BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Data Sheet Revision 3.1, 2014-07-15 RF & Protection Devices Edition 2014-07-15 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Revision History: 2014-07-15, Revision 3.1 Previous Revision: 2013-09-10, Revision 3.0 Page Subjects (major changes since last revision) 25 update recommended footprint drawing (change of ground plains) Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.5 2.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Measured RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TX Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 RX Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 3.1 3.2 3.3 3.4 3.5 Application Circuit and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equivalent Circuit Diagram of MMIC Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 18 19 22 24 4 4.1 4.2 4.3 Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 27 Data Sheet 4 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Data Sheet BGT24ATR12 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCO Tuning Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application Circuit with Chip Outline (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing Diagram of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Cross-Section View of Application Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5) 22 Application Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Equivalent Circuit Diagram of MMIC Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Recommended Footprint and Stencil Layout for the VQFN32-9 Package . . . . . . . . . . . . . . . . . . . 25 Reflow Profile for BGT24ATR12 (VQFN32-9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package Outline (Top, Side and Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Marking Layout VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Tape of VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Data Sheet Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Typical Characteristics TA = -40 .. 125 °C, SPI-Bit 4 = low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low . . . . . . . . . . . . 11 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low . . . . . . . . . . . . 12 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low . . . . . . . . . . . . 14 Typical Characteristics Temperature Sensor TA = -40 .. 125 °C . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical Characteristics Power Detector TA = -40 .. 125 °C, VCC = 3.3 V . . . . . . . . . . . . . . . . . . . 15 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SPI Block Data Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI Timing and Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Truth Table AMUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 Revision 3.1, 2014-07-15 Silicon Germanium 24 GHz Transceiver MMIC 1 • • • • • • • • • • • • • • • • BGT24ATR12 Features 24 GHz ISM band transceiver MMIC with one transmitter and two receiver units Qualified according AEC-Q100 Fully integrated low phase noise VCO Switchable prescaler with 1.5 GHz and 23 kHz output On chip power and temperature sensors Gilbert based homodyne quadrature receiver Single ended RF input terminals Low noise figure NFSSB: 12 dB High conversion gain: 26 dB High 1 dB input compression point: -12 dBm Single supply voltage 3.3 V Low power consumption 690 mW 200 GHz bipolar SiGe:C technology b7hf200 Fully ESD protected device VQFN-32-9 leadless plastic package incl. LTI feature Pb-free (RoHS compliant) package Description The BGT24ATR12 is a Silicon Germanium MMIC for signal