2(1)(2) ns 6 th(CLKxH-DATx) MAX UNIT (1) P= tc(MLBCLKx) period. (2) n=0 or 1, corresponding to two captures per clock cycle. Table 7-95. Switching Characteristics Over Recommended Operating Conditions for MLB 6-Pin Option NO. PARAMETER DESCRIPTION MODE 7 td(CLKxH-DATxV) Delay time, MLBPCLKxH rising to MLB_DATx/MLB_SIGx valid 2048FS 4096FS 2048FS 4096FS 8 tdis(CLKPH-DATPZ) Disable time, MLBPCLKxH rising to MLBP_DATx/MLBP_SIGx Hi-Z MIN MAX UNIT 0.5 7 ns 0.6 + n*P/2(1)(2) 2.5 + n*P/2 ns 0.5 7 ns 0.6 + n*P/2(1)(2) 3.5 + n*P/2 ns (1) P= tc(MLBCLKx) period. (2) n=0 or 1, corresponding to two captures per clock cycle. 7.25 eMMC/SD/SDIO The Device includes the following external memory interfaces 4 MultiMedia Card/Secure Digital/Secure Digital Input Output Interface (MMC/SD/SDIO) NOTE The eMMC/SD/SDIOi (i = 1 to 4) controller is also referred to as MMCi. 7.25.1 MMC1-SD Card Interface MMC1 interface is compliant with the SD Standard v3.01 and it supports the following SD Card applications: 300 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • • • • • • • SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Default speed, 4-bit data, SDR, half-cycle High speed, 4-bit data, SDR, half-cycle SDR12, 4-bit data, half-cycle SDR25, 4-bit data, half-cycle UHS-I SDR50, 4-bit data, half-cycle UHS-I SDR104, 4-bit data, half-cycle UHS-I DDR50, 4-bit data NOTE For more information, see the eMMC/SD/SDIO chapter of the Device TRM. 7.25.1.1 Default speed, 4-bit data, SDR, half-cycle Table 7-96 and Table 7-97 present Timing requirements and Switching characteristics for MMC1 - Default Speed in receiver and transmitter mode (see Figure 7-63 and Figure 7-64). Table 7-96. Timing Requirements for MMC1 - SD Card Default Speed Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT DSSD5 tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.11 ns DSSD6 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 20.46 ns DSSD7 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.11 ns DSSD8 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 20.46 ns Table 7-97. Switching Characteristics for MMC1 - SD Card Default Speed Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT DSSD0 fop(clk) Operating frequency, mmc1_clk DSSD1 tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) 24 MHz ns DSSD2 tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns DSSD3 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -14.93 14.93 ns DSSD4 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -14.93 14.93 ns (1) P = output mmc1_clk period in ns DSSD2 DSSD1 DSSD0 mmc1_clk DSSD6 DSSD5 mmc1_cmd DSSD8 DSSD7 mmc1_dat[3:0] SPRS906_TIMING_MMC1_01 Figure 7-63. MMC/SD/SDIO in - Default Speed - Receiver Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 301 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com DSSD2 DSSD1 DSSD0 mmc1_clk DSSD3 mmc1_cmd DSSD4 mmc1_dat[3:0] SPRS906_TIMING_MMC1_02 Figure 7-64. MMC/SD/SDIO in - Default Speed - Transmitter Mode 7.25.1.2 High speed, 4-bit data, SDR, half-cycle Table 7-98 and Table 7-99 present Timing requirements and Switching characteristics for MMC1 - High Speed in receiver and transmitter mode (see Figure 7-65 and Figure 7-66). Table 7-98. Timing Requirements for MMC1 - SD Card High Speed NO. PARAMETER DESCRIPTION MIN MAX UNIT HSSD3 tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.3 ns HSSD4 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 2.6 ns HSSD7 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.3 ns HSSD8 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 2.6 ns Table 7-99. Switching Characteristics for MMC1 - SD Card High Speed NO. HSSD1 PARAMETER DESCRIPTION MIN fop(clk) Operating frequency, mmc1_clk MAX UNIT 48 MHz HSSD2H tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) ns HSSD2L tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns HSSD5 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -7.6 3.6 ns HSSD6 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -7.6 3.6 ns (1) P = output mmc1_clk period in ns HSSD1 HSSD2L HSSD2H mmc1_clk HSSD3 HSSD4 mmc1_cmd HSSD7 HSSD8 mmc1_dat[3:0] SPRS906_TIMING_MMC1_03 Figure 7-65. MMC/SD/SDIO in - High Speed - Receiver Mode 302 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 HSSD1 HSSD2H HSSD2L mmc1_clk HSSD5 HSSD5 mmc1_cmd HSSD6 HSSD6 mmc1_dat[3:0] SPRS906_TIMING_MMC1_04 Figure 7-66. MMC/SD/SDIO in - High Speed - Transmitter Mode 7.25.1.3 SDR12, 4-bit data, half-cycle Table 7-100 and Table 7-101 present Timing requirements and Switching characteristics for MMC1 SDR12 in receiver and transmitter mode (see Figure 7-67 and Figure 7-68). Table 7-100. Timing Requirements for MMC1 - SD Card SDR12 Mode NO. PARAMETER DESCRIPTION MODE SDR12 tsu(cmdV-clkH) 5 Setup time, mmc1_cmd valid before mmc1_clk rising clock edge SDR12 th(clkH-cmdV) 6 Hold time, mmc1_cmd valid after mmc1_clk rising clock edge SDR12 tsu(dV-clkH) 7 Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge SDR12 th(clkH-dV) 8 Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge MIN MAX UNIT 25.99 ns Pad Loopback Clock 1.6 ns Internal Loopback Clock 1.6 ns 25.99 ns Pad Loopback Clock 1.6 ns Internal Loopback Clock 1.6 ns Table 7-101. Switching Characteristics for MMC1 - SD Card SDR12 Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT SDR120 fop(clk) Operating frequency, mmc1_clk SDR121 tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) 24 MHz ns SDR122 tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185(1) ns SDR123 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -19.13 16.93 ns SDR124 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -19.13 16.93 ns (1) P = output mmc1_clk period in ns SDR122 SDR121 SDR120 mmc1_clk SDR126 SDR125 mmc1_cmd SDR128 SDR127 mmc1_dat[3:0] SPRS906_TIMING_MMC1_05 Figure 7-67. MMC/SD/SDIO in - High Speed SDR12 - Receiver Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 303 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com SDR122 SDR121 SDR120 mmc1_clk SDR123 mmc1_cmd SDR124 mmc1_dat[3:0] SPRS906_TIMING_MMC1_06 Figure 7-68. MMC/SD/SDIO in - High Speed SDR12 - Transmitter Mode 7.25.1.4 SDR25, 4-bit data, half-cycle Table 7-102 and Table 7-103 present Timing requirements and Switching characteristics for MMC1 SDR25 in receiver and transmitter mode (see Figure 7-69 and Figure 7-70). Table 7-102. Timing Requirements for MMC1 - SD Card SDR25 Mode NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT SDR25 tsu(cmdV-clkH) 3 Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.3 ns SDR25 th(clkH-cmdV) 4 Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1.6 ns SDR25 tsu(dV-clkH) 7 Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.3 ns SDR25 th(clkH-dV) 8 Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge Pad Loopback Clock 1.6 ns Internal Loopback Clock 1.6 ns Table 7-103. Switching Characteristics for MMC1 - SD Card SDR25 Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT SDR251 fop(clk) Operating frequency, mmc1_clk SDR252 H tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) 48 MHz ns SDR252L tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns SDR255 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -8.8 6.6 ns (1) P = output mmc1_clk period in ns SDR251 SDR252L SDR252H mmc1_clk SDR253 SDR254 mmc1_cmd SDR257 SDR258 mmc1_dat[3:0] SPRS906_TIMING_MMC1_07 Figure 7-69. MMC/SD/SDIO in - High Speed SDR25 - Receiver Mode 304 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 SDR251 SDR252H SDR252L mmc1_clk HSSDR255 SDR255 mmc1_cmd SDR256 SDR256 mmc1_dat[3:0] SPRS906_TIMING_MMC1_08 Figure 7-70. MMC/SD/SDIO in - High Speed SDR25 - Transmitter Mode 7.25.1.5 UHS-I SDR50, 4-bit data, half-cycle Table 7-104 and Table 7-105 present Timing requirements and Switching characteristics for MMC1 SDR50 in receiver and transmitter mode (see Figure 7-71 and Figure 7-72). Table 7-104. Timing Requirements for MMC1 - SD Card SDR50 Mode NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT SDR50 tsu(cmdV-clkH) 3 Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 1.48 ns SDR50 th(clkH-cmdV) 4 Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1.7 ns SDR50 tsu(dV-clkH) 7 Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 1.48 ns SDR50 th(clkH-dV) 8 Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge Pad Loopback Clock 1.7 ns Internal Loopback Clock 1.6 ns Table 7-105. Switching Characteristics for MMC1 - SD Card SDR50 Mode NO. PARAMETER DESCRIPTION MIN MAX SDR501 fop(clk) Operating frequency, mmc1_clk SDR502 H tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) ns SDR502L tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns SDR505 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -8.8 6.6 ns SDR506 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -3.66 1.46 ns 96 UNIT MHz (1) P = output mmc1_clk period in ns SDR501 SDR502L SDR502H mmc1_clk SDR503 SDR504 mmc1_cmd SDR507 SDR508 mmc1_dat[3:0] SPRS906_TIMING_MMC1_09 Figure 7-71. MMC/SD/SDIO in - High Speed SDR50 - Receiver Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 305 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com SDR501 SDR502H SDR502L mmc1_clk SDR505 SDR505 mmc1_cmd SDR506 SDR506 mmc1_dat[3:0] SPRS906_TIMING_MMC1_10 Figure 7-72. MMC/SD/SDIO in - High Speed SDR50 - Transmitter Mode 7.25.1.6 UHS-I SDR104, 4-bit data, half-cycle Table 7-106 presents Timing requirements and Switching characteristics for MMC1 - SDR104 in receiver and transmitter mode (see Figure 7-73 and Figure 7-74). Table 7-106. Switching Characteristics for MMC1 - SD Card SDR104 Mode NO. PARAMETER DESCRIPTION MIN MAX 192 UNIT SDR1041 fop(clk) Operating frequency, mmc1_clk MHz SDR1042 tw(clkH) H Pulse duration, mmc1_clk high 0.5*P0.185 (1) ns SDR1042 tw(clkL) L Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns SDR1045 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -1.09 0.49 ns SDR1046 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -1.09 0.49 ns (1) P = output mmc1_clk period in ns SDR1041 SDR1042L SDR1042H mmc1_clk SDR1043 SDR1044 mmc1_cmd SDR1047 SDR1048 mmc1_dat[3:0] SPRS906_TIMING_MMC1_11 Figure 7-73. MMC/SD/SDIO in - High Speed SDR104 - Receiver Mode SDR1041 SDR1042H SDR1042L mmc1_clk SDR1045 SDR1045 mmc1_cmd SDR1046 SDR1046 mmc1_dat[3:0] SPRS906_TIMING_MMC1_12 Figure 7-74. MMC/SD/SDIO in - High Speed SDR104 - Transmitter Mode 7.25.1.7 UHS-I DDR50, 4-bit data Table 7-107 and Table 7-108 present Timing requirements and Switching characteristics for MMC1 DDR50 in receiver and transmitter mode (see Figure 7-75 and Figure 7-76). 306 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-107. Timing Requirements for MMC1 - SD Card DDR50 Mode PARAME TER NO. DESCRIPTION MODE DDR50 tsu(cmdV-clk) 5 Setup time, mmc1_cmd valid before mmc1_clk transition DDR50 th(clk-cmdV) 6 Hold time, mmc1_cmd valid after mmc1_clk transition DDR50 tsu(dV-clk) 7 Setup time, mmc1_dat[3:0] valid before mmc1_clk transition DDR50 th(clk-dV) 8 Hold time, mmc1_dat[3:0] valid after mmc1_clk transition Pad Loopback MIN MAX UNIT 1.79 ns 2 ns Pad Loopback 1.79 ns Internal Loopback 1.79 ns 2 ns 1.6 ns Internal Loopback Table 7-108. Switching Characteristics for MMC1 - SD Card DDR50 Mode PARAMETER DESCRIPTION DDR500 NO. fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT DDR501 tw(clkH) Pulse duration, mmc1_clk high 0.5*P0.185 (1) ns DDR502 tw(clkL) Pulse duration, mmc1_clk low 0.5*P0.185 (1) ns DDR503 td(clk-cmdV) Delay time, mmc1_clk transition to mmc1_cmd transition 1.225 6.6 ns DDR504 td(clk-dV) Delay time, mmc1_clk transition to mmc1_dat[3:0] transition 1.225 6.6 ns 48 MHz (1) P = output mmc1_clk period in ns DDR500 DDR502 DDR501 mmc1_clk DDR505 DDR506 mmc1_cmd DDR507 DDR507 DDR508 DDR508 mmc1_dat[3:0] SPRS906_TIMING_MMC1_13 Figure 7-75. SDMMC - High Speed SD - DDR - Data/Command Receive DDR500 DDR501 DDR502 mmc1_clk DDR503(max) DDR503(min) mmc1_cmd DDR504(max) DDR504(min) DDR504(max) DDR504(min) mmc1_dat[3:0] MMC1_14 Figure 7-76. SDMMC - High Speed SD - DDR - Data/Command Transmit Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 307 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. Virtual IO Timings Modes must be used to guaranteed some IO timings for MMC1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-109 Virtual Functions Mapping for MMC1 for a definition of the Virtual modes. Table 7-109 presents the values for DELAYMODE bitfield. Table 7-109. Virtual Functions Mapping for MMC1 BALL BALL NAME Delay Mode Value MUXMODE MMC1_ VIRTUAL1 MMC1_ VIRTUAL4 MMC1_ VIRTUAL5 MMC1_ VIRTUAL6 0 W6 mmc1_clk 15 12 11 10 mmc1_clk Y6 mmc1_cmd 15 12 11 10 mmc1_cmd AA6 mmc1_dat0 15 12 11 10 mmc1_dat0 Y4 mmc1_dat1 15 12 11 10 mmc1_dat1 AA5 mmc1_dat2 15 12 11 10 mmc1_dat2 Y3 mmc1_dat3 15 12 11 10 mmc1_dat3 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guaranteed some IO timings for MMC1. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-110 Manual Functions Mapping for MMC1 for a definition of the Manual modes. Table 7-110 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. 308 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-110. Manual Functions Mapping for MMC1 BALL W6 BALL NAME MMC1_MANUAL1 MMC1_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) mmc1_clk 588 0 - - CFG REGISTER MUXMODE CFG_MMC1_CLK_IN mmc1_clk 0 Y6 mmc1_cmd 1000 0 - - CFG_MMC1_CMD_IN mmc1_cmd AA6 mmc1_dat0 1375 0 - - CFG_MMC1_DAT0_IN mmc1_dat0 Y4 mmc1_dat1 1000 0 - - CFG_MMC1_DAT1_IN mmc1_dat1 AA5 mmc1_dat2 1000 0 - - CFG_MMC1_DAT2_IN mmc1_dat2 Y3 mmc1_dat3 1000 0 - - CFG_MMC1_DAT3_IN mmc1_dat3 W6 mmc1_clk 1230 0 520 320 CFG_MMC1_CLK_OUT mmc1_clk Y6 mmc1_cmd 0 0 0 0 CFG_MMC1_CMD_OUT mmc1_cmd AA6 mmc1_dat0 56 0 40 0 CFG_MMC1_DAT0_OUT mmc1_dat0 Y4 mmc1_dat1 76 0 83 0 CFG_MMC1_DAT1_OUT mmc1_dat1 AA5 mmc1_dat2 91 0 98 0 CFG_MMC1_DAT2_OUT mmc1_dat2 Y3 mmc1_dat3 99 0 106 0 CFG_MMC1_DAT3_OUT mmc1_dat3 Y6 mmc1_cmd 0 0 51 0 CFG_MMC1_CMD_OEN mmc1_cmd AA6 mmc1_dat0 0 0 0 0 CFG_MMC1_DAT0_OEN mmc1_dat0 Y4 mmc1_dat1 0 0 363 0 CFG_MMC1_DAT1_OEN mmc1_dat1 AA5 mmc1_dat2 0 0 199 0 CFG_MMC1_DAT2_OEN mmc1_dat2 Y3 mmc1_dat3 0 0 273 0 CFG_MMC1_DAT3_OEN mmc1_dat3 7.25.2 MMC2 - eMMC MMC2 interface is compliant with the JC64 eMMC Standard v4.5 and it supports the following eMMC applications: • Standard JC64 SDR, 8-bit data, half cycle • High-speed JC64 SDR, 8-bit data, half cycle • High-speed HS200 JEDS84, 8-bit data, half cycle • High-speed JC64 DDR, 8-bit data NOTE For more information, see the eMMC/SD/SDIO chapter of the Device TRM. Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 309 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 7.25.2.1 Standard JC64 SDR, 8-bit data, half cycle Table 7-111 and Table 7-112 present Timing requirements and Switching characteristics for MMC2 - Standart SDR in receiver and transmitter mode (see Figure 7-77 and Figure 7-78). Table 7-111. Timing Requirements for MMC2 - JC64 Standard SDR Mode NO. 310 PARAMETER DESCRIPTION SSDR5 tsu(cmdV-clkH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge MIN SSDR6 th(clkH-cmdV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge SSDR7 tsu(dV-clkH) Setup time, mmc2_dat[7:0] valid before mmc2_clk rising clock edge SSDR8 th(clkH-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk rising clock edge Timing Requirements and Switching Characteristics MAX UNIT 13.19 ns 8.4 ns 13.19 ns 8.4 ns Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-112. Switching Characteristics for MMC2 - JC64 Standard SDR Mode NO. SSDR1 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 24 MHz SSDR2H tw(clkH) Pulse duration, mmc2_clk high 0.5*P0.172 (1) ns SSDR2L tw(clkL) Pulse duration, mmc2_clk low 0.5*P0.172 (1) ns SSDR3 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -16.96 16.96 ns SSDR4 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -16.96 16.96 ns (1) P = output mmc2_clk period in ns SSDR2 SSDR2 SSDR1 mmc2_clk SSDR6 SSDR5 mmc2_cmd SSDR8 SSDR7 mmc2_dat[7:0] SPRS906_TIMING_MMC2_01 Figure 7-77. MMC/SD/SDIO in - Standard JC64 - Receiver Mode SSDR2 SSDR2 SSDR1 mmc2_clk SSDR3 mmc2_cmd SSDR4 mmc2_dat[7:0] SPRS906_TIMING_MMC2_02 Figure 7-78. MMC/SD/SDIO in - Standard JC64 - Transmitter Mode 7.25.2.2 High-speed JC64 SDR, 8-bit data, half cycle Table 7-113 and Table 7-114 present Timing requirements and Switching characteristics for MMC2 - High speed SDR in receiver and transmitter mode (see Figure 7-79 and Figure 7-80). Table 7-113. Timing Requirements for MMC2 - JC64 High Speed SDR Mode NO. PARAMETER DESCRIPTION MIN MAX JC643 tsu(cmdV-clkH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge 5.6 ns JC644 th(clkH-cmdV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge 2.6 ns JC647 tsu(dV-clkH) Setup time, mmc2_dat[7:0] valid before mmc2_clk rising clock edge 5.6 ns JC648 th(clkH-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk rising clock edge 2.6 ns Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated UNIT 311 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-114. Switching Characteristics for MMC2 - JC64 High Speed SDR Mode PARAMETER DESCRIPTION JC641 NO. fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 48 JC642H tw(clkH) Pulse duration, mmc2_clk high 0.5*P0.172 (1) MHz ns JC642L tw(clkL) Pulse duration, mmc2_clk low 0.5*P0.172 (1) ns JC645 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -6.64 6.64 ns JC646 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -6.64 6.64 ns (1) P = output mmc2_clk period in ns JC641 JC642L JC642H mmc2_clk JC643 JC644 mmc2_cmd JC647 JC648 mmc2_dat[7:0] SPRS906_TIMING_MMC2_03 Figure 7-79. MMC/SD/SDIO in - High Speed JC64 - Receiver Mode JC641 JC642L JC642H mmc2_clk JC645 JC645 mmc2_cmd JC646 JC646 mmc2_dat[7:0] MMC2_04 Figure 7-80. MMC/SD/SDIO in - High Speed JC64 - transmitter Mode 7.25.2.3 High-speed HS200 JEDS84 SDR, 8-bit data, half cycle Table 7-115 presents Switching characteristics for MMC2 - HS200 in transmitter mode (see Figure 7-81). 312 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-115. Switching Characteristics for MMC2 - JEDS84 HS200 Mode NO. HS2001 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc2_clk MIN MAX 192 UNIT MHz HS2002H tw(clkH) Pulse duration, mmc2_clk high 0.5*P0.172 (1) ns HS2002L tw(clkL) Pulse duration, mmc2_clk low 0.5*P0.172 (1) ns HS2005 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -1.136 0.536 ns HS2006 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -1.136 0.536 ns (1) P = output mmc2_clk period in ns HS2001 HS2002L HS2002H mmc2_clk HS2005 HS2005 mmc2_cmd HS2006 HS2006 mmc2_dat[7:0] SPRS906_TIMING_MMC2_05 Figure 7-81. eMMC in - HS200 SDR - Transmitter Mode 7.25.2.4 High-speed JC64 DDR, 8-bit data Table 7-116 and Table 7-117 present Timing requirements and Switching characteristics for MMC2 - High speed DDR in receiver and transmitter mode (see Figure 7-82 and Figure 7-83). Table 7-116. Timing Requirements for MMC2 - JC64 High Speed DDR Mode NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT DDR3 tsu(cmdV-clk) Setup time, mmc2_cmd valid before mmc2_clk transition 1.8 ns DDR4 th(clk-cmdV) Hold time, mmc2_cmd valid after mmc2_clk transition 1.6 ns DDR7 tsu(dV-clk) Setup time, mmc2_dat[7:0] valid before mmc2_clk transition 1.8 ns DDR8 th(clk-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk transition Pad Loopback (1.8V and 3.3V), Boot 1.6 ns Internal Loopback (1.8V with MMC2_VIRTUAL2) 1.86 ns Internal Loopback (3.3V with MMC2_VIRTUAL2) 1.95 ns Internal Loopback (1.8V with MMC2_MANUAL2) Internal Loopback (3.3V with MMC2_MANUAL2) ns 1.6 ns Table 7-117. Switching Characteristics for MMC2 - JC64 High Speed DDR Mode NO. DDR1 PARAMETER DESCRIPTION MAX UNIT fop(clk) Operating frequency, mmc2_clk MIN 48 MHz ns ns DDR2H tw(clkH) Pulse duration, mmc2_clk high 0.5*P0.172 (1) DDR2L tw(clkL) Pulse duration, mmc2_clk low 0.5*P0.172 (1) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 313 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-117. Switching Characteristics for MMC2 - JC64 High Speed DDR Mode (continued) PARAMETER DESCRIPTION MIN MAX UNIT DDR5 NO. td(clk-cmdV) Delay time, mmc2_clk transition to mmc2_cmd transition 2.9 7.14 ns DDR6 td(clk-dV) Delay time, mmc2_clk transition to mmc2_dat[7:0] transition 2.9 7.14 ns (1) P = output mmc2_clk period in ns DDR1 DDR2H DDR2L mmc2_clk DDR3 DDR4 mmc2_cmd DDR8 DDR8 DDR7 DDR8 DDR7 DDR7 DDR7 mmc2_dat[7:0] SPRS906_TIMING_MMC2_07 Figure 7-82. MMC/SD/SDIO in - High Speed DDR JC64 - Receiver Mode DDR1 DDR2 DDR2 mmc2_clk DDR5 DDR5 DDR5 DDR5 mmc2_cmd DDR6 DDR6 DDReMMC6 DDR6 DDReMMC6 DDR6 mmc2_dat[7:0] SPRS906_TIMING_MMC2_08 Figure 7-83. MMC/SD/SDIO in - High Speed DDR JC64 - Transmitter Mode NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. Virtual IO Timings Modes must be used to guaranteed some IO timings for MMC2. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 7-118 Virtual Functions Mapping for MMC2 for a definition of the Virtual modes. Table 7-118 presents the values for DELAYMODE bitfield. Table 7-118. Virtual Functions Mapping for MMC2 314 BALL BALL NAME Delay Mode Value MUXMODE MMC2_VIRTUAL2 1 H6 gpmc_cs1 13 mmc2_cmd K7 gpmc_a19 13 mmc2_dat4 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-118. Virtual Functions Mapping for MMC2 (continued) BALL BALL NAME Delay Mode Value MUXMODE MMC2_VIRTUAL2 1 M7 gpmc_a20 13 mmc2_dat5 J5 gpmc_a21 13 mmc2_dat6 K6 gpmc_a22 13 mmc2_dat7 J7 gpmc_a23 13 mmc2_clk J4 gpmc_a24 13 mmc2_dat0 J6 gpmc_a25 13 mmc2_dat1 H4 gpmc_a26 13 mmc2_dat2 H5 gpmc_a27 13 mmc2_dat3 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guaranteed some IO timings for MMC2. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-119 Manual Functions Mapping for MMC2 for a definition of the Manual modes. Table 7-119 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-119. Manual Functions Mapping for MMC2 BAL BALL NAME L MMC2_MANUAL1 A_DELAY G_DELAY (ps) (ps) MMC2_MANUAL2 MMC2_MANUAL3 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 1 K7 gpmc_a19 0 0 0 14 - - CFG_GPMC_A19_IN mmc2_dat4 M7 gpmc_a20 119 0 127 0 - - CFG_GPMC_A20_IN mmc2_dat5 J5 gpmc_a21 0 0 22 0 - - CFG_GPMC_A21_IN mmc2_dat6 K6 gpmc_a22 18 0 72 0 - - CFG_GPMC_A22_IN mmc2_dat7 J7 gpmc_a23 894 0 410 4000 - - CFG_GPMC_A23_IN mmc2_clk J4 gpmc_a24 30 0 82 0 - - CFG_GPMC_A24_IN mmc2_dat0 J6 gpmc_a25 0 0 0 0 - - CFG_GPMC_A25_IN mmc2_dat1 H4 gpmc_a26 23 0 77 0 - - CFG_GPMC_A26_IN mmc2_dat2 H5 gpmc_a27 0 0 0 0 - - CFG_GPMC_A27_IN mmc2_dat3 H6 gpmc_cs1 0 0 0 0 - - CFG_GPMC_CS1_IN mmc2_cmd K7 gpmc_a19 152 0 152 0 285 0 CFG_GPMC_A19_OUT mmc2_dat4 M7 gpmc_a20 206 0 206 0 189 0 CFG_GPMC_A20_OUT mmc2_dat5 J5 gpmc_a21 78 0 78 0 0 120 CFG_GPMC_A21_OUT mmc2_dat6 K6 gpmc_a22 2 0 2 0 0 70 CFG_GPMC_A22_OUT mmc2_dat7 J7 gpmc_a23 266 0 266 0 730 360 CFG_GPMC_A23_OUT J4 gpmc_a24 0 0 0 0 0 0 CFG_GPMC_A24_OUT mmc2_dat0 mmc2_clk J6 gpmc_a25 0 0 0 0 0 0 CFG_GPMC_A25_OUT mmc2_dat1 H4 gpmc_a26 43 0 43 0 70 0 CFG_GPMC_A26_OUT mmc2_dat2 H5 gpmc_a27 0 0 0 0 0 0 CFG_GPMC_A27_OUT mmc2_dat3 H6 gpmc_cs1 0 0 0 0 0 120 CFG_GPMC_CS1_OUT mmc2_cmd K7 gpmc_a19 0 0 0 0 0 0 CFG_GPMC_A19_OEN mmc2_dat4 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 315 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-119. Manual Functions Mapping for MMC2 (continued) BAL BALL NAME L MMC2_MANUAL1 A_DELAY G_DELAY (ps) (ps) MMC2_MANUAL2 MMC2_MANUAL3 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 1 M7 gpmc_a20 0 0 0 0 231 0 CFG_GPMC_A20_OEN mmc2_dat5 J5 gpmc_a21 0 0 0 0 39 0 CFG_GPMC_A21_OEN mmc2_dat6 K6 gpmc_a22 0 0 0 0 91 0 CFG_GPMC_A22_OEN mmc2_dat7 J4 gpmc_a24 0 0 0 0 176 0 CFG_GPMC_A24_OEN mmc2_dat0 J6 gpmc_a25 0 0 0 0 0 0 CFG_GPMC_A25_OEN mmc2_dat1 H4 gpmc_a26 0 0 0 0 101 0 CFG_GPMC_A26_OEN mmc2_dat2 H5 gpmc_a27 0 0 0 0 0 0 CFG_GPMC_A27_OEN mmc2_dat3 H6 gpmc_cs1 0 0 0 0 360 0 CFG_GPMC_CS1_OE N mmc2_cmd 7.25.3 MMC3 and MMC4-SDIO/SD MMC3 and MMC4 interfaces are compliant with the SDIO3.0 standard v1.0, SD Part E1 and for generic SDIO devices, it supports the following applications: • MMC3 8-bit data and MMC4 4-bit data, SD Default speed, SDR • MMC3 8-bit data and MMC4 4-bit data, SD High speed, SDR • MMC3 8-bit data and MMC4 4-bit data, UHS-1 SDR12 (SD Standard v3.01), 4-bit data, SDR, half cycle • MMC3 8-bit data and MMC4 4-bit data, UHS-I SDR25 (SD Standard v3.01), 4-bit data, SDR, half cycle • MMC3 8-bit data, UHS-I SDR50 NOTE The eMMC/SD/SDIOj (j = 3 to 4) controller is also referred to as MMCj. NOTE For more information, see the MMC/SDIO chapter of the Device TRM. 7.25.3.1 MMC3 and MMC4, SD Default Speed Figure 7-84 , Figure 7-85, and Table 7-120 through Table 7-123 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD Default speed in receiver and transmitter mode. Table 7-120. Timing Requirements for MMC3 - Default Speed Mode (1) NO. PARAMETER DESCRIPTION MIN DS5 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 5.11 MAX UNIT ns DS6 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 20.46 ns DS7 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.11 ns DS8 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 20.46 ns (1) i in [i:0] = 7 Table 7-121. Switching Characteristics for MMC3 - SD/SDIO Default Speed Mode (2) NO. PARAMETER DESCRIPTION DS0 fop(clk) Operating frequency, mmc3_clk DS1 tw(clkH) Pulse duration, mmc3_clk high 316 MIN 0.5*P0.270 (1) MAX UNIT 24 MHz ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-121. Switching Characteristics for MMC3 - SD/SDIO Default Speed Mode (2) (continued) NO. PARAMETER DESCRIPTION DS2 tw(clkL) Pulse duration, mmc3_clk low MIN MAX DS3 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -14.93 14.93 ns DS4 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -14.93 14.93 ns 0.5*P0.270 (1) UNIT ns (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 7-122. Timing Requirements for MMC4 - Default Speed Mode (1) NO. PARAMETER DESCRIPTION DS5 tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge 5.11 MIN MAX UNIT ns DS6 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge 20.46 ns DS7 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge 5.11 ns DS8 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 20.46 ns (1) i in [i:0] = 3 Table 7-123. Switching Characteristics for MMC4 - Default Speed Mode (2) NO. PARAMETER DESCRIPTION DS0 fop(clk) Operating frequency, mmc4_clk MIN MAX UNIT 24 DS1 tw(clkH) Pulse duration, mmc4_clk high 0.5*P0.270 (1) MHz ns DS2 tw(clkL) Pulse duration, mmc4_clk low 0.5*P0.270 (1) ns DS3 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -14.93 14.93 ns DS4 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -14.93 14.93 ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 DS2 DS1 DS0 mmcj_clk DS6 DS5 mmcj_cmd DS8 DS7 mmcj_dat[i:0] SPRS906_TIMING_MMC3_07 Figure 7-84. MMC/SD/SDIOj in - Default Speed - Receiver Mode Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 317 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com DS2 DS1 DS0 mmcj_clk DS3 mmcj_cmd DS4 mmcj_dat[i:0] SPRS906_TIMING_MMC3_08 Figure 7-85. MMC/SD/SDIOj in - Default Speed - Transmitter Mode 7.25.3.2 MMC3 and MMC4, SD High Speed Figure 7-86, Figure 7-87, and Table 7-124 through Table 7-127 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO High speed in receiver and transmitter mode. Table 7-124. Timing Requirements for MMC3 - SD/SDIO High Speed Mode (1) NO. PARAMETER DESCRIPTION MIN MAX UNIT HS3 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 5.3 ns HS4 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 2.6 ns HS7 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.3 ns HS8 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 2.6 ns (1) i in [i:0] = 7 Table 7-125. Switching Characteristics for MMC3 - SD/SDIO High Speed Mode (2) NO. PARAMETER DESCRIPTION HS1 fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 48 HS2H tw(clkH) Pulse duration, mmc3_clk high 0.5*P0.270 (1) MHz ns HS2L tw(clkL) Pulse duration, mmc3_clk low 0.5*P0.270 (1) ns HS5 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -7.6 3.6 ns HS6 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -7.6 3.6 ns MAX UNIT (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 7-126. Timing Requirements for MMC4 - High Speed Mode (1) NO. PARAMETER DESCRIPTION MIN HS3 tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge 5.3 ns HS4 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge 1.6 ns HS7 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge 5.3 ns HS8 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 1.6 ns (1) i in [i:0] = 3 Table 7-127. Switching Characteristics for MMC4 - High Speed Mode (2) NO. PARAMETER DESCRIPTION HS1 fop(clk) Operating frequency, mmc4_clk HS2H tw(clkH) Pulse duration, mmc4_clk high 318 MIN 0.5*P0.270 (1) MAX UNIT 48 MHz ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-127. Switching Characteristics for MMC4 - High Speed Mode (2) (continued) PARAMETER DESCRIPTION HS2L NO. tw(clkL) Pulse duration, mmc4_clk low MIN MAX HS5 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -8.8 6.6 ns HS6 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -8.8 6.6 ns 0.5*P0.270 (1) UNIT ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 HS1 HS2H HS2L mmcj_clk HS3 HS4 mmcj_cmd HS7 HS8 mmcj_dat[i:0] SPRS906_TIMING_MMC3_09 Figure 7-86. MMC/SD/SDIOj in - High Speed 3.3V Signaling - Receiver Mode HS1 HS2H HS2L mmcj_clk HS5 HS5 mmcj_cmd HS6 HS6 mmcj_dat[i:0] SPRS906_TIMING_MMC3_10 Figure 7-87. MMC/SD/SDIOj in - High Speed 3.3V Signaling - Transmitter Mode 7.25.3.3 MMC3 and MMC4, SD and SDIO SDR12 Mode Figure 7-88, Figure 7-89, and Table 7-128, through Table 7-131 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO SDR12 in receiver and transmitter mode. Table 7-128. Timing Requirements for MMC3 - SDR12 Mode (1) PARAMETER DESCRIPTION SDR125 NO. tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge SDR126 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge SDR127 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge SDR128 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge MIN MAX UNIT 25.99 ns 1.6 ns 25.99 ns 1.6 ns (1) i in [i:0] = 7 Table 7-129. Switching Characteristics for MMC3 - SDR12 Mode (2) NO. PARAMETER DESCRIPTION SDR120 fop(clk) Operating frequency, mmc3_clk SDR121 tw(clkH) Pulse duration, mmc3_clk high MIN MAX UNIT 24 MHz 0.5*P0.270 (1) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated ns 319 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-129. Switching Characteristics for MMC3 - SDR12 Mode (2) (continued) PARAMETER DESCRIPTION SDR122 NO. tw(clkL) Pulse duration, mmc3_clk low MIN MAX SDR123 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -19.13 16.93 ns SDR124 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -19.13 16.93 ns MAX UNIT 0.5*P0.270 (1) UNIT ns (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 7-130. Timing Requirements for MMC4 - SDR12 Mode (1) PARAMETER DESCRIPTION SDR125 NO. tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge SDR126 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge SDR127 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge SDR128 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge MIN 25.99 ns 1.6 ns 25.99 ns 1.6 ns (1) j in [i:0] = 3 Table 7-131. Switching Characteristics for MMC4 - SDR12 Mode (2) PARAMETER DESCRIPTION SDR120 NO. fop(clk) Operating frequency, mmc4_clk MIN MAX UNIT 24 SDR121 tw(clkH) Pulse duration, mmc4_clk high 0.5*P0.270 (1) MHz ns SDR122 tw(clkL) Pulse duration, mmc4_clk low 0.5*P0.270 (1) ns SDR125 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -19.13 16.93 ns SDR126 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -19.13 16.93 ns (1) P = output mmc4_clk period in ns (2) j in [i:0] = 3 SDR122 SDR121 SDR120 mmcj_clk SDR126 SDR125 mmcj_cmd SDR128 SDR127 mmcj_dat[i:0] SPRS906_TIMING_MMC3_11 Figure 7-88. MMC/SD/SDIOj in - SDR12 - Receiver Mode 320 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 SDR122 SDR121 SDR120 mmcj_clk SDR123 mmcj_cmd SDR124 mmcj_dat[i:0] SPRS906_TIMING_MMC3_12 Figure 7-89. MMC/SD/SDIOj in - SDR12 - Transmitter Mode 7.25.3.4 MMC3 and MMC4, SD SDR25 Mode Figure 7-90, Figure 7-91, and Table 7-132, through Table 7-135 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO SDR25 in receiver and transmitter mode. Table 7-132. Timing Requirements for MMC3 - SDR25 Mode (1) NO. PARAMETER DESCRIPTION MIN MAX UNIT SDR253 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 5.3 ns SDR254 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 1.6 ns SDR257 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.3 ns SDR258 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 1.6 ns (1) i in [i:0] = 7 Table 7-133. Switching Characteristics for MMC3 - SDR25 Mode (2) PARAMETER DESCRIPTION SDR251 NO. fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 48 SDR252 H tw(clkH) Pulse duration, mmc3_clk high 0.5*P0.270 (1) MHz ns SDR252L tw(clkL) Pulse duration, mmc3_clk low 0.5*P0.270 (1) ns SDR255 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -8.8 6.6 ns MAX UNIT (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 7-134. Timing Requirements for MMC4 - SDR25 Mode (1) PARAMETER DESCRIPTION MIN SDR255 NO. tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge 5.3 ns SDR256 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge 1.6 ns SDR257 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge 5.3 ns SDR258 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 1.6 ns (1) i in [i:0] = 3 Table 7-135. Switching Characteristics for MMC4 - SDR25 Mode (2) PARAMETER DESCRIPTION SDR251 NO. fop(clk) Operating frequency, mmc4_clk SDR252 H tw(clkH) Pulse duration, mmc4_clk high MIN MAX UNIT 48 MHz 0.5*P0.270 (1) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated ns 321 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-135. Switching Characteristics for MMC4 - SDR25 Mode (2) (continued) NO. PARAMETER DESCRIPTION MIN MAX 0.5*P0.270 (1) UNIT SDR252L tw(clkL) Pulse duration, mmc4_clk low ns SDR255 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -8.8 6.6 ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 SDR251 SDR252L SDR252H mmcj_clk SDR253 SDR254 mmcj_cmd SDR257 SDR258 mmcj_dat[i:0] SPRS906_TIMING_MMC3_13 Figure 7-90. MMC/SD/SDIOj in - SDR25 - Receiver Mode SDR251 SDR252H SDR252L mmcj_clk SDR255 SDR255 mmcj_cmd SDR256 SDR256 mmcj_dat[i:0] SPRS906_TIMING_MMC3_14 Figure 7-91. MMC/SD/SDIOj in - SDR25 - Transmitter Mode 7.25.3.5 MMC3 SDIO High-Speed UHS-I SDR50 Mode, Half Cycle Figure 7-92, Figure 7-93, Table 7-136, and Table 7-137 present Timing requirements and Switching characteristics for MMC3 - SDIO High speed SDR50 in receiver and transmitter mode. Table 7-136. Timing Requirements for MMC3 - SDR50 Mode (1) NO. PARAMETER DESCRIPTION MIN MAX UNIT SDR503 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 1.48 ns SDR504 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 1.6 ns SDR507 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 1.48 ns SDR508 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 1.6 ns (1) i in [i:0] = 7 Table 7-137. Switching Characteristics for MMC3 - SDR50 Mode (2) PARAMETER DESCRIPTION SDR501 NO. fop(clk) Operating frequency, mmc3_clk SDR502 H tw(clkH) Pulse duration, mmc3_clk high 0.5*P0.270 (1) ns Pulse duration, mmc3_clk low 0.5*P0.270 (1) ns SDR502L tw(clkL) 322 MIN MAX UNIT 64 MHz Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-137. Switching Characteristics for MMC3 - SDR50 Mode (2) (continued) PARAMETER DESCRIPTION MIN MAX UNIT SDR505 NO. td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -3.66 1.46 ns SDR506 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -3.66 1.46 ns (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 SDR501 SDR502L SDR502H mmcj_clk SDR503 SDR504 mmcj_cmd SDR507 SDR508 mmcj_dat[7:0] SPRS906_TIMING_MMC3_05 Figure 7-92. MMC/SD/SDIOj in - High Speed SDR50 - Receiver Mode SDR501 SDR502H SDR502L mmcj_clk SDR505 SDR505 mmcj_cmd SDR506 SDR506 mmcj_dat[7:0] SPRS906_TIMING_MMC3_06 Figure 7-93. MMC/SD/SDIOj in - High Speed SDR50 - Transmitter Mode NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guaranteed some IO timings for MMC3. See Table 7-2 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 7-138 Manual Functions Mapping for MMC3 for a definition of the Manual modes. Table 7-138 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 7-138. Manual Functions Mapping for MMC3 BALL BALL NAME MMC3_MANUAL1 CFG REGISTER A_DELAY (ps) G_DELAY (ps) MUXMODE 0 AD4 mmc3_clk 1085 21 CFG_MMC3_CLK_IN AD4 mmc3_clk 1269 0 CFG_MMC3_CLK_OUT mmc3_clk mmc3_clk AC4 mmc3_cmd 0 0 CFG_MMC3_CMD_IN mmc3_cmd AC4 mmc3_cmd 128 0 CFG_MMC3_CMD_OEN mmc3_cmd AC4 mmc3_cmd 98 0 CFG_MMC3_CMD_OUT mmc3_cmd AC7 mmc3_dat0 0 0 CFG_MMC3_DAT0_IN mmc3_dat0 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 323 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 7-138. Manual Functions Mapping for MMC3 (continued) BALL BALL NAME MMC3_MANUAL1 CFG REGISTER A_DELAY (ps) G_DELAY (ps) MUXMODE 0 AC7 mmc3_dat0 362 0 CFG_MMC3_DAT0_OEN mmc3_dat0 AC7 mmc3_dat0 0 0 CFG_MMC3_DAT0_OUT mmc3_dat0 AC6 mmc3_dat1 7 0 CFG_MMC3_DAT1_IN mmc3_dat1 AC6 mmc3_dat1 333 0 CFG_MMC3_DAT1_OEN mmc3_dat1 AC6 mmc3_dat1 0 0 CFG_MMC3_DAT1_OUT mmc3_dat1 AC9 mmc3_dat2 0 0 CFG_MMC3_DAT2_IN mmc3_dat2 AC9 mmc3_dat2 402 0 CFG_MMC3_DAT2_OEN mmc3_dat2 AC9 mmc3_dat2 0 0 CFG_MMC3_DAT2_OUT mmc3_dat2 AC3 mmc3_dat3 203 0 CFG_MMC3_DAT3_IN mmc3_dat3 AC3 mmc3_dat3 549 0 CFG_MMC3_DAT3_OEN mmc3_dat3 AC3 mmc3_dat3 1 0 CFG_MMC3_DAT3_OUT mmc3_dat3 AC8 mmc3_dat4 121 0 CFG_MMC3_DAT4_IN mmc3_dat4 AC8 mmc3_dat4 440 0 CFG_MMC3_DAT4_OEN mmc3_dat4 AC8 mmc3_dat4 206 0 CFG_MMC3_DAT4_OUT mmc3_dat4 AD6 mmc3_dat5 336 0 CFG_MMC3_DAT5_IN mmc3_dat5 AD6 mmc3_dat5 283 0 CFG_MMC3_DAT5_OEN mmc3_dat5 AD6 mmc3_dat5 174 0 CFG_MMC3_DAT5_OUT mmc3_dat5 AB8 mmc3_dat6 320 0 CFG_MMC3_DAT6_IN mmc3_dat6 AB8 mmc3_dat6 443 0 CFG_MMC3_DAT6_OEN mmc3_dat6 AB8 mmc3_dat6 0 0 CFG_MMC3_DAT6_OUT mmc3_dat6 AB5 mmc3_dat7 2 0 CFG_MMC3_DAT7_IN mmc3_dat7 AB5 mmc3_dat7 344 0 CFG_MMC3_DAT7_OEN mmc3_dat7 AB5 mmc3_dat7 0 0 CFG_MMC3_DAT7_OUT mmc3_dat7 NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-3 and described in Device TRM, Control Module Chapter. 7.26 General-Purpose Interface (GPIO) The general-purpose interface combines eight general-purpose input/output (GPIO) banks. Each GPIO module provides up to 32 dedicated general-purpose pins with input and output capabilities; thus, the general-purpose interface supports up to 215 pins. These pins can be configured for the following applications: • Data input (capture)/output (drive) • Keyboard interface with a debounce cell • Interrupt generation in active mode upon the detection of external events. Detected events are processed by two parallel independent interrupt-generation submodules to support biprocessor operations • Wake-up request generation in idle mode upon the detection of external events NOTE For more information, see the General-Purpose Interface chapter of the Device TRM. 324 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 NOTE The general-purpose input/output i (i = 1 to 8) bank is also referred to as GPIOi. 7.27 Audio Tracking Logic (ATL) The device contains four ATL modules that can be used for asynchronous sample rate conversion of audio. The ATL calculates the error between two time bases, such as audio syncs, and optionally generates an averaged clock using cycle stealing via software. NOTE For more detailed information on the ATL peripheral, see the Audio Tracking Logic (ATL) chapter of the device-specific Technical Reference Manual. NOTE Audio Tracking Logic x (x= 1 to 4) module is also referred to as ATLx. 7.27.1 ATL Electrical Data/Timing Table 7-139 and Figure 7-94 present switching characteristics for ATL Table 7-139. Switching Characteristics Over Recommended Operating Conditions for ATL_CLKOUTx NO. PARAMETER DESCRIPTION 1 tc(ATLCLKOUT) Cycle time, ATL_CLKOUTx 2 tw(ATLCLKOUTL) 3 tw(ATLCLKOUTH) MIN MAX UNIT 20 ns Pulse Duration, ATL_CLKOUTx low 0.45*P - M(1) ns Pulse Duration, ATL_CLKOUTx high 0.45*P - M(1) ns (1) P = ATL_CLKOUTx period. M = internal ATL PCLK period. 1 2 atl_clkx 3 SPRS906_TIMING_ATL_01 Figure 7-94. ATL_CLKOUTx Timing 7.28 System and Miscellaneous interfaces The Device includes the following System and Miscellaneous interfaces: • Sysboot Interface • System DMA Interface • Interrupt Controllers (INTC) Interface • Observability Signal (OBS) Interface 7.29 Test Interfaces The Device includes the following Test interfaces: • IEEE 1149.1 Standard-Test-Access Port (JTAG) • Trace Port Interface Unit (TPIU) • Advanced Event Triggering Interface (AET) Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 325 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 7.29.1 IEEE 1149.1 Standard-Test-Access Port (JTAG) The JTAG (IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture) interface is used for BSDL testing and emulation of the device. The trstn pin only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. For maximum reliability, the device includes an internal Pulldown (IPD) on the trstn pin to ensure that trstn is always asserted upon power up and the device's internal emulation logic is always properly initialized. JTAG controllers from Texas Instruments actively drive trstn high. However, some third-party JTAG controllers may not drive trstn high but expect the use of a Pullup resistor on trstn. When using this type of JTAG controller, assert trstn to initialize the device after powerup and externally drive trstn high before attempting any emulation or boundary-scan operations. The main JTAG features include: • 32KB embedded trace buffer (ETB) • 5-pin system trace interface for debug • Supports Advanced Event Triggering (AET) • All processors can be emulated via JTAG ports • All functions on EMU pins of the device: – EMU[1:0] - cross-triggering, boot mode (WIR), STM trace – EMU[4:2] - STM trace only (single direction) 7.29.1.1 JTAG Electrical Data/Timing Table 7-140, Table 7-141 and Figure 7-95 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-140. Timing Requirements for IEEE 1149.1 JTAG NO. PARAMETER DESCRIPTION MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 62.29 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 24.92 ns 1b tw(TCKL) Pulse duration, TCK low (40% of tc) 24.92 ns tsu(TDI-TCK) Input setup time, TDI valid to TCK high 6.23 ns tsu(TMS-TCK) Input setup time, TMS valid to TCK high 6.23 ns th(TCK-TDI) Input hold time, TDI valid from TCK high 31.15 ns th(TCK-TMS) Input hold time, TMS valid from TCK high 31.15 ns 3 4 Table 7-141. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG NO. 2 326 PARAMETER td(TCKL-TDOV) DESCRIPTION Delay time, TCK low to TDO valid MIN MAX UNIT 0 30.5 ns Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 1 1a 1b TCK 2 TDO 3 4 TDI/TMS SPRS906_TIMING_JTAG_01 Figure 7-95. JTAG Timing Table 7-142, Table 7-143 and Figure 7-96 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-142. Timing Requirements for IEEE 1149.1 JTAG With RTCK NO. PARAMETER DESCRIPTION MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 62.29 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 24.92 ns 1b tw(TCKL) Pulse duration, TCK low (40% of tc) 24.92 ns tsu(TDI-TCK) Input setup time, TDI valid to TCK high 6.23 ns tsu(TMS-TCK) Input setup time, TMS valid to TCK high 6.23 ns th(TCK-TDI) Input hold time, TDI valid from TCK high 31.15 ns th(TCK-TMS) Input hold time, TMS valid from TCK high 31.15 ns 3 4 Table 7-143. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG With RTCK NO. PARAMETER DESCRIPTION MIN MAX UNIT 0 27 ns 5 td(TCK-RTCK) Delay time, TCK to RTCK with no selected subpaths (i.e. ICEPick is the only tap selected - when the ARM is in the scan chain, the delay time is a function of the ARM functional clock). 6 tc(RTCK) Cycle time, RTCK 62.29 ns 7 tw(RTCKH) Pulse duration, RTCK high (40% of tc) 24.92 ns 8 tw(RTCKL) Pulse duration, RTCK low (40% of tc) 24.92 ns 5 TCK 6 7 8 RTCK SPRS906_TIMING_JTAG_02 Figure 7-96. JTAG With RTCK Timing Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 327 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 7.29.2 Trace Port Interface Unit (TPIU) CAUTION The I/O timings provided in this section are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 7-145. 