ON NCP4682HMU18TCG 150 ma, ultra low supply current, low dropout regulator Datasheet

NCP4682, NCP4685
150 mA, Ultra Low Supply
Current, Low Dropout
Regulator
The NCP4682 and NCP4685 are CMOS Low Dropout Linear
voltage regulators with 150 mA output current capability. The devices
have high output voltage accuracy, a 1 mA (typ.) ultra low supply
current and high ripple rejection. Current fold−back protection is
integrated in the devices to protect against over current and short
current conditions. A Chip Enable (NCP4682 only) function is
included to save power by further lowering supply current, which is
advantageous for battery powered applications. The NCP4685 is
optimized for the lowest quiescent current possible in applications
where the device is always on.
http://onsemi.com
MARKING
DIAGRAMS
XXX MG
G
SOT−23−5
CASE 1212
Features
•
•
•
•
•
•
•
•
•
•
•
•
Operating Input Voltage Range: 1.70 V to 5.25 V
Output Voltage Range: 1.2 V to 3.3 V (available in 0.1 V steps)
Output Voltage Accuracy: ±0.8%
Excellent Output Voltage Temperature Coefficient : ±40 ppm/°C
Supply Current: 1.0 mA (excluding CE pull down current)
Standby Current: 0.1 mA
Dropout Voltage: 0.24 V (IOUT = 150 mA, VOUT = 2.8 V)
Line Regulation: 0.02%/V Typ.
Stable with Ceramic Capacitors: 0.1 mF or more
Current Fold Back Protection
Available in UDFN4 1.0 x 1.0 mm, SC−82AB, SOT23 Packages
These are Pb−Free Devices
SC−82AB
CASE 419C
UDFN4
CASE 517BR
1
(*Note: Microdot may be in either location)
NCP4682x
VIN
CE
C1
100n
XX
MM
XXX, XX = Specific Device Code
M, MM = Date Code
G
= Pb−Free Package
Battery−Powered Equipment
Networking and Communication Equipment
Cameras, DVRs, STB and Camcorders
Home Appliances
VIN
1
1
Typical Applications
•
•
•
•
XXX M
G
ORDERING INFORMATION
See detailed ordering, marking and shipping information in the
package dimensions section on page 19 of this data sheet.
VOUT
VIN
VOUT
GND
NCP4685x
VIN
C1
100n
C2
100n
VOUT
GND
VOUT
C2
100n
Figure 1. Typical Application Schematics
© Semiconductor Components Industries, LLC, 2012
October, 2012 − Rev. 3
1
Publication Order Number:
NCP4682/D
NCP4682, NCP4685
VOUT VIN
VIN
VOUT
Vref
Vref
Current Limit
CE
CE
Current Limit
GND
GND
NCP4682Dxxxx
NCP4682Hxxxx
VIN
VOUT
Vref
Current Limit
NC
GND
NCP4685Exxxx
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
UDFN1010*
Pin No.
SC−82AB
Pin No.
SOT23
Pin Name
1
3
5
VOUT
Output pin
2
2
2
GND
Ground
3
1
3
CE/NC
4
4
1
VIN
Input pin
−
−
4
NC
No connection
Description
Chip enable pin (Active “H”) / No connection
*Tab is GND level. (They are connected to the reverse side of this IC.)
The tab is better to be connected to the GND, but leaving it open is also acceptable.
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VIN
6.0
V
Output Voltage
VOUT
−0.3 to VIN + 0.3
V
Chip Enable Input
VCE
6.0
V
Output Current
IOUT
200
mA
Input Voltage (Note 1)
http://onsemi.com
2
NCP4682, NCP4685
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Power Dissipation UDFN1010
Unit
400
Power Dissipation SC−82AB
380
PD
Power Dissipation SOT23
mW
420
Junction Temperature
TJ
−40 to 150
°C
Storage Temperature
TSTG
−55 to 125
°C
ESD Capability, Human Body Model (Note 2)
ESDHBM
2000
V
ESD Capability, Machine Model (Note 2)
ESDMM
200
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
THERMAL CHARACTERISTICS
Rating
Symbol
Value
Unit
Thermal Characteristics, UDFN 1.0 x 1.0 mm
Thermal Resistance, Junction−to−Air
RqJA
250
°C/W
Thermal Characteristics, SOT23
Thermal Resistance, Junction−to−Air
RqJA
238
°C/W
Thermal Characteristics, SC−82AB
Thermal Resistance, Junction−to−Air
RqJA
263
°C/W
ELECTRICAL CHARACTERISTICS
−40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.1 mF, unless otherwise noted.
Typical values are at TA = +25°C.
Parameter
Test Conditions
Symbol
Min
(Note 3)
VIN
VOUT
Operating Input Voltage
Output Voltage
TA = +25 °C
Max
Unit
1.70
5.25
V
x0.992
x1.008
V
VOUT < 2.0 V
−16
16
mV
VOUT ≥ 2.0 V
x0.985
x1.015
V
VOUT ≥ 2.0 V
−40°C ≤ TA ≤ 85°C
VOUT < 2.0 V
Output Voltage Temp. Coefficient
−40°C ≤ TA ≤ 85°C
Typ
−30
30
DVOUT /
DTA
±40
mV
ppm/°C
Line Regulation
VOUT(NOM) + 0.5 V ≤ VIN ≤ 5.0 V
LineReg
0.02
0.10
%/V
Load Regulation
IOUT = 1 mA to 150 mA
LoadReg
10
20
mV
VDO
0.76
1.05
V
1.5 V ≤ VOUT < 1.7 V
0.53
0.80
1.7 V ≤ VOUT < 2.0 V
0.44
0.65
2.0 V ≤ VOUT < 2.5 V
0.34
0.50
2.5 V ≤ VOUT < 2.8 V
0.28
0.40
0.24
0.32
Dropout Voltage
IOUT = 150 mA
1.2 V ≤ VOUT < 1.5 V
2.8 V ≤ VOUT < 3.3 V
Output Current
Short Current Limit
IOUT
VOUT = 0 V
Quiescent Current
http://onsemi.com
3
150
mA
ISC
40
IQ
1.0
mA
1.5
mA
NCP4682, NCP4685
ELECTRICAL CHARACTERISTICS
−40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.1 mF, unless otherwise noted.
Typical values are at TA = +25°C.
Parameter
Test Conditions
Symbol
VCE = 0 V, TA = 25°C, NCP4682 only
ISTB
CE Input Voltage “H”
VCEH
CE Input Voltage “L”
VCEL
NCP4682 only
ICEPD
0.3
mA
Power Supply Rejection Ratio
VIN = 2.2 V, VOUT = 1.2 V, DVIN = 0.2 Vpk−pk,
IOUT = 30 mA, f = 1 kHz
PSRR
30
dB
Output Noise Voltage
f = 10 Hz to 100 kHz, IOUT = 30 mA, VOUT =
1.2 V, VIN = 2.2 V
VN
70
mVrms
VIN = 4 V, VCE = 0 V, NCP4682D only
RLOW
30
W
Standby Current
CE Pin Threshold Voltage
(NCP4682 only)
CE Pull Down Current
Low Output Nch Tr. On Resistance
Min
Typ
Max
Unit
0.1
1.0
mA
V
1.5
0.3
3. The maximum Input Voltage of the Electrical Characteristics is 5.25 V. In case of exceeding this specification, the IC must be operated n
condition that the Input Voltage is up to 5.50 V and total operation time is within 500 hours.
http://onsemi.com
4
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
1.4
3.0
VIN = 2.6 V
1.2
2.3 V
2.0 V
0.8
1.7 V
0.6
0
100
200
300
400
500
100
200
300
400
500
Figure 3. Output Voltage vs. Output Current
1.2 V Version (TJ = 255C)
Figure 4. Output Voltage vs. Output Current
2.5 V Version (TJ = 255C)
3.5
VIN = 4.5 V
3.0
3.4 V
3.7 V
2.0
4.2 V
2.5
4.1 V
VOUT (V)
VOUT (V)
0
IOUT (mA)
2.5
VIN = 3.1 V
1.5
1.0
3.6 V
3.9 V
2.0
1.5
1.0
0.5
0.5
0
100
200
300
400
500
0.0
0
100
200
300
400
500
IOUT (mA)
IOUT (mA)
Figure 5. Output Voltage vs. Output Current
2.8 V Version (TJ = 255C)
Figure 6. Output Voltage vs. Output Current
3.3 V Version (TJ = 255C)
0.30
0.90
0.80
0.25
0.70
TJ = 85°C
0.60
25°C
0.20
−40°C
0.50
VDO (V)
VDO (V)
0.0
IOUT (mA)
3.0
0.40
0.30
25°C
TJ = 85°C
0.15
−40°C
0.10
0.20
0.05
0.10
0.00
3.1 V
1.5
0.5
0.2
0.0
3.7 V
1.0
0.4
0.0
VIN = 2.8 V
2.0
VOUT (V)
VOUT (V)
1.0
3.4 V
2.5
0
25
50
75
IOUT (mA)
100
125
150
0.00
0
Figure 7. Dropout Voltage vs. Output Current
1.2 V Version
25
50
75
IOUT (mA)
100
125
Figure 8. Dropout Voltage vs. Output Current
2.5 V Version
http://onsemi.com
5
150
NCP4682, NCP4685
0.30
0.30
0.25
0.25
0.20
0.20
TJ = 85°C
0.15
0.10
VDO (V)
VDO (V)
TYPICAL CHARACTERISTICS
25°C
TJ = 85°C
0.10
−40°C
0.05
0.00
25°C
0.15
−40°C
0.05
0
25
50
75
100
125
150
0.00
IOUT (mA)
0
25
50
75
100
Figure 9. Dropout Voltage vs. Output Current
2.8 V Version
2.53
VIN = 3.5 V
1.22
2.52
1.21
2.51
VOUT (V)
VOUT (V)
VIN = 2.2 V
1.20
2.50
1.19
2.49
1.18
2.48
−20
0
20
40
60
2.47
−40
80
−20
0
20
40
80
TJ, JUNCTION TEMPERATURE (°C)
Figure 11. Output Voltage vs. Temperature,
1.2 V Version
Figure 12. Output Voltage vs. Temperature,
2.5 V Version
3.33
VIN = 3.8 V
VIN = 4.3 V
2.82
3.32
2.81
3.31
VOUT (V)
VOUT (V)
60
TJ, JUNCTION TEMPERATURE (°C)
2.83
2.80
3.30
2.79
3.29
2.78
3.28
2.77
−40
150
Figure 10. Dropout Voltage vs. Output Current
3.3 V Version
1.23
1.17
−40
125
IOUT (mA)
−20
0
20
40
60
3.27
−40
80
−20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 13. Output Voltage vs. Temperature,
2.8 V Version
Figure 14. Output Voltage vs. Temperature,
3.3 V Version
http://onsemi.com
6
NCP4682, NCP4685
2.0
2.0
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
IGND (mA)
IGND (mA)
TYPICAL CHARACTERISTICS
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0.0
0.0
0
1
2
3
4
5
0
3
4
VIN, INPUT VOLTAGE (V)
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
1.0
0.8
1.0
0.8
0.6
0.6
0.4
0.4
0.2
0.2
1
2
3
4
0.0
5
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 18. Supply Current vs. Input Voltage,
3.3 V Version
3.0
VIN = 2.2 V
VIN = 3.5 V
2.5
2.5
2.0
2.0
IGND (mA)
IGND (mA)
5
Figure 17. Supply Current vs. Input Voltage,
2.8 V Version
3.0
1.5
1.5
1.0
1.0
0.5
0.5
0.0
−40
5
Figure 16. Supply Current vs. Input Voltage,
2.5 V Version
2.0
0
2
VIN, INPUT VOLTAGE (V)
2.0
0.0
1
Figure 15. Supply Current vs. Input Voltage,
1.2 V Version
IGND (mA)
IGND (mA)
1.0
−20
0
20
40
60
0.0
−40
80
−20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 19. Supply Current vs. Temperature,
1.2 V Version
Figure 20. Supply Current vs. Temperature,
2.5 V Version
http://onsemi.com
7
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
3.0
3.0
VIN = 4.3 V
2.5
2.5
2.0
2.0
IGND (mA)
IGND (mA)
VIN = 3.8 V
1.5
1.0
1.0
0.5
0.5
0.0
−40
−20
0
20
40
60
0.0
−40
80
20
40
60
80
Figure 21. Supply Current vs. Temperature,
2.8 V Version
Figure 22. Supply Current vs. Temperature,
3.3 V Version
3.0
2.5
1 mA
1.0
30 mA
2.0
VOUT (V)
50 mA
0.8
0.6
IOUT = 100 mA
0.4
1.5
1.0
0.2
0.5
0.0
0.0
30 mA
1 mA
50 mA
IOUT = 100 mA
0
1
2
3
4
5
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 23. Output Voltage vs. Input Voltage,
1.2 V Version
Figure 24. Output Voltage vs. Input Voltage,
2.5 V Version
3.0
3.5
2.5
3.0
5
2.5
2.0
1 mA
VOUT (V)
VOUT (V)
0
TJ, JUNCTION TEMPERATURE (°C)
1.2
1.5
30 mA
1.0
50 mA
0.5
0.0
−20
TJ, JUNCTION TEMPERATURE (°C)
1.4
VOUT (V)
1.5
1
2
3
VIN, INPUT VOLTAGE (V)
1.5
1 mA
1.0
4
0.0
5
30 mA
50 mA
0.5
IOUT = 100 mA
0
2.0
IOUT = 100 mA
0
Figure 25. Output Voltage vs. Input Voltage,
2.8 V Version
1
2
3
VIN, INPUT VOLTAGE (V)
4
Figure 26. Output Voltage vs. Input Voltage,
3.3 V Version
http://onsemi.com
8
5
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
60
60
50
50
30
20
30 mA
10
IOUT = 1 mA
30
20
30 mA
10
150 mA
0
0.1
PSRR (dB)
PSRR (dB)
40
IOUT = 1 mA
1
10
100
150 mA
0
1000
FREQUENCY (kHz)
0.1
10
FREQUENCY (kHz)
Figure 27. PSRR, 1.2 V Version, VIN = 2.2 V
Figure 28. PSRR, 2.5 V Version, VIN = 3.5 V
60
60
50
50
40
40
30
PSRR (dB)
PSRR (dB)
40
IOUT = 1 mA
20
30 mA
10
1
30
100
1000
IOUT = 1 mA
20
30 mA
10
150 mA
0
0.1
1
10
100
150 mA
0
1000
FREQUENCY (kHz)
0.1
1
10
FREQUENCY (kHz)
100
Figure 29. PSRR, 2.8 V Version, VIN = 3.8 V
Figure 30. PSRR, 3.3 V Version, VIN = 4.3 V
1000
2.5
3.0
2.5
2.0
VN (mVrms/√Hz)
VN (mVrms/√Hz)
2.0
1.5
1.0
1.5
1.0
0.5
0.5
0
0.01
0.1
1
10
100
0
0.01
1000
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 31. Output Voltage Noise, 1.2 V Version,
VIN = 2.2 V, IOUT =30 mA
Figure 32. Output Voltage Noise, 2.5 V Version,
VIN = 3.5 V, IOUT =30 mA
http://onsemi.com
9
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
18
7.0
16
6.0
14
VN (mVrms/√Hz)
4.0
3.0
2.0
12
10
8
6
4
1.0
2
0
0.01
0.1
1
10
FREQUENCY (kHz)
100
1000
0
0.01
Figure 33. Output Voltage Noise, 2.8 V Version,
VIN = 3.8 V, IOUT =30 mA
0.1
1
10
FREQUENCY (kHz)
3.2
2.7
2.0
VIN (V)
VOUT (V)
2.2
1.8
1.6
1.4
1.2
1.0
0.8
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 35. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 30 mA
5.0
4.5
4.0
3.5
VIN (V)
3.3
3.1
2.9
2.7
2.5
2.3
2.1
0
0.1
0.2
0.3
0.4
100
1000
Figure 34. Output Voltage Noise, 3.3 V Version,
VIN = 4.3 V, IOUT =30 mA
3.7
VOUT (V)
VN (mVrms/√Hz)
5.0
0.5
0.6
0.7
t (ms)
0.8
0.9
Figure 36. Line Transients, 2.5 V Version,
tR = tF = 5 ms, IOUT = 30 mA
http://onsemi.com
10
1.0
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
5.3
4.8
4.3
3.6
VIN (V)
VOUT (V)
3.8
3.4
3.2
3.0
2.8
2.6
2.4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 37. Line Transients, 2.8 V Version,
tR = tF = 5 ms, IOUT = 30 mA
5.8
5.3
4.8
VIN (V)
VOUT (V)
4.3
3.9
3.7
3.5
3.3
3.1
2.9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 38. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA
45
30
15
IOUT (mA)
VOUT (V)
0
1.6
1.4
1.2
1.0
0.8
0.6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
t (ms)
Figure 39. Load Transients, 1.2 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 2.2 V
http://onsemi.com
11
1.0
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
45
30
15
IOUT (mA)
VOUT (V)
0
2.9
2.7
2.5
2.3
2.1
1.9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 40. Load Transients, 2.5 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 3.5 V
45
30
15
IOUT (mA)
VOUT (V)
0
3.2
3.0
2.8
2.6
2.4
2.2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 41. Load Transients, 2.8 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 3.8 V
45
30
15
IOUT (mA)
VOUT (V)
0
3.7
3.5
3.3
3.1
2.9
2.7
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
t (ms)
Figure 42. Load Transients, 3.3 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 4.3 V
http://onsemi.com
12
1.0
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
1.6
1.4
1.2
1.0
0.8
0.6
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 43. Load Transients, 1.2 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V
150
100
50
IOUT (mA)
VOUT (V)
0
2.9
2.7
2.5
2.3
2.1
1.9
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 44. Load Transients, 2.5 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.5 V
150
100
50
IOUT (mA)
VOUT (V)
0
3.2
3.0
2.8
2.6
2.4
2.2
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 45. Load Transients, 2.8 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V
http://onsemi.com
13
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
3.7
3.5
3.3
3.1
2.9
2.7
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 46. Load Transients, 3.3 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V
150
100
50
IOUT (mA)
VOUT (V)
0
2.2
1.7
1.2
0.7
0.2
−0.3
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 47. Load transients, 1.2 V Version,
IOUT = 1 – 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V
150
100
50
IOUT (mA)
VOUT (V)
0
3.5
3.0
2.5
2.0
1.5
1.0
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
Figure 48. Load Transients, 2.5 V Version,
IOUT = 1 – 100 mA, tR = tF = 0.5 ms, VIN = 3.5 V
http://onsemi.com
14
1.0
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
3.8
3.3
2.8
2.3
1.8
1.3
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 49. Load Transients, 2.8 V Version,
IOUT = 1 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V
150
100
50
IOUT (mA)
VOUT (V)
0
4.3
3.8
3.3
2.8
2.3
1.8
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 50. Load Transients, 3.3 V Version,
IOUT = 1 – 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V
3
2
Chip Enable
1
VCE (V)
VOUT (V)
0
IOUT = 1 mA
1.5
1.0
IOUT = 30 mA
0.5
IOUT = 150 mA
0
−0.5
0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
Figure 51. Start−up, NCP4682 1.2 V Version,
VIN = 2.2 V
http://onsemi.com
15
1.0
NCP4682, NCP4685
TYPICAL CHARACTERISTICS
6
4
Chip Enable
2
0
2.5
IOUT = 1 mA
2.0
VCE (V)
VOUT (V)
3.0
IOUT = 30 mA
1.5
1.0
IOUT = 150 mA
0.5
0
−0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 52. Start−up, NCP4682 2.8 V Version,
VIN = 3.8 V
6
4
Chip Enable
2
VCE (V)
VOUT (V)
0
4.0
3.0
IOUT = 1 mA
IOUT = 30 mA
2.0
1.0
IOUT = 150 mA
0
−1.0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 53. Start−up, NCP4682 3.3 V Version,
VIN = 4.3 V
3
2
1
0
VCE (V)
VOUT (V)
Chip Enable
2.0
1.5
1.0
IOUT = 1 mA
0.5
IOUT = 30 mA
0
IOUT = 150 mA
−0.5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 54. Shutdown, NCP4682 1.2 V Version D,
VIN = 2.2 V
http://onsemi.com
16
NCP4682, NCP4685
6
4
2
0
Chip Enable
2.5
VCE (V)
VOUT (V)
3.0
2.0
1.5
IOUT = 1 mA
1.0
IOUT = 30 mA
0.5
0
−0.5
0
IOUT = 150 mA
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 55. Shutdown, NCP4682 2.8 V Version D,
VIN = 3.8 V
6
4
2
0
Chip Enable
5.0
VCE (V)
VOUT (V)
6.0
4.0
3.0
IOUT = 1 mA
2.0
IOUT = 30 mA
1.0
0
−1.0
0
IOUT = 150 mA
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 56. Shutdown, NCP4682 3.3 V Version D,
VIN = 4.3 V
6
4
2
0
Chip Enable
2.5
2.0
VCE (V)
VOUT (V)
3.0
IOUT = 1 mA
1.5
1.0
IOUT = 30 mA
0.5
0
−0.5
0
IOUT = 150 mA
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 57. Shutdown, NCP4682 2.8 V Version H,
VIN = 3.8 V
http://onsemi.com
17
NCP4682, NCP4685
APPLICATION INFORMATION
A typical application circuits for NCP4682 and NCP4685
series is shown in Figure 58.
NCP4682x
VIN
C1
100n
VIN
VIN
CE
VOUT
VOUT
C2
100n
GND
Enable Operation (NCP4682 Only)
NCP4685x
VIN
C1
100n
up to specified current capability in normal operation, but
when an over current situation occurs, the output voltage and
current decrease until the over current condition ends.
Typical characteristics of this protection scheme are shown
in the Output voltage versus Output current graphs in the
characterization section of this datasheet.
The enable pin CE may be used for turning the regulator
on and off. The IC is switched on when a high level voltage
is applied to the CE pin. The enable pin has an internal pull
down current source. If the enable function is not needed,
connect CE pin to VIN.
VOUT
VOUT
GND
Output Discharger (NCP4682 Only)
C2
100n
The NCP4682D version includes a transistor between
VOUT and GND that is used for faster discharging of the
output capacitor. This function is activated when the IC goes
into disable mode.
Thermals
Figure 58. Typical Application Schematic
As a power across the IC increase, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature affect the rate of temperature increase for the
part. When the device has good thermal conductivity
through the PCB the junction temperature will be relatively
low in high power dissipation applications.
Input Decoupling Capacitor (C1)
A 0.1 mF ceramic input decoupling capacitor should be
connected as close as possible to the input and ground pin of
the NCP4682/5. Higher values and lower ESR improves line
transient response.
Output Decoupling Capacitor (C2)
A 0.1 mF ceramic output decoupling capacitor is enough
to achieve stable operation of the IC. If a tantalum capacitor
is used, and its ESR is high, loop oscillation may result. The
capacitors should be connected as close as possible to the
output and ground pins. Larger values and lower ESR
improves dynamic parameters.
PCB layout
Make the VIN and GND line as large as practical. If their
impedance is high, noise pickup or unstable operation may
result. Connect capacitors C1 and C2 as close as possible to
the IC, and make wiring as short as possible.