generation and reception, operating in the 24 GHz ISM band from 24.00 to 24.25 GHz. It is based on a 24 GHz fundamental voltage controlled oscillator. A switchable frequency prescaler is included with output frequencies of 1.5 GHz and 23 kHz. The main RF output delivers typ. 11 dBm signal power to feed an antenna. A RC polyphase filter (PPF) is used for LO quadrature phase generation of the homodyne quadrature downconversion mixer. Output power sensors as well as a temperature sensor are implemented for monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18µm SiGe:C technology offering a cutoff frequency of 200 GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant VQFN package. Product Name Package Chip Marking BGT24ATR12 VQFN32-9 T0825 BGT24ATR12 Data Sheet 7 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Features Q1 SI CS CLK Q2 3 /65536 Temp. Sensor SPI TX Power Sensor 2 AMUX TX TXX PA /16 ANA 2 FINE Buffer MPA COARSE IFQ1 LO POWER SENSOR IFQX1 90° LO Buffer PPF* LNA RFIN1 LNA RFIN2 0° IFI1 IFIX1 IFQ2 IFQX2 90° LO Buffer PPF* 0° IFI2 * Poly Phase Filter IFIX2 BGT24ATR12_Chip_BID.vsd Figure 1 Data Sheet BGT24ATR12 Block Diagram 8 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics 2 Electrical Characteristics 2.1 Absolute Maximum Ratings TA = -40 °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)1) Table 1 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Supply voltage VCC -0.3 – 3.6 V – DC voltage at RF Pins TX, TXX, RFIN1, RFIN2 VDCRF 0 – 0 V MMIC provides short circuit to GND for all RF pins DC voltage at Pins IFI1/2, IFIX1/2, IFQ1/2, IFQX1/2 VDCIF 0 – Vcc V – DC current into Pins IFI1/2, IFIX1/2, IFQ1/2, IFQX1/2 IIF -8.5 – 3.5 mA max. values indicate current due to short circuit to GND and Vcc respectively DC voltage at Pin ANA VDCANA -0.3 – 3.6 V – DC current into Pin ANA (Sink) IANA SINK 125 350 500 µA max. values indicate current due to short circuit to GND and Vcc respectively – – mA – DC current into Pin ANA (Source) IANA SOURCE -7 DC voltage at Pin Q1 VDCQ1 Vcc-0.3 – Vcc V – DC current into Pin Q1 IQ1 -8 – 12 mA – DC voltage at Pin Q2 VDCQ2 -0.3 – 3.6 V – -3 – 3 mA – DC current into Pin Q2 enabled IQ2EN DC current into Pin Q2 disabled IQ2DIS -10 – 10 µA – DC voltage at SPI input Pins SI, CLK, CS VDCSPIIN -0.3 – 3.6 V – – – 3 mA – DC current into SPI input Pins ISPIIN SI, CLK, CS RF input power into Pins RFIN1, RFIN2 PRF – – 0 dBm – DC voltage at Pins Fine, Coarse VF, VC 0 – 5 V – 1) Not subject to production test, specified by design Data Sheet 9 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics Table 1 Absolute Maximum Ratings (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition DC current into Pins FINE, COARSE IF, IC -110 – 110 µA Positive currents if VTUNE > VCC; Negative currents if 0V≤VF;VC≤Vcc Total power dissipation PDISS – – 1050 mW With BIST deactivated Junction temperature TJ -40 – 170 °C – Ambient temperature range TA -40 – 125 °C TA = temperature at package soldering point Storage temperature range TSTG -40 – 150 °C – Attention: Stresses exceeding the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. 2.2 Thermal Resistance Table 2 Thermal Resistance Parameter Symbol Junction - soldering point1) RthJS Values Min. Typ. Max. – – 40 Unit Note / Test Condition K/W – Unit Note / Test Condition 1) For calculation of RthJS please refer to application note thermal resistance 2.3 ESD Integrity Table 3 ESD Integrity Parameter Symbol Values Min. Typ. Max. ESD robustness, HBM1) VESD-HBM -1 – 1 kV All pins 2) VESD-CDM -500 – 500 V All pins ESD robustness, CDM 1) According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kΩ, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM)-Component Level 2) According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-DischargeWithstand Thresholds of Microelectronic Components Data Sheet 10 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics 2.4 Measured RF Characteristics 2.4.1 Power Supply Table 4 Typical Characteristics TA = -40 .. 