7.29.2.1 TPIU PLL DDR Mode Table 7-144 and Figure 7-97 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 7-144. Switching Characteristics for TPIU NO. PARAMETER DESCRIPTION MIN MAX UNIT TPIU1 tc(clk) Cycle time, TRACECLK period 5.56 ns TPIU4 td(clk-ctlV) Skew time, TRACECLK transition to TRACECTL transition -1.61 1.98 ns TPIU5 td(clk-dataV) Skew time, TRACECLK transition to TRACEDATA[17:0] -1.61 1.98 ns TPIU1 TPIU2 TPIU3 TRACECLK TPIU4 TPIU4 TRACECTL TPIU5 TPIU5 TRACEDATA[X:0] SPRS906_TIMING_TIMER_01 Figure 7-97. TPIU-PLL DDR Transmit Mode(1) (1) In d[X:0], X is equal to 15 or 17. In Table 7-145 are presented the specific groupings of signals (IOSET) for use with TPIU signals. Table 7-145. TPIU IOSETs SIGNALS 328 IOSET1 IOSET2 BALL MUX BALL MUX emu19 E6 5 A10 2 emu18 F5 5 B9 2 emu17 E4 5 A9 2 emu16 C1 5 C9 2 emu15 F4 5 A8 2 emu14 D2 5 C7 2 emu13 E2 5 C8 2 emu12 D1 5 C6 2 emu11 F3 5 A5 2 emu10 F2 5 D8 2 emu9 G6 5 E7 2 emu8 G1 5 F8 2 emu7 H7 5 F9 2 emu6 G2 5 E9 2 Timing Requirements and Switching Characteristics Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 7-145. TPIU IOSETs (continued) SIGNALS IOSET1 IOSET2 BALL MUX BALL MUX emu5 E1 5 G11 2 emu4 A7 2 A7 2 emu3 D7 2 D7 2 emu2 F10 2 F10 2 emu1 D24 0 D24 0 emu0 G21 0 G21 0 Timing Requirements and Switching Characteristics Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 329 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 8 Applications, Implementation, and Layout NOTE Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Introduction This chapter is intended to communicate, guide and illustrate a PCB design strategy resulting in a PCB that can support TI’s latest Application Processor. This Processor is a high-performance processor designed for automotive Infotainment based on enhanced OMAP™ architecture integrated on a 28-nm CMOS process technology. These guidelines first focus on designing a robust Power Delivery Network (PDN) which is essential to achieve the desirable high performance processing available on Device. The general principles and stepby-step approach for implementing good power integrity (PI) with specific requirements will be described for the key Device power domains. TI strongly believes that simulating a PCB’s proposed PDN is required for first pass PCB design success. Key Device processor high-current power domains need to be evaluated for Power Rail IR Drop, Decoupling Capacitor Loop-Inductance and Power Rail Target Impedance. Only then can a PCB’s PDN performance be truly accessed by comparing these model PI parameters vs. TI’s recommended values. Ultimately for any high-volume product, TI recommends conducting a “Processor PDN Validation” test on prototype PCBs across processor “split lots” to verify PDN robustness meets desired performance goals for each customer’s worst-case scenario. Please contact your TI representative to receive guidance on PDN PI modeling and validation testing. Likewise, the methodology and requirements needed to route Device high-speed, differential interfaces (i.e. USB2.0, USB3.0, HDMI, PCI, SATA), single-ended interfaces (i.e. DDR3, QSPI) and general purpose interfaces using LVCMOS drivers that meet timing requirements while minimizing signal integrity (SI) distortions on the PCB’s signaling traces. Signal trace lengths and flight times are aligned with FR-4 standard specification for PCBs. Several different PCB layout stack-up examples have been presented to illustrate a typical number of layers, signal assignments and controlled impedance requirements. Different Device interface signals demand more or less complexity for routing and controlled impedance stack-ups. Optimizing the PCB’s PDN stack-up needs with all of these different types of signal interfaces will ultimately determine the final layer count and layer assignments in each customer’s PCB design. This guideline must be used as a supplement in complement to TI’s Application Processor, Power Management IC (PMIC) and Audio Companion components along with other TI component technical documentation (i.e. Technical Reference Manual, Data Manual, Data Sheets, Silicon Errata, Pin-Out Spreadsheet, Application Notes, etc.). NOTE Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, for customer boards. The data described in this appendix are intended as guidelines only. NOTE These PCB guidelines are in a draft maturity and consequently, are subject to change depending on design verification testing conducted during IC development and validation. 330 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 8.1.1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Initial Requirements and Guidelines Unless otherwise specified, the characteristic impedance for single-ended interfaces is recommended to be between 35 Ω and 65 Ω to minimize the overshoot or undershoot on far-end loads. Characteristic impedance for differential interfaces must be routed as differential traces on the same layer. The trace width and spacing must be chosen to yield the recommended differential impedance. For more information see Section 8.5.1. The PDN must be optimized for low trace resistance and low trace inductance for all high-current power nets from PMIC to the device. An external interface using a connector must be protected following the IEC61000-4-2 level 4 system ESD. 8.2 Power Optimizations This section describes the necessary steps for designing a robust Power Distribution Network (PDN): • Section 8.2.1, Step 1: PCB Stack-up • Section 8.2.2, Step 2: Physical Placement • Section 8.2.3, Step 3: Static Analysis • Section 8.2.4, Step 4: Frequency Analysis 8.2.1 Step 1: PCB Stack-up The PCB stack-up (layer assignment) is an important factor in determining the optimal performance of the power distribution system. An optimized PCB stack-up for higher power integrity performance can be achieved by following these recommendations: • Power and ground plane pairs must be closely coupled together. The capacitance formed between the planes can decouple the power supply at high frequencies. Whenever possible, the power and ground planes must be solid to provide continuous return path for return current. • Use a thin dielectric between the power and ground plane pair. Capacitance is inversely proportional to the separation of the plane pair. Minimizing the separation distance (the dielectric thickness) maximizes the capacitance. • Optimize the power and ground plane pair carrying high current supplies to key component power domains as close as possible to the same surface where these components are placed (see Figure 81). This will help to minimize “loop inductance” encountered between supply decoupling capacitors and component supply inputs and between power and ground plane pairs. NOTE 1-2oz Cu weight for power / ground plane is preferred to enable better PCB heat spreading, helping to reduce Processor junction temperatures. In addition, it is preferable to have the power / ground planes be adjacent to the PCB surface on which the Processor is mounted. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 331 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Capacitor Trace DIE Package Via 3 1 Power/Ground 2 Ground/Power Note: 1. BGA via pair loop inductance 2. Power/Ground net spreading inductance 3. Capacitor trace inductance Loop inductance SPRS906_PCB_STACKUP_01 Figure 8-1. Minimize Loop Inductance With Proper Layer Assignment The placement of power and ground planes in the PCB stackup (determined by layer assignment) has a significant impact on the parasitic inductances of power current path as shown in Figure 8-1. For this reason, it is recommended to consider layer order in the early stages of the PCB PDN design cycle, putting high-priority supplies in the top half of the stackup (assuming high load and priority components are mounted on the top-side of PCB) and low-priority supplies in the bottom half of the stackup as shown in the examples below (vias have parasitic inductances which impact the bottom layers more, so it is advised to put the sensitive and high-priority power supplies on the top/same layers). 8.2.2 Step 2: Physical Placement A critical step in designing an optimized PDN is that proper care must be taken to making sure that the initial floor planning of the PCB layout is done with good power integrity design guidelines in mind. The following points are important for optimizing a PCB’s PDN: • Minimizing the physical distance between power sources and key high load components is the first step toward optimization. Placing source and load components on the same side of the PCB is desirable. This will minimize via inductance impact for high current loads and steps • External trace routing between components must be as wide as possible. The wider the traces, the lower the DC resistance and consequently the lower the static IR drop. • Whenever possible for the internal layers (routing and plane), wide traces and copper area fills are preferred for PDN layout. The routing of power nets in plane provide for more interplane capacitance and improved high frequency performance of the PDN. • Whenever possible, use a via to component pin/pad ratio of 1:1 or better (i.e. especially decoupling capacitors, power inductors and current sensing resistors). Do not share vias among multiple capacitors for connecting power supply and ground planes. • Placement of vias must be as close as possible or even within a component’s solder pad if the PCB technology you are using provides this capability. • To avoid any “ampacity” issue – maximum current-carrying capacity of each transitional via should be evaluated to determine the appropriate number of vias required to connect components. Adding vias to bring the “via-to-pad” ratio to 1:1 will improve PDN performance. • For noise sensitive power supplies (i.e. Phase Lock-Loops, analog signals like audio and video), a Gnd shield can be used to isolate coplanar supplies that may have high step currents or high frequency switching transitions from coupling into low-noise supplies. 332 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 vdd_mpu vss vdd PCB_PO_8 Figure 8-2. Coplanar Shielding of Power Net Using Ground Guard-band 8.2.3 Step 3: Static Analysis Delivering reliable power to circuits is always of critical importance because voltage drops (also known as IR drops) can happen at every level within an electronic system, on-chip, within a package, and across the board. Robust system performance can only be ensured by understanding how the system elements will perform under typical stressful Use Cases. Therefore, it is a good practice to perform a Static or DC Analysis. Static or DC analysis and design methodology results in a PDN design that minimizes voltage or IR drops across power and ground planes, traces and vias. This ensures the application processor’s internal transistors will be operating within their specified voltage ranges for proper functionality. The amount of IR drop that will be encounter is based upon amount power drawn for a desired Use Case and PCB trace (widths, geometry and number of parallel traces) and via (size, type and number) characteristics. Components that are distant from their power source are particularly susceptible to IR drop. Designs that rely on battery power must minimize voltage drops to avoid unacceptable power loss that can negatively impact system performance. Early assessments a PDN’s static (DC) performance helps to determine basic power distribution parameters such as best system input power point, optimal PCB layer stackup, and copper area needed for load currents. The resistance Rs of a plane conductor for a unit length and unit width is called the surface resistivity (ohms per square). L r 1 = σ ×t t l R = Rs × w Rs = W t SPRS906_PCB_STATIC_01 Figure 8-3. Depiction of Sheet Resistivity and Resistance Ohm’s Law (V = I × R) relates conduction current to voltage drop. At DC, the relation coefficient is a constant and represents the resistance of the conductor. Even current carrying conductors will dissipate power at high currents even though their resistance may be very small. Both voltage drop and power dissipation are proportional to the resistance of the conductor. Figure 8-4 shows a PCB-level static IR drop budget defined between the power management device (PMIC) pins and the application processor’s balls when the PMIC is supplying power. • It is highly recommended to physically place the PMIC as close as possible to the processor and on the same side. The orientation of the PMIC vs. processor should be aligned to minimize distance for the highest current rail. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 333 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com The resistance Rs of a plane conductor for a unit length and unit width is called the surface resistivity (ohms per square). L r 1 = σ ×t t l R = Rs × w Rs = W t SPRS906_PCB_STATIC_01 Figure 8-4. Static IR Drop Budget for PCB Only The system-level IR drop budget is made up of three portions: on-chip, package, and PCB board. Static IR or DC analysis/design methodology consists of designing the PDN such that the voltage drop (under DC operating conditions) across power and ground pads of the transistors of the application processor device is within a specified value of the nominal voltage for proper functionality of the device. A PCB system-level voltage drop budget for proper device functionality is typically 1.5% of nominal voltage. For a 1.35-V supply, this would be ≤20 mV. To accurately analyze PCB static IR drop, the actual geometry of the PDN must be modeled properly and simulated to accurately characterize long distribution paths, copper weight impacts, electro-migration violations of current-carrying vias, and “Swiss-cheese” effects via placement has on power rails. It is recommended to perform the following analyses: • Lumped resistance/IR drop analysis • Distributed resistance/IR drop analysis NOTE The PMIC companion device supporting this processor has been designed with voltage sensing feedback loop capabilities that enable a remote sense of the SMPS output voltage at the point of use. The NOTE above means the SMPS feedback signals and returns must be routed across PCB and connected to the Device input power ball for which a particular SMPS is supplying power. This feedback loop provides compensation for some of the voltage drop encountered across the PDN within limits. As such, the effective resistance of the PDN within this loop should be determined in order to optimize voltage compensation loop performance. The resistance of two PDN segments are of interest: one from the power inductor/bulk power filtering capacitor node to the Processor’s input power and second is the entire PDN route from SMPS output pin/ball to the Processor input power. In the following sections each methodology is described in detail and an example has been provided of analysis flow that can be used by the PCB designer to validate compliance to the requirements on their PCB PDN design. 8.2.3.1 PDN Resistance and IR Drop Lumped methodology consists of grouping all of the power pins on both the PMIC (voltage source) and processor (current sink) devices. Then the PMIC source is set to an expected Use Case voltage level and the processor load has its Use Case current sink value set as well. Now the lumped/effective resistance for the power rail trace/plane routes can be determine based upon the actual layout’s power rail etch wide, shape, length, via count and placement Figure 8-5 illustrates the pin-grouping/lumped concept. The lumped methodology consists of importing the PCB layout database (from Cadence Allegro tool or any other layout design tool) into the static IR drop modeling and simulation tool of preference for the PCB designer. This is followed by applying the correct PCB stack-up information (thickness, material properties) of the PCB dielectric and metallization layers. The material properties of dielectric consist of permittivity (Dk) and loss tangent (Df). 334 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 For the conductor layers, the correct conductivity needs to be programmed into the simulation tool. This is followed by pin-grouping of the power and ground nets, and applying appropriate voltage/current sources. The current and voltage information can be obtained from the power and voltage specifications of the device under different operating conditions / Use Cases. Sources Multiport net Sources Branch Grouped Power/Ground pins to create 1 equivalent resistive branch Port/Pin Sinks Sinks SPRS906_PCB_PDN_01 Figure 8-5. Pin-grouping concept: Lumped and Distributed Methodologies 8.2.4 Step 4: Frequency Analysis Delivering low noise voltage sources are very important to allowing a system to operate at the lowest possible Operational Performance Point (OPP) for any one Use Case. An OPP is a combination of the supply voltage level and clocking rate for key internal processor domains. A SCH and PCB designed to provide low noise voltage supplies will then enable the processor to enter optimal OPPs for each Use Case that in turn will minimize power dissipation and junction temperatures on-die. Therefore, it is a good engineering practice to perform a Frequency Analysis over the key power domains. Frequency analysis and design methodology results in a PDN design that minimizes transient noise voltages at the processor’s input power balls. This allows the processor’s internal transistors to operate near the minimum specified operating supply voltage levels. To accomplish this one must evaluate how a voltage supply will change due to impedance variations over frequency. This analysis will focus on the decoupling capacitor network (VDD_xxx and VSS/Gnd rails) at the load. Sufficient capacitance with a distribution of self-resonant points will provide for an overall lower impedance vs frequency response for each power domain. Decoupling components that are distant from their load’s input power are susceptible to encountering spreading loop inductance from the PCB design. Early analysis of each key power domain’s frequency response helps to determine basic decoupling capacitor placement, optimal footprint, layer assignment, and types needed for minimizing supply voltage noise/fluctuations due to switching and load current transients. NOTE Evaluation of loop inductance values for decoupling capacitors placed ~300mils closer to the load’s input power balls has shown an 18% reduction in loop inductance due to reduced distance. • Decoupling capacitors must be carefully placed in order to minimize loop inductance impact on supply voltage transients. A real capacitor has characteristics not only of capacitance but also inductance and resistance. Figure 8-6 shows the parasitic model of a real capacitor. A real capacitor must be treated as an RLC circuit with effective series resistance (ESR) and effective series inductance (ESL). C ESL ESR SPRS906_PCB_FREQ_01 Figure 8-6. Characteristics of a Real Capacitor With ESL and ESR The magnitude of the impedance of this series model is given as: Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 335 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Z = 1 ö æ ESR 2 +ωESL ç ωESL - ωC ÷ ø è 2 where : w = 2π¦ SPRS906_PCB_FREQ_02 Figure 8-7. Series Model Impedance Equation Figure 8-8 shows the resonant frequency response of a typical capacitor with a self-resonant frequency of 55 MHz. The impedance of the capacitor is a combination of its series resistance and reactive capacitance and inductance as shown in the equation above. S-Parameter Magnitude Job: GCM155R71E153KA55_15NF; 1.0e+01 1.0e+00 1.0e–01 1.0e–02 XC=1/ωC XL=ωL 1.0e–03 Resonant frequency (55 MHz) (minimum) 1.0e–04 1.00e–002 1.00e+000 1.00e+002 1.00e+004 1.00e+006 1.00e+008 Frequency (MHz) SPRS906_PCB_FREQ_03 Figure 8-8. Typical Impedance Profile of a Capacitor Because a capacitor has series inductance and resistance that impacts its effectiveness, it is important that the following recommendations are adopted in placing capacitors on the PDN. Wherever possible, mount the capacitor with the geometry that minimizes the mounting inductance and resistance. This was shown earlier in Figure 8-1. The capacitor mounting inductance and resistance values include the inductance and resistance of the pads, trace, and vias. Whenever possible, use footprints that have the lowest inductance configuration as shown in Figure 8-9 The length of a trace used to connect a capacitor has a big impact on parasitic inductance and resistance of the mounting. This trace must be as short and as wide as possible. wherever possible, minimize distance to supply and Gnd vias by locating vias nearby or within the capacitor’s solder pad landing. Further improvements can be made to the mounting by placing vias to the side of capacitor lands or doubling the number of vias as shown in Figure 8-9. If the PCB manufacturing processes allow it and if cost-effective, via-in-pad (VIP) geometries are strongly recommended. 336 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 In addition to mounting inductance and resistance associated with placing a capacitor on the PCB, the effectiveness of a decoupling capacitor also depends on the spreading inductance and resistance that the capacitor sees with respect to the load. The spreading inductance and resistance is strongly dependent on the layer assignment in the PCB stack-up. Therefore, try to minimize X, Y and Z dimensions where the Z is due to PCB thickness (as shown in Figure 8-9). From left (highest inductance) to right (lowest inductance) the capacitor footprint types shown in Figure 89 are known as: • 2-via, Skinny End Exit (2vSEE) • 2-via, Wide End Exit (2vWEE) • 2-via, Wide Side Exit (2vWSE) • 4-via, Wide Side Exit (4vWSE) • 2-via, In-Pad (2vIP) Via Via-in-pad Pad Trace Mounting geometry for reduced inductance SPRS906_PCB_FREQ_04 Figure 8-9. Capacitor Placement Geometry for Improved Mounting Inductance NOTE Evaluation of loop inductance values for decoupling capacitor footprints 2vSEE (worst case) vs 4vWSE (2nd best) has shown a 30% reduction in inductance when 4vWSE footprint was used in place of 2vSEE. Decoupling Capacitor (Dcap) Strategy: 1. Use lowest inductance footprint and trace connection scheme possible for given PCB technology and layout area in order to minimize Dcap loop inductance to power pin as much as possible (see Figure 89). 2. Place Dcaps on “same-side” as component within their power plane outline to minimize “decoupling loop inductance”. Target distance to power pin should be less than ~500mils depending upon PCB layout characteristics (plane's layer assignment and solid nature). Use PI modeling CAD tool to verify minimum inductance for top vs bottom-side placement. 3. Place Dcaps on “opposite-side” as component within their power plane outline if “same-side” is not feasible or if distance to power pin is greater than ~500mils for top-side location. Use PI modeling CAD tool to verify minimum inductance for top vs bottom-side placement. 4. Use minimum 10mil trace width for all voltage and gnd planes connections (i.e. Dcap pads, component power pins, etc.). Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 337 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 5. Place all voltage and gnd plane vias “as close as possible” to point of use (i.e. Dcap pads, component power pins, etc.). 6. Use a “Power/Gnd pad/pin to via” ratio of 1:1 whenever possible. Do not exceed 2:1 ratio for small number of vias within restricted PCB areas (i.e. underneath BGA components). Frequency analysis for the CORE power domain has yielded the vdd Impedance vs Frequency response shown in Section 8.3.7.2, vdd Example Analysis. As the example shows the overall CORE PDN Reff meets the maximum recommended PDN resistance of 10mΩ. 8.2.5 System ESD Generic Guidelines 8.2.5.1 System ESD Generic PCB Guideline Protection devices must be placed close to the ESD source which means close to the connector. This allows the device to subtract the energy associated with an ESD strike before it reaches the internal circuitry of the application board. To help minimize the residual voltage pulse that will be built-up at the protection device due to its nonzero turn-on impedance, it is mandatory to route the ESD device with minimum stub length so that the lowresistive, low-inductive path from the signal to the ground is granted and not increasing the impedance between signal and ground. For ESD protection array being railed to a power supply when no decoupling capacitor is available in close vicinity, consider using a decoupling capacitor (≥ 0.1 µF) tight to the VCC pin of the ESD protection. A positive strike will be partially diverted to this capacitance resulting in a lower residual voltage pulse. Ensure that there is sufficient metallization for the supply of signals at the interconnect side (VCC and GND in Figure 8-10) from connector to external protection because the interconnect may see between 15A to 30-A current in a short period of time during the ESD event. Bypass capacitor 0.1 mf (minimum) Stub inductance Connector Stub inductance Interconnection inductance vcc Signal VCC VCC Protected circuit Stub inductance Minimize such inductance by optimizing layout Ground inductance Keep distance between protected circuit and external protection Signal ESD strike External protection Keep external protection closed by connector SPRS906_PCB_ESD_01 Figure 8-10. Placement Recommendation for an ESD External Protection 338 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 NOTE To ensure normal behavior of the ESD protection (unwanted leakage), it is better to ground the ESD protection to the board ground rather than any local ground (example isolated shield or audio ground). 