PIN CONFIGURATIONS Next generation of the AD820/AD822 Wide gain bandwidth product: 8 MHz typical High slew rate: +23 V/μs/−18 V/μs typical Low input bias current: ±10 pA maximum at TA = 25°C Low offset voltage A grade: ±0.8 mV maximum at TA = 25°C B grade: ±0.35 mV maximum at TA = 25°C Low offset voltage drift A grade: ±2 μV/°C typical, ±15 μV/°C maximum B grade: ±2 μV/°C typical, ±5 μV/°C maximum Input voltage range includes Pin V− Rail-to-rail output Electromagnetic interference rejection ratio (EMIRR) 90 dB typical at f = 1000 MHz and f = 2400 MHz Industry-standard package and pinouts APPLICATIONS NIC 1 8 DISABLE –IN 2 ADA4622-1 7 V+ +IN 3 TOP VIEW (Not to Scale) 6 OUT V– 4 5 NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. 13502-401 FEATURES Figure 1. 8-Lead SOIC Pin Configuration, ADA4622-1 (See the Pin Configurations and Function Descriptions Section for Additional Pin Configurations) OUT A 1 –IN A 2 +IN A 3 V– 4 ADA4622-2 TOP VIEW (Not to Scale) 8 V+ 7 OUT B 6 –IN B 5 +IN B 13502-001 Data Sheet 30 V, 8 MHz, Low Bias Current, Single-Supply, RRO, Precision Op Amps ADA4622-1/ADA4622-2 Figure 2. 8-Lead MSOP Pin Configuration, ADA4622-2 (See the Pin Configurations and Function Descriptions Section for Additional Pin Configurations) High output impedance sensor interfaces Photodiode sensor interfaces Transimpedance amplifiers ADC drivers Precision filters and signal conditioning GENERAL DESCRIPTION The ADA4622-1/ADA4622-2 are the next generation of the AD820 and the AD822 single-supply, rail-to-rail output (RRO), precision junction field effect transistors (JFET) input op amps. The ADA4622-1/ADA4622-2 include many improvements that make them desirable as an upgrade without compromising the flexibility and ease of use that makes the AD820 and the AD822 useful for a wide variety of applications. The input voltage range includes the negative supply and the output swings rail-to-rail. Input EMI filters increase the signal robustness in the face of closely located switching noise sources. The speed, in terms of bandwidth and slew rate, increases along with a strong output drive to improve settling time performance and enable the devices to drive the inputs of modern single-ended, successive approximation register (SAR) analog-to-digital converters (ADCs). Rev. B Voltage noise is reduced; while keeping the supply current the same as the AD820 and the AD822, broadband noise is reduced by 25%, and 1/f is reduced by half. DC precision in the ADA4622-1/ ADA4622-2 improved from the AD820 and the AD822 with half the offset and a maximum thermal drift specification added to the ADA4622-1/ADA4622-2. The common-mode rejection ratio (CMRR) is improved from the AD820 and the AD822 to make the ADA4622-1/ADA4622-2 more suitable when used in noninverting gain and difference amplifier configurations. The ADA4622-1/ADA4622-2 are specified for operation over the extended industrial temperature range of −40°C to +125°C and operates from 5 V to 30 V with specifications at +5 V, ±5 V, and ±15 V. The ADA4622-1 is available in a 5-lead SOT-23 package and an 8-lead LFCSP package, and the ADA4622-2 is available in an 8-lead SOIC package, an 8-lead MSOP package, and an 8-lead LFCSP package. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4622-1/ADA4622-2 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Input Characteristics .................................................................. 24 Applications ....................................................................................... 1 Output Characteristics............................................................... 25 Pin Configurations ........................................................................... 1 Shutdown Operation.................................................................. 26 General Description ......................................................................... 1 Applications Information .............................................................. 27 Revision History ............................................................................... 2 Recommended Power Solution ................................................ 27 Specifications..................................................................................... 3 Maximum Power Dissipation ................................................... 27 Electrical Characteristics, VSY = ±15 V...................................... 3 Second-Order Low-Pass Filter.................................................. 27 Electrical Characteristics, VSY = ±5 V ........................................ 5 Wideband Photodiode Preamplifier ........................................ 27 Electrical Characteristics, VSY = 5 V .......................................... 7 Peak Detector .............................................................................. 30 Absolute Maximum Ratings............................................................ 9 Multiplexing Inputs .................................................................... 30 Thermal Resistance ...................................................................... 9 Full Wave Rectifier ..................................................................... 31 ESD Caution .................................................................................. 9 Outline Dimensions ....................................................................... 32 Pin Configurations and Function Descriptions ......................... 10 Ordering Guide .......................................................................... 34 Typical Performance Characteristics ........................................... 12 Theory Of Operation ..................................................................... 24 REVISION HISTORY 2/2017—Rev. A to Rev. B Added ADA4622-1 ........................................................ Throughout Changed AD822 to AD820/AD822 ............................ Throughout Changed ADA4622-2 to ADA4622-1/ADA4622-2 .. Throughout Changed 7.5 MHz to 8 MHz in Product Title .............................. 1 Added Figure 1; Renumbered Sequentially .................................. 1 Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 5 Changes to Table 3 ............................................................................ 7 Changes to Table 5 ............................................................................ 9 Added Figure 3, Table 6, Figure 4, and Table 7; Renumbered Sequentially ..................................................................................... 10 Changes to Figure 11 and Figure 12 ............................................. 