AVAGO HCPL-3000 Isolated bipolar transistor base drive Datasheet

HCPL-3000
Power Bipolar Transistor Base Drive Optocoupler
Data Sheet
Description
Features
The HCPL-3000 consists of a Silicon-doped GaAs
LED optically coupled to an integrated circuit with a
power output stage. This optocoupler is suited for
driving power bipolar transistors and power
Darlington devices used in motor control inverter
applications. The high peak and steady state current
capabilities of the output stage allow for direct
interfacing to the power device without the need for
an intermediate amplifier stage. With a CMR rating
of 10 kV/µs this optocoupler readily rejects
transients found in inverter applications.
• High output current:
IO2 (2.0 A Peak, 0.6 A continuous)
IO1 (1.0 A Peak, 0.5 A continuous)
• 10 kV/µs minimum Common Mode Rejection (CMR) at
VCM = 600 V
• Wide VCC range (5.4 to 13 volts)
• 2 µs typical propagation delay
• Recognized under UL 1577 for dielectric withstand proof
test voltage of 5000 vac, 1 minute
The LED controls the state of the output stage.
Transistor Q2 in the output stage is on with the LED
off, allowing the base of the power device to be held
low. Turning on the LED turns off transistor Q2 and
switches on transistor Q1 in the output stage which
provides current to drive the base of a power bipolar
device.
Applications
•
•
•
•
Isolated bipolar transistor base drive
AC and DC motor drives
General purpose industrial inverters
Uninterruptable power supply
Functional Diagram
HCPL-3000
ANODE
1
8
VCC
CATHODE