8.2.5.2 • • • • • • • • Miscellaneous EMC Guidelines to Mitigate ESD Immunity Avoid running critical signal traces (clocks, resets, interrupts, control signals, and so forth) near PCB edges. Add high frequency filtering: Decoupling capacitors close to the receivers rather than close to the drivers to minimize ESD coupling. Put a ground (guard) ring around the entire periphery of the PCB to act as a lightning rod. Connect the guard ring to the PCB ground plane to provide a low impedance path for ESD-coupled current on the ring. Fill unused portions of the PCB with ground plane. Minimize circuit loops between power and ground by using multilayer PCB with dedicated power and ground planes. Shield long line length (strip lines) to minimize radiated ESD. Avoid running traces over split ground planes. It is better to use a bridge connecting the two planes in one area. BAD BETTER SPRS906_PCB_EMC_01 • 8.2.5.3 Figure 8-11. Trace Examples Always route signal traces and their associated ground returns as close to one another as possible to minimize the loop area enclosed by current flow: – At high frequencies current follows the path of least inductance. – At low frequencies current flows through the path of least resistance. ESD Protection System Design Consideration ESD protection system design consideration is covered in Section 8.5.2.2 of this document. The following are additional considerations for ESD protection in a system. • Metallic shielding for both ESD and EMI • Chassis GND isolation from the board GND • Air gap designed on board to absorb ESD energy • Clamping diodes to absorb ESD energy • Capacitors to divert ESD energy • The use of external ESD components on the DP/DM lines may affect signal quality and are not recommended. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 339 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.2.6 www.ti.com EMI / EMC Issues Prevention All high-speed digital integrated circuits can be sources of unwanted radiation, which can affect nearby sensitive circuitry and cause the final product to have radiated emissions levels above the limits allowed by the EMC regulations if some preventative steps are not taken. Likewise, analog and digital circuits can be susceptible to interference from the outside world and picked up by the circuitry interconnections. To minimize the potential for EMI/EMC issues, the following guidelines are recommended to be followed. 8.2.6.1 Signal Bandwidth To evaluate the frequency of a digital signal, an estimated rule of thumb is to consider its bandwidth fBW with respect to its rise time, tR: fBW ≈ 0.35 / tR This frequency actually corresponds to the break point in the signal spectrum, where the harmonics start to decay at 40 dB per decade instead of 20 dB per decade. 8.2.6.2 Signal Routing 8.2.6.2.1 Signal Routing—Sensitive Signals and Shielding Keep radio frequency (RF) sensitive circuitry (like GPS receivers, GSM/WCDMA, Bluetooth/WLAN transceivers, frequency modulation (FM) radio) away from high-speed ICs (the device, power and audio manager, chargers, memories, and so forth) and ideally on the opposite side of the PCB. For improved protection it is recommended to place these emission sources in a shield can. If the shield can have a removable lid (two-piece shield), ensure there is low contact impedance between the fence and the lid. Leave some space between the lid and the components under it to limit the high-frequency currents induced in the lid. Limit the shield size to put any potential shield resonances above the frequencies of interest; see Figure 8-8, Typical Impedance Profile of a Capacitor. 8.2.6.2.2 Signal Routing—Outer Layer Routing In case there is a need to use the outer layers for routing outside of shielded areas, it is recommended to route only static signals and ensure that these static signals do not carry any high-frequency components (due to parasitic coupling with other signals). In case of long traces, make provision for a bypass capacitor near the signal source. Routing of high-frequency clock signals on outer layers, even for a short distance, is discouraged, because their emissions energy is concentrated at the discrete harmonics and can become significant even with poor radiators. Coplanar shielding of traces on outer layers (placing ground near the sides of a track along its length) is effective only if the distance between the trace sides and the ground is smaller that the trace height above the ground reference plane. For modern multilayer PCBs this is often not possible, so coplanar shielding will not be effective. Do not route high-frequency traces near the periphery of the PCB, as the lack of a ground reference near the trace edges can increase EMI: see Section 8.2.6.3, Ground Guidelines. 8.2.6.3 Ground Guidelines 8.2.6.3.1 PCB Outer Layers Ideally the areas on the top and bottom layers of the PCB that are not enclosed by a shield should be filled with ground after the routing is completed and connected with an adequate number of vias to the ground on the inner ground planes. 340 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.2.6.3.2 Metallic Frames Ensure that all metallic parts are well connected to the PCB ground (like LCD screens metallic frames, antennas reference planes, connector cages, flex cables grounds, and so forth). If using flex PCB ribbon cables to bring high-frequency signals off the PCB, ensure they are adequately shielded (coaxial cables or flex ribbons with a solid reference ground). 8.2.6.3.3 Connectors For high-frequency signals going to connectors choose a fully shielded connector, if possible (for example, SD card connectors). For signals going to external connectors or which are routed over long distances, it is recommended to reduce their bandwidth by using low-pass filters (resistor, capacitor (RC) combinations or lossy ferrite inductors). These filters will help to prevent emissions from the board and can also improve the immunity from external disturbances. 8.2.6.3.4 Guard Ring on PCB Edges The major advantage of a multilayer PCB with ground-plane is the ground return path below each and every signal or power trace. As shown in Figure 8-12 the field lines of the signal return to PCB ground as long as an infinite ground is available. Traces near the PCB-edges do not have this infinite ground and therefore may radiate more than the others. Thus, signals (clocks) or power traces (core power) identified to be critical must not be routed in the vicinity of PCB edges, or, if not avoidable, must be accompanied by a guard ring on the PCB edge. SPRS906_PCB_EMC_02 Figure 8-12. Field Lines of a Signal Above Ground Signal Power Ground Signal SPRS906_PCB_EMC_03 Figure 8-13. Guard Ring Routing The intention of the guard ring is that HF-energy, that otherwise would have been emitted from the PCB edge, is reflected back into the board where it partially will be absorbed. For this purpose ground traces on the borders of all layers (including power layer) must be applied as shown in Figure 8-13. As these traces must have the same (HF–) potential as the ground plane they must be connected to the ground plane at least every 10 mm. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 341 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 8.2.6.3.5 Analog and Digital Ground For the optimum solution, the AGND and the DGND planes must be connected together at the power supply source in a same point. This ensures that both planes are at the same potential, while the transfer of noise from the digital to the analog domain is minimized. 8.3 Core Power Domains This section provides boundary conditions and theoretical background to be applied as a guide for optimizing a PCB design. The decoupling capacitor and PDN characteristics tables shown below give recommended capacitors and PCB parameters to be followed for schematic and PCB designs. Board designs that meet the static and dynamic PDN characteristics shown in tables below will be aligned to the expected PDN performance needed to optimize SoC performance. 8.3.1 General Constraints and Theory • • • • • • • 342 Max PCB static/DC voltage drop (IRd) budget of 1.5% of supply voltage when using PMICs without remote sensing as measured from PMIC’s power inductor and filter capacitor node to Processor input including any ground return losses. Max PCB static/DC voltage drop (IRd) budget can be relaxed to 5% of supply voltage when using PMICs with remote sensing at the load as measured from PMIC’s power inductor and filter capacitor node to Device’s supply input including any ground return losses. PMIC component DM and guidelines should be referenced for the following: – Routing remote feedback sensing to optimize per each SMPS’s implementation – Selecting power filtering capacitor values and PCB placement. Max Effective Resistance (Reff) budget can range from 4 – 50mΩ for key Device power rails not including ground returns depending upon maximum load currents and maximum DC voltage drop budget (as discussed above). Max Device supply input voltage difference budget of 5mV under max current loading shall be maintained across all balls connected to a common power rail. This represents any voltage difference that may exist between a remote sense point to any power input. Max PCB Loop Inductance (LL) budget between Device’s power inputs and local bulk and high frequency decoupling capacitors including ground returns should range from 0.4 – 2.5nH depending upon maximum transient load currents. Max PCB dynamic/AC peak-to-peak transient noise voltage budgets between PMIC and Device including ground returns are as follows: – +/-3% of nominal supply voltage for frequencies below the PMIC bandwidth (typ Fpmic ~ 200kHz) – +/-5% of nominal supply voltage for frequencies between Fpmic to Fpcb (typ 20 – 100MHz) Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Max PCB Impedance (Z) vs Frequency (F) budget between Device’s power inputs and PMIC’s output power filter node including ground return is determined by applying the Frequency Domain Target Impedance Method to determine the PCB’s maximum frequency of interest (Fpcb). Ideally a properly designed and decoupled PDN will exhibit smoothly increasing Z vs. F curve. There are 2 general regions of interest as can be seen in Figure 8-14. – 1st area is from DC (0Hz) up to Fpmic (typ a few 100 kHz) where a PMIC’s transient response characteristic (i.e. Switching Freq, Compensation Loop BW) dominate. A PDN’s Z is typically very low due to power filtering & bulk capacitor values when PDN has very low trace resistance (i.e. good Reff performance). The goal is to maintain a smoothly increasing Z that is less than Zt1 over this low frequency range. This will ensure that a max transient current event will not cause a voltage drop more than the PMIC’s current step response can support (typ 3%). – 2nd area is from Fpmic up to Fpcb (typ 20-100MHz) where a PCB’s inherent characteristics (i.e. parasitic capacitance, planar spreading inductances) dominate. A PDN’s Z will naturally increase with frequency. At frequencies between Fpmic up to Fpcb, the goal is to maintain a smoothly increasing Z to be less than Zt2. This will ensue that the high frequency content of a max transient current event will not cause a voltage drop to be more than 5% of the min supply voltage. Figure 8-14. PDN’s Target impedance 1.Voltage Rail Drop includes regulation accuracy, voltage distribution drops, and all dynamic events such as transient noise, AC ripple, voltage dips etc. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 343 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 2.Typical max transient current is defined as 50% of max current draw possible. 8.3.2 Voltage Decoupling Recommended power supply decoupling capacitors main characteristics for commercial products whose ambient temperature is not to exceed +85C are shown in table below: Table 8-1. Commercial Applications Recommended Decoupling Capacitors Characteristics(1)(2)(3) Value Voltage [V] Package Stability Dielectric Capacitanc Temp Range Temp e [°C] Sensitivity Tolerance [%] REFERENCE 22µF 6,3 0603 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM188R60J226MEA0L 10µF 4,0 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60G106ME44 4.7µF 6,3 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60J475ME95 2.2µF 6,3 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60J225ME95 1µF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J105MEA2 470nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60G474ME90 220nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J224ME90 100nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J104ME19 (1) Minimum value for each PCB capacitor: 100 nF. (2) Among the different capacitors, 470 nF is recommended (not required) to filter at 5-MHz to 10-MHz frequency range. (3) In comparison with the EIA Class 1 dielectrics, Class 2 dielectric capacitors tend to have severe temperature drift, high dependence of capacitance on applied voltage, high voltage coefficient of dissipation factor, high frequency coefficient of dissipation, and problems with aging due to gradual change of crystal structure. Aging causes gradual exponential loss of capacitance and decrease of dissipation factor. Recommended power supply decoupling capacitors main characteristics for automotive products are shown in table below: Table 8-2. Automotive Applications Recommended Decoupling Capacitors Characteristics Value Voltage [V] Package Stability Dielectric Capacitanc Temp e Range [°C] Tolerance 22µF 6,3 1206 Class 2 X7R - / + 20% 10µF 6,3 0805 Class 2 X7R - / + 20% 4.7µF 10 0805 Class 2 X7R 2.2µF 6,3 0603 Class 2 (1)(2) Temp Sensitivity [%] REFERENCE -55 to + 125 - / + 15 GCM31CR70J226ME23 -55 to + 125 - / + 15 GCM21BR70J106ME22 - / + 20% -55 to + 125 - / + 15 GCM21BC71A475MA73 X7R - / + 20% -55 to + 125 - / + 15 GCM188R70J225ME22 1µF 16 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188R71C105MA64 470nF 16 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188R71C474MA55 220nF 25 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188L81C224MA37 100nF 16 0402 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM155R71C104MA55 (1) Minimum value for each PCB capacitor: 100 nF. (2) Among the different capacitors, 470 nF is recommended (not required) to filter at 5-MHz to 10-MHz frequency range. 8.3.3 Static PDN Analysis One power net parameter derived from a PCB’s PDN static analysis is the Effective Resistance (Reff). This is the total PCB power net routing resistance that is the sum of all the individual power net segments used to deliver a supply voltage to the point of load and includes any series resistive elements (i.e. current sensing resistor) that may be installed between the PMIC outputs and Processor inputs. 8.3.4 Dynamic PDN Analysis Three power net parameters derived from a PCB’s PDN dynamic analysis are the Loop Inductance (LL), Impedance (Z) and PCB Frequency of Interest (Fpcb). 344 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • SPRS956B – MARCH 2016 – REVISED JANUARY 2017 LL values shown are the recommended max PCB trace inductance between a decoupling capacitor’s power supply and ground reference terminals when viewed from the decoupling capacitor with a “theoretical shorted” applied across the Processor’s supply inputs to ground reference. Z values shown are the recommended max PCB trace impedances allowed between Fpmic up to Fpcb frequency range that limits transient noise drops to no more than 5% of min supply voltage during max transient current events. Fpcb (Frequency of Interest) is defined to be a power rail’s max frequency after which adding a reasonable number of decoupling capacitors no longer significantly reduces the power rail impedance below the desired impedance target (Zt2). This is due to the dominance of the PCB’s parasitic planar spreading and internal package inductances. • • Table 8-3. Recommended PDN and Decoupling Characteristics PDN Analysis: Supply Static Dynamic (1)(2)(3)(4)(5) Number of Recommended Decoupling Capacitors per Supply Max Impedance [mΩ] Frequency range of Interest [MHz] 100 nF(6) 220 nF 470 nF 1μF [mΩ] Dec. Cap. Max LL(8) (6) [nH] 2.2 μF 4.7 μF vdd_mpu 10 2 57 ≤20 8 1 1 1 1 1 vdd_dsp, vdd_gpu, vdd_iva 13 2.5 54 ≤20 8 1 1 1 1 1 vdd 27 2 87 ≤50 6 1 1 1 1 1 vdds_ddr1 10 2.5 200 ≤100 8 4 cap_vbbldo_dsp N/A 6 N/A N/A 1 cap_vbbldo_gpu N/A 6 N/A N/A 1 cap_vbbldo_iva N/A 6 N/A N/A 1 cap_vbbldo_mpu N/A 6 N/A N/A 1 cap_vddram_core1 N/A 6 N/A N/A 1 cap_vddram_core3 N/A 6 N/A N/A 1 cap_vddram_core4 N/A 6 N/A N/A 1 cap_vddram_dsp N/A 6 N/A N/A 1 cap_vddram_gpu N/A 6 N/A N/A 1 cap_vddram_iva N/A 6 N/A N/A 1 cap_vddram_mpu N/A 6 N/A N/A 1 Max Reff (7) 2 10 μF 22 μF 1 1 2 1 1 (1) For more information on peak-to-peak noise values, see the Recommended Operating Conditions table of the Specifications chapter. (2) ESL must be as low as possible and must not exceed 0.5 nH. (3) The PDN (Power Delivery Network) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the Recommended Operating Conditions table of the Specifications chapter. (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls. (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls. (6) High-frequency (30 to 70MHz) PCB decoupling capacitors (7) Maximum Reff from SMPS to Processor. (8) Maximum Loop Inductance for decoupling capacitor. 8.3.5 Power Supply Mapping TPS65917 or TPS659039 are the Power Management ICs (PMICs) that should be used for the Device designs. TI requires use of these PMICs for the following reasons: • TI has validated their use with the Device • Board level margins including transient response and output accuracy are analyzed and optimized for the entire system Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 345 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 • • www.ti.com Support for power sequencing requirements (refer to Section 5.9 Power Supply Sequences) Support for Adaptive Voltage Scaling (AVS) Class 0 requirements, including TI provided software Whenever we allow for combining of rails mapped on any of the SMPSes, the PDN guidelines that are the most stringent of the rails combined should be implemented for the particular supply rail. It is possible that some voltage domains on the device are unused in some systems. In such cases, to ensure device reliability, it is still required that the supply pins for the specific voltage domains are connected to some core power supply output. These unused supplies though can be combined with any of the core supplies that are used (active) in the system. e.g. if IVA and GPU domains are not used, they can be combined with the CORE domain, thereby having a single power supply driving the combined CORE, IVA and GPU domains. For the combined rail, the following relaxations do apply: • The AVS voltage of active rail in the combined rail needs to be used to set the power supply • The decoupling capacitance should be set according to the active rail in the combined rail Table 8-4 illustrates the approved and validated power supply connections to the Device for the SMPS outputs of the TPS659039 PMIC. Table 8-4. TPS659039 Power Supply Connections(1) SMPS Valid Combination 1: Reference Platform Valid Combination 2: MPU Centric TPS659039 Current Rating Limitation (3) (4) SMPS1/2/3(2) vdd_mpu vdd_mpu SMPS1/2: 6A SMPS1/2/3: 9A SMPS3(2) vdds_ddr1 vdds_ddr1 SMPS3: 3A SMPS4/5 vdd_dsp vdd_dsp, vdd_gpu, vdd_iva SMPS4/5: 4A SMPS6 vdd_gpu vdd SMPS6: 2-3A (BOOST_CURRENT=0/1) SMPS7 vdd Free 2A SMPS8 vdd_iva Free 1A SMPS9 vdds18v vdds18v 1A (1) Power consumption is highly application-specific. Separate analysis must be performed to ensure output current ratings (average and peak) is within the limits of the PMIC for all rails of the device. (2) Dual phase (SMPS1/2) can be used as long as the peak power consumption is maintained below the SMPS1/2 capacity (a) For the latest rated output current specifications for the TPS659039 device, please refer to the PMIC data manual. (b) MPU power consumption is highly system dependent. A detailed power consumption estimate must be performed to confirm compatibility. Example: Single vs Dual MPU, OPP_NOM vs OPP_OD vs OPP_HIGH, TPS659039 configured with VI≥3V vs VI<3V, etc. Contact your TI representative for details. (3) Refer to the PMIC data manual for the latest TPS659039 specifications. (4) A product’s maximum ambient temperature, thermal system design & heat spreading performance could limit the maximum power dissipation below the full PMIC capacity in order to not exceed recommended SoC max Tj. Table 8-5 illustrates the approved and validated power supply connections to the Device for the SMPS outputs of the TPS65917 PMIC. Table 8-5. TPS65917 Power Supply Connections 346 TPS65917 Valid Combination 1: Valid Combination 2: TPS65917 Current Rating Limitation (1) (3) SMPS1 vdd_mpu vdd_mpu 3.5A Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 8-5. TPS65917 Power Supply Connections (continued) TPS65917 Valid Combination 1: Valid Combination 2: TPS65917 Current Rating Limitation (1) (3) SMPS2 (2) vdd_dsp, vdd_gpu, vdd_iva vdd 3.5A SMPS3 (2) vdd vdd_dspeve, vdd_gpu, vdd_iva 3A SMPS4 (3) vdds18v vdds18v 1.5A SMPS5 (4) vdds_ddr1 vdds_ddr1 2A (1) Refer to the TPS65917 Data Manual for exact current rating limitations, including assumed VIN and other parameters. Values provided in this table are for comparison purposes. (2) DSP, EVE, GPU, and IVAHD power consumption is highly application-specific. Separate analysis must be performed to ensure output current ratings (average and peak) is within the limits of the PMIC. VDD only supports OPP_NOM. (3) Highly application-specific. Separate analysis must be performed to ensure average and peak power is within the limits of the PMIC. (4) Furthermore, if SMPS5 is used for DDR power, both total memory + SoC power must be within the PMIC limits. 