125 °C, SPI-Bit 4 = low Symbol Parameter Values Min. Typ. Max. Unit Note / Test Condition Supply voltage VCC 3.135 3.3 3.465 V – Supply current ICC 150 210 270 mA Max. TX output power, all prescalers are activated, LO and TX output buffer in high mode Supply current - special condition ICC – – 250 mA If Vcc,max=3.3V and Tmin>-20°C 2.4.2 TX Section Table 5 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1) Symbol Parameter fVCO VCO frequency range Values Unit Note / Test Condition Min. Typ. Max. 24.0 – 24.25 GHz – 3) VCO fine tuning voltage VF 0.8 – 3.0 V 0.8V≤VF≤1.25V for VCMIN=0.75V, 1.25V≤VF≤3.0V for VCMIN=0.75V+1.7V*( VF-1.25V)/1.75V, see Figure 2 on Page 12 VCO coarse tuning voltage2) VC 0.753) – 3.0 V 0.75V≤VC≤1.35V for VFMIN=0.8V, 1.35V≤VC≤3.0V for VFMIN=VC-0.55V, see Figure 2 on Page 12 VCO tuning slope FINE Δ f / Δ VF 200 – 1000 MHz/V 24GHz≤f≤24.25GHz see Figure 2 on Page 12 VCO tuning slope COARSE Δ f / Δ VC 400 – 2000 MHz/V 24GHz≤f≤24.25GHz see Figure 2 on Page 12 VCO temperature drift Δf / ΔT -10 -6 0 MHz/K Min @ T = -40°C VCO pushing Δf / ΔVCC -350 60 350 MHz/V Absolute values 2) Data Sheet 11 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics 1) Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 22ff and Footprint Figure 9 on Page 25 2) At tuning pins chipinternal pull-up of 60kΩ ±20% to VCC; max.- and min. temperature tuning voltage limits are chosen in a way that they can be linearly interpolated within operating temperature range 3) Specified min. value for temperature ≤25°C; min. value for temperatures >25°C is based on following formular VCMIN = VFMIN = 0.8V + 0.4V * (T [°C] - 25°C) / 100°C V C /V 3 2,45 2 1,35 1 0,75 0,8 1 1,25 2 2,45 3 V F /V BGT24ATR12_VCO_CHAR.vsd Figure 2 VCO Tuning Window Table 6 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1) Parameter Symbol Values Unit Min. Typ. Max. -75 Note / Test Condition VCO phase noise PN – -85 TX/TXX load impedance ZTX ZTXX – 20.8-j20.2 – 19.5-j11.7 Ω Typical value at 24.125GHz and VSWR ≤ 2:1 Max. TX output power PTX 6 11 15 dBm – Max. TX output power for VCC = 3.3V ± 50mV PTX 6.5 11 14.5 dBm – TX ouput power adjustable range aTX 3 9 – dB Adjustable via SPI Data Sheet 12 dBc/Hz @ 100kHz offset, VF = VC Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics Table 6 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1) Symbol Parameter Values Unit Note / Test Condition Min. Typ. Max. PTXoff – – -30 dBm Parameter based on IFX eval board design Q1 Prescaler division ratio DQ1 – 24 – – – Q1 Prescaler output power PQ1 -14 -9 -4 dBm Q1 loaded with 50 Ohm (AC- coupled) Q1 output impedance2) ZQ1 DQ2 – 50 – Ω – – 20 2 – – – Q2 Prescaler max. output voltage VmaxQ2 2.4 – – V Test condition: Q2 loaded with high impedance probe (1 MOhm,13 pF) Q2 Prescaler min. output voltage VminQ2 – – 0.8 V Test condition: Q2 loaded with high impedance probe (1 MOhm, 13 pF) Q2 Prescaler max. output source current Imaxsource Q2 1.2 – – mA Test condition: Q2 loaded with 50 Ohm to Vcc Q2 Prescaler max. output sink current Imaxsink Q2 1.2 – – mA Test condition: Q2 loaded with 50 Ohm to Vcc 100 – – kΩ – TX ouput power in “off” mode 2) Q2 Prescaler division ratio Q2 Prescaler output resistance RQ2,DIS in disable mode 1) Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 22ff and Footprint Figure 9 on Page 25 2) Guaranteed by device design Data Sheet 13 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics 2.4.3 RX Section Table 7 Typical Characteristics TA = -40 .. 125 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1) Parameter Symbol Unit Note / Test Condition Min. Typ. Max. RFIN frequency range fRFIN 24.0 – 24.25 GHz – RFIN port impedance2) ZRFIN1 ZRFIN2 – 15.9-j18.4 – 15.7-j18.9 Ω Typical value at 24.125GHz and VSWR ≤ 2:1 RFIN VSWR VSWR – – 2:1 – At load port of off chip compensation network as proposed IF frequency range fIF 0 – 10 MHz – IF output impedance ZIF 850 1000 1150 Ω – Leakage LO to RFIN LLO=>RFIN – – -30 dBm LO Signal Power @ RFIN Port, Parameter based on IFX eval board design Isolation RFIN1 to RFIN2 IRFIN1-RFIN2 30 – – dB Parameter based on IFX eval board design Voltage conversion gain3) GC 19 26 31 dB RLOAD,IF > 10 kΩ LNA gain reduction ΔGCLG 3 5 8 dB – SSB noise figure NSSB – 12 20 dB Single sideband at fIF = 100 kHz IF 1/f corner frequency fc – 10 20 kHz – Input compression point IP1dB -17 -12 – dBm – Input 3rd order intercept point IIP3 -8 -4 – dBm – Quadrat. phase imbalance εp -10 – 10 deg – -8 – 8 deg – εA -1 – 1 dB – Δε A -0.5 – 0.5 dB – Quadrat. phase imbalance over Δεp temperature and aging of both receivers Quadrat. amplitude imbalance Quadrat. amplitude imbalance over temperature and aging of both receivers Values 1) Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 22ff and Footprint Figure 9 on Page 25 2) Guaranteed by device design 3) Lowest gain at high temperature, highest gain at low temperature Data Sheet 14 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Electrical Characteristics 2.5 Temperature Sensor Monitoring of the chip temperature is provided by the on-chip temperature sensor which delivers temperatureproportional voltage. Table 8 Typical Characteristics Temperature Sensor TA = -40 .. 125 °C1) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. -40 – 125 °C – Temperature range TTSENS Output temperature voltage VOUT,TEMP – 1.50 – V @ 25°C Sensitivity STSENS – 4.5 – mV/K – Overall accuracy error ErrTSENS – – ±15 K – 1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) 2.6 Power Detector For RF power indication, peak voltage detectors are connected to the output of the TX power amplifier and to the LO medium power amplifier. To eliminate temperature and supply voltage variations, a reference output VREF is available through the ANA output for the TX and LO power sensor. The compensated detector output voltage is given by the difference between VOUT and VREF for both power sensors respectively. This voltage is proportional to the RF voltage swing at the individual amplifier outputs, its characteristic is non-directional. Table 9 Typical Characteristics Power Detector TA = -40 .. 125 °C, VCC = 3.3 V1) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Power range PPSENS -10 – 15 dBm – TX power sensor VOUT,TX VREF,TX – 550 – mV @ PTX = 11 dBm LO power sensor VOUT,LO VREF,LO – 50 – mV @ typ. internal PLO 1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Data Sheet 15 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram Application Circuit and Block Diagram 3.1 Application Circuit Schematic Q1 ANA VEE TXX TX VEE SI CLK CS TEST PIN 2) 3 26 25 24 23 22 21 20 19 18 17 IFIX2 IFI1 29 14 IFI2 IFQ1 30 13 IFQ2 IFQX1 31 12 IFQX2 VEE 32 11 VEE 1 2 3 4 1) VCC 3) R1 100Ω 5 1) C1 1μF 7 8 9 VEE 15 RFIN2 28 VEE IFIX1 VEE 16 RFIN1 27 VEE Q2 6 1) C2 1μF FINE TEST PIN 2) 10 C3 1μF 4) C4 470μF 1) R2 100Ω VCC 3) COARSE 1) RC-time constants to be defined according to modulation requirements. 