HCPL-3000 Power Bipolar Transistor Base Drive Optocoupler Data Sheet Description Features The HCPL-3000 consists of a Silicon-doped GaAs LED optically coupled to an integrated circuit with a power output stage. This optocoupler is suited for driving power bipolar transistors and power Darlington devices used in motor control inverter applications. The high peak and steady state current capabilities of the output stage allow for direct interfacing to the power device without the need for an intermediate amplifier stage. With a CMR rating of 10 kV/µs this optocoupler readily rejects transients found in inverter applications. • High output current: IO2 (2.0 A Peak, 0.6 A continuous) IO1 (1.0 A Peak, 0.5 A continuous) • 10 kV/µs minimum Common Mode Rejection (CMR) at VCM = 600 V • Wide VCC range (5.4 to 13 volts) • 2 µs typical propagation delay • Recognized under UL 1577 for dielectric withstand proof test voltage of 5000 vac, 1 minute The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the base of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current to drive the base of a power bipolar device. Applications • • • • Isolated bipolar transistor base drive AC and DC motor drives General purpose industrial inverters Uninterruptable power supply Functional Diagram HCPL-3000 ANODE 1 8 VCC CATHODE 2 7 GND 6 VO2 5 VO1 Q2 3 Q1 4 TRUTH TABLE LED OUTPUT HIGH LEVEL ON OFF LOW LEVEL Q1 ON OFF Q2 OFF ON THE USE OF A 0.1µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO, CURRENT LIMITING RESISTORS ARE RECOMMENDED (SEE FIGURE 1, NOTE 2, AND NOTE 7). CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Schematic I CC V CC 8 1 ANODE IF GND + CATHODE 7 Q2 I O2 - 6 Q1 VO2 2 I O1 5 VO1 Ordering Information HCPL-3000 is UL Recognized with 5000 Vrms for 1 minute per UL1577. Option Part Number HCPL-3000 RoHS Compliant -000E -300E -500E Package 300 mil DIP-8 Surface Mount Gull Wing Tape & Reel X X X X X Quantity 50 per tube 50 per tube 1000 per reel To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: HCPL-3000-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging and RoHS compliant. Example 2: HCPL-3000-000E to order product of 300 mil DIP package in Tube packaging and RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use ‘–XXXE.’ 2 Outline Drawing 0.65 (0.026) 1.05 (0.040) 8 0.90 (0.035) 1.50 (0.059) 7 6 0° 13° 5 TYPE NUMBER 0.16 (0.006) 0.36 (0.014) A XXXX DATE CODE 6.00 (0.236) 7.00 (0.276) YYWW 7.32 (0.288) 7.92 (0.312) 0° 13° 1 2 3 4 HCPL-3000 ANODE 1 CATHODE 2 8 VCC 7 GND 6 V O2 5 V O1 9.16 (0.361) 10.16 (0.400) 0.50 (0.020) TYP 3.00 (0.118) 4.00 (0.157) Q2 3 Q1 2.90 (0.114) 3.90 (0.154) 2.55 (0.100) 3.55 (0.140) 0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110) Regulatory Information The HCPL-3000 has been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. Demonstrated ESD Performance Human Body Model: MIL-STD883 Method 3015.7: Class 2 Machine Model: EIAJ IC-121 1988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V 3 4 Insulation and Safety Related Specifications Parameter Symbol Value Units Min. External Air Gap (External Clearance) L(IO1) 6.0 mm Shortest distance measured through air, between two conductive leads, input to output Min. External