8.3.6 DPLL Voltage Requirement The voltage input to the DPLLs has a low noise requirement. Board designs should supply these voltage inputs with a low noise LDO to ensure they are isolated from any potential digital switching noise. The TPS65917 PMIC LDOLN output is specifically designed to meet this low noise requirement. NOTE For more information about Input Voltage Sources, see Section 6.2 DPLLs, DLLs Specifications. Table 8-4 presents the voltage inputs that supply the DPLLs. Table 8-6. Input Voltage Power Supplies for the DPLLs 8.3.7 POWER SUPPLY DPLLs vdda_per DPLL_PER and PER HSDIVIDER analog power supply vdda_ddr DPLL_DDR and DDR HSDIVIDER analog power supply vdda_debug DPLL_DEBUG analog power supply vdda_dsp_iva DPLL_DSP and DPLL_IVA analog power supply vdda_core_gmac DPLL_CORE and HSDIVIDER analog power supply vdda_gpu DPLL_GPU analog power supply vdda_video DPLL_VIDEO1 analog power supply vdda_mpu_abe DPLL_MPU and DPLL_ABE analog power supply vdda_osc not DPLL input but is required to be supplied by low noise input voltage vdda_pll_spare DPLL_SPARE analog power supply Example PCB Design The following sections describe an example PCB design and its resulting PDN performance for the vdd_mpu key processor power domain. NOTE Materials presented in this section are based on generic PDN analysis on PCB boards and are not specific to systems integrating the Device. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 347 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.3.7.1 www.ti.com Example Stack-up Layer Assignments: • Layer Top: Signal and Segmented Power Plane – Processor and PMIC components placed on Top-side • Layer 2: Gnd Plane1 • Layer 3: Signals • Layer n: Power Plane1 • Layer n+1: Power Plane 2 • Layer n+2: Signal • Layer n+3: Gnd Plane2 • Layer Bottom: Signal and Segmented Power Planes – Decoupling caps, etc. Via Technology: Through-hole Copper Weight: • ½ oz for all signal layers. • 1-2oz for all power plane for improved PCB heat spreading 8.3.7.2 vdd Example Analysis Maximum acceptable PCB resistance (Reff) between the PMIC and Processor input power balls should not exceed 10mΩ. Maximum decoupling capacitance loop inductance (LL) between Processor input power balls and decoupling capacitances should not exceed 2.0nH (ESL NOT included) Impedance target for key frequency of interest between Processor input power balls and PMIC’s SMPS output power balls should not exceed 57mΩ at 20MHz. Table 8-7. Example PCB vdd PI Analysis Summary 348 Parameter Recommendation OPP OPP_NOM Clocking Rate 266 MHz Voltage Level 1V Example PCB 1V Max Current Draw 1A 1A Max Effective Resistance: Power Inductor Segment Total Reff 10mΩ 9.7 mΩ Max Loop Inductance 2.0nH 0.97 –1.75nH Impedance Target 57mΩ F<20Mhz 57mΩ F<20Mhz Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Figure 8-15 show a PCB layout example and the resulting PI analysis results. PMIC SMPS2 L1002 1.0uH, 4.5A, 1616 IHLP-1616ABER1R0M11 CORE_VDD SoC SMPS2_SW C1014 VDD 47uF, 6.3V, X7R, 1210 GCM32ER70J476ME19 C363 , 364, 386, 388 , 390, 498 0.1uF, 16V, X7R, 0402 GCM155R71C104KA55 C395 0.22uF, 25V, X7R, 0603 GCM188R71E224KA55 C394 0.47uF, 16V, X7R, 0603 GCM188R71C474KA55 C393 1.0uF, 16V, X7R, 0603 GCM188R71C105KA64 C456 2.2uF, 6.3V, X7R, 0603 GCM188R70J225KE22 C487 4.7uF, 16V, X7R, 0805 GCM21BR71C475KA73 Figure 8-15. vdd Simplified SCH Diagram NOTE PCB Etch Resistance Breakdown, PDN Effective Resistance, and vdd routings are UNDER DEVELOPMENT! IR Drop: vdd (PCB Rev Oct25, CAD sPSI v13.1.1) • Source Conditions: 1V @ 1A • Power Plane/Trace Effective Resistances – From PMIC SMPS to SoC load = 9.7mohm – From Power Inductor to SoC load = 6mohm – "Open-Loop" Voltage/IR Drop for 1A = 6mV Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 349 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Figure 8-16. vdd Voltage/IR Drop [All Layers] Dynamic analysis of this PCB design for the CORE power domain determined the vdd decoupling capacitor loop inductance and impedance vs frequency analysis shown below. As you can see, the loop inductance values ranged from 0.97 –1.75nH and were less than maximum 2.0nH recommended. NOTE Comparing loop inductances for capacitors at different distances from the SoC’s input power balls shows an 18% reduction for caps placed closer. This was derived by averaging the inductances for the 3 caps with distances over 800mils (Avg LL = 1.33nH) vs the 3 caps with distances less than 600mils (Avg LL = 1.096nH). Table 8-8. Rail - vdd Cap Ref Des Model Port # Loop Inductacne [nH] Footprint Types PCB Side Distance to Ball-Field [mils] Value [μF] Size C487 10 0.97 4vWSE Top 521 4.7 0805 C393 6 1.11 4vWSE Bottom 358 1.0 0603 C394 7 1.12 4vWSE Bottom 357 0.47 0603 C456 9 1.13 4vWSE Bottom 403 2.2 0603 C386 3 1.16 2vWSE Bottom 40 0.1 0402 C395 8 1.18 4vWSE Bottom 460 0.22 0603 C363 1 1.46 2vWSE Bottom 40 0.1 0402 C390 5 1.48 2vWSE Bottom 40 0.1 0402 C364 2 1.74 2vWSE Bottom 40 0.1 0402 C498 11 1.74 2vWSE Bottom 40 0.1 0402 C388 4 1.75 2vWSE Bottom 40 0.1 0402 350 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Loop Inductance range: 0.97 –1.75nH Figure 8-17. vdd Decoupling Cap Loop Inductances Figure 8-18 shows vdd Impedance vs Frequency characteristics. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 351 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 173mohm @ 100MHz 87mohm @ 50MHz 27mohm @ 20MHz 9.9mohm @ 10MHz Figure 8-18. vdd Impedance vs Frequency 8.4 8.4.1 Single-Ended Interfaces General Routing Guidelines The following paragraphs detail the routing guidelines that must be observed when routing the various functional LVCMOS interfaces. 352 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Line spacing: – For a line width equal to W, the spacing between two lines must be 2W, at least. This minimizes the crosstalk between switching signals between the different lines. On the PCB, this is not achievable everywhere (for example, when breaking signals out from the device package), but it is recommended to follow this rule as much as possible. When violating this guideline, minimize the length of the traces running parallel to each other (see Figure 8-19). W D+ S = 2 W = 200 µm SPRS906_PCB_SE_GND_01 • • • 8.4.2 Figure 8-19. Ground Guard Illustration Length matching (unless otherwise specified): – For bus or traces at frequencies less than 10 MHz, the trace length matching (maximum length difference between the longest and the shortest lines) must be less than 25 mm. – For bus or traces at frequencies greater than 10 MHz, the trace length matching (maximum length difference between the longest and the shortest lines) must be less than 2.5 mm. Characteristic impedance – Unless otherwise specified, the characteristic impedance for single-ended interfaces is recommended to be between 35-Ω and 65-Ω. Multiple peripheral support – For interfaces where multiple peripherals have to be supported in the star topology, the length of each branch has to be balanced. Before closing the PCB design, it is highly recommended to verify signal integrity based on simulations including actual PCB extraction. QSPI Board Design and Layout Guidelines The following section details the routing guidelines that must be observed when routing the QSPI interfaces. • The qspi1_sclk output signal must be looped back into the qspi1_rtclk input. • The signal propagation delay from the qspi1_sclk ball to the QSPI device CLK input pin (A to C) must be approximately equal to the signal propagation delay from the QSPI device CLK pin to the qspi1_rtclk ball (C to D). • The signal propagation delay from the QSPI device CLK pin to the qspi1_rtclk ball (C to D) must be approximately equal to the signal propagation delay of the control and data signals between the QSPI device and the SoC device (E to F, or F to E). • The signal propagation delay from the qspi1_sclk signal to the series terminators (R2 = 10 Ω) near the QSPI device must be < 450pS (~7cm as stripline or ~8cm as microstrip) • 50 Ω PCB routing is recommended along with series terminations, as shown in Figure 8-20. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 353 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 • www.ti.com Propagation delays and matching: – A to C = C to D = E to F. – Matching skew: < 60pS – A to B < 450pS – B to C = as small as possible (<60pS) Locate both R2 resistors close together near the QSPI device A B C R1 R2 0 Ω* 10 Ω R2 10 Ω qspi1_sclk QSPI device clock input D qspi1_rtclk E F QSPI device IOx, CS# qspi1_d[x], qspi1_cs[y] SPRS906_PCB_QSPI_01 Figure 8-20. QSPI Interface High Level Schematic NOTE *0 Ω resistor (R1), located as close as possible to the qspi1_sclk pin, is placeholder for finetuning if needed. 8.5 8.5.1 Differential Interfaces General Routing Guidelines To maximize signal integrity, proper routing techniques for differential signals are important for high-speed designs. The following general routing guidelines describe the routing guidelines for differential lanes and differential signals. • As much as possible, no other high-frequency signals must be routed in close proximity to the differential pair. • Must be routed as differential traces on the same layer. The trace width and spacing must be chosen to yield the differential impedance value recommended. • Minimize external components on differential lanes (like external ESD, probe points). • Through-hole pins are not recommended. • Differential lanes mustn’t cross image planes (ground planes). • No sharp bend on differential lanes. 354 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • • 8.5.2 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Number of vias on the differential pairs must be minimized, and identical on each line of the differential pair. In case of multiple differential lanes in the same interface, all lines should have the same number of vias. Shielded routing is to be promoted as much as possible (for instance, signals must be routed on internal layers that are inside power and/or ground planes). USB 2.0 Board Design and Layout Guidelines This section discusses schematic guidelines when designing a universal serial bus (USB) system. 8.5.2.1 Background Clock frequencies generate the main source of energy in a USB design. The USB differential DP/DM pairs operate in high-speed mode at 480 Mbps. System clocks can operate at 12 MHz, 48 MHz, and 60 MHz. The USB cable can behave as a monopole antenna; take care to prevent RF currents from coupling onto the cable. When designing a USB board, the signals of most interest are: • Device interface signals: Clocks and other signal/data lines that run between devices on the PCB. • Power going into and out of the cable: The USB connector socket pin 1 (VBUS ) may be heavily filtered and need only pass low frequency signals of less than ~100 KHz. The USB socket pin 4 (analog ground) must be able to return the current during data transmission, and must be filtered sparingly. • Differential twisted pair signals going out on cable, DP and DM: Depending upon the data transfer rate, these device terminals can have signals with fundamental frequencies of 240 MHz (high speed), 6 MHz (full speed), and 750 kHz (low speed). • External crystal circuit (device terminals XI and X0): 12 MHz, 19.2 MHz, 24 MHz, and 48 MHz fundamental. When using an external crystal as a reference clock, a 24 MHz and higher crystal is highly recommended. 8.5.2.2 USB PHY Layout Guide The following sections describe in detail the specific guidelines for USB PHY Layout. 8.5.2.2.1 General Routing and Placement Use the following routing and placement guidelines when laying out a new design for the USB physical layer (PHY). These guidelines help minimize signal quality and electromagnetic interference (EMI) problems on a four-or-more layer evaluation module (EVM). • Place the USB PHY and major components on the un-routed board first. For more details, see Section 8.5.2.2.2.3. • Route the high-speed clock and high-speed USB differential signals with minimum trace lengths. • Route the high-speed USB signals on the plane closest to the ground plane, whenever possible. • Route the high-speed USB signals using a minimum of vias and corners. This reduces signal reflections and impedance changes. • When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance discontinuities. • Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC’s that use or duplicate clock signals. • Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then the stub should be less than 200 mils. • Route all high-speed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 355 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 8.5.2.2.2 Specific Guidelines for USB PHY Layout The following sections describe in detail the specific guidelines for USB PHY Layout. 8.5.2.2.2.1 Analog, PLL, and Digital Power Supply Filtering To minimize EMI emissions, add decoupling capacitors with a ferrite bead at power supply terminals for the analog, phase-locked loop (PLL), and digital portions of the chip. Place this array as close to the chip as possible to minimize the inductance of the line and noise contributions to the system. An analog and digital supply example is shown in Figure 8-21. In case of multiple power supply pins with the same function, tie them up to a single low-impedance point in the board and then add the decoupling capacitors, in addition to the ferrite bead. This array of caps and ferrite bead improve EMI and jitter performance. Take both EMI and jitter into account before altering the configuration. Analog Power Supply Ferrite Bead 0.1 µF Digital Power Supply 0.01 µF 0.001 µF 1 µF 0.01 µF 0.001 µF 1 µF SoC Board AGND Ferrite Bead 0.1 µF DGND SPRS906_PCB_USB20_01 Figure 8-21. Suggested Array Capacitors and a Ferrite Bead to Minimize EMI Consider the recommendations listed below to achieve proper ESD/EMI performance: • Use a 0.01 μF cap on each cable power VBUS line to chassis GND close to the USB connector pin. • Use a 0.01 μF cap on each cable ground line to chassis GND next to the USB connector pin. • If voltage regulators are used, place a 0.01 μF cap on both input and output. This is to increase the immunity to ESD and reduce EMI. For other requirements, see the device-specific datasheet. 8.5.2.2.2.2 Analog, Digital, and PLL Partitioning If separate power planes are used, they must be tied together at one point through a low-impedance bridge or preferably through a ferrite bead. Care must be taken to capacitively decouple each power rail close to the device. The analog ground, digital ground, and PLL ground must be tied together to the lowimpedance circuit board ground plane. 8.5.2.2.2.3 Board Stackup Because of the high frequencies associated with the USB, a printed circuit board with at least four layers is recommended; two signal layers separated by a ground and power layer as shown in Figure 8-22. 356 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Signal 1 GND Plane Power Plane Signal 2 SPRS906_PCB_USB20_02 Figure 8-22. Four-Layer Board Stack-Up The majority of signal traces should run on a single layer, preferably SIGNAL1. Immediately next to this layer should be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies. 8.5.2.2.2.4 Cable Connector Socket Short the cable connector sockets directly to a small chassis ground plane (GND strap) that exists immediately underneath the connector sockets. This shorts EMI (and ESD) directly to the chassis ground before it gets onto the USB cable. This etch plane should be as large as possible, but all the conductors coming off connector pins 1 through 6 must have the board signal GND plane run under. If needed, scoop out the chassis GND strap etch to allow for the signal ground to extend under the connector pins. Note that the etches coming from pins 1 and 4 (VBUS power and GND) should be wide and via-ed to their respective planes as soon as possible, respecting the filtering that may be in place between the connector pin and the plane. See Figure 8-23 for a schematic example. Place a ferrite in series with the cable shield pins near the USB connector socket to keep EMI from getting onto the cable shield. The ferrite bead between the cable shield and ground may be valued between 10 Ω and 50 Ω at 100 MHz; it should be resistive to approximately 1 GHz. To keep EMI from getting onto the cable bus power wire (a very large antenna) a ferrite may be placed in series with cable bus power, VBUS, near the USB connector pin 1. The ferrite bead between connector pin 1 and bus power may be valued between 47 Ω and approximately 1000 Ω at 100 MHz. It should continue being resistive out to approximately 1 GHz, as shown in Figure 8-23. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 357 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 5 SHIELD_GND 4 GND 3 DP 2 DM 1 VBUS Ferrite Bead +5 V U2 6 SHIELD_GND USB Socket U1 Ferrite Bead SPRS906_PCB_USB20_03 Figure 8-23. USB Connector 8.5.2.2.2.5 Clock Routings To address the system clock emissions between devices, place a ~10 to 130 Ω resistor in series with the clock signal. Use a trial and error method of looking at the shape of the clock waveform on a high-speed oscilloscope and of tuning the value of the resistance to minimize waveform distortion. The value on this resistor should be as small as possible to get the desired effect. Place the resistor close to the device generating the clock signal. If an external crystal is used, follow the guidelines detailed in the Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122). When routing the clock traces from one device to another, try to use the 3W spacing rule. The distance from the center of the clock trace to the center of any adjacent signal trace should be at least three times the width of the clock trace. Many clocks, including slow frequency clocks, can have fast rise and fall times. Using the 3W rule cuts down on crosstalk between traces. In general, leave space between each of the traces running parallel between the devices. Avoid using right angles when routing traces to minimize the routing distance and impedance discontinuities. For further protection from crosstalk, run guard traces beside the clock signals (GND pin to GND pin), if possible. This lessens clock signal coupling, as shown in Figure 8-24. 3W 3W W Trace SPRS906_PCB_USB20_04 Figure 8-24. 3W Spacing Rule 358 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.5.2.2.2.6 Crystals/Oscillator Keep the crystal and its load capacitors close to the USB PHY pins, XI and XO (see Figure 8-25). Note that frequencies from power sources or large capacitors can cause modulations within the clock and should not be placed near the crystal. In these instances, errors such as dropped packets occur. A placeholder for a resistor, in parallel with the crystal, can be incorporated in the design to assist oscillator startup. Power is proportional to the current squared. The current is I = C*dv/dt, because dv/dt is a function of the PHY, current is proportional to the capacitive load. Cutting the load to 1/2 decreases the current by 1/2 and the power to 1/4 of the original value. For more details on crystal selection, see the Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122). X1 0.1 µF Power Pins XTAL X0 0.001 µF USB PHY SPRS906_PCB_USB20_05 Figure 8-25. Power Supply and Clock Connection to the USB PHY 8.5.2.2.2.7 DP/DM Trace Place the USB PHY as close as possible to the USB 2.0 connector. The signal swing during high-speed operation on the DP/DM lines is relatively small (400 mV ± 10%), so any differential noise picked up on the twisted pair can affect the received signal. When the DP/DM traces do not have any shielding, the traces tend to behave like an antenna and picks up noise generated by the surrounding components in the environment. To minimize the effect of this behavior: • DP/DM traces should always be matched lengths and must be no more than 4 inches in length; otherwise, the eye opening may be degraded (see Figure 8-26). • Route DP/DM traces close together for noise rejection on differential signals, parallel to each other and within two mils in length of each other. The measurement for trace length must be started from device's balls. • A high-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic impedance of 90 Ω ±15%. In layout, the impedance of DP and DM should each be 45 Ω ± 10%. • DP/DM traces should not have any extra components to maintain signal integrity. For example, traces cannot be routed to two USB connectors. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 359 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Minimize This Distance VBUS GND D+ USB PHY Cable Connector D+ Connector D- D- SPRS906_PCB_USB20_06 Figure 8-26. USB PHY Connector and Cable Connector 8.5.2.2.2.8 DP/DM Vias When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended. 8.5.2.2.2.9 Image Planes An image plane is a layer of copper (voltage plane or ground plane), physically adjacent to a signal routing plane. Use of image planes provides a low impedance, shortest possible return path for RF currents. For a USB board, the best image plane is the ground plane because it can be used for both analog and digital circuits. • Do not route traces so they cross from one plane to the other. This can cause a broken RF return path resulting in an EMI radiating loop as shown in Figure 8-27. This is important for higher frequency or repetitive signals. Therefore, on a multi-layer board, it is best to run all clock signals on the signal plane above a solid ground plane. • Avoid crossing the image power or ground plane boundaries with high-speed clock signal traces immediately above or below the separated planes. This also holds true for the twisted pair signals (DP, DM). Any unused area of the top and bottom signal layers of the PCB can be filled with copper that is connected to the ground plane through vias. 360 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Do Don't SPRS906_PCB_USB20_07 • Figure 8-27. Do Not Cross Plane Boundaries Do not overlap planes that do not reference each other. For example, do not overlap a digital power plane with an analog power plane as this produces a capacitance between the overlapping areas that could pass RF emissions from one plane to the other, as shown in Figure 8-28. Analog Power Plane Unwanted Capacitance Digital Power Plane SPRS906_PCB_USB20_08 • Figure 8-28. Do Not Overlap Planes Avoid image plane violations. Traces that route over a slot in an image plane results in a possible RF return loop, as shown in Figure 8-29. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 361 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com RF Return Current RF Return Current Slot in Image Plane Slot in Image Plane Bad Better SPRS906_PCB_USB20_09 Figure 8-29. Do Not Violate Image Planes 8.5.2.2.2.10 Power Regulators Switching power regulators are a source of noise and can cause noise coupling if placed close to sensitive areas on a circuit board. Therefore, the switching power regulator should be kept away from the DP/DM signals, the external clock crystal (or clock oscillator), and the USB PHY. 8.5.2.3 • • • 8.5.3 References USB 2.0 Specification, Intel, 2000, http://www.usb.org/developers/docs/ High Speed USB Platform Design Guidelines, Intel, http://www.intel.com/technology/usb/download/usb2dg_R1_0.pdf Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122) 2000, USB 3.0 Board Design and Layout Guidelines This section provides the timing specification for the USB3.0 (USB1 in the device) interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the USB3.0 interface requirements are met. The design rules stated within this document are targeted at DEVICE mode electrical compliance. HOST mode and/or systems that do not include the 3m USB cable and far-end 11-inch PCB trace required by DEVICE mode compliance testing may not need the complete list of optimizations shown in this document; however, applying these optimizations to HOST mode systems will lead to optimal DEVICE mode performance. 8.5.3.1 USB 3.0 interface introduction The USB 3.0 has two unidirectional differential pairs: TXp/TXn pair and RXp/RXn pair. AC coupling caps are needed on the board for TX traces. Figure 8-30 present high level schematic diagram for USB 3.0 interface. 362 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 GND Device AC Caps GND GND CMF Vias (if necessary) Vias (if necessary) usb_rxp0 usb_rxn0 CMF Vias (if necessary) Vias (if necessary) GND USB 3.0 usb_txp0 usb_txn0 USB 3.0 connector www.ti.com Place near connector, and keep routing short SPRS85x_PCB_USB30_1 Figure 8-30. USB 3.0 Interface High Level Schematic NOTE ESD components should be on a PCB layer next to a system GND plane layer so the inductance of the via to GND will be minimal. If vias are used, place the vias near the AC Caps or CMFs and under the SoC BGA, if necessary. AC Cap SoC TX USB 3.0 connector via Figure 8-31 present placement diagram for USB 3.0 interface. AC Cap via via CMF SoC RX via CMF SPRS85x_PCB_USB30_2 Figure 8-31. USB 3.0 placement diagram Table 8-9. USB1 Component Reference INTERFACE COMPONENT SUPPLIER PART NUMBER ESD TI TPD1E05U06 USB3 PHY CMF Murata DLW21SN900HQ2 C - 100nF (typical size: 0201) Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 363 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.5.3.2 www.ti.com USB 3.0 General routing rules Some general routing guidelines regarding USB 3.0: • Avoid crossing splits reference plane(s). • Shorter trace length is preferred. • Minimize the via usage and layer transition • Keep large spacing between TX and RX pairs. • Intra-lane delay mismatch between DP and DM less than 1ps. Same for RXp and RXn. • Distance between common mode filter (CMF) and ESD protection device should be as short as possible • Distance between ESD protection device and USB connector should be as short as possible. • Distance between AC capacitors (TX only) and CMF should be as short as possible. • USB 3.0 signals should always be routed over an adjacent ground plane. Table 8-10 and Table 8-11 present routing specification and recommendations for USB1 in the device. Table 8-10. USB1 Routing Specifications PARAMETER MIN TYP MAX UNIT 3500 Mils 3 6 Mils 0 Stubs 90 96.3 Ω 2 Vias Number of ground plane cuts allowed within USB3 routing region (except for specific ground carving as explained in this document) 0 Cuts Number of layers between USB3.0 routing region and reference ground plane 0 Layers Device balls to USB 3.0 connector trace length Skew within a differential pair Number of stubs allowed on TX/RX traces TX/RX pair differential impedance 83.7 Number of vias on each TX/RX trace Differential pair to any other trace spacing 2xDS 3xDS PCB trace width 6 Mils PCB BGA escape via pad size 18 Mils PCB BGA escape via hole size 10 Mils 1. 2. 3. 4. Vias must be used in pairs and spaced equally along a signal path. DS = differential spacing of the traces. Exceptions may be necessary in the SoC package BGA area. GND guard-bands on the same layer may be closer, but should not be allowed to affect the impedance of the differential pair routing. GND guard-bands to isolate USB3.0 differential pairs from all other signals are recommended. Table 8-11. USB1 Routing Recommendations 364 Item Description Reason ESD location Place ESD component on same layer as connector (no via or stub to ESD component) Eliminate reflection loss from via & stub to ESD ESD part number TPD1E05U06 Minimize capacitance (0.42pF) CMF part number DLW21SN900HQ2 Manufacturer’s recommended device Connector Use USB3.0 connector with supporting s-parameter model Enable full signal chain simulation Carve Ground Carve GND underneath AC Caps, ESD, CMF, and connector Minimize capacitance under ESD and CMF Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 8-11. USB1 Routing Recommendations (continued) Item Description Reason Round pads Minimize pad size and round the corners of the pads for the ESD and CMF components Minimize capacitance Vias Max 2 vias per signal trace. If vias are required, place vias close to the AC Caps and CMFs. Vias under the SoC grid array may be used if necessary to route signals away from BGA pattern. Vias significantly degrade signal integrity at 2.5GHz via Figure 8-32 presents an example layout, demonstrating the “carve GND” concept. USB 3.0 connector AC Cap CMF via via AC Cap via CMF Top Layer: Routing from SoC through AC Caps, CMF, and ESD to connector. Layer2, GND: Gaps carved in GND underneath AC Caps, CMF, ESD, and connector. Layer3, Signal: Implement as keep-out zone underneath carved GND areas. Layer4, GND Plane underneath AC Caps, CMF, ESD, and connector. SPRS85x_PCB_USB30_3 Figure 8-32. USB 3.0 Example “carve GND” layout 8.5.4 HDMI Board Design and Layout Guidelines This section provides the timing specification for the HDMI interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the HDMI interface requirements are met. The design rules stated within this document are targeted at resolutions less than or equal to 1080p60 with 8-bit color; deep color (10-bit) requires further signal integrity optimization. 8.5.4.1 HDMI Interface Schematic The HDMI bus is separated into three main sections (HDMI Ethernet and the optional Audio Return Channel are not specifically supported by this Device): Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 365 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 1. Transition Minimized Differential Signaling (TMDS) high speed digital video interface 2. Display Data Channel (I2C bus for configuration and status exchange between two devices) 3. Consumer Electronics Control (optional) for remote control of connected devices. The DDC and CEC are low speed interfaces, so nothing special is required for PCB layout of these signals. The TMDS channels are high speed differential pairs and therefore require the most care in layout. Specifications for TMDS layout are below. Figure 8-33 shows the HDMI interface schematic. CMF HDMI connector hdmi_tx*hdmi_tx*+ GND HDMI GND Device Place near connector, and keep routing short SPRS85x_PCB_HDMI_1 Figure 8-33. HDMI Interface High Level Schematic Figure 8-34 presents placement diagram for HDMI interface. HDMI connector CMF CMF CMF CMF SPRS85x_PCB_HDMI_2 Figure 8-34. HDMI Placement Diagram Table 8-12. HDMI Component Reference INTERFACE HDMI 366 DEVICE SUPPLIER PART NUMBER ESD TI TPD1E05U06 CMF Murata DLW21SN900HQ2 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 8.5.4.2 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 TMDS General Routing Guidelines The TMDS signals are high speed differential pairs. Care must be taken in the PCB layout of these signals to ensure good signal integrity. The TMDS differential signal traces must be routed to achieve 100 Ohms (+/- 10%) differential impedance and 60 ohms (+/-10%) single ended impedance. Single ended impedance control is required because differential signals can’t be closely coupled on PCBs and therefore single ended impedance becomes important. These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 60 ohms impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production. Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier, and trace width variations don’t affect impedance as much, therefore it’s easier to maintain accurate impedance over the length of the signal. The wider traces also show reduced skin effect and therefore often result in better signal integrity. Some general routing guidelines regarding TMDS: • Avoid crossing splits reference plane(s). • Shorter trace length is preferred. • Distance between common mode filter (CMF) and ESD protection device should be as short as possible • Distance between ESD protection device and HDMI connector should be as short as possible. Table 8-13 shows the routing specifications for the TMDS signals. Table 8-13. TMDS Routing Specifications PARAMETER MIN TYP Device balls to HDMI header trace length Skew within a differential pair 3 Number of stubs allowed on TMDS traces MAX UNIT 4000 Mils 5 Mils 0 stubs TMDS pair differential impedance 90 100 110 Ω TMDS single-ended impedance 54 60 66 Ω 0 Vias 2×DS 3xDS Number of vias on each TMDS trace TMDS differential pair to any other trace spacing(1) (2) (3) Number of ground plane cuts allowed within HDMI routing region (except for specific ground carving as explained in this document) Number of layers between HDMI routing region and reference ground plane PCB trace width Mils 0 Cuts 0 Layers 4.4 Mils (1) DS = differential spacing of the traces. (2) Exceptions may be necessary in the SoC package BGA area. (3) GND guard-bands may be closer, but should not be allowed to affect the impedance of the differential pair routing. GND guard-bands to isolate HDMI differential pairs from all other signals is recommended. Table 8-14. TDMS Routing Recommendations Item Description Reason ESD part number TPD1E05U06 Minimize capacitance (0.42pF) Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 367 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 8-14. TDMS Routing Recommendations (continued) Item Description Reason Carve Ground Carve GND underneath ESD and CMF Minimize capacitance under ESD and CMF Round pads Reduce pad size and round the corners of the pads for the ESD and CMF components Minimize capacitance Routing layer Route all signals only on the same layer as SoC Minimize reflection loss Figure 8-35presents an example layout, demonstrating the “carve GND” concept. HDMI connector CMF ia v AC Cap CMF CMF a iv AC Cap a iv CMF CMF a iv CMF Top Layer: Routing from SoC through CMF, and ESD to connector. Layer2, GND: Gaps carved in GND underneath, CMF, ESD, and connector. SPRS85x_PCB_HDMI_3 Figure 8-35. HDMI Example “carve GND” layout 8.5.4.3 TPD5S115 The TPD5S115 is an integrated HDMI companion chip solution. The device provides a regulated 5 V output (5VOUT) for sourcing the HDMI power line. The TPD5S115 exceeds the IEC61000-4-2 (Level 4) ESD protection level. 8.5.4.4 HDMI ESD Protection Device (Required) Interfaces that connect to a cable such as HDMI generally require more ESD protection than can be built into the processor’s outputs. Therefore this HDMI interface requires the use of an ESD protection chip to provide adequate ESD. When selecting an ESD protection chip, choose the lowest capacitance ESD protection available to minimize signal degradation. In no case should be ESD protection circuit capacitance be more than 5pF. TI manufactures these devices that provide ESD protection for HDMI signals such as the TPDxE05U06. For more information see the www.ti.com website. 8.5.4.5 PCB Stackup Specifications Table 8-15 shows the stackup and feature sizes required for HDMI. Table 8-15. HDMI PCB Stackup Specifications 368 PARAMETER MIN TYP MAX UNIT PCB Routing/Plane Layers 4 6 - Layers Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 8-15. HDMI PCB Stackup Specifications (continued) PARAMETER MIN TYP MAX UNIT Signal Routing Layers 2 3 - Layers Number of ground plane cuts allowed within HDMI routing region - - 0 Cuts Number of layers between HDMI routing region and reference ground plane - - 0 Layers PCB Trace width 8.5.4.6 4 Mils Grounding Each TMDS channel has its own shield pin and they should be grounded to provide a return current path for the TMDS signal. 8.5.5 SATA Board Design and Layout Guidelines The device provides one SATA port. This section provides the timing specification for the SATA interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the SATA interface requirements are met. 8.5.5.1 SATA Interface Schematic Figure 8-36 shows the data portion of the SATA interface schematic. DEVICE SATA Interface sata1_rxn0 C sata1_rxp0 C sata1_txn0l C sata1_txp0 C SATA Connector SPRS906_PCB_SATA_01 Figure 8-36. SATA Interface High Level Schematic NOTE AC coupling capacitors (C) are required on the receive and transmit data pairs. Table 8-16 shows the requirements for these capacitors. Table 8-16. SATA AC Coupling Capacitors Requirements PARAMETER MIN TYP MAX UNIT SATA AC coupling capacitor value 0.3 10 12 nF 0402 0603 EIA(1)(2) SATA AC coupling capacitor package size (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. 8.5.5.2 Compatible SATA Components and Modes Table 8-17 shows the compatible SATA components and supported modes. Note that the only supported configuration is an internal cable from the processor host to the SATA device. Table 8-17. Compatible SATA Components and Modes PARAMETER MIN MAX UNIT Transfer Rates 1.5 3 Gbps SUPPORTED Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 369 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 8-17. Compatible SATA Components and Modes (continued) 8.5.5.3 PARAMETER MIN MAX UNIT SUPPORTED Internal Cable - - - YES PCB Stackup Specifications Table 8-18 shows the stackup and feature sizes required for these types of SATA connections. Table 8-18. SATA PCB Stackup Specifications PARAMETER MIN TYP MAX UNIT Number of ground plane cuts allowed within SATA routing region - - 0 Cuts Number of layers between SATA routing area and reference plane - - 0 Layers 8.5.5.4 PCB Routing clearance 4 Mils PCB Trace width 4 Mils Routing Specifications The SATA data signal traces must be routed to achieve 100 Ohms (+/-10%) differential impedance and 60 ohms (+/-10%) single ended impedance. The signal ended impedance is required because differential signals can’t be closely coupled on PCBs and therefore single ended impedance becomes important. 60 ohms is chosen for the single ended impedance to minimize problems caused by too low an impedance. These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 100 ohms differential and 60 ohms single ended impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. Table 8-19 shows the routing specifications for the SATA data signals. Table 8-19. SATA Routing Specifications PARAMETER MIN TYP SATA signal trace length (device balls to SATA connector) MAX UNIT 3050(1) Mils Differential pair trace skew matching 5 Mils Number of stubs allowed on SATA traces(2) 0 stubs TX/RX pair differential impedance 90 100 110 Ω TX/RX single-ended impedance 54 60 66 Ω 0 Vias Number of vias on each SATA trace SATA differential pair to any other trace spacing 2×DS(3) (1) Beyond this, signal integrity may suffer. (2) Inline pads may be used for probing. (3) DS = differential spacing of the SATA traces. Table 8-20. SATA Routing Recommendations Item ESD part number 370 Applications, Implementation, and Layout Description Reason None ESD suppression generally not used on SATA Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 8.5.6 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 PCIe Board Design and Layout Guidelines The PCIe interface on the device provides support for a 5.0 Gbps lane with polarity inversion. 8.5.6.1 PCIe Connections and Interface Compliance The PCIe interface on the device is compliant with the PCIe revision 2.0 specification. Please refer to the PCIe specifications for all connections that are described in it. Those recommendations are more descriptive and exhaustive than what is possible here. The use of PCIe compatible bridges and switches is allowed for interfacing with more than one other processor or PCIe device. 8.5.6.1.1 Coupling Capacitors AC coupling capacitors are required on the transmit data pair. Table 8-21 shows the requirements for these capacitors. Table 8-21. PCIe AC Coupling Capacitors Requirements PARAMETER MIN PCIe AC coupling capacitor value 90 PCIe AC coupling capacitor package size TYP MAX UNIT 100 110 nF 0402 0603 EIA(1)(2) (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. 8.5.6.1.2 Polarity Inversion The PCIe specification requires polarity inversion support. This means for layout purposes, polarity is unimportant because each signal can change its polarity on die inside the chip. This means polarity within a lane is unimportant for layout. 8.5.6.2 Non-standard PCIe connections The following sections contain suggestions for any PCIe connection that is NOT described in the official PCIe specification, such as an on-board Device to Device or Device to other PCIe compliant processor connection. 8.5.6.2.1 PCB Stackup Specifications Table 8-22 shows the stackup and feature sizes required for these types of PCIe connections. Table 8-22. PCIe PCB Stackup Specifications PARAMETER MIN TYP MAX UNIT Number of ground plane cuts allowed within PCIe routing region - - 0 Cuts Number of layers between PCIe routing area and reference plane (1) - - 0 Layers PCB Routing clearance 4 Mils PCB Trace width 4 Mils Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 371 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) A reference plane may be a ground plane or the power plane referencing the PCIe signals. 8.5.6.2.2 Routing Specifications 8.5.6.2.2.1 Impedance The PCIe data signal traces must be routed to achieve 100-Ω (±10%) differential impedance and 60-Ω (±10%) single-ended impedance. The single-ended impedance is required because differential signals are extremely difficult to closely couple on PCBs and, therefore, single-ended impedance becomes important. These requirements are the same as those recommended in the PCIe Motherboard Checklist 1.0 document, available from PCI-SIG (www.pcisig.com). These impedances are impacted by trace width, trace spacing, distance between signals and referencing planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs result in as close to 100-Ω differential impedance and 60-Ω single-ended impedance as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. See Table 8-23 below. 8.5.6.2.2.2 Differential Coupling In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production. For PCBs with very tight space limitations (which are usually small) this can work, but for most PCBs, the loosely coupled option is probably best. Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier (because each trace is not so fixed in position relative to the other), and trace width variations don’t affect impedance as much, therefore it’s easier to maintain an accurate impedance over the length of the signal. For longer routes, the wider traces also show reduced skin effect and therefore often result in better signal integrity with a larger eye diagram opening. Table 8-23 shows the routing specifications for the PCIe data signals. Table 8-23. PCI-E Routing Specifications PARAMETER MIN TYP PCIe signal trace length Differential pair trace matching MAX UNIT 4700(1) Mils 5 Number of stubs allowed on PCIe traces(3) TX/RX pair differential impedance 90 100 TX/RX single-ended impedance 54 60 (2) Mils 0 stubs 110 Ω 66 Ω Pad size of vias on PCIe trace 25(4) Mils Hole size of vias on PCIe trace 14 Mils Number of vias on each PCIe trace 0 Vias PCIe differential pair to any other trace spacing 2×DS(5) (1) Beyond this, signal integrity may suffer. (2) For example, RXP0 within 5 Mils of RXN0. (3) Inline pads may be used for probing. (4) 35-Mil antipad maximum recommended. (5) DS = differential spacing of the PCIe traces. Table 8-24. PCI-E Routing Recommendations Item ESD part number 372 Applications, Implementation, and Layout Description Reason None ESD suppression generally not used on PCIe Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.5.6.2.2.3 Pair Length Matching Each signal in the differential pair should be matched to within 5 mils of its matching differential signal. Length matching should be done as close to the mismatch as possible. 8.5.6.3 LJCB_REFN/P Connections A Common Refclk Rx Architecture is required to be used for the device PCIe interface. Specifically, two modes of Common Refclk Rx Architecture are supported: • External REFCLK Mode: An common external 100MHz clock source is distributed to both the Device and the link partner • Output REFCLK Mode: A 100MHz HCSL clock source is output by the device and used by the link partner In External REFCLK Mode, a high-quality, low-jitter, differential HCSL 100MHz clock source compliant to the PCIe REFCLK AC Specifications should be provided on the Device’s ljcb_clkn / ljcb_clkp inputs. Alternatively, an LVDS clock source can be used with the following additional requirements: • External AC coupling capacitors described in Table 8-25 should be populated at the ljcb_clkn / ljcb_clkp inputs. • All termination requirements (ex. parallel 100ohm termination) from the clock source manufacturer should be followed. In Output REFCLK Mode, the 100MHz clock from the Device’s DPLL_PCIE_REF should be output on the Device’s ljcb_clkn / ljcb_clkp pins and used as the HCSL REFCLK by the link partner. External nearside termination to ground described in Table 8-26 is required on both of the ljcb_clkn / ljcb_clkp outputs in this mode. Table 8-25. LJCB_REFN/P Requirements in External LVDS REFCLK Mode PARAMETER MIN TYP ljcb_clkn / ljcb_clkp AC coupling capacitor value 100 ljcb_clkn / ljcb_clkp AC coupling capacitor package size 0402 MAX UNIT nF EIA(1)(2) 0603 (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. Table 8-26. LJCB_REFN/P Requirements in Output REFCLK Mode PARAMETER MIN TYP MAX UNIT ljcb_clkn / ljcb_clkp near-side termination to ground value 47.5 50 52.5 Ohms 8.5.7 CSI2 Board Design and Routing Guidelines The MIPI D-PHY signals include the CSI2_0 and CSI2_1 camera serial interfaces to or from the Device. For more information regarding the MIPI-PHY signals and corresponding balls, see Table 4-7, CSI2 Signal Descriptions. For more information, you can also see the MIPI D-PHY specification v1-01-00_r0-03 (specifically the Interconnect and Lane Configuration and Annex B Interconnect Design Guidelines chapters). In the next section, the PCB guidelines of the following differential interfaces are presented: • CSI2_0 and CSI2_1 MIPI CSI-2 at 1.5 Gbps Table 8-27 lists the MIPI D-PHY interface signals in the Device. Table 8-27. MIPI D-PHY Interface Signals in the Device SIGNAL NAME BOTTOM BALL SIGNAL NAME BOTTOM BALL csi2_0_dx0 AE1 csi2_0_dy0 AD2 Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 373 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 8-27. MIPI D-PHY Interface Signals in the Device (continued) 8.5.7.1 SIGNAL NAME BOTTOM BALL SIGNAL NAME BOTTOM BALL csi2_0_dx1 AF1 csi2_0_dy1 AE2 csi2_0_dx2 AF2 csi2_0_dy2 AF3 csi2_0_dx3 AH4 csi2_0_dy3 AG4 csi2_0_dx4 AH3 csi2_0_dy4 AG3 csi2_1_dx0 AG5 csi2_1_dy0 AH5 csi2_1_dx1 AG6 csi2_1_dy1 AH6 csi2_1_dx2 AH7 csi2_1_dy2 AG7 CSI2_0 and CSI2_1 MIPI CSI-2 (1.5 Gbps) 8.5.7.1.1 General Guidelines The general guidelines for the PCB differential lines are: • Differential trace impedance Z0 = 100 Ω (minimum = 85 Ω, maximum = 115 Ω) • Total conductor length from the Device package pins to the peripheral device package pins is 25 to 30 cm with common FR4 PCB and flex materials. NOTE Longer interconnect length can be supported at the expense of detailed simulations of the complete link including driver and receiver models. The general rule of thumb for the space S = 2 × W is not designated (see Figure 8-19, Guard Illustration). It is because although the S = 2 × W rule is a good rule of thumb, it is not always the best solution. The electrical performance will be checked with the frequency-domain specification. Even though the designer does not follow the S = 2 × W rule, the differential lines are ok if the lines satisfy the frequency-domain specification. Because the MIPI signals are used for low-power, single-ended signaling in addition to their high-speed differential implementation, the pairs must be loosely coupled. 