2) Connect pin 16 to pin 17 3) Galvanic connection of VCC pins on silicon 4) Optional value: according to quality of supply voltage BGT24ATR12_Appl_BID.vsd Figure 3 Data Sheet Application Circuit with Chip Outline (Top View) 16 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram Table 10 Bill of Materials Part Number Part Type Manufacturer Size Comment C1 ... C4 Chip capacitor Various Various – R1 ... R2 Chip resistor Various 0402 – Data Sheet 17 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram 3.2 Pin Description Table 11 Pin Definition and Function Pin No. Name Function 1 VCC Supply voltage 2 VEE Ground 3 RFIN1 RF input downconverter 1 4 VEE Ground 5 FINE VCO fine tuning input 6 COARSE VCO coarse tuning input 7 VEE Ground 8 RFIN2 RF input downconverter 2 9 VEE Ground 10 VCC Supply voltage 11 VEE Ground 12 IFQX2 Complementary quadrature phase IF output downconverter 2 13 IFQ2 Quadrature phase IF output downconverter 2 14 IFI2 In phase IF output downconverter 2 15 IFIX2 Complementary in phase IF output downconverter 2 16 TEST PIN Test pin; DC coupled pin 17 TEST PIN Test pin; DC coupled pin 18 CS Chip select input SPI (inverted) 19 CLK Clock input SPI block 20 SI Data input SPI block 21 VEE Ground 22 TX Transmit output 23 TXX Complementary transmit output 24 VEE Ground 25 ANA Analog output 26 Q1 Prescaler output 1.5GHz 27 Q2 Prescaler output 23kHz 28 IFIX1 Complementary in phase IF output downconverter 1 29 IFI1 In phase IF output downconverter 1 30 IFQ1 Quadrature phase IF output downconverter 1 31 IFQX1 Complementary quadrature phase IF output downconverter 1 32 VEE Ground Data Sheet 18 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram 3.3 SPI 1.) Three signals control the serial peripheral interface of the BGT24ATR12: SI (Data); CLK (Clock); CS (Chip select) 2.) The data bits SI (MSB first) are read in the shift with falling edge of the CLK signal. Please make sure, that the data is present at least 10 ns before and at least 10 ns after the falling edge of the clock signal. 3.) The CLK and CS signals are combined internally. At least 20 ns before first rising edge of the first CLK signal CS needs to be in "low" state. While the Data is read, CS has to remain in "low" state. 4.) When Data read in is finished, the shift register content will be written in the latch at the rising edge of the CS signal. The time between the last falling edge of the CLK signal and the rising edge of the CS must be at least 20 ns. Table 12 SPI Block Data Bit Description Data Bit Name Description (Logic High) Power ON State 15 GS LNA Gain reduction low 14 – Not used low 13 AMUX2 Analog multiplexer control bit 2 high 12 DIS_PA Disable Power Amplifier 11 Test Bit Test bit, must be low otherwise low malfunction 10 Test Bit Test bit, must be low otherwise low malfunction 9 Test Bit Test bit, must be low otherwise low malfunction 8 AMUX1 Analog multiplexer control bit 1 low 7 AMUX0 Analog multiplexer control bit 0 low 6 DIS_DIV64k Disable 64k divider low 5 DIS_DIV16 Disable 16 divider low 4 PC2_BUF High LO buffer output power, low need to be low otherwise increased current consumption 3 PC1_BUF High TX buffer output power low 2 PC2_PA TX power reduction bit 2 high 1 PC1_PA TX power reduction bit 1 high 0 PC0_PA TX power reduction bit 0 high Data Sheet 19 high Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram BGT24ATR12_SPI.vsd Figure 4 Timing Diagram of the SPI Table 13 SPI Timing and Logic Levels Parameter Symbol Values Unit Min. Typ. Max. Serial clock frequency fSCLK 