Current Limit
This regulator includes a fold−back current limiting
circuit. This type of protection doesn’t limit output current
http://onsemi.com
18
NCP4682, NCP4685
ORDERING INFORMATION
Nominal Output
Voltage
Description
Marking
NCP4682DMU12TCG
1.2 V
Auto discharge
CA
NCP4682DMU15TCG
1.5 V
Auto discharge
CC
NCP4682DMU18TCG
1.8 V
Auto discharge
CD
NCP4682DMU19TCG
1.9 V
Auto discharge
CF
NCP4682DMU25TCG
2.5 V
Auto discharge
CH
NCP4682DMU28TCG
2.8 V
Auto discharge
CL
NCP4682DMU30TCG
3.0 V
Auto discharge
CP
NCP4682DMU33TCG
3.3 V
Auto discharge
CR
NCP4682HMU18TCG
1.8 V
Enable high
AD
NCP4682HMU28TCG
2.8 V
Enable high
AL
NCP4682HMU33TCG
3.3 V
Enable high
AR
NCP4685EMU30TCG
3.0 V
Without enable
BP
NCP4682DSN30T1G
3.0 V
Auto discharge
92P
NCP4682DSN33T1G
3.3 V
Auto discharge
92R
NCP4682DSQ12T1G
1.2 V
Auto discharge
R0
NCP4682DSQ15T1G
1.5 V
Auto discharge
R2
NCP4682DSQ18T1G
1.8 V
Auto discharge
R3
NCP4682DSQ20T1G
2.0 V
Auto discharge
R6
NCP4682DSQ25T1G
2.5 V
Auto discharge
R7
NCP4682DSQ28T1G
2.8 V
Auto discharge
S0
NCP4682DSQ33T1G
3.3 V
Auto discharge
S5
NCP4685ESQ15T1G
1.5 V
Without enable
N2
NCP4685ESQ25T1G
2.5 V
Without enable
N7
NCP4685ESQ33T1G
3.3 V
Without enable
P5
Device
Package
Shipping
UDFN4
(Pb−Free)
10000 / Tape & Reel
SOT−23−5
(Pb−Free)
3000 / Tape & Reel
SC−82AB
(Pb−Free)
3000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.
http://onsemi.com
19
NCP4682, NCP4685
PACKAGE DIMENSIONS
SOT−23 5−LEAD
CASE 1212
ISSUE A
A
5
E
1
L1
A1
4
2
L
3
5X
e
A2
0.05 S
B
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
E1
b
0.10
C
M
C B
S
A
S
C
RECOMMENDED
SOLDERING FOOTPRINT*
3.30
DIM
A
A1
A2
b
c
D
E
E1
e
L
L1
5X
0.85
5X
0.95
PITCH
0.56
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
20
MILLIMETERS
MIN
MAX
--1.45
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.70
3.10
2.50
3.10
1.50
1.80
0.95 BSC
0.20
--0.45
0.75
NCP4682, NCP4685
PACKAGE DIMENSIONS
SC−82AB
CASE 419C−02
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. 419C−01 OBSOLETE. NEW STANDARD IS
419C−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
A
G
C
D 3 PL
N
4
DIM
A
B
C
D
F
G
H
J
K
L
N
S
3
K
B
S
1
2
F
L
H
J
0.05 (0.002)
MILLIMETERS
MIN
MAX
1.8
2.2
1.15
1.35
0.8
1.1
0.2
0.4
0.3
0.5
1.1
1.5
0.0
0.1
0.10
0.26
0.1
−−−
0.05 BSC
0.2 REF
1.8
2.4
SOLDERING FOOTPRINT*
1.30
0.0512
0.65
0.026
0.95
0.037
0.90
0.035
0.70
0.028
1.90
0.075
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
21
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.008
0.016
0.012
0.020
0.043
0.059
0.000
0.004
0.004
0.010
0.004
−−−
0.002 BSC
0.008 REF
0.07
0.09
NCP4682, NCP4685
PACKAGE DIMENSIONS
UDFN4 1.0x1.0, 0.65P
CASE 517BR
ISSUE O
PIN ONE
REFERENCE
2X
0.05 C
4X
A
B
D
ÉÉ
ÉÉ
typ
DETAIL A
0.05 C
2X
c 0.18
L2
E
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.15 AND
0.20 mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
L3
3X
TOP VIEW
0.43
4X
0.23
(A3)
0.05 C
A
3X
0.05 C
NOTE 4
A1
SIDE VIEW
e
DETAIL A
3X
2
D2
45 5
SEATING
PLANE
L
0.65
PITCH
DETAIL B
D2
4
b
0.05
BOTTOM VIEW
2X
0.52
PACKAGE
OUTLINE
3
4X
MILLIMETERS
MIN
MAX
−−−
0.60
0.00
0.05
0.10 REF
0.20
0.30
1.00 BSC
0.43
0.53
1.00 BSC
0.65 BSC
0.20
0.30
0.27
0.37
0.02
0.12
RECOMMENDED
MOUNTING FOOTPRINT*
e/2
1
C
0.10
DETAIL B
DIM
A
A1
A3
b
D
D2
E
e
L
L2
L3
1.30
M
C A B
NOTE 3
0.53
4X
0.30
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
22
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP4682/D
Similar pages