8.5.7.1.2 Length Mismatch Guidelines 8.5.7.1.2.1 CSI2_0 and CSI2_1 MIPI CSI-2 (1.5 Gbps) The guidelines of the length mismatch for CSI-2 are presented in Table 8-28. Table 8-28. Length Mismatch Guidelines for CSI-2 (1.5 Gbps) PARAMETER TYPICAL VALUE UNIT Operating speed 1500 Mbps UI (bit time) 667 ps Intralane skew Have to satisfy mode-conversion S parameters(1) Interlane skew (UI / 50) 13.34 ps (1) sdc12, scd21, scd12, sdc21, scd11, sdc11, scd22, and sdc22 8.5.7.1.3 Frequency-domain Specification Guidelines After the PCB design is finished, the S-parameters of the PCB differential lines will be extracted with a 3D Maxwell Equation Solver such as the high-frequency structure simulator (HFSS) or equivalent, and compared to the frequency-domain specification as defined in the section 7 of the MIPI Alliance Specification for D-PHY Version v1-01-00_r0-03. If the PCB lines satisfy the frequency-domain specification, the design is finished. Otherwise, the design needs to be improved. 374 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 8.6 8.6.1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Clock Routing Guidelines 32-kHz Oscillator Routing When designing the printed-circuit board: • Keep the crystal as close as possible to the crystal pins X1 and X2. • Keep the trace lengths short and small to reduce capacitor loading and prevent unwanted noise pickup. • Place a guard ring around the crystal and tie the ring to ground to help isolate the crystal from unwanted noise pickup. • Keep all signals out from beneath the crystal and the X1 and X2 pins to prevent noise coupling. • Finally, an additional local ground plane on an adjacent PCB layer can be added under the crystal to shield it from unwanted pickup from traces on other layers of the board. This plane must be isolated from the regular PCB ground plane and tied to the GND pin of the RTC. The plane must not be any larger than the perimeter of the guard ring. Make sure that this ground plane does not contribute to significant capacitance (a few pF) between the signal line and ground on the connections that run from X1 and X2 to the crystal. Cap Via to GND X 1 Crystal Cap IC X 2 Local ground plane SPRS906_PCB_CLK_OSC_01 Figure 8-37. Slow Clock PCB Requirements 8.6.2 Oscillator Ground Connection Although the impedance of a ground plane is low it is, of course, not zero. Therefore, any noise current in the ground plane causes a voltage drop in the ground. Figure 8-38 shows the grounding scheme for slow (low frequency) clock generated from the internal oscillator. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 375 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Device rtc_osc_xo rtc_osc_xi_clkin32 Rd (Optional) Crystal Cf2 Cf1 SPRS906_PCB_CLK_OSC_02 Figure 8-38. Grounding Scheme for Low-Frequency Clock Figure 8-39 shows the grounding scheme for high-frequency clock. Device xi_oscj xo_oscj Rd (Optional) Crystal Cf1 vssa_oscj Cf2 SPRS906_PCB_CLK_OSC_03 (1) j in *_osc = 0 or 1 Figure 8-39. Grounding Scheme for High-Frequency Clock 8.7 8.7.1 DDR3 Board Design and Layout Guidelines DDR3 General Board Layout Guidelines To • • • • • • • • • • 376 help ensure good signaling performance, consider the following board design guidelines: Avoid crossing splits in the power plane. Minimize Vref noise. Use the widest trace that is practical between decoupling capacitors and memory module. Maintain a single reference. Minimize ISI by keeping impedances matched. Minimize crosstalk by isolating sensitive bits, such as strobes, and avoiding return path discontinuities. Use proper low-pass filtering on the Vref pins. Keep the stub length as short as possible. Add additional spacing for on-clock and strobe nets to eliminate crosstalk. Maintain a common ground reference for all bypass and decoupling capacitors. Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com • 8.7.2 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Take into account the differences in propagation delays between microstrip and stripline nets when evaluating timing constraints. DDR3 Board Design and Layout Guidelines 8.7.2.1 Board Designs TI only supports board designs using DDR3 memory that follow the guidelines in this document. The switching characteristics and timing diagram for the DDR3 memory controller are shown in Table 8-29 and Figure 8-40. Table 8-29. Switching Characteristics Over Recommended Operating Conditions for DDR3 Memory Controller NO. 1 PARAMETER tc(DDR_CLK) MIN MAX UNIT 1.5 2.5(1) ns Cycle time, DDR_CLK (1) This is the absolute maximum the clock period can be. Actual maximum clock period may be limited by DDR3 speed grade and operating frequency (see the DDR3 memory device data sheet). 1 DDR_CLK SPRS906_PCB_DDR3_01 Figure 8-40. DDR3 Memory Controller Clock Timing 8.7.2.2 DDR3 EMIF The processor contains one DDR3 EMIF. 8.7.2.3 DDR3 Device Combinations Because there are several possible combinations of device counts and single- or dual-side mounting, Table 8-30 summarizes the supported device configurations. Table 8-30. Supported DDR3 Device Combinations NUMBER OF DDR3 DEVICES DDR3 DEVICE WIDTH (BITS) MIRRORED? DDR3 EMIF WIDTH (BITS) 1 2 16 N 16 8 Y(1) 2 16 16 N 32 (1) 32 2 16 Y 3 16 N(3) 32 4 8 N 32 4 8 Y(2) 32 8 (3) 32 5 N Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 377 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com (1) Two DDR3 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of the board. (2) This is two mirrored pairs of DDR3 devices. (3) Three or five DDR3 device combination is not available on this device, but combination types are retained for consistency with the DRA7xx family of devices. 8.7.2.4 DDR3 Interface Schematic 8.7.2.4.1 32-Bit DDR3 Interface The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used and the width of the bus used (16 or 32 bits). General connectivity is straightforward and very similar. 16-bit DDR devices look like two 8-bit devices. Figure 8-41 and Figure 8-42 show the schematic connections for 32-bit interfaces using x16 devices. 8.7.2.4.2 16-Bit DDR3 Interface Note that the 16-bit wide interface schematic is practically identical to the 32-bit interface (see Figure 8-41 and Figure 8-42); only the high-word DDR memories are removed and the unused DQS inputs are tied off. When not using all or part of a DDR interface, the proper method of handling the unused pins is to tie off the ddrx_dqsi pins to ground via a 1k-Ω resistor and to tie off the ddrx_dqsni pins to the corresponding vdds_ddrx supply via a 1k-Ω resistor. This needs to be done for each byte not used. Although these signals have internal pullups and pulldowns, external pullups and pulldowns provide additional protection against external electrical noise causing activity on the signals. The vdds_ddrx and ddrx_vref0 power supply pins need to be connected to their respective power supplies even if ddrx is not being used. All other DDR interface pins can be left unconnected. Note that the supported modes for use of the DDR EMIF are 32-bits wide, 16-bits wide, or not used. 378 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 32-bit DDR3 EMIF 16-Bit DDR3 Devices ddr1_d31 DQ15 8 ddr1_d24 DQ8 ddr1_dqm3 ddr1_dqs3 ddr1_dqsn3 UDM UDQS UDQS ddr1_d23 DQ7 8 ddr1_d16 ddr1_dqm2 ddr1_dqs2 ddr1_dqsn2 D08 LDM LDQS LDQS ddr1_d15 DQ15 8 ddr1_d8 DQ8 ddr1_dqm1 ddr1_dqs1 ddr1_dqsn1 ddr1_d7 UDM UDQS UDQS DQ7 8 ddr1_d0 ddr1_dqm0 ddr1_dqs0 ddr1_dqsn0 ddr1_ck ddr1_nck ddr1_odt0 ddr1_csn0 ddr1_odt1 ddr1_csn1 ddr1_ba0 ddr1_ba1 ddr1_ba2 ddr1_a0 ODT CS ODT CS BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA A15 CAS RAS WE CKE RST Zo 0.1 µF DDR_1V5 Zo NC 16 ZQ ddr1_vref0 0.1 µF Zo CK CK NC ddr1_a15 ddr1_casn ddr1_rasn ddr1_wen ddr1_cke ddr1_rst ZQ DQ0 LDM LDQS LDQS CK CK 0.1 µF DDR_VTT Zo Zo DDR_VREF ZQ VREFDQ VREFCA ZQ 0.1 µF Termination is required. See terminator comments. Value determined according to the DDR memory device data sheet. SPRS906_PCB_DDR3_02 Figure 8-41. 32-Bit, One-Bank DDR3 Interface Schematic Using Two 16-Bit DDR3 Devices Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 379 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 32-bit DDR3 EMIF 8-Bit DDR3 Devices 8-Bit DDR3 Devices ddrx_d31 DQ7 8 ddrx_d24 ddrx_dqm3 DQ0 NC ddrx_dqs3 ddrx_dqsn3 DM/TQS TDQS DQS DQS ddrx_d23 DQ7 8 ddrx_d16 ddrx_dqm2 DQ0 NC ddrx_dqs2 ddrx_dqsn2 ddrx_d15 DM/TQS TDQS DQS DQS DQ7 8 ddrx_d8 ddrx_dqm1 NC ddrx_dqs1 ddrx_dqsn1 ddrx_d7 DQ0 DM/TQS TDQS DQS DQS DQ7 8 ddrx_d0 NC ddrx_dqm0 ddrx_dqs0 ddrx_dqsn0 ddrx_ck ddrx_nck ddrx_odt0 ddrx_csn0 ddrx_odt1 ddrx_csn1 ddrx_ba0 ddrx_ba1 ddrx_ba2 ddrx_a0 16 ZQ ddrx_vref0 0.1 µF ZQ CK CK CK CK CK CK ODT CS ODT CS ODT CS ODT CS BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 Zo 0.1 µF DDR_1V5 Zo NC NC ddrx_a15 ddrx_casn ddrx_rasn ddrx_wen ddrx_cke ddrx_rst Zo DQ0 TDQS DM/TQS DQS DQS CK CK A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF ZQ ZQ A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA DDR_VTT Zo Zo DDR_VREF ZQ 0.1 µF Termination is required. See terminator comments. Value determined according to the DDR memory device data sheet. SPRS906_PCB_DDR3_03 Figure 8-42. 32-Bit, One-Bank DDR3 Interface Schematic Using Four 8-Bit DDR3 Devices 380 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 8.7.2.5 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Compatible JEDEC DDR3 Devices Table 8-31 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface. Generally, the DDR3 interface is compatible with DDR3-1333 devices in the x8 or x16 widths. Table 8-31. Compatible JEDEC DDR3 Devices (Per Interface) N O. 1 PARAMETER CONDITION JEDEC DDR3 device speed grade(1) MIN MAX DDR clock rate = 400MHz DDR3-800 DDR3-1600 400MHz< DDR clock rate ≤ 533MHz DDR3-1066 DDR3-1600 533MHz< DDR clock rate ≤ 667MHz UNIT DDR3-1333 DDR3-1600 2 JEDEC DDR3 device bit width x8 x16 Bits 3 JEDEC DDR3 device count(2) 2 4 Devices (1) Refer to Table 8-29 Switching Characteristics Over Recommended Operating Conditions for DDR3 Memory Controller for the range of supported DDR clock rates. (2) For valid DDR3 device configurations and device counts, see Section 8.7.2.4, Figure 8-41, and Figure 8-42. 8.7.2.6 PCB Stackup The minimum stackup for routing the DDR3 interface is a six-layer stack up as shown in Table 8-32. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance SI/EMI performance, or to reduce the size of the PCB footprint. Complete stackup specifications are provided in Table 8-33. Table 8-32. Six-Layer PCB Stackup Suggestion LAYER TYPE DESCRIPTION 1 Signal Top routing mostly vertical 2 Plane Ground 3 Plane Split power plane 4 Plane Split power plane or Internal routing 5 Plane Ground 6 Signal Bottom routing mostly horizontal Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 381 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 8-33. PCB Stackup Specifications NO. PARAMETER MIN PS1 PCB routing/plane layers 6 PS2 Signal routing layers 3 PS3 Full ground reference layers under DDR3 routing region(1) TYP MAX 1 (1) PS4 Full 1.5-V power reference layers under the DDR3 routing region PS5 Number of reference plane cuts allowed within DDR routing region(2) 0 PS6 Number of layers between DDR3 routing layer and reference plane(3) 0 PS7 PCB routing feature size 4 PS8 PCB trace width, w 4 PS9 Single-ended impedance, Zo PS10 UNIT 1 50 (5) Impedance control Z-5 Z Mils Mils 75 Ω Z+5 Ω (1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer return current as the trace routes switch routing layers. (2) No traces should cross reference plane cuts within the DDR routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation. (3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop. (4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape. (5) Z is the nominal singled-ended impedance selected for the PCB specified by PS9. 8.7.2.7 Placement Figure 8-43 shows the required placement for the processor as well as the DDR3 devices. The dimensions for this figure are defined in Table 8-34. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16-bit DDR memory system, the high-word DDR3 devices are omitted from the placement. Figure 8-43. Placement Specifications 382 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Table 8-34. Placement Specifications DDR3 MAX UNIT KOD31 X1 NO. PARAMETER MIN 500 Mils KOD32 X2 600 Mils KOD33 X3 600 Mils KOD34 Y1 1800 Mils KOD35 Y2 600 Mils KOD36 DDR3 keepout region (1) KOD37 Clearance from non-DDR3 signal to DDR3 keepout region (2) (3) 4 W (1) DDR3 keepout region to encompass entire DDR3 routing area. (2) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane. (3) If a device has more than one DDR controller, the signals from the other controller(s) are considered non-DDR3 and should be separated by this specification. 8.7.2.8 DDR3 Keepout Region The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout region is defined for this purpose and is shown in Figure 8-44. The size of this region varies with the placement and DDR routing. Additional clearances required for the keepout region are shown in Table 834. Non-DDR3 signals should not be routed on the DDR signal layers within the DDR3 keepout region. Non-DDR3 signals may be routed in the region, provided they are routed on layers separated from the DDR signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.5-V DDR3 power plane should cover the entire keepout region. Also note that the two signals from the DDR3 controller should be separated from each other by the specification in Table 834 (see KOD37). Figure 8-44. DDR3 Keepout Region Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 383 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.7.2.9 www.ti.com Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry. Table 8-35 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DDR3 controllers and DDR3 devices. Additional bulk bypass capacitance may be needed for other circuitry. Table 8-35. Bulk Bypass Capacitors NO. PARAMETER MIN MAX UNIT 1 vdds_ddrx bulk bypass capacitor count(1) 1 Devices 2 vdds_ddrx bulk bypass total capacitance 22 μF (1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the highspeed (HS) bypass capacitors and DDR3 signal routing. 8.7.2.10 High-Speed Bypass Capacitors High-speed (HS) bypass capacitors are critcal for proper DDR3 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, processor/DDR power, and processor/DDR ground connections. Table 8-36 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good to: 1. Fit as many HS bypass capacitors as possible. 2. Minimize the distance from the bypass cap to the pins/balls being bypassed. 3. Use the smallest physical sized capacitors possible with the highest capacitance readily available. 4. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest hole size via possible. 5. Minimize via sharing. Note the limites on via sharing shown in Table 8-36. Table 8-36. High-Speed Bypass Capacitors NO. PARAMETER MIN 1 HS bypass capacitor package size(1) 2 Distance, HS bypass capacitor to processor being bypassed(2)(3)(4) 3 Processor HS bypass capacitor count per vdds_ddrx rail(12) 4 Processor HS bypass capacitor total capacitance per vdds_ddrx rail(12) TYP MAX UNIT 0201 0402 10 Mils 400 See Table 8-3 and (11) Mils Devices See Table 8-3 and (11) μF (5) 5 Number of connection vias for each device power/ground ball 6 Trace length from device power/ground ball to connection via(2) 7 Distance, HS bypass capacitor to DDR device being bypassed 8 DDR3 device HS bypass capacitor count(7) 9 DDR3 device HS bypass capacitor total capacitance(7) Vias 35 (6) (8)(9) 10 Number of connection vias for each HS capacitor 11 Trace length from bypass capacitor connect to connection via(2)(9) 12 Number of connection vias for each DDR3 device power/ground ball(10) 13 Trace length from DDR3 device power/ground ball to connection via(2)(8) 70 Mils 150 Mils 12 Devices 0.85 μF 2 Vias 35 100 1 Mils Vias 35 60 Mils (1) LxW, 10-mil units, that is, a 0402 is a 40x20-mil surface-mount capacitor. (2) Closer/shorter is better. (3) Measured from the nearest processor power/ground ball to the center of the capacitor package. (4) Three of these capacitors should be located underneath the processor, between the cluster of DDR_1V5 balls and ground balls, between the DDR interfaces on the package. (5) See the Via Channel™ escape for the processor package. (6) Measured from the DDR3 device power/ground ball to the center of the capacitor package. (7) Per DDR3 device. (8) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board. 384 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (9) An HS bypass capacitor may share a via with a DDR device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR device pad should be less than 150 mils. (10) Up to a total of two pairs of DDR power/ground balls may share a via. (11) The capacitor recommendations in this data manual reflect only the needs of this processor. Please see the memory vendor’s guidelines for determining the appropriate decoupling capacitor arrangement for the memory device itself. (12) For more information, see Section 8.3, Core Power Domains. 8.7.2.10.1 Return Current Bypass Capacitors Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals hopping from one signal layer to another. The bypass capacitor here provides a path for the return current to hop planes along with the signal. As many of these return current bypass capacitors should be used as possible. Because these are returns for signal current, the signal via size may be used for these capacitors. 8.7.2.11 Net Classes Table 8-37 lists the clock net classes for the DDR3 interface. Table 8-38 lists the signal net classes, and associated clock net classes, for signals in the DDR3 interface. These net classes are used for the termination and routing rules that follow. Table 8-37. Clock Net Class Definitions CLOCK NET CLASS CK processor PIN NAMES ddrx_ck/ddrx_nck DQS0 ddrx_dqs0 / ddrx_dqsn0 DQS1 ddrx_dqs1 / ddrx_dqsn1 DQS2(1) ddrx_dqs2 / ddrx_dqsn2 (1) ddrx_dqs3 / ddrx_dqsn3 DQS3 (1) Only used on 32-bit wide DDR3 memory systems. Table 8-38. Signal Net Class Definitions SIGNAL NET CLASS ASSOCIATED CLOCK NET CLASS ADDR_CTRL CK DQ0 DQS0 ddrx_d[7:0], ddrx_dqm0 processor PIN NAMES ddrx_ba[2:0], ddrx_a[14:0], ddrx_csnj, ddrx_casn, ddrx_rasn, ddrx_wen, ddrx_cke, ddrx_odti DQ1 DQS1 ddrx_d[15:8], ddrx_dqm1 DQ2(1) DQS2 ddrx_d[23:16], ddrx_dqm2 DQ3(1) DQS3 ddrx_d[31:24], ddrx_dqm3 (1) Only used on 32-bit wide DDR3 memory systems. 8.7.2.12 DDR3 Signal Termination Signal terminators are required for the CK and ADDR_CTRL net classes. The data lines are terminated by ODT and, thus, the PCB traces should be unterminated. Detailed termination specifications are covered in the routing rules in the following sections. 8.7.2.13 VREF_DDR Routing ddrx_vref0 (VREF) is used as a reference by the input buffers of the DDR3 memories as well as the processor. VREF is intended to be half the DDR3 power supply voltage and is typically generated with the DDR3 VDDS and VTT power supply. It should be routed as a nominal 20-mil wide trace with 0.1 µF bypass capacitors near each device connection. Narrowing of VREF is allowed to accommodate routing congestion. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 385 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 8.7.2.14 VTT Like VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike VREF, VTT is expected to source and sink current, specifically the termination current for the ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should be routed as a power sub-plane. VTT should be bypassed near the terminator resistors. 8.7.2.15 CK and ADDR_CTRL Topologies and Routing Definition The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew between them. CK is a bit more complicated because it runs at a higher transition rate and is differential. The following subsections show the topology and routing for various DDR3 configurations for CK and ADDR_CTRL. The figures in the following subsections define the terms for the routing specification detailed in Table 8-39. 8.7.2.15.1 Four DDR3 Devices Four DDR3 devices are supported on the DDR EMIF consisting of four x8 DDR3 devices arranged as one bank (CS). These four devices may be mounted on a single side of the PCB, or may be mirrored in two pairs to save board space at a cost of increased routing complexity and parts on the backside of the PCB. 8.7.2.15.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices Figure 8-45 shows the topology of the CK net classes and Figure 8-46 shows the topology for the corresponding ADDR_CTRL net classes. + – + – + – + – AS+ AS- AS+ AS- AS+ AS- AS+ AS- DDR Differential CK Input Buffers Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 A3 A4 A3 AT Cac + – Rcp A1 A2 A3 A4 A3 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_06 Figure 8-45. CK Topology for Four x8 DDR3 Devices 386 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Processor Address and Control Output Buffer A1 A3 A2 AS AS AS AS DDR Address and Control Input Buffers A3 A4 Address and Control Terminator Rtt Vtt AT SPRS906_PCB_DDR3_07 Figure 8-46. ADDR_CTRL Topology for Four x8 DDR3 Devices 8.7.2.15.