Tracking Path (External Creepage) L(IO2) 6.0 mm Shortest distance path measured along outside surface of optocoupler body between the input and output leads 0.15 mm Through insulation distance conductor to conductor inside the optocoupler cavity Min. Internal Plastic Gap (Internal Clearance) Conditions Absolute Maximum Ratings Parameter Symbol Min. Max. Unit Storage Temperature TS -55 125 °C Operating Temperature TA -20 80 °C Input Continuous Current IF 25 mA Reverse Voltage VR 6 V Supply Voltage VCC 18 V Output 1 IO1 0.5 A 1.0 A Continuous Current Peak Current Output 2 Voltage VO1 18 V Continuous Current IO2 0.6 A 2.0 A Peak Current Conditions Fig. Note 9 1 10,11 1 TA = 25°C Pulse Width < 5 µs, Duty cycle = 1% Pulse Width < 5 µs, Duty cycle = 1% 1 10,11,12 1 12 1 Output Power Dissipation PO 500 mW 10 1 Total Power Dissipation PT 550 mW 11 1 Lead Solder Temperature 260°C for 10 s, 1.0 mm below seating plane Recommended Operating Conditions Parameter Symbol Min. Max. Units VCC 5.4 13 V Input Current (ON) IF(ON) 8* 20 mA Input Current (OFF) IF(OFF) - 0.2 mA TA -20 80 °C Power Supply Voltage Operating Temperature *The initial switching threshold is 5 mA or less. Recommended Protection for Output Transistors During switching transitions, the output transistors Q1 and Q2 of the HCPL-3000 can conduct 4 large amounts of current. Figure 1 describes a recommended circuit design showing current limiting resistors R1 and R2 which are necessary in order to prevent damage to the output transistors Q1 and Q2 (see Note 7). A bypass capacitor C1 is also recommended to reduce power supply noise. HCPL-3000 +5 V 8 240 Ω 1 CONTROL INPUT VCC (+ 5.4 V + 13 V) C1 7 POWER TRANSISTOR MODULE Q2 I O1 6 TTL OR LSTTL + HVDC R2 2 5 Q1 R1 1 TOTEM POLE OUTPUT GATE 3-PHASE AC R1 = 5 - 250 Ω R2 = 1 - 2 Ω BYPASS CAPACITOR C1 = 0.1 µF - HVDC Figure 1. Recommended output transistor protection and typical application circuit. Electrical Specifications Over recommended temperature (TA = -20°C to +80°C) unless otherwise specified. Parameter Input Forward Voltage Sym. VF Input Reverse Current Input Capacitance Output 1 Output 2 Supply Current Low Level Voltage Leakage Current High Level Voltage Low Level Voltage Leakage Current High Level Low Level Low to High IFLH Threshold Input Current 5 IR CIN Min. 0.6 - Typ. 1.1 0.9 30 Max. 1.4 10 250 Units V V µA pF Test Conditions IF = 5 mA, TA = 25°C IF = 0.2 mA, TA = 25°C VR = 3 V, TA = 25°C VF = 0 V, f = 1 kHz, TA = 25°C VCC = 6 V, IO1 = 0.4 A, RL2 = 10 Ω, IF = 5 mA VCC = VO1 = 13 V, VO2 = 0 V, IF = 0 mA VCC = 6 V, IO2 = -0.4 A IF = 5 mA, VO1 = 6 V VCC = 6 V, IO2 = 0.5 A, IF = 0 mA VCC = 13 V, IF = 5 mA, VO2 = 13 V Fig. 13 Note VO1L - 0.2 0.4 V 2, 16, 17 4 2 IO1L - - 200 µA VO2H 4.5 5.0 - V 3, 18, 19 20, 21 5 2 VO2L - 0.2 0.4 V IO2L - - 200 µA ICCH - 9 13 mA TA = 25°C 22 2 ICCL - 11 17 15 VCC = 6 V, IF = 5 mA TA = 25°C mA 23 - - 20 0.3 1.5 3.0 mA TA = 25°C 0.2 - 5.0 mA VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω VCC = 6 V, IF = 0 mA 6, 14, 15 3 Switching Specifications (TA = 25°C) Parameter Propagation Delay Time to High Output Level Propagation Delay Time to Low Output Level Rise Time Fall Time Output High Level Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity Sym. tPLH Min. - Typ. 2 Max. 5 Units µs Test Conditions VCC = 6 V, IF = 5 mA, RL1 = 5 Ω, RL2 = 10 Ω Fig. 7, 24, 25 Note 2, 6 tPHL - 2 5 tr tf |CMH| 10 0.2 0.1 - 1 1 - kV/µs 8 2 - - kV/µs VCM = 600 V Peak, IF = 5mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02H = 0.5 V VCM = 600 V Peak, IF = 0 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02L = 0.5 V |CML| 10 Package Characteristics Parameter Input-Output Momentary Withstand Voltage* Resistance (Input-Output) Capacitance (Input-Output) Sym. VISO Min. 5000 Typ. Max. Units V rms RI-O 5x1010 1011 – Ω CI-O – 1.2 – pF Test Conditions RH = 40% to 60%, t = 1 min., TA = 25°C VI-O = 500 V, TA = 25°C, RH = 40% to 60% f = 1 MHz Fig. Note 4, 5 4 4 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Application Note 1074, “Optocoupler Input-Output Endurance Voltage.” Notes: 1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11. 2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer characteristics. 3. IFLH represents the forward current when the output goes from low to high. 4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together. 5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by applying an insulation test voltage ≥ 6000 V rms for one second (leakage current detection limit, II-O ≤ 200 µA). 6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. R1 sets the base current (IO1 in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the device is turning off. For more applications and circuit design information see Application Note “Power Transistor Gate/Base Drive Optocouplers.” 6 HCPL-3000 HCPL-3000 VCC 1 8 GND 2 + VCC GND 2 R L2 3 6 IO1 3 VO1L Q1 + 5 4 6 + I O2 V O2 V O1 Figure 2. Test circuit for low level output voltage VO1L. Figure 3. Test circuit for high level output voltage VO2H. HCPL-3000 HCPL-3000 VCC + - VCC GND VCC 1 8 IF 2 – V O2H 5 VO1 1 7 Q2 – VO2 4 8 IF 7 Q2 Q1 VCC 1 VCC +- IF 8 VCC + - IF 7 2 6 3 GND Q2 7 Q2 3 VO2 Q1 4 Q1 IO1L 5 IO2L 6 V O2 4 5 VO1 VO1 Figure 5. Test circuit for leakage current IO2L. Figure 4. Test circuit for leakage current IO1L. HCPL-3000 IF SWEEP VCC 1 8 + V - CC GND 2 7 – VO2 RL2 Q2 3 + 6 VO2 Q1 4 RL1 5 VO1 Figure 6. Test circuit for threshold input current IFLH. HCPL-3000 IF V IN VCC 1 t r = t f = 0.01 µs Z o = 50 Ω SW GND 8 3 RL2 Q1 Q1 4 V CC – V O2 + V O2 5 V O1 VO2 5 R L2 6 V O2 + 7 Q2 B – 6 4 A 3 7 Q2 47 Ω GND 2 + V - CC 2 8 R L1 HCPL-3000 IF V CC 1 – + RL1 VCM VO1 V CM V CM 50% GND VIN WAVE FORM t PLH CMH , VO2 SW AT A, IF = 5 mA t PHL VO2H 90% ∆ VO2H 50% V02 WAVE FORM 10% CM L , VO2 tr Figure 7. Test circuit for tPLH, tPHL, tr and tf. 7 tf ∆ VO2L V O2L GND SW AT B, I F = 0 mA Figure 8. Test circuit for CMH and CML. + - 600 20 15 10 5 550 500 400 300 200 100 0 25 50 75 80 100 -20 0 AMBIENT TEMPERATURE TA (°C) 300 200 100 FORWARD CURRENT IF (mA) I02 MAX (CONTINUOUS) IS • DC DC (TA = 80°C) 0.2 0.1 0.2 1.0 2.0 10.0 0 50 50°C 100 25°C 0°C -20°C 50 20 10 5 0 0.5 1.0 1.5 2.0 2.5 3.0 1.0 0.9 0.8 4 6 8 10 0.5 VCC = 6 V LOW LEVEL OUTPUT 1 VOLTAGE V01L (V) 1.0 0.8 R L2 = 10 Ω T A= 25°C 0.1 14 Figure 14. Normalized low to high threshold input current vs. supply voltage. VCC = 6 V 0.2 12 SUPPLY VOLTAGE VCC (V) 0.4 1.2 100 1.1 3.5 Figure 13. Typical forward current vs. forward voltage. 1.6 1.4 80 TA = 25°C FORWARD VOLTAGE VF (V) OUTPUT 2 VOLTAGE V02 (V) VCC = 6 V 75 0.7 20.0 Figure 12. Typical peak output 2 current vs. output 2 voltage (safe operating area Q2). 25 Figure 11. Maximum total power dissipation vs. ambient temperature. 1 5.0 -20 AMBIENT TEMPERATURE TA (°C) 2 VCC (MAX) 0.5 0 100 1.2 200 100 ms• 10 ms• 1 ms• 0.5 80 TA = 75°C I02 MAX (PULSE) 1.0 75 500 • SINGLE OSC. PULSE TA = 25°C 2.0 50 Figure 10. Maximum IC output power dissipation vs. ambient temperature. 10.0 PEAK OUTPUT 2 CURRENT I02P (A) 400 AMBIENT TEMPERATURE TA (°C) Figure 9. LED forward current vs. ambient temperature. 5.0 25 NORMALIZED THRESHOLD INPUT CURRENT -20 NORMALIZED THRESHOLD INPUT CURRENT 500 0 0 LOW LEVEL OUTPUT 1 VOLTAGE V 01L (V) LED FORWARD CURRENT IF (mA) 25 600 TOTAL POWER DISSIPATION Ptot (mW) (LED AND IC) IC OUTPUT POWER DISSIPATION Po (mW) 30 I F = 5 mA 0.05 0.02 0.01 R L2 = 10 Ω 0.4 I F = 5 mA 0.3 I 01 = 0.5 A 0.2 0.4 A 0.1 0.1 A 0.005 0.6 -25 0 25 50 75 100 AMBIENT TEMPERATURE TA (°C) Figure 15. Normalized low to high threshold input current vs. ambient temperature. 8 0.01 0.02 0.05 0.1 0.2 0.5 1.0 OUTPUT 1 CURRENT I01 (A) Figure 16. Typical low level output 1 voltage vs. output 1 current. 0 -25 0 25 50 75 100 AMBIENT TEMPERATURE T A (°C) Figure 17. Typical low level output 1 voltage vs. ambient temperature. 0.4 5.3 5.2 5.1 5.0 4.9 5.3 VCC = 6 V VCC = 6 V IF = 5 mA TA = 25°C IF = 0 mA LOW LEVEL OUTPUT 2 VOLTAGE V02L (V) 5.4 VCC = 6 V TA = 25°C IF = 5 mA HIGH LEVEL OUTPUT 2 VOLTAGE V02H (V) HIGH LEVEL OUTPUT 2 VOLTAGE V02L (V) 5.4 I O2 = -0.1 A 5.2 5.1 -0.4 A 5.0 -0.5 A 4.9 0.2 0.1 0.05 0.02 0.01 0.005 4.8 0 -0.1 -0.2 -0.3 -0.4 -0.5 4.8 -25 -0.6 0 Figure 18. Typical high level output 2 voltage vs. output 2 current. 0.01 100 0.4 0.3 I O2 = 0.6 A 0.5 A 0.2 0.1 0.1 A 25 50 75 12 10 25°C 8 80°C 6 6 8 10 12 14 Figure 22. Typical high level supply current vs. supply voltage. 5 VCC = 6 V IF = 5 mA PROPAGATION DELAY TIME t TA = 80°C t PHL 3 25°C -20°C 2 t PLH 1 0 5 10 15 3 t PLH 2 t PHL 1 -20°C 25°C TA = 80°C 0 4 ,t PHL PLH R L2 = 10 Ω 4 VCC = 6 V R L1 = 5 Ω R L2 = 10 Ω I F = 5 mA (µs) R L1 = 5 Ω 5 20 25 FORWARD CURRENT IF (mA) Figure 24. Typical propagation delay time vs. forward current. 1.0 TA = -20°C 14 12 25°C 10 80°C 8 0 -25 0 25 50 4 6 8 10 12 14 SUPPLY VOLTAGE VCC (V) SUPPLY VOLTAGE VCC (V) 6 0.5 6 4 AMBIENT TEMPERATURE TA (°C) Figure 21. Typical low level output 2 voltage vs. ambient temperature. 0.2 IF = 0 mA TA = -20°C 100 0.1 16 I F = 5 mA 4 0 0.05 Figure 20. Typical low level output 2 voltage vs. output 2 current. LOW LEVEL SUPPLY CURRENT I CCL (mA) HIGH LEVEL SUPPLY CURRENT ICCH (mA) IF = 0 mA 0 -25 0.02 OUTPUT 2 CURRENT I 02 (A) 14 VCC = 6 V LOW LEVEL OUTPUT 2 VOLTAGE V02L (V) 75 Figure 19. Typical high level output 2 voltage vs. ambient temperature. 0.5 PROPAGATION DELAY TIME tPHL , t PLH (µs) 50 AMBIENT TEMPERATURE TA (°C) OUTPUT 2 CURRENT I 02 (A) 9 25 75 100 AMBIENT TEMPERATURE TA (°C) Figure 25. Typical propagation delay time vs. ambient temperature. Figure 23. Typical low level supply current vs. supply voltage. For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2938EN AV01-0572EN July 7, 2007