12 Added Figure 13.............................................................................. 12 Added Figure 78.............................................................................. 23 Added Shutdown Operation and Figure 86 to Figure 89 .......... 26 Added Multiplexing Inputs Section, Figure 99, and Figure 100 ..... 30 Added Full Wave Rectifier Section, Figure 101, and Figure 102 .... 31 Updated Outline Dimensions ....................................................... 32 Change to Ordering Guide ............................................................ 34 2/2016—Rev. 0 to Rev. A Added 8-Lead LFCSP......................................................... Universal Changes to General Description Section .......................................1 Changes to Settling Time to 0.1% Parameter and Settling Time to 0.01% Parameter, Table 1 .............................................................4 Changes to Table 5.............................................................................9 Added Pin Configurations and Function Descriptions Section, Figure 2, Figure 3, Table 6, Figure 4, and Table 7; Renumbered Sequentially ..................................................................................... 10 Changes to Figure 9 ........................................................................ 11 Changes to Input Characteristics Section ................................... 23 Changes to Recommended Power Solution Section ................. 25 Changes to Wideband Photodiode Preamplifier Section ......... 26 Change to Figure 85 ....................................................................... 26 Change to Figure 86 ....................................................................... 27 Updated Outline Dimensions ....................................................... 29 Changes to Ordering Guide .......................................................... 30 10/2015—Revision 0: Initial Version Rev. B | Page 2 of 34 Data Sheet ADA4622-1/ADA4622-2 SPECIFICATIONS ELECTRICAL CHARACTERISTICS, VSY = ±15 V Supply voltage (VSY) = ±15 V, common-mode voltage (VCM) = output voltage (VOUT) = 0 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage A Grade Symbol Test Conditions/Comments Min Typ Max Unit +0.04 ±0.8 ±2 ±0.35 ±1 ±0.8 ±1 mV mV mV mV mV mV ±15 ±5 ±10 ±1.5 µV/°C µV/°C pA nA pA pA nA V VOS −40°C < TA < +125°C B Grade ADA4622-1 ADA4622-2 Offset Voltage Match Offset Voltage Drift A Grade B Grade Input Bias Current +0.04 −40°C < TA < +125°C −40°C < TA < +125°C ΔVOS/ΔT −40°C < TA < +125°C −40°C < TA < +125°C ±2 ±2 +2 IB −40°C < TA < +125°C VCM = −15 V Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio A Grade IVR CMRR −15 ±10 ±0.5 +14 −40°C < TA < +125°C B Grade Large Signal Voltage Gain Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Low AVO CINDM CINCM RDIFF RCM VOH VOL Output Current Short-Circuit Current IOUT ISC Closed-Loop Output Impedance ZOUT −15.2 VCM = −15 V to +12 V −40°C < TA < +125°C VCM = −15 V to +12 V −40°C < TA < +125°C RL = 10 kΩ, VOUT = −14.5 V to +14.5 V −40°C < TA < +125°C RL = 1 kΩ, VOUT = −14 V to +14 V −40°C < TA < +125°C Differential mode Common mode Differential mode Common mode 84 81 87 85 117 109 102 93 ISOURCE = 1 mA −40°C < TA < +125°C ISOURCE = 15 mA −40°C < TA < +125°C ISINK = 1 mA −40°C < TA < +125°C ISINK = 15 mA −40°C < TA < +125°C VDROPOUT < 1 V Sourcing Sinking f = 1 kHz, gain (AV) = 1 AV = 10 AV = 100 14.95 14.9 14.3 14.1 Rev. B | Page 3 of 34 100 dB dB dB dB dB dB dB dB pF pF Ω Ω 100 122 110 0.4 3.6 1013 1013 14.97 14.5 −14.955 −14.685 20 42 −51 0.1 0.4 3 −14.935 −14.88 −14.55 −14.25 V V V V V V V V mA mA mA Ω Ω Ω ADA4622-1/ADA4622-2 Parameter POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier ADA4622-1 Data Sheet Symbol Test Conditions/Comments Min Typ PSRR VSY = ±4 V to ±18 V −40°C < TA < +125°C 87 81 103 715 ADA4622-2 Gain Bandwidth Product Unity-Gain Crossover −3 dB Bandwidth Phase Margin Settling Time To 0.1% To 0.01% EMI REJECTION RATIO f = 1000 MHz f = 2400 MHz NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density Total Harmonic Distortion + Noise Bandwidth (BW) = 80 kHz BW = 500 kHz MATCHING SPECIFICATIONS Maximum Offset Voltage over Temperature Offset Voltage Temperature Drift Input Bias Current CROSSTALK Unit dB dB ISY 60 µA µA µA µA µA 23 −18 8 7 15.5 53 V/µs V/µs MHz MHz MHz Degrees 1.5 2 µs µs 90 90 dB dB 0.75 30 15 12.5 12 0.8 µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA/√Hz 0.0003 0.00035 % % 0.5 mV −40°C < TA < +125°C Shutdown Current DYNAMIC PERFORMANCE Slew Rate Max 665 −40°C < TA < +125°C ADA4622-1 only SR GBP UGC −3 dB ФM tS EMIRR eN p-p eN iN THD + N VOUT = ±12.5 V, RL = 2 kΩ, load capacitor (CL) = 100 pF, AV = 1 Low to high transition High to low transition AV = 100, CL = 35 pF AV = 1 AV = 1 Input voltage (VIN) = 10 V step, RL = 2 kΩ, CL = 15 pF, AV = −1 VIN = 100 mV p-p 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz f = 1 kHz AV = 1, f = 10 Hz to 20 kHz, VIN = 7 V rms at 1 kHz 2.5 0.5 CS 750 775 700 725 RL = 5 kΩ, VIN = 20 V p-p f = 1 kHz f = 100 kHz Rev. B | Page 4 of 34 −112 −72 5 µV/°C pA dB dB Data Sheet ADA4622-1/ADA4622-2 ELECTRICAL CHARACTERISTICS, VSY = ±5 V VSY = ±5 V, VCM = VOUT = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage A Grade Symbol Test Conditions/Comments Min Typ Max Unit +0.04 ±0.8 ±2 ±0.35 ±1 ±0.8 ±1 mV mV mV mV mV mV ±15 ±5 ±10 ±1.5 µV/°C µV/°C pA nA pA pA nA V VOS −40°C < TA < +125°C B Grade ADA4622-1 ADA4622-2 Offset Voltage Match Offset Voltage Drift A Grade B Grade Input Bias Current +0.04 −40°C < TA < +125°C −40°C < TA < +125°C ΔVOS/ΔT −40°C < TA < +125°C −40°C < TA < +125°C ±2 ±2 +2 IB −40°C < TA < +125°C VCM = V− Input Offset Current −5 IOS ±10 ±0.5 +4 −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio A Grade IVR CMRR B Grade Large Signal Voltage Gain Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Low AVO CINDM CINCM RDIFF RCM VOH VOL Output Current Short-Circuit Current IOUT ISC Closed-Loop Output Impedance ZOUT −5.2 VCM = − 5 V to +2 V −40°C < TA < +125°C VCM = − 5 V to +2 V −40°C < TA < +125°C RL = 10 kΩ, VOUT = −4.4 V to +4.4 V −40°C < TA < +125°C RL = 1 kΩ, VOUT = −4.4 V to +4.4 V −40°C < TA < +125°C Differential mode Common mode Differential mode Common mode 75 73 78 75 113 105 100 91 ISOURCE = 1 mA −40°C < TA < +125°C ISOURCE = 15 mA −40°C < TA < +125°C ISINK = 1 mA −40°C < TA < +125°C ISINK = 15 mA −40°C < TA < +125°C VDROPOUT < 1 V Sourcing Sinking f = 1 kHz, AV = 1 AV = 10 AV = 100 4.95 4.9 4.3 4.1 Rev. B | Page 5 of 34 91 dB dB dB dB dB dB dB dB pF pF Ω Ω 91 118 105 0.4 3.6 1013 1013 4.97 4.51 −4.955 −4.685 20 31 −40 0.1 0.4 4 −4.935 −4.88 −4.55 −4.25 V V V V V V V V mA mA mA Ω Ω Ω ADA4622-1/ADA4622-2 Parameter POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier ADA4622-1 Data Sheet Symbol Test Conditions/Comments Min Typ PSRR VSY = ±4 V to ±18 V −40°C < TA < +125°C 87 81 103 660 ADA4622-2 Gain Bandwidth Product Unity-Gain Crossover −3 dB Bandwidth Phase Margin Settling Time To 0.1% To 0.01% EMI REJECTION RATIO f = 1000 MHz f = 2400 MHz NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density Total Harmonic Distortion + Noise BW = 80 kHz BW = 500 kHz MATCHING SPECIFICATIONS Maximum Offset Voltage over Temperature Offset Voltage Temperature Drift Input Bias Current CROSSTALK Unit dB dB ISY 50 µA µA µA µA µA 21 −16 7.8 6.5 10 50 V/µs V/µs MHz MHz MHz Degrees 1.5 2 µs µs 90 90 dB dB 0.75 30 15 12.5 12 0.8 µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz pA/√Hz 0.0005 0.0008 % % 0.5 mV −40°C < TA < +125°C Shutdown Current DYNAMIC PERFORMANCE Slew Rate Max 610 −40°C < TA < +125°C ADA4622-1 only SR GBP UGC −3 dB ФM tS EMIRR eN p-p eN iN THD + N VOUT = ±3 V, RL = 2 kΩ, CL = 100 pF, AV = 1 Low to high transition High to low transition AV = 100, CL = 35 pF AV = 1 AV = 1 VIN = 8 V step, RL = 2 kΩ, CL = 15 pF, AV = −1 VIN = 100 mV p-p 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz f = 1 kHz AV = 1, f = 10 Hz to 20 kHz, VIN = 1.5 V rms at 1 kHz 2.5 0.5 CS 725 750 675 700 RL = 5 kΩ, VIN = 6 V p-p f = 1 kHz f = 100 kHz Rev. B | Page 6 of 34 −112 −72 5 µV/°C pA dB dB Data Sheet ADA4622-1/ADA4622-2 ELECTRICAL CHARACTERISTICS, VSY = 5 V VSY = 5 V, VCM = 0 V, VOUT = VSY/2, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage A Grade Symbol Test Conditions/Comments Min Typ Max Unit +0.04 ±0.8 ±2 ±0.35 ±1 ±0.8 ±1 mV mV mV mV mV mV ±15 ±5 ±10 ±1.5 ±10 ±0.5 +4 µV/°C µV/°C pA nA pA nA V VOS −40°C < TA < +125°C B Grade ADA4622-1 ADA4622-2 Offset Voltage Match Offset Voltage Drift A Grade B Grade Input Bias Current +0.04 IB Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio A Grade IVR CMRR −40°C < TA < +125°C −40°C < TA < +125°C ΔVOS/ΔT −40°C < TA < +125°C −40°C < TA < +125°C ±2 ±2 2 −40°C < TA < +125°C −40°C < TA < +125°C B Grade Large Signal Voltage Gain Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Low AVO CINDM CINCM RDIFF RCM VOH VOL Output Current Short-Circuit Current IOUT ISC Closed-Loop Output Impedance ZOUT −0.2 VCM = 0 V to 2 V −40°C < TA < +125°C VCM = 0 V to 2 V −40°C < TA < +125°C RL = 10 kΩ to V−, VOUT = 0.2 V to 4.6 V −40°C < TA < +125°C RL = 1 kΩ to V−, VOUT = 0.2 V to 4.6 V −40°C < TA < +125°C Differential mode Common mode Differential mode Common mode 70 67 73 70 110 99 96 87 ISOURCE = 1 mA −40°C < TA < +125°C ISOURCE = 15 mA −40°C < TA < +125°C ISINK = 1 mA −40°C < TA < +125°C ISINK = 15 mA −40°C < TA < +125°C VDROPOUT < 1 V Sourcing Sinking f = 1 kHz, AV = 1 AV = 10 AV = 100 4.95 4.9 4.3 4.1 Rev. B | Page 7 of 34 87 dB dB dB dB dB dB dB dB pF pF Ω Ω 87 115 104 0.4 3.6 1013 1013 4.97 4.5 −14.955 −14.69 20 27 −35 0.1 0.6 5 −14.935 −14.88 −14.55 −14.25 V V V V V V V V mA mA mA Ω Ω Ω ADA4622-1/ADA4622-2 Parameter POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier ADA4622-1 Data Sheet Symbol Test Conditions/Comments Min Typ PSRR VSY = 4 V to 15 V −40°C < TA < +125°C 80 74 95 650 ADA4622-2 Gain Bandwidth Product Unity-Gain Crossover −3 dB Bandwidth Phase Margin Settling Time To 0.1% To 0.01% EMI REJECTION RATIO f = 1000 MHz f = 2400 MHz NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density Total Harmonic Distortion + Noise BW = 80 kHz BW = 500 kHz MATCHING SPECIFICATIONS Maximum Offset Voltage over Temperature Offset Voltage Temperature Drift Input Bias Current CROSSTALK Unit dB dB ISY 50 µA µA µA µA µA 20 −15 7.2 6 9 50 V/µs V/µs MHz MHz MHz Degrees 1.5 2.0 µs µs 90 90 dB dB 0.75 30 15 12.5 12 0.8 µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz pA/√Hz 0.0025 0.0025 % % 0.5 mV −40°C < TA < +125°C Shutdown Current DYNAMIC PERFORMANCE Slew Rate Max 600 −40°C < TA < +125°C ADA4622-1 only SR GBP UGC −3 dB ФM tS EMIRR eN p-p eN iN THD + N VOUT = 0.5 V to 3.5 V, RL = 2 kΩ, CL = 100 pF, AV = 1 Low to high transition High to low transition AV = 100, CL = 35 pF AV = 1 AV = 1 VIN = 4 V step, RL = 2 kΩ, CL = 15 pF, AV = −1 VIN = 100 mV p-p 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz f = 1 kHz AV = 1, f = 10 Hz to 20 kHz, VIN = 0.5 V rms at 1 kHz 2.5 0.5 CS 700 725 650 675 RL = 5 kΩ, VIN = 3 V p-p f = 1 kHz f = 100 kHz Rev. B | Page 8 of 34 −112 −72 5 µV/°C pA dB dB Data Sheet ADA4622-1/ADA4622-2 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Input Voltage Differential Input Voltage Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature, Soldering (10 sec) ESD Rating, Human Body Model (HBM) Rating 36 V (V−) − 0.3 V to (V+) + 0.2 V 36 V −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 4 kV Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required. Table 5. Thermal Resistance1 Package Type 8-Lead SOIC 1-Layer JEDEC Board 2-Layer JEDEC Board 8-Lead MSOP 1-Layer JEDEC Board 2-Layer JEDEC Board 8-Lead LFCSP 1-Layer JEDEC Board 2-Layer JEDEC Board 2-Layer JEDEC Board with 2 × 2 Vias 5-Lead SOT-23 1-Layer JEDEC Board 2-Layer JEDEC Board θJA θJC2 Unit 180 120 63 N/A °C/W °C/W 265 185 115 N/A °C/W °C/W 272 145 55 63 N/A N/A °C/W °C/W °C/W 538 339 82 N/A °C/W °C/W Thermal impedance simulated values are based on a JEDEC thermal test board. See JEDEC JESD51. 2 N/A means not applicable. 1 ESD CAUTION Rev. B | Page 9 of 34 ADA4622-1/ADA4622-2 Data Sheet PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS OUT 1 V+ 4 –IN TOP VIEW (Not to Scale) +IN 3 13502-202 V– 2 5 ADA4622-1 Figure 3. 5-Lead SOT-23 Pin Configuration, ADA4622-1 Table 6. 5-Lead SOT-23 Pin Function Descriptions, ADA4622-1 Mnemonic OUT V− +IN −IN V+ Description Output Negative Supply Voltage Noninverting Input Inverting Input Positive Supply Voltage NIC 1 8 DISABLE –IN 2 ADA4622-1 7 V+ +IN 3 TOP VIEW (Not to Scale) 6 OUT V– 4 5 NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. 13502-203 Pin No. 1 2 3 4 5 Figure 4. 8-Lead SOIC Pin Configuration, ADA4622-1 Table 7. 8-Lead SOIC Pin Function Descriptions, ADA4622-1 Pin No. 1, 5 2 3 4 6 7 8 Mnemonic NIC −IN +IN V− OUT V+ DISABLE Description Not Internally Connected Inverting Input Noninverting Input Negative Supply Voltage Output Positive Supply Voltage Disable Input (Active Low) Rev. B | Page 10 of 34 ADA4622-1/ADA4622-2 OUT A 1 ADA4622-2 –IN A 2 TOP VIEW (Not to Scale) +IN A 3 V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B 13502-101 Data Sheet Figure 5. 8-Lead MSOP Pin Configuration, ADA4622-2 ADA4622-2 OUT A 1 2 +IN A 3 V– 8 V+ 7 OUT B TOP VIEW (Not to Scale) 6 –IN B 4 5 +IN B 13502-201 –IN A Figure 6. 8-Lead SOIC Pin Configuration, ADA4622-2 Table 8. 8-Lead MSOP and 8-Lead SOIC Pin Function Descriptions, ADA4622-2 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ Description Output, Channel A Inverting Input, Channel A Noninverting Input, Channel A Negative Supply Voltage Noninverting Input, Channel B Inverting Input, Channel B Output, Channel B Positive Supply Voltage OUT A 1 –IN A 2 +IN A 3 8 V+ ADA4622-2 TOP VIEW (Not to Scale) 7 OUT B 6 –IN B 5 +IN B V– 4 NOTES 1. IT IS RECOMMENDED TO CONNECT THE EXPOSED PAD TO THE V+ PIN. 13502-102 Pin No. 1 2 3 4 5 6 7 8 Figure 7. 8-Lead LFCSP Pin Configuration, ADA4622-2 Table 9. 8-Lead LFCSP Pin Function Descriptions, ADA4622-2 Pin No. 1 2 3 4 5 6 7 8 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ EPAD Description Output, Channel A. Inverting Input, Channel A. Noninverting Input, Channel A. Negative Supply Voltage. Noninverting Input, Channel B. Inverting Input, Channel B. Output, Channel B. Positive Supply Voltage. Exposed Pad. It is recommended to connect the exposed pad to the V+ pin. Rev. B | Page 11 of 34 ADA4622-1/ADA4622-2 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. VSY = ±15V Figure 8. Input Offset Voltage (VOS) Distribution, VSY = ±15 V –10.0 –7.5 –5.0 –2.5 0 2.5 5.0 7.5 10.0 TCVOS (µV/°C) 13502-011 NUMBER OF AMPLIFIERS VOS (mV) 13502-002 NUMBER OF AMPLIFIERS VCM = 0V VOUT = 0V VSY = ±15V Figure 11. Input Offset Voltage Drift (TCVOS) Distribution (−40°C to +85°C), VSY = ±15 V VCM = 0V VOUT = 0V VSY = ±5V Figure 9. Input Offset Voltage (VOS) Distribution, VSY = ±5 V –10.0 –7.5 –5.0 –2.5 0 2.5 5.0 7.5 10.0 TCVOS (µV/°C) 13502-012 VOS (mV) 13502-003 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS VSY = ±5V Figure 12. Input Offset Voltage Drift (TCVOS) Distribution (−40°C to +125°C), VSY = ±5 V VCM = 0V VOUT = 2.5V VSY = 5V Figure 10. Input Offset Voltage (VOS) Distribution, VSY = 5 V –10.0 –7.5 –5.0 –2.5 0 2.5 TCVOS (µV/°C) 5.0 7.5 10.0 13502-013 VOS (mV) 13502-004 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS VSY = 5V Figure 13. Input Offset Voltage Drift (TCVOS) Distribution (−40°C to +125°C), VSY = 5 V Rev. B | Page 12 of 34 Data Sheet ADA4622-1/ADA4622-2 1000 VSY = ±15V 0 13502-008 –500 13502-014 NUMBER OF AMPLIFIERS VOS (µV) 500 VCM = 0V VOUT = 0V VSY = ±15V –1000 –15 –10 –5 0 5 10 15 IB (pA) VCM (V) Figure 14. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±15 V Figure 17. Input Bias Current (IB) Distribution, VSY = ±15 V 1000 VCM = 0V VOUT = 0V VSY = ±5V VSY = ±5V 0 –1000 –5 13502-009 –500 13502-015 NUMBER OF AMPLIFIERS VOS (µV) 500 –4 –3 –2 –1 0 1 2 3 4 5 IB (pA) VCM (V) Figure 15. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±5 V Figure 18. Input Bias Current (IB) Distribution, VSY = ±5 V 1000 VCM = 0V VOUT = 2.5V VSY = 5V VSY = 5V NUMBER OF AMPLIFIERS 0 13502-010 –500 –1000 0 0.5 1.0 1.5 2.0 2.5 3.0 VCM (V) 3.5 4.0 4.5 13502-016 VOS (µV) 500 5.0 IB (pA) Figure 16. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = 5 V Rev. B | Page 13 of 34 Figure 19. Input Bias Current (IB) Distribution, VSY = 5 V ADA4622-1/ADA4622-2 Data Sheet 10 VSY = ±15V VSY = ±15V –40°C +25°C +85°C +125°C VOL (V) IB (pA) 0 –10 –30 –15 –10 –5 0 5 10 15 ILOAD (A) VCM (V) Figure 20. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM), VSY = ±15 V 13502-020 13502-017 –20 Figure 23. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = ±15 V 4 VSY = ±5V VSY = ±5V 2 –40°C +25°C +85°C +125°C IB (pA) VOL (V) 0 –2 –3 –2 –1 0 1 2 3 4 5 ILOAD (A) VCM (V) Figure 21. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM), VSY = ±5 V Figure 24. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = ±5 V VSY = 5V VOL (V) VSY = 5V 0.5 1.0 1.5 2.0 2.5 VCM (V) 3.0 3.5 4.0 4.5 5.0 13502-019 IB (pA) 0 13502-021 –4 Figure 22. Input Bias Current (IB) vs. Input Common-Mode Voltage (VCM), VSY = 5 V –40°C +25°C +85°C +125°C ILOAD (A) 13502-022 –6 –5 13502-018 –4 Figure 25. Output Voltage Low (VOL) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = 5 V Rev. B | Page 14 of 34 Data Sheet ADA4622-1/ADA4622-2 VSY = ±15V VSY = ±15V VSY = ±5V VSY = 5V 13502-026 GAIN (dB) ILOAD (A) 13502-023 LOAD RESISTANCE (kΩ) Figure 26. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = ±15 V Figure 29. Open-Loop Gain (AVO) vs. Load Resistance 225 120 VSY = ±5V 80 135 60 90 40 45 20 0 0 –45 –20 –90 –40 10 Figure 27. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = ±5 V 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –135 100M Figure 30. Open-Loop Gain and Phase vs. Frequency, VSY = ±15 V 225 120 180 80 135 60 90 40 45 20 0 ILOAD (A) 13502-025 GAIN (dB) –40°C +25°C +85°C +125°C 100 0 –45 –20 –90 –40 10 Figure 28. Output Voltage High (VOH) to Supply Rail vs. Load Current (ILOAD) over Temperature, VSY = 5 V Rev. B | Page 15 of 34 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –135 100M Figure 31. Open-Loop Gain and Phase vs. Frequency, VSY = ±5 V PHASE (Degrees) VSY = ±5V VSY = 5V VOL (V) 13502-027 180 GAIN (dB) ILOAD (A) 13502-024 VOL (V) –40°C +25°C +85°C +125°C 100 PHASE (Degrees) VSY = ±15V 13502-028 VOH (V) –40°C +25°C +85°C +125°C ADA4622-1/ADA4622-2 Data Sheet 225 60 100 180 50 80 135 40 60 90 40 45 20 0 VSY = 5V GAIN (dB) PHASE (Degrees) 10 –20 –90 –10 1k 10k 100k FREQUENCY (Hz) 1M 13502-029 0 100 –135 100M 10M AV = +10 20 –45 –40 10 AV = +100 30 0 AV = +1 –20 10 60 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 32. Open-Loop Gain and Phase vs. Frequency, VSY = 5 V Figure 35. Closed-Loop Gain vs. Frequency, VSY = 5 V 1000 VSY = ±15V VSY = ±15V 50 OUTPUT IMPEDANCE (Ω) GAIN (dB) 100 AV = +100 40 30 AV = +10 20 10 AV = +1 0 10 GAIN = 100 1 GAIN = 10 0.1 100 1k 10k 100k 1M 10M 0.01 10 100M 100 13502-033 –20 10 GAIN = 1 13502-030 –10 1k FREQUENCY (Hz) 60 10k 100k 1M 10M FREQUENCY (Hz) Figure 33. Closed-Loop Gain vs. Frequency, VSY = ±15 V Figure 36. Output Impedance vs. Frequency, VSY = ±15 V 1000 VSY = ±5V VSY = ±5V 50 100 OUTPUT IMPEDANCE (Ω) AV = +100 40 30 AV = +10 20 10 AV = +1 0 10 GAIN = 100 1 GAIN = 10 0.1 –20 10 GAIN = 1 100 1k 10k 100k 1M 10M 0.01 10 100M FREQUENCY (Hz) 100 13502-034 –10 13502-031 GAIN (dB) GAIN (dB) VSY = 5V 13502-032 120 1k 10k 100k 1M FREQUENCY (Hz) Figure 34. Closed-Loop Gain vs. Frequency, VSY = ±5 V Figure 37. Output Impedance vs. Frequency, VSY = ±5 V Rev. B | Page 16 of 34 10M Data Sheet 100 VSY = 5V VSY = 5V 100 80 10 60 CMRR (dB) GAIN = 100 1 40 GAIN = 10 0.1 20 0.01 10 13502-035 GAIN = 1 100 1k 10k 100k 1M 0 10 10M 13502-038 OUTPUT IMPEDANCE (Ω) 1000 ADA4622-1/ADA4622-2 100 1k FREQUENCY (Hz) 10k 100k 1M 10M 100M 10M 100M FREQUENCY (Hz) Figure 38. Output Impedance vs. Frequency, VSY = 5 V Figure 41. CMRR vs. Frequency, VSY = 5 V 120 120 VSY = ±15V VSY = ±15V 100 100 80 PSRR (dB) 60 40 +PSRR 40 –PSRR 20 20 0 13502-036 0 10 60 100 1k 10k 100k 1M 10M 13502-039 CMRR (dB) 80 –20 100M 10 100 1k FREQUENCY (Hz) Figure 39. CMRR vs. Frequency, VSY = ±15 V 120 VSY = ±5V VSY = ±5V 100 100 80 80 60 60 +PSRR 40 –PSRR 40 20 20 0 100 1k 10k 100k 1M 10M 13502-040 PSRR (dB) 120 13502-037 CMRR (dB) 1M Figure 42. PSRR vs. Frequency, VSY = ±15 V 140 0 10 10k 100k FREQUENCY (Hz) –20 100M 10 FREQUENCY (Hz) Figure 40. CMRR vs. Frequency, VSY = ±5 V 100 1k 10k 100k FREQUENCY (Hz) 1M Figure 43. PSRR vs. Frequency, VSY = ±5 V Rev. B | Page 17 of 34 10M 100M ADA4622-1/ADA4622-2 Data Sheet 120 60 VSY = 5V VSY = 5V 100 50 80 OVERSHOOT (%) –PSRR 40 20 +OS –OS 30 20 10 13502-041 0 –20 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 100M 1 100 1000 Figure 47. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = 5 V 15 VSY = ±15V VSY = ±15V VIN = ±10V 45 10 40 35 5 VOLTAGE (V) 30 +OS –OS 25 20 0 –5 15 10 13502-042 –10 5 0 1 10 100 13502-045 OVERSHOOT (%) 10 LOAD CAPACITANCE (pF) Figure 44. PSRR vs. Frequency, VSY = 5 V 50 40 13502-044 PSRR (dB) +PSRR 60 –15 1000 0 1 2 3 4 LOAD CAPACITANCE (pF) Figure 45. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = ±15 V 50 5 6 7 8 9 10 TIME (µs) Figure 48. Large Signal Transient Response, VSY = ±15 V 4 VSY = ±5V 45 40 VSY = ±5V VIN = ±3V 2 VOLTAGE (V) OVERSHOOT (%) 35 30 +OS –OS 25 20 0 15 –2 5 0 1 10 100 13502-046 13502-043 10 –4 1000 0 LOAD CAPACITANCE (pF) 1 2 3 4 5 6 7 8 9 TIME (µs) Figure 46. Small Signal Overshoot (OS) vs. Load Capacitance, VSY = ±5 V Rev. B | Page 18 of 34 Figure 49. Large Signal Transient Response, VSY = ±5 V 10 Data Sheet ADA4622-1/ADA4622-2 4 4 VSY = ±5V VIN = ±50mV p-p VSY = 5V VIN = 0.5V TO 3.5V 3 VOLTAGE (V) 2 2 1 13502-047 1 0 0 1 2 3 4 5 6 7 8 9 13502-050 VOLTAGE (V) 3 0 10 0 1 2 3 4 TIME (µs) Figure 50. Large Signal Transient Response, VSY = 5 V 6 7 8 9 10 Figure 53. Small Signal Transient Response, VSY = ±5 V 3 0.35 VSY = 5V VIN = 0.2V TO 0.3V 2 VSY = ±2.5V VIN = ±2V 0.30 VOLTAGE (V) 1 VOLTAGE (V) 5 TIME (µs) 0 0.25 –1 0.20 –3 0 1 2 3 4 5 6 7 8 9 13502-051 13502-048 –2 0.15 10 0 1 2 3 4 TIME (µs) 5 6 7 8 9 10 TIME (µs) Figure 51. Large Signal Transient Response, VSY = ±2.5 V Figure 54. Small Signal Transient Response, VSY = 5 V 4 5 20 VSY = ±15V –2 0 10 –5 0 –10 –10 –4 0 1 2 3 4 5 6 7 8 9 –15 10 TIME (µs) 0 1 2 3 4 5 6 7 8 9 –20 10 TIME (µs) Figure 52. Small Signal Transient Response, VSY = ±15 V Figure 55. Negative Overload Recovery, AV = −10, VSY = ±15 V Rev. B | Page 19 of 34 13502-052 INPUT VOLTAGE (V) 0 13502-049 VOLTAGE (V) 2 OUTPUT VOLTAGE (V) VSY = ±15V VIN = ±50mV p-p ADA4622-1/ADA4622-2 0 –2 0 9 –1 6 –2 3 –3 0 –3 1 2 3 4 5 6 7 8 9 –6 10 –4 0 1 2 3 4 TIME (µs) –1.0 –1 –1.5 INPUT VOLTAGE (V) 0 OUTPUT VOLTAGE (V) –0.5 0.5 –2 1 2 3 4 5 6 7 8 9 13502-054 INPUT VOLTAGE (V) 1 0 7 8 –3 10 9 Figure 59. Positive Overload Recovery, AV = −10, VSY = ±5 V 2 VSY = ±2.5V 0 –2.0 6 TIME (µs) Figure 56. Negative Overload Recovery, AV = −10, VSY = ±5 V 0.5 5 –3 10 5 VSY = ±2.5V 0 4 –0.5 3 –1.0 2 –1.5 1 –2.0 0 –2.5 0 1 2 3 4 TIME (µs) 5 6 7 8 OUTPUT VOLTAGE (V) 0 13502-057 –3 12 VSY = ±5V OUTPUT VOLTAGE (V) –1 INPUT VOLTAGE (V) 3 OUTPUT VOLTAGE (V) 0 1 13502-056 6 VSY = ±5V 13502-053 INPUT VOLTAGE (V) 1 Data Sheet –1 10 9 TIME (µs) Figure 57. Negative Overload Recovery, AV = −10, VSY = ±2.5 V Figure 60. Positive Overload Recovery, AV = −10, VSY = ±2.5 V 35 5 10 0.09 5 0.08 5 –10 –15 0 1 2 3 4 5 6 7 8 9 –5 10 0.07 -5 0.06 –10 0.05 –15 0.04 –20 0.03 –25 TIME (µs) 0 1 2 3 4 5 6 7 8 9 10 TIME (µs) Figure 58. Positive Overload Recovery, AV = −10, VSY = ±15 V Figure 61. Positive Settling Time, AV = −10, VSY = ±15 V Rev. B | Page 20 of 34 0.02 OUTPUT VOLTAGE (V) 15 VSY = ±15V VIN = ±5V 0 13502-058 –5 INPUT VOLTAGE (V) 25 OUTPUT VOLTAGE (V) 0 13502-055 INPUT VOLTAGE (V) VSY = ±15V ADA4622-1/ADA4622-2 0.09 8 4 0.08 4 0.07 0 –0.02 –4 –0.03 –8 –0.04 –12 –0.05 –16 –0.06 –8 0.05 –12 0.04 –16 0.03 1 2 3 4 5 6 7 8 9 10 0.02 –20 0 1 2 3 4 TIME (µs) 0.05 0 0.04 –2 0.03 –6 0.02 –8 0.01 –10 0 2 3 4 5 6 7 8 –0.01 10 9 0.01 0 –6 –0.01 –8 –0.02 –10 –0.03 –12 0 1 2 7 8 9 –0.04 10 –10 –0.05 –15 –0.06 –20 –0.07 6 7 8 9 10 –0.08 VOLTAGE NOISE DENSITY (nV/√Hz) –0.04 OUTPUT VOLTAGE (V) –5 5 6 13502-061 INPUT VOLTAGE (V) –0.03 4 5 VSY = ±15V –0.02 0 3 4 TIME (µs) 13502-064 VSY = ±15V VIN = ±5V 2 3 Figure 66. Negative Setting Time, AV = −10, VSY = 5 V –0.01 1 –0.07 TIME (µs) 10 0 10 –4 Figure 63. Positive Settling Time, AV = −10, VSY = 5 V –25 9 0.02 TIME (µs) 5 8 VSY = 5V VIN = –0.5V TO –4.5V INPUT VOLTAGE (V) –4 OUTPUT VOLTAGE (V) VSY = 5V VIN = –0.5V TO –4.5V 13502-060 INPUT VOLTAGE (V) –2 1 7 Figure 65. Negative Setting Time, AV = −10, VSY = ±5 V 0 0 6 TIME (µs) Figure 62. Positive Settling Time, AV = −10, VSY = ±5 V –12 5 FREQUENCY (Hz) Figure 64. Negative Setting Time, AV = −10, VSY = ±15 V Figure 67. Voltage Noise Density, VSY = ±15 V Rev. B | Page 21 of 34 OUTPUT VOLTAGE (V) 0 –0.01 13502-063 –20 VSY = ±5V VIN = ±4V OUTPUT VOLTAGE (V) 0.06 0 13502-062 –4 INPUT VOLTAGE (V) VSY = ±5V VIN = ±4V 0 OUTPUT VOLTAGE (V) 8 13502-059 INPUT VOLTAGE (V) Data Sheet ADA4622-1/ADA4622-2 Data Sheet 0 CH1 p-p = 776.0mV VSY = ±15V CHANNEL SEPARATION (dB) –20 1 M1.00ms A CH1 –40 –60 –80 –100 13502-068 –120 13502-065 CH1 200mV VSY = ±15V VIN = 20V p-p –140 100 –3.80MV 1k 10k 100k FREQUENCY (Hz) Figure 71. Channel Separation vs. Frequency, VSY = ±15 V Figure 68. 0.1 Hz to 10 Hz Noise, VSY = ±15 V 100 1.6 VSY = ±15V 10 1.2 –40°C +25°C +85°C +125°C 1 1 THD + N (%) SUPPLY CURRENT (mA) 1.4 0.8 0.6 0.1 0.01 BW = 500kHz BW = 80kHz 0.4 13502-066 0 0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 0.0001 0.001 ±18 13502-069 0.001 0.2 0.01 10 100 1.6 VSY VSY VSY VSY 1.5 VSY = ±5V = +5V = ±2.5V = ±5V = ±15V 10 1 1.3 0.1 1.2 0.01 1.1 0.001 –25 –10 5 20 35 50 65 80 95 110 0.0001 0.001 125 BW = 500kHz BW = 80kHz 13502-070 THD + N (%) 1.4 13502-067 SUPPLY CURRENT (mA) 1 Figure 72. THD + N vs. Amplitude, VSY = ±15 V Figure 69. Supply Current (ISY) vs. Supply Voltage (VSY) for Various Temperatures 1.0 –40 0.1 AMPLITUDE (V rms) SUPPLY VOLTAGE (V) 0.01 0.1 1 AMPLITUDE (V rms) TEMPERATURE (°C) Figure 70. Supply Current (ISY) vs. Temperature for Various Supply Voltages Rev. B | Page 22 of 34 Figure 73. THD + N vs. Amplitude, VSY = ±5 V 10 Data Sheet ADA4622-1/ADA4622-2 0.1 100 VSY = 5V VSY = 5V 10 0.1 THD + N (%) THD + N (%) 1 BW = 500kHz 0.01 0.01 BW = 80kHz BW = 500kHz BW = 80kHz 0.01 0.1 1 13502-074 0.0001 0.001 13502-071 0.001 0.001 10 10 100 1k 10k 100k FREQUENCY (Hz) AMPLITUDE (V rms) Figure 74. THD + N vs. Amplitude, VSY = 5 V Figure 77. THD + N vs. Frequency, VSY = 5 V 70 0.1 VSY = ±15V THD + N (%) 0.01 0.001 BW = 500kHz 0.0001 13502-072 0.00001 BW = 80kHz 10 100 1k 10k 100k FREQUENCY (Hz) VSY = ±5V 0.001 BW = 500kHz BW = 80kHz 13502-073 THD + N (%) 0.01 10 100 1k 30 20 10 0 –40 ±15V ±5V +5V –25 –10 5 20 35 50 65 80 95 110 Figure 78. Shutdown Current vs. Temperature 0.1 0.00001 40 TEMPERATURE (°C) Figure 75. THD + N vs. Frequency, VSY = ±15 V 0.0001 50 10k 100k FREQUENCY (Hz) Figure 76. THD + N vs. Frequency, VSY = ±5 V Rev. B | Page 23 of 34 125 13502-277 SHUTDOWN CURRENT (µA) 60 ADA4622-1/ADA4622-2 Data Sheet THEORY OF OPERATION V– R3 ED1 R4 R7 ED5 ED2 R1 +IN x SLEW ENHANCEMENT CIRCUIT R2 –IN x Q2 Q1 Q3 C1 J1 J2 R5 Q5 Q4 ED3 OUT x RR OUTPUT STAGE R6 VBIAS ED4 ED6 IMAGIC CURRENT OUT1 OUT2 R8 R9 R10 13502-075 IN CURRENT MIRROR V+ Figure 79. Simplified Circuit Diagram INPUT CHARACTERISTICS The ADA4622-1/ADA4622-2 input stage consists of N-channel, JFETs that provide low offset, low noise, and high impedance. The minimum input common-mode voltage extends from −0.2 mV below V− to 1 V less than V+. Driving the input closer to the positive rail causes loss of amplifier bandwidth and increased common-mode voltage error. Figure 80 shows the rounding of the output due to the loss of bandwidth. The input and output are superimposed. 13502-077 1 CH1 1.00V CH2 1.00V M2.00µs A CH1 3.84V Figure 81. No Phase Reversal Because the input stage uses N-channel JFETs, the input current during normal operation is negative. However, the input bias current changes direction as the input voltage approaches V+ due to internal junctions becoming forward-biased (see Figure 82). 1 13502-076 4 A CH1 3.00V Figure 80. Bandwidth Limiting due to Headroom Requirements The ADA4622-1/ADA4622-2 do not exhibit phase reversal for input voltages up to V+. For input voltages greater than V+, a 10 kΩ resistor in series with the noninverting input prevents phase reversal at the expense of higher noise (see Figure 81). 2 1 0 –1 –2 –3 –5 13502-078 M2.00µs INPUT BIAS CURRENT (pA) CH1 1.00V CH2 1.00V 3 –4 –3 –2 –1 0 1 2 3 4 5 COMMON-MODE VOLTAGE (V) Figure 82. Input Bias Current vs. Common-Mode Voltage with ±5 V Supply Rev. B | Page 24 of 34 Data Sheet ADA4622-1/ADA4622-2 100 The ADA4622-1/ADA4622-2 are designed for 12 nV/√Hz wideband input voltage noise density and maintain low noise performance at low frequencies (see Figure 83). This noise performance, along with the low input current as well as low current noise, means that the ADA4622-1/ADA4622-2 contribute negligible noise for applications with a source resistance greater than 10 kΩ and at signal bandwidths greater than 1 kHz. EMIRR (dB) 80 100k ADA4622-1/ADA4622-2 VOLTAGE AND CURRENT NOISE RS NOISE TOTAL NOISE 60 40 13502-080 20 0 FREQUENCY (Hz) 10k Figure 84. EMIRR vs. Frequency OUTPUT CHARACTERISTICS 13502-079 RESISTANCE (Ω) COMPETITOR 1 COMPETITOR 2 ADA4622-1/ADA4622-2 1k FREQUENCY (Hz) Figure 83. Total Noise vs. Source Resistance Input Overvoltage Protection The ADA4622-1/ADA4622-2 have internal protective circuitry that allows voltages as high as 0.3 V beyond the supplies applied at the input of either terminal without causing damage. Use a current-limiting resistor in series with the input of the ADA4622-1/ ADA4622-2 if the input voltage exceeds 0.3 V beyond the supply rails of the amplifiers. If the overvoltage condition persists for more than a few seconds, damage to the amplifiers can result. The ADA4622-1/ADA4622-2 unique bipolar rail-to-rail output stage swings within 10 mV of the supplies with no external resistive load. The ADA4622-1/ADA4622-2 approximate output saturation resistance is 24 Ω, sourcing or sinking. Use the output impedance to estimate the output saturation voltage when driving heavier loads. As an example, when driving 5 mA, the saturation voltage from either rail is roughly 120 mV. If the ADA4622-1/ADA4622-2 output drives hard against the output saturation voltage, it recovers within 1.2 μs of the input, returning to the linear operating region of the amplifier (see Figure 55 and Figure 58). Capacitive Load Drive Capability Direct capacitive loads interact with the effective output impedance of the ADA4622-1/ADA4622-2 to form an additional pole in the feedback loop of the amplifiers, which causes excessive peaking on the pulse response or loss of stability. The worst case condition is when the devices use a single 5 V supply in a unitygain configuration. Figure 85 shows the pulse response of the ADA4622-1/ADA4622-2 driving 500 pF directly. For higher input voltages, determine the resistor value by VIN VSY 10 mA RS where: VIN is the input voltage. VSY is the voltage of either the V+ pin or the V− pin. RS is the series resistor. With a very low input bias current of ±1.5 nA maximum up to 125°C, higher resistor values can be used in series with the inputs without introducing large offset errors. A 1 kΩ series resistor allows the ADA4622-1/ADA4622-2 to withstand 10 V of continuous overvoltage and increases the noise by a negligible amount. A 5 kΩ resistor protects the inputs from voltages as high as 25 V beyond the supplies and adds less than 10 μV to the offset voltage of the amplifiers. 1 13502-081 EMI Rejection Ratio Figure 84 shows the EMI rejection ratio (EMIRR) vs. the frequency for the ADA4622-1/ADA4622-2. CH1 50.0mV BW M2.00µs A CH1 108mV Figure 85. Pulse Response with 500 pF Load Capacitance Rev. B | Page 25 of 34 ADA4622-1/ADA4622-2 Data Sheet SHUTDOWN OPERATION Use the active low DISABLE input to put the ADA4622-1 into shutdown mode. When the voltage on the DISABLE input is less than 1.4 V above the negative supply voltage (V−), the ADA4622-1 shuts down and consumes only 50 μA to 60 μA typical. When the voltage on the DISABLE input is more than 1.4 V above the negative supply voltage (V−), or if the DISABLE input is left floating, the ADA4622-1 powers up. For best performance, it is recommended that the input voltage level on the DISABLE input be V− or that the input be left floating. The ADA4622-1 is still a drop-in replacement for devices with standard single channel op-amp pinouts because the ADA4622-1 enables when the DISABLE input is left floating. Figure 86 shows a simplified circuit for the DISABLE input. ∆: 1.98µs @: –60ns ∆: 2mV @: 2mV CH1 100mV CH2 5V M1.00µs T 49.8% A CH2 13502-287 1 1 –11.5V Figure 88. Shutdown Response When Toggling the DISABLE Input Figure 89 shows the DISABLE input current vs. the DISABLE input voltage relative to the negative supply voltage (V−). DISABLE Figure 87 and Figure 88 show the start-up and shutdown response when toggling the DISABLE input. ∆: 1.12µs @: 1.10µs ∆: 5mV @: –1mV 0 1 2 3 4 5 DISABLE INPUT VOLTAGE RELATIVE TO V– (V) 6 13502-288 Figure 86. Simplified Circuit for the DISABLE Input DISABLE INPUT CURRENT (µA) IOUT 13502-285 MIRROR Figure 89. DISABLE Input Current vs. DISABLE Input Voltage Relative to V− CH1 50mV CH2 5V M1.00µs T 49.8% A CH2 –11.5V 13502-286 1 1 Figure 87. Start-Up Response When Toggling the DISABLE Input Rev. B | Page 26 of 34 Data Sheet ADA4622-1/ADA4622-2 APPLICATIONS INFORMATION RECOMMENDED POWER SOLUTION –16V ADP7182 –15V Description DC-to-DC switching regulator with independent positive and negative outputs 20 V, 200 mA, low noise, CMOS LDO regulator −28 V, −200 mA, low noise, linear regulator MAXIMUM POWER DISSIPATION The maximum power the ADA4622-1/ADA4622-2 can safely dissipate is limited by the associated rise in junction temperature. For plastic packages, the maximum safe junction temperature is 150°C. If this maximum temperature is exceeded, reduce the die temperature to restore proper circuit operation. Leaving the device in the overheated condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the Absolute Maximum Ratings and Thermal Resistance specifications. SECOND-ORDER LOW-PASS FILTER Figure 91 shows the ADA4622-1/ADA4622-2 configured as a second-order, Butterworth, low-pass filter. With the values as shown, the corner frequency equals 200 kHz. The following equations show the component selection: R1 = R2 = User Selected (Typical Values: 10 kΩ to 100 kΩ) C1 1.414 2πfCUTOFF R1 C2 0.707 ADA4622-1/ ADA4622-2 VOUT 50pF C4 0.1µF –5V Table 10. Recommended Power Management Devices Figure 92 shows a plot of the filter; greater than 35 dB of high frequency rejection is achieved. 50 40 30 20 10 0 –10 –20 –30 –40 –50 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M Figure 92. Frequency Response of the Filter WIDEBAND PHOTODIODE PREAMPLIFIER The ADA4622-1/ADA4622-2 are an excellent choice for photodiode preamplifier applications. The low input bias current minimizes the dc error at the output of the preamplifier. In addition, the high gain bandwidth product and low input capacitance maximizes the signal bandwidth of the photodiode preamplifier. Figure 93 shows the ADA4622-1/ADA4622-2 as a current to voltage (I to V) converter with an electrical model of a photodiode. CF RF 2πf CUTOFF R1 – CM IPHOTO CS RSH = 1011Ω + VB VOUT CD CM ADA4622-1/ ADA4622-2 Figure 93. Wideband Photodiode Preamplifier Rev. B | Page 27 of 34 13502-085 ADP7118 ADP7182 C1 28pF Figure 91. Second-Order, Butterworth, Low-Pass Filter Figure 90. Power Solution Configuration for the ADA4622-1/ADA4622-2 Product ADP5070 R2 20kΩ 13502-084 ADP5070 +15V R1 20kΩ VIN AMPLITUDE (dB) +12V ADP7118 +5V C3 0.1µF 13502-082 +16V C2 56pF 13502-083 The ADA4622-1/ADA4622-2 can operate from a ±2.5 V to ±15 V dual supply or a 5 V to 30 V single supply. The ADP7118 and the ADP7182 are recommended to generate the clean positive and negative rails for the ADA4622-1/ADA4622-2. Both low dropout regulators (LDOs) are available in fixed output voltage or adjustable output voltage versions. To generate the input voltages for the LDOs, the ADP5070 dc-to-dc switching regulator is recommended. Figure 90 shows the recommended power solution configuration for the ADA4622-1/ADA4622-2. ADA4622-1/ADA4622-2 Data Sheet The following basic transfer function describes the transimpedance gain of the photodiode preamplifier: I PHOTO RF 1 sC F RF where IPHOTO is the output current of the photodiode. The parallel combination of RF and CF sets the signal bandwidth (see the I to V gain curve in Figure 95). s refers to the s-plane. Note that RF must be set so the maximum attainable output voltage corresponds to the maximum diode output current, IPHOTO, which allows use of the full output swing. The attainable signal bandwidth with this photodiode preamplifier is a function of RF, the gain bandwidth product (fGBP) of the amplifier, and the total capacitance at the amplifier summing junction, including CS and the amplifier input capacitance, CD and CM. RF and the total capacitance produce a pole with loop frequency (fP). fX I TO V GAIN fZ With the additional pole from the amplifier open-loop response, the two-pole system results in peaking and instability due to an insufficient phase margin (see Figure 94). G = 1 + CS/CF G = RFCS(s) G=1 f fp fGBP 90° 45° f 0° 1 2RF CS fN –45° –90° 13502-087 fP |A (s)| VOUT OPEN-LOOP GAIN OPEN-LOOP GAIN –135° Figure 95. Gain and Phase Plot of the Transimpedance Amplifier Design with Compensation |A| (dB) Adding CF creates a zero in the loop transmission that compensates for the effect of the input pole, which stabilizes the photodiode preamplifier design because of the increased phase margin. Adding CF also sets the signal bandwidth (see Figure 95). The signal bandwidth and the zero frequency are determined by fX G = R2C1s G=1 fZ log f fP fGBP 1 2 π RF C F where fZ is the zero frequency. Setting the zero at the fX frequency maximizes the signal bandwidth with a 45° phase margin. Because fX is the geometric mean of fP and fGBP, it can be calculated by 0° f X f P f GBP –90° Combining these equations, the CF value that produces fX is log f CF –135° –180° Figure 94. Gain and Phase Plot of the Transimpedance Amplifier Design, Without Compensation 13502-086 PHASE (°) –45° CS 2 R F f GBP The frequency response in this case shows about 2 dB of peaking and 15% overshoot. Doubling CF and halving the bandwidth results in a flat frequency response with about 5% transient overshoot. The dominant sources of output noise in the wideband photodiode preamp design are the input voltage noise of the amplifier, VNOISE, and the resistor noise due to RF. The gray curve in Figure 95 shows the noise gain over frequencies for the photodiode preamp. Rev. B | Page 28 of 34 Data Sheet ADA4622-1/ADA4622-2 2pF Calculate the noise bandwidth at the fN frequency by 49.9kΩ f GBP (C S C F ) C F +5V Figure 96 shows the ADA4622-1/ADA4622-2 configured as a transimpedance photodiode amplifier. The amplifiers are used in conjunction with a photodiode detector with an input capacitance of 5 pF. Figure 97 shows the transimpedance response of the ADA4622-1/ADA4622-2 when IPHOTO is 1 μA p-p. The amplifiers have a bandwidth of 2 MHz when they are maximized for a 45° phase margin with CF = 2 pF. Note that with the PCB parasitics added to CF, the peaking is only 0.5 dB, and the bandwidth is reduced slightly. 0.1µF –5V VOUT ADA4622-1/ ADA4622-2 100Ω 0.1µF 13502-088 fN –5V Figure 96. Photodiode Preamplifier 3 Increasing CF to 3 pF completely eliminates the peaking; however, increasing CF to 3 pF reduces the bandwidth to 1 MHz. 2 1 Table 11 shows the noise sources and total output noise for the photodiode preamp, where the preamp is configured to have a 45° phase margin for maximum bandwidth and fZ = fX = fN in this case. 2pF AMPLITUDE (dB) 0 –1 3pF –2 –3 –4 13502-089 –5 –6 –7 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 97. Photodiode Preamplifier Frequency Response Table 11. RMS Noise Contributions of the Photodiode Preamplifier Contributor RF VNOISE Root Sum Square (RSS) Total 1 Expression 4kT RF f N VNOISE π 2 (C S C M C F C D ) fN CF 2 RF 2 VNOISE2 RMS noise with RF = 50 kΩ, CS = 5 pF, CF = 2 pF, CM = 3.7 pF, and CD = 0.4 pF. Rev. B | Page 29 of 34 RMS Noise (μV)1 50.8 131.6 141 100M ADA4622-1/ADA4622-2 Data Sheet PEAK DETECTOR MULTIPLEXING INPUTS A peak detector captures the peak value of a signal and produces an output equal to it. By taking advantage of the dc precision and super low input bias current of the JFET input amplifiers, such as the ADA4622-1/ADA4622-2, a highly accurate peak detector can be built, as shown in Figure 98. By using the ADA4622-1 DISABLE input, it is possible to multiplex two inputs to a single output by using the circuit shown in Figure 99. If the gain configuration or filter configuration of the two amplifiers is different, and a common single input to both amplifiers is used, this configuration can control selectable gain or selectable frequency response at the output. + 2 U1 5 1 4 – VIN C4 VEE 50pF D3 1N4148 D4 1N4148 R7 10kΩ D2 1N448 +PEAK VCC ADA4622-1/ ADA4622-2 8 6 C3 1µF V+ ADA4622-1/ ADA4622-2 8 U2 3 7 4 7 ADA4622-1 + U1 2 – V V– 6 8 4 VEE R6 1kΩ VOUT DISABLE V Figure 98. Positive Peak Detector 3 + In this application, D3 and D4 act as unidirectional current switches that open when the output is kept constant in hold mode. – V 6 4 8 V– Figure 99. Multiplexed Input Circuit Figure 100 shows the output response when multiplexing two input signals. The input to the first amplifier is a 4 V p-p, 200 kHz sine wave; the input to the second amplifier is an 8 V p-p, 100 kHz sine wave. The ADA4622-1/ADA4622-2, shown in Figure 98, are a perfect fit for building a peak detector because U1 requires dc precision and high output current during fast peaks, and U2 requires low input bias current (IB) to minimize capacitance discharge between peaks. A low leakage and low dielectric absorption capacitor, such as polystyrene or polypropylene, is required for C3. Reversing the diode directions causes the circuit to detect negative peaks. OUTPUT VOLTAGE Feedback from the output of the U2B (positive peak) through R6 limits the output voltage of U2A. After detecting the peak, the output of U2A swings low but is clamped by D2. D3 reverses bias and the common node of D3, D4, and R7 is held to a voltage equal to positive peak by R7. The voltage across D4 is 0 V; therefore, the leakage is small. The bias current of U2B is also small. With almost no leakage, C3 has a long hold time. ADA4622-1 13502-298 To detect a positive peak, U2A drives C3 through D3 and drives D4 until C3 is charged to a voltage equal to the input peak value. 7 U2 2 VLOGIC TIME Figure 100. Multiplexed Output Rev. B | Page 30 of 34 13502-299 3 13502-090 VCC Data Sheet ADA4622-1/ADA4622-2 FULL WAVE RECTIFIER Figure 101 shows the circuit of a full-wave rectifier using two ADA4622-1 op amps in single-supply operation. The circuit is composed of a voltage follower (U1) and a second stage amplifier (U2) that combine the output of the first stage amplifier and the inverted version of the input signal. U1 follows the input during the positive half cycle and clamps the negative going input signal to ground giving a half wave signal at VHW. The following equation defines the circuit transfer function: During the input positive half cycle, U1 follows the input so that VHW = VIN; therefore, VFW = VIN. During the negative half cycle, U1 clamps the signal to ground so that VHW = 0 V; therefore, VFW = −(R3/R2) × VIN = −VIN because R3/R2 = 1. Figure 102 shows the input and outputs waveforms from the circuit. The input is 2 V p-p, 1 kHz sine wave while the circuit is running on a 5 V single supply. INPUT VFW = (1+ R3/R2)VHW − (R3/R2) × VIN VCC U1 5V VCC U2 FULL WAVE 5V VFW 2V p-p 1kHz 0° TIME GND R2 50kΩ GND R3 50kΩ Figure 102. Full Wave and Half Wave Rectifier Input and Output Waveforms 13502-300 GND HALF WAVE 13502-301 R1 30kΩ VOLTAGE where: VFW is the full wave output from U1. R3 and R2 are the feedback resistors shown in Figure 101. VHW is half wave output from U1. VIN is the input voltage. Figure 101. Full Wave Rectifier Circuit Rev. B | Page 31 of 34 ADA4622-1/ADA4622-2 Data Sheet OUTLINE DIMENSIONS 3.00 2.90 2.80 1.70 1.60 1.50 5 4 1 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.50 MAX 0.35 MIN 0.20 MAX 0.08 MIN 10° 5° 0° SEATING PLANE 0.55 0.45 0.35 0.60 BSC 11-01-2010-A 1.30 1.15 0.90 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 103. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 104. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. B | Page 32 of 34 012407-A 4.00 (0.1574) 3.80 (0.1497) Data Sheet ADA4622-1/ADA4622-2 1.84 1.74 1.64 3.10 3.00 SQ 2.90 0.50 BSC 8 5 PIN 1 INDEX AREA 1.55 1.45 1.35 EXPOSED PAD 0.50 0.40 0.30 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF SIDE VIEW SEATING PLANE PIN 1 INDICATOR (R 0.15) BOTTOM VIEW 0.30 0.25 0.20 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 05-11-2016-A 0.80 0.75 0.70 1 4 TOP VIEW COMPLIANT TO JEDEC STANDARDS MO-229-WEED-4 Figure 105. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-13) Dimensions shown in millimeters 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 106. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. B | Page 33 of 34 0.80 0.55 0.40 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 ADA4622-1/ADA4622-2 Data Sheet ORDERING GUIDE Model1 ADA4622-1ARJZ-R2 ADA4622-1ARJZ-R7 ADA4622-1ARJZ-RL ADA4622-1ARZ ADA4622-1ARZ-R7 ADA4622-1ARZ-RL ADA4622-1BRZ ADA4622-1BRZ-R7 ADA4622-1BRZ-RL ADA4622-2ACPZ-R7 ADA4622-2ACPZ-RL ADA4622-2ARMZ ADA4622-2ARMZ-R7 ADA4622-2ARMZ-RL ADA4622-2ARZ ADA4622-2ARZ-R7 ADA4622-2ARZ-RL ADA4622-2BRZ ADA4622-2BRZ-R7 ADA4622-2BRZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] Z = RoHS Compliant Part. ©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13502-0-2/17(B) Rev. B | Page 34 of 34 Package Option RJ-5 RJ-5 RJ-5 R-8 R-8 R-8 R-8 R-8 R-8 CP-8-13 CP-8-13 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 Branding A3J A3J A3J A3D A3D A3D A3D A3D