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices A1 A1 Figure 8-47 shows the CK routing for four DDR3 devices placed on the same side of the PCB. Figure 8-48 shows the corresponding ADDR_CTRL routing. DDR_1V5 A3 A3 = A4 A4 A3 A3 Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A2 A2 SPRS906_PCB_DDR3_08 Figure 8-47. CK Routing for Four Single-Side DDR3 Devices Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 387 DRA722, DRA724, DRA725, DRA726 www.ti.com A1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Rtt A3 = A3 A4 AT Vtt AS A2 SPRS906_PCB_DDR3_09 Figure 8-48. ADDR_CTRL Routing for Four Single-Side DDR3 Devices A1 A1 To save PCB space, the four DDR3 memories may be mounted as two mirrored pairs at a cost of increased routing and assembly complexity. Figure 8-49 and Figure 8-50 show the routing for CK and ADDR_CTRL, respectively, for four DDR3 devices mirrored in a two-pair configuration. DDR_1V5 = A4 A4 A3 A3 Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A3 A3 A2 A2 SPRS906_PCB_DDR3_10 Figure 8-49. CK Routing for Four Mirrored DDR3 Devices 388 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 A1 www.ti.com Rtt = A3 A4 AT Vtt AS A3 A2 SPRS906_PCB_DDR3_11 Figure 8-50. ADDR_CTRL Routing for Four Mirrored DDR3 Devices 8.7.2.15.2 Two DDR3 Devices Two DDR3 devices are supported on the DDR EMIF consisting of two x8 DDR3 devices arranged as one bank (CS), 16 bits wide, or two x16 DDR3 devices arranged as one bank (CS), 32 bits wide. These two devices may be mounted on a single side of the PCB, or may be mirrored in a pair to save board space at a cost of increased routing complexity and parts on the backside of the PCB. 8.7.2.15.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices Figure 8-51 shows the topology of the CK net classes and Figure 8-52 shows the topology for the corresponding ADDR_CTRL net classes. + – + – AS+ AS- AS+ AS- DDR Differential CK Input Buffers Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 A3 AT Cac + – Rcp A1 A2 A3 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_12 Figure 8-51. CK Topology for Two DDR3 Devices Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 389 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Processor Address and Control Output Buffer A1 AS AS DDR Address and Control Input Buffers A3 A2 Address and Control Terminator Rtt Vtt AT SPRS906_PCB_DDR3_13 Figure 8-52. ADDR_CTRL Topology for Two DDR3 Devices 8.7.2.15.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices A1 A1 Figure 8-53 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 8-54 shows the corresponding ADDR_CTRL routing. DDR_1V5 A3 A3 = Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A2 A2 SPRS906_PCB_DDR3_14 Figure 8-53. CK Routing for Two Single-Side DDR3 Devices 390 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 A1 www.ti.com Rtt A3 = Vtt AT AS A2 SPRS906_PCB_DDR3_15 Figure 8-54. ADDR_CTRL Routing for Two Single-Side DDR3 Devices A1 A1 To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased routing and assembly complexity. Figure 8-55 and Figure 8-56 show the routing for CK and ADDR_CTRL, respectively, for two DDR3 devices mirrored in a single-pair configuration. DDR_1V5 = Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A3 A3 A2 A2 SPRS906_PCB_DDR3_16 Figure 8-55. CK Routing for Two Mirrored DDR3 Devices Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 391 DRA722, DRA724, DRA725, DRA726 www.ti.com A1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Rtt A3 = Vtt AT AS A2 SPRS906_PCB_DDR3_17 Figure 8-56. ADDR_CTRL Routing for Two Mirrored DDR3 Devices 8.7.2.15.3 One DDR3 Device A single DDR3 device is supported on the DDR EMIF consisting of one x16 DDR3 device arranged as one bank (CS), 16 bits wide. 8.7.2.15.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device Figure 8-57 shows the topology of the CK net classes and Figure 8-58 shows the topology for the corresponding ADDR_CTRL net classes. DDR Differential CK Input Buffer AS+ AS- + – Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 AT Cac + – Rcp A1 A2 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_18 Figure 8-57. CK Topology for One DDR3 Device 392 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 AS DDR Address and Control Input Buffers Processor Address and Control Output Buffer A1 Address and Control Terminator Rtt AT Vtt A2 SPRS906_PCB_DDR3_19 Figure 8-58. ADDR_CTRL Topology for One DDR3 Device 8.7.2.15.3.2 CK and ADDR/CTRL Routing, One DDR3 Device A1 A1 Figure 8-59 shows the CK routing for one DDR3 device placed on the same side of the PCB. Figure 8-60 shows the corresponding ADDR_CTRL routing. DDR_1V5 Rcp Cac Rcp 0.1 µF AT AT = AS+ AS- A2 A2 SPRS906_PCB_DDR3_20 Figure 8-59. CK Routing for One DDR3 Device Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 393 DRA722, DRA724, DRA725, DRA726 www.ti.com A1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Rtt AT = Vtt AS A2 SPRS906_PCB_DDR3_21 Figure 8-60. ADDR_CTRL Routing for One DDR3 Device 8.7.2.16 Data Topologies and Routing Definition No matter the number of DDR3 devices used, the data line topology is always point to point, so its definition is simple. Care should be taken to minimize layer transitions during routing. If a layer transition is necessary, it is better to transition to a layer using the same reference plane. If this cannot be accommodated, ensure there are nearby ground vias to allow the return currents to transition between reference planes if both reference planes are ground or vdds_ddr. Ensure there are nearby bypass capacitors to allow the return currents to transition between reference planes if one of the reference planes is ground. The goal is to minimize the size of the return current loops. 8.7.2.16.1 DQS and DQ/DM Topologies, Any Number of Allowed DDR3 Devices DQS lines are point-to-point differential, and DQ/DM lines are point-to-point singled ended. Figure 8-61 and Figure 8-62 show these topologies. Processor DQS IO Buffer DQSn+ DQSn- DDR DQS IO Buffer Routed Differentially n = 0, 1, 2, 3 SPRS906_PCB_DDR3_22 Figure 8-61. DQS Topology Processor DQ and DM IO Buffer Dn DDR DQ and DM IO Buffer n = 0, 1, 2, 3 SPRS906_PCB_DDR3_23 Figure 8-62. DQ/DM Topology 394 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 8.7.2.16.2 DQS and DQ/DM Routing, Any Number of Allowed DDR3 Devices Figure 8-63 and Figure 8-64 show the DQS and DQ/DM routing. DQSn+ DQSn- DQS Routed Differentially n = 0, 1, 2, 3 SPRS906_PCB_DDR3_24 Figure 8-63. DQS Routing With Any Number of Allowed DDR3 Devices Dn DQ and DM n = 0, 1, 2, 3 SPRS906_PCB_DDR3_25 Figure 8-64. DQ/DM Routing With Any Number of Allowed DDR3 Devices 8.7.2.17 Routing Specification 8.7.2.17.1 CK and ADDR_CTRL Routing Specification Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. A metric to establish this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the length between the points when connecting them only with horizontal or vertical segments. A reasonable trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address Control Longest Manhattan distance. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 395 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Given the clock and address pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 8-65 and Figure 8-66 show this distance for four loads and two loads, respectively. It is from this distance that the specifications on the lengths of the transmission lines for the address bus are determined. CACLM is determined similarly for other address bus configurations; that is, it is based on the longest net of the CK/ADDR_CTRL net class. For CK and ADDR_CTRL routing, these specifications are contained in Table 8-39. (A) A1 A8 CACLMY CACLMX A8 (A) A8 (A) A8 (A) A8 (A) Rtt A3 = A4 A3 AT Vtt AS A2 SPRS906_PCB_DDR3_26 A. It is very likely that the longest CK/ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK/ADDR_CTRL skew matching and length control. The length of shorter CK/ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length calculation. Non-included lengths are grayed out in the figure. Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils. The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8. Figure 8-65. CACLM for Four Address Loads on One Side of PCB 396 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 (A) A1 A8 CACLMY CACLMX A8 (A) A8 (A) Rtt A3 = AT Vtt AS A2 SPRS906_PCB_DDR3_27 A. It is very likely that the longest CK/ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK/ADDR_CTRL skew matching and length control. The length of shorter CK/ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length calculation. Non-included lengths are grayed out in the figure. Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils. The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8. Figure 8-66. CACLM for Two Address Loads on One Side of PCB Table 8-39. CK and ADDR_CTRL Routing Specification(2)(3) NO. PARAMETER MAX UNIT 500(1) ps A1+A2 skew 29 ps A3 length 125 ps CARS34 A3 skew(4) 6 ps CARS35 (5) A3 skew 6 ps CARS36 A4 length 125 ps CARS37 A4 skew 6 ps CARS38 AS length 17 ps 1.3 14 ps 5 12 ps 1 ps CARS31 A1+A2 length CARS32 CARS33 MIN TYP 5(1) (1) CARS39 AS skew CARS310 AS+/AS- length CARS311 AS+/AS- skew (6) CARS312 AT length 75 CARS313 AT skew(7) 14 ps CARS314 AT skew(8) CARS315 CK/ADDR_CTRL trace length 1020 ps CARS316 Vias per trace 3(1) vias CARS317 Via count difference 1(15) vias CARS318 Center-to-center CK to other DDR3 trace spacing(9) 4w CARS319 Center-to-center ADDR_CTRL to other DDR3 trace spacing(9)(10) 4w CARS320 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(9) 3w ps 1 Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated ps 397 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 8-39. CK and ADDR_CTRL Routing Specification(2)(3) (continued) NO. PARAMETER CARS321 CK center-to-center spacing(11)(12) CARS322 CK spacing to other net(9) CARS323 Rcp(13) CARS324 Rtt(13)(14) MIN TYP MAX UNIT Zo-1 Zo Zo+1 Ω Zo-5 Zo Zo+5 Ω 4w (1) Max value is based upon conservative signal integrity approach. This value could be extended only if detailed signal integrity analysis of rice time and fall time confirms desired operation. (2) The use of vias should be minimized. (3) Additional bypass capacitors are required when using the DDR_1V5 plane as the reference plane to allow the return current to jump between the DDR_1V5 plane and the ground plane when the net class switches layers at a via. (4) Non-mirrored configuration (all DDR3 memories on same side of PCB). (5) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom). (6) While this length can be increased for convenience, its length should be minimized. (7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required. (8) CK net class only. (9) Center-to-center spacing is allowed to fall to minimum 2w for up to 1250 mils of routed length. (10) The ADDR_CTRL net class of the other DDR EMIF is considered other DDR3 trace spacing. (11) CK spacing set to ensure proper differential impedance. (12) The most important thing to do is control the impedance so inadvertent impedance mismatches are not created. Generally speaking, center-to-center spacing should be either 2w or slightly larger than 2w to achieve a differential impedance equal to twice the singleended impedance, Zo. (13) Source termination (series resistor at driver) is specifically not allowed. (14) Termination values should be uniform across the net class. (15) Via count difference may increase by 1 only if accurate 3-D modeling of the signal flight times – including accurately modeled signal propagation through vias – has been applied to ensure all segment skew maximums are not exceeded. 8.7.2.17.2 DQS and DQ Routing Specification Skew within the DQS and DQ/DM net classes directly reduces setup and hold margin and thus this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. As with CK and ADDR_CTRL, a reasonable trace route length is to within a percentage of its Manhattan distance. DQLMn is defined as DQ Longest Manhattan distance n, where n is the byte number. For a 32-bit interface, there are four DQLMs, DQLM0-DQLM3. Likewise, for a 16-bit interface, there are two DQLMs, DQLM0-DQLM1. NOTE It is not required, nor is it recommended, to match the lengths across all bytes. Length matching is only required within each byte. Given the DQS and DQ/DM pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 8-67 shows this distance for four loads. It is from this distance that the specifications on the lengths of the transmission lines for the data bus are determined. For DQS and DQ/DM routing, these specifications are contained in Table 8-40. 398 Applications, Implementation, and Layout Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 DQLMX0 DB0 DB1 DQ[0:7]/DM0/DQS0 DQ[8:15]/DM1/DQS1 DQLMX1 DQ[16:23]/DM2/DQS2 DB2 DQLMY0 DQLMX2 DQLMY3 DQLMY2 DB3 DQLMY1 DQ[23:31]/DM3/DQS3 DQLMX3 3 2 1 0 DB0 - DB3 represent data bytes 0 - 3. SPRS906_PCB_DDR3_28 There are four DQLMs, one for each byte (32-bit interface). Each DQLM is the longest Manhattan distance of the byte; therefore: DQLM0 = DQLMX0 + DQLMY0 DQLM1 = DQLMX1 + DQLMY1 DQLM2 = DQLMX2 + DQLMY2 DQLM3 = DQLMX3 + DQLMY3 Figure 8-67. DQLM for Any Number of Allowed DDR3 Devices Table 8-40. Data Routing Specification(2) NO. PARAMETER MIN TYP MAX UNIT DRS31 DB0 length 340 ps DRS32 DB1 length 340 ps DRS33 DB2 length 340 ps DRS34 DB3 length 340 ps DRS35 (3) DBn skew 5 ps DRS36 DQSn+ to DQSn- skew 1 ps DRS37 DQSn to DBn skew(3)(4) 5(10) ps (1) vias vias DRS38 Vias per trace 2 DRS39 Via count difference 0(10) DRS310 Center-to-center DBn to other DDR3 trace spacing(6) 4 w(5) DRS311 Center-to-center DBn to other DBn trace spacing(7) 3 w(5) 4 w(5) (8)(9) DRS312 DQSn center-to-center spacing DRS313 DQSn center-to-center spacing to other net (1) Max value is based upon conservative signal integrity approach. This value could be extended only if detailed signal integrity analysis of rice time and fall time confirms desired operation. (2) External termination disallowed. Data termination should use built-in ODT functionality. (3) Length matching is only done within a byte. Length matching across bytes is neither required nor recommended. (4) Each DQS pair is length matched to its associated byte. (5) Center-to-center spacing is allowed to fall to minimum 2w for up to 1250 mils of routed length. (6) Other DDR3 trace spacing means other DDR3 net classes not within the byte. (7) This applies to spacing within the net classes of a byte. (8) DQS pair spacing is set to ensure proper differential impedance. (9) The most important thing to do is control the impedance so inadvertent impedance mismatches are not created. Generally speaking, center-to-center spacing should be either 2w or slightly larger than 2w to achieve a differential impedance equal to twice the singleended impedance, Zo. (10) Via count difference may increase by 1 only if accurate 3-D modeling of the signal flight times – including accurately modeled signal propagation through vias – has been applied to ensure DBn skew and DQSn to DBn skew maximums are not exceeded. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 399 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com 9 Device and Documentation Support TI offers an extensive line of development tools, including methods to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules as listed below. 9.1 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, DRA72x). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. null Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. For orderable part numbers of DRA72x devices in the ABC package type, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the Silicon Errata (literature number SPRZ426 ). 400 Device and Documentation Support Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com 9.1.1 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 Standard Package Symbolization JACINTO aBBBBBBrzYPPPQ1 XXXXXXX ZZZ G1 YYY PIN ONE INDICATOR O SPRS906_PACK_01 Figure 9-1. Printed Device Reference NOTE Some devices have a cosmetic circular marking visible on the top of the device package which results from the production test process. These markings are cosmetic only with no reliability impact. 9.1.2 Device Naming Convention Table 9-1. Nomenclature Description FIELD PARAMETER a BBBBBB r z FIELD DESCRIPTION Device evolution stage(1) Base production part number Device revision Device Speed VALUE DESCRIPTION X Prototype P Preproduction (production test flow, no reliability data) BLANK Production DRA722 J6Eco Ultra Low Tier DRA724 J6Eco Low Tier DRA725 J6Eco Mid Tier DRA726 J6Eco High Tier BLANK SR 1.0 A SR 2.0 P Indicates the speed grade for each of the cores in the device. For more information see Table 3-1, Device Comparison Table. L J H OTHER Device and Documentation Support Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 401 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 www.ti.com Table 9-1. Nomenclature Description (continued) FIELD PARAMETER Y PPP Q1 FIELD DESCRIPTION Device type Package designator Automotive Designator VALUE General purpose (Prototype and Production) E Emulation (E) devices D High security prototype devices with TI Development keys (D) Yn Letter followed by number indicates HS device with customer key ABC BLANK Q1 XXXXXXX DESCRIPTION G ABC S-PBGA-N760 (23mm × 23mm) Package Not meeting automotive qualification Meeting Q100 equal requirements, with exceptions as specified in DM. Lot Trace Code YYY Production Code, For TI use only ZZZ Production Code, For TI use only O Pin one designator G1 ECAT—Green package designator (1) To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices. Prototype devices are shipped against the following disclaimer: “This product is still under development and is intended for internal evaluation purposes.” Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, of this device. (2) Applies to device max junction temperature. NOTE BLANK in the symbol or part number is collapsed so there are no gaps between characters. 9.2 Tools and Software The following products support development for DRA72x platforms: Development Tools DRA72x Clock Tree Tool is interactive clock tree configuration software that allows the user to visualize the device clock tree, interact with clock tree elements and view the effect on PRCM registers, interact with the PRCM registers and view the effect on the device clock tree, and view a trace of all the device registers affected by the user interaction with the clock tree. DRA72x Register Descriptor Tool is an interactive device register configuration tool that allows users to visualize the register state on power-on reset, and then customize the configuration of the device for the specific use-case. DRA72x Pad Configuration Tool is an interactive pad-configuration tool that allows the user to visualize the device pad configuration state on power-on reset and then customize the configuration of the pads for the specific use-case and identify the device register settings associated to that configuration. For a complete listing of development-support tools for the processor platform, visit the Texas Instruments website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 9.3 Documentation Support The following documents describe the DRA72x devices. 402 TRM DRA72x (SR 2.0, 1.0) and DRA71x (SR 2.0) SoC for Automotive Infotainment Technical Reference Manual Details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the DRA72x family of devices. Errata DRA72x (SR 2.0, 1.0) and DRA71x (SR 2.0) SoC for Automotive Infotainment Silicon Errata Describes known advisories, limitations, and cautions on silicon and provides Device and Documentation Support Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 workarounds. 9.4 Receiving Notification of Documentation Updates To receive notification of documentation updates — including silicon errata — go to the product folder for your device on www.ti.com. In the upper right-hand corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. 9.5 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 9.6 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 9-2. Related Links 9.7 PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY DRA722 Click here Click here Click here Click here Click here DRA724 Click here Click here Click here Click here Click here DRA725 Click here Click here Click here Click here Click here DRA726 Click here Click here Click here Click here Click here Trademarks ICEPick and SmartReflex are trademarks of Texas Instruments Incorporated. ARM and Cortex are registered trademark of ARM Limited. ETB, ARM9, CoreSight, ISA, and Neon are trademarks of ARM Limited. HDMI is a trademark of HDMI Licensing, LLC. HDQ is a trademark of Benchmarq. 1-Wire is a registered trademark of Maxim Integrated. PowerVR is a registered trademark of Imagination Technologies Ltd. SD is a registered trademark of Toshiba Corporation. MMC and eMMC are trademarks of MultiMediaCard Association. MIPI is a registered trademark of the Mobile Industry Processor Interface (MIPI) Alliance. PCI Express is a registered trademark of PCI-SIG. MediaLB is a trademark of Standard Microsystems Corporation. Vivante is a registered trademark of Vivante Corporation. All other trademarks are the property of their respective owners. Device and Documentation Support Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 403 DRA722, DRA724, DRA725, DRA726 SPRS956B – MARCH 2016 – REVISED JANUARY 2017 9.8 www.ti.com Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 9.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 9.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 404 Device and Documentation Support Copyright © 2016–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 DRA722, DRA724, DRA725, DRA726 www.ti.com SPRS956B – MARCH 2016 – REVISED JANUARY 2017 10 Mechanical Packaging and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: DRA722 DRA724 DRA725 DRA726 Copyright © 2016–2017, Texas Instruments Incorporated 405 PACKAGE OPTION ADDENDUM www.ti.com 23-May-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) DRA722AHGABCQ1 ACTIVE FCBGA ABC 760 60 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR DRA722AHGABCQ1 JACINTO DRA722AHGABCRQ1 ACTIVE FCBGA ABC 760 250 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR DRA722AHGABCQ1 JACINTO DRA724JGABCRQ1 PREVIEW FCBGA ABC 760 250 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR DRA725AGGABCQ1 ACTIVE FCBGA ABC 760 60 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR DRA725AGGABCQ1 JACINTO DRA725AGGABCRQ1 ACTIVE FCBGA ABC 760 250 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR DRA725AGGABCQ1 JACINTO DRA725LGABCRQ1 PREVIEW FCBGA ABC 760 250 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR -40 to 125 DRA725LGABCQ1 JACINTOTM DRA726APGABCQ1 ACTIVE FCBGA ABC 760 60 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR -40 to 125 DRA726APGABCQ1 DRA726APGABCRQ1 ACTIVE FCBGA ABC 760 250 Green (RoHS & no Sb/Br) Call TI | SNAGCU Level-3-250C-168 HR -40 to 125 DRA726APGABCQ1 -40 to 125 DRA724JGABCQ1 JACINTOTM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 23-May-2017 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated