Hitachi HAT2043R Silicon n channel power mos fet high speed power switching Datasheet

HAT2043R
Silicon N Channel Power MOS FET
High Speed Power Switching
ADE-208-668D (Z)
5th. Edition
February 1999
Features
•
•
•
•
Low on-resistance
Capable of 4 V gate drive
Low drive current
High density mounting
Outline
SOP–8
8
5
7 6
3
1 2
7 8
D D
4
5 6
D D
4
G
2
G
S1
MOS1
S3
MOS2
1, 3
Source
2, 4
Gate
5, 6, 7, 8 Drain
HAT2043R
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDSS
30
V
Gate to source voltage
VGSS
± 20
V
Drain current
ID
8
A
64
A
Drain peak current
I D(pulse)
Body-drain diode reverse drain current
I DR
Note1
8
A
Pch
Note2
2.0
W
Channel dissipation
Pch
Note3
3.0
W
Channel temperature
Tch
150
°C
Storage temperature
Tstg
– 55 to + 150
°C
Channel dissipation
Note:
1. PW ≤ 10 µs, duty cycle ≤ 1%
2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10s
3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW ≤ 10s
Electrical Characteristics (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage V(BR)DSS
30
—
—
V
I D = 10 mA, VGS = 0
Gate to source leak current
I GSS
—
—
± 0.1
µA
VGS = ± 20 V, VDS = 0
Zero gate voltege drain current
I DSS
—
—
1
µA
VDS = 30 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.0
—
2.5
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
0.016
0.022
Ω
I D = 4 A, VGS = 10 V Note4
resistance
RDS(on)
—
0.022
0.029
Ω
I D = 4 A, VGS = 4 V Note4
Forward transfer admittance
|yfs|
9
14
—
S
I D = 4 A, VDS = 10 V Note4
Input capacitance
Ciss
—
1170
—
pF
VDS = 10 V
Output capacitance
Coss
—
390
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
240
—
pF
f = 1 MHz
Total gate charge
Qg
—
32
—
nc
VDD = 10 V
Gate to source charge
Qgs
—
22
—
nc
VGS = 10 V
Gate to drain charge
Qgd
—
10
—
nc
ID = 8 A
Turn-on delay time
t d(on)
—
32
—
ns
VGS = 4 V, ID = 4 A
Rise time
tr
—
190
—
ns
VDD ≅ 10 V
Turn-off delay time
t d(off)
—
85
—
ns
Fall time
tf
—
110
—
ns
Body–drain diode forward voltage
VDF
—
0.84
1.09
V
IF = 8 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
t rr
—
35
—
ns
IF = 8 A, VGS = 0
diF/ dt = 20 A/ µs
Note:
2
4.
Pulse test
HAT2043R
Main Characteristics
Power vs. Temperature Derating
3.0
100
10
Drain Current
3
2.0
Dr
ive
io
at
er
Op
1
1.0
Dr
ive
er
0
50
100 µs
10 µs
DC
PW
Op
er
1
1
=
s
10
m
s
at
ion
m
(P
W
Operation in
0.3 this area is
limited by R DS(on)
0.1
< Note
10 5
s)
n
Op
Maximum Safe Operation Area
30
I D (A)
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
2
Channel Dissipation
Pch (W)
4.0
at
0.03 Ta = 25 °C
1 shot Pulse
0.01
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
ion
100
150
Ambient Temperature
200
Ta (°C)
Note 5 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Typical Output Characteristics
20
Typical Transfer Characteristics
20
10V
ID
12
(A)
Pulse Test
6V
4V
8
2.5 V
4
Drain Current
Drain Current
I D (A)
3.5 V
16
16
12
8
4
VGS = 2.0 V
0
2
4
6
Drain to Source Voltage
8
10
V DS (V)
V DS = 10 V
Pulse Test
Tc = 75°C
25°C
–25°C
0
1
2
3
Gate to Source Voltage
5
4
V GS (V)
3
HAT2043R
0.15
Static Drain to Source on State Resistance
vs. Drain Current
0.5
Pulse Test
0.2
0.1
0.05
ID=5A
0.1
VGS = 4 V
0.02
2A
0.05
1A
2
4
6
Gate to Source Voltage
8
10
Pulse Test
0.08
0.06
I D = 1 A, 2 A, 5 A
V GS = 4 V
0.02
1 A,2A, 5 A
0
–40
0.005
0.2
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
0.10
0.04
10 V
0.01
10 V
0
40
80
120
160
Case Temperature Tc (°C)
Forward Transfer Admittance |yfs| (S)
Static Drain to Source on State Resistance
R DS(on) ( Ω)
Pulse Test
0.2
0
4
Drain to Source On State Resistance
R DS(on) ( Ω )
V DS(on) (V)
0.25
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
0.5
1
2
Drain Current
20
Forward Transfer Admittance vs.
Drain Current
20
10
5
10
I D (A)
Tc = –25 °C
25 °C
5
75 °C
2
1
0.5
0.2
V DS = 10 V
Pulse Test
0.5
1
2
5
Drain Current I D (A)
10
20
HAT2043R
Body–Drain Diode Reverse
Recovery Time
10000
Capacitance C (pF)
200
100
50
20
10
5
0.2
30
10
0
16
12
V DS
V GS
20
10
0
8
V DD = 20 V
10 V
5V
10
20
30
40
Gate Charge Qg (nc)
4
0
50
10
20
30
40
50
Drain to Source Voltage V DS (V)
1000
V GS (V)
20
V DD = 5 V
10 V
20 V
Crss
100
30
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
40
Coss
300
0.5
1
2
5
10 20
Reverse Drain Current I DR (A)
I D= 8 A
Ciss
1000
di/dt = 20 A/µs
V GS = 0, Ta = 25°C
Dynamic Input Characteristics
50
VGS = 0
f = 1 MHz
3000
Switching Characteristics
500
Switching Time t (ns)
Reverse Recovery Time trr (ns)
500
Typical Capacitance vs.
Drain to Source Voltage
200
tr
tf
100
t d(off)
50
20
10
0.2
t d(on)
V GS = 4 V, V DD = 10 V
PW = 5 µs, duty < 1 %
0.5
1
2
Drain Current
5
10
I D (A)
20
5
HAT2043R
Reverse Drain Current vs.
Souece to Drain Voltage
Reverse Drain Current I DR (A)
20
Pulse Test
16
12
V GS = 0 V
8
5V
4
0
0.4
0.8
1.2
1.6
Source to Drain Voltage
Switching Time Test Circuit
V
2.0
(V)
Switching Time Waveform
Vout
Monitor
Vin Monitor
90%
D.U.T.
RL
Vin
Vin
4V
50Ω
V DD
= 10 V
Vout
10%
10%
90%
td(on)
6
tr
10%
90%
td(off)
tf
HAT2043R
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.1
0.1
0.05
0.2
0.02
0.01
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 125 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
e
uls
p
ot
PDM
h
0.001
1s
D=
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Normalized Transient Thermal Impedance
γ s (t)
10
1
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)
D=1
0.5
0.2
0.1
0.01
0.1
0.05
0.02
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 166 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.01
0.001
t
ho
lse
pu
PDM
D=
1s
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
7
HAT2043R
Package Dimensions
Unit: mm
1
4
6.2 Max
0.25 Max
5
1.75 Max
8
4.0 Max
5.0 Max
0 – 8°
0.51 Max
0.25 Max
1.27
1.27 Max
0.15
0.25 M
8
Hitachi code
EIAJ
JEDEC
FP–8DA
—
MS-012AA
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.
Similar pages