0 – 50 MHz Serial clock high time fSCLK(H) 10 – – ns Serial clock low time tSCLK(L) 10 – – ns Chip select lead time tCS(lead) 20 – – ns Chip select lag time tCS(lag) 20 – – ns Data setup time tSI(su) 10 – – ns Data hold time tSI(h) 10 – – ns Low level (SI, CLK, CS) VIN(L) 0 – 0.8 V High level (SI, CLK, CS) VIN(H) 2.0 – VCC V Input capacitance (SI, CLK, CS) CIN – – 2 pF Input current (SI, CLK, CS) IIN -150 – 150 µA Table 14 Truth Table AMUX Output signal ANA AMUX2 AMUX1 AMUX0 VOUT,TX low low low VREF,TX low low high VOUT,LO low high low VREF,LO low high high VTEMP high low low Test_Signal1 high low high Data Sheet 20 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram Table 14 Truth Table AMUX (cont’d) Output signal ANA AMUX2 AMUX1 AMUX0 Test_Signal2 high high low Test_Signal2 high high high Data Sheet 21 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram 3.4 Application Board Blind-Vias Vias Ro4350B, 0.254mm Copper 35um FR4, 0.5mm FR4, 0.25mm BGT24ATR12_Cross_Section_View.vsd Figure 5 Cross-Section View of Application Board Single-Ended RFIN Differential TX 0.50 1.10 1.15 0.55 0.55 1.65 1.60 0.50 0.30 0.30 All specified values in [mm] BGT24ATR12_VQFN32-9-CS.vsd Figure 6 Data Sheet Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5) 22 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram Mid1 and Bottom layer (top view) Top layer (top view) Mid2 layer (top view) BGT24ATR12_App_Board_Layout.vsd Figure 7 Application Board Layout Note: In order to achieve the same performance as given in this datasheet please follow the suggested PCBlayout. The compensation structure is critical for RF performance. Via holes as recommended on one of next pages (not shown above). Data Sheet 23 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Application Circuit and Block Diagram 3.5 Equivalent Circuit Diagram of MMIC Interfaces Pin 5, 6 Pin 3, 8, 22, 23 Pin 12, 13, 14, 15, 28, 29, 30, 31 VCC RFIN1, RFIN2, TX, TXX VCC 60kΩ FINE, COARSE 300Ω 400Ω IFx 100Ω VEE VEE VEE Pin 25 Pin 18, 19, 20 Pin 26 VCC VCC VCC 50Ω CS, CLK, SI 54kΩ ANA Q1 40Ω 1500Ω VEE VEE VEE Pin 27 VCC 120Ω Q2 120Ω Tolerance of all resistors +/- 20% VEE BGT24ATR12_ESB.vsd Figure 8 Data Sheet Equivalent Circuit Diagram of MMIC Interfaces 24 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Physical Characteristics 4 Physical Characteristics 4.1 Package Footprint Copper 4.3 Solder Mask 3.9 Vias 0.85 0.2 3.2 Pastefree Area 0.3 3.3 2.9 2.2 0.1 1.0 0.7 0.1 0.5 0.2 PIN 1 0.3 0.1 0.15 0.1 All specified values in [mm] 0.15 0.15 BGT24ATR12_VQFN32-9-FP.vsd Figure 9 Data Sheet Recommended Footprint and Stencil Layout for the VQFN32-9 Package 25 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Physical Characteristics 4.2 Reflow Profile Soldering process qualified during qualification with “Preconditioning MSL-3: 30°C. 60%r.h., 192h, according to JEDEC JSTD20”. Reflow Profile recommended by Infineon Technologies AG (based on IPC/JEDEC J-STD-020C) BGT24ATR12_Reflow_Profile.vsd Figure 10 Data Sheet Reflow Profile for BGT24ATR12 (VQFN32-9) 26 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Physical Characteristics 4.3 Package Dimensions All specified values in [mm] BGT24ATR12_VQFN32-9-PO.vsd Figure 11 Package Outline (Top, Side and Bottom View) BGT24ATR12_VQFN32-9_ML.vsd Figure 12 Data Sheet Marking Layout VQFN32-9 27 Revision 3.1, 2014-07-15 BGT24ATR12 Silicon Germanium 24 GHz Transceiver MMIC Physical Characteristics All specified values in [mm] BGT24ATR12_VQFN32-9_CT.vsd Figure 13 Data Sheet Tape of VQFN32-9 28 Revision 3.1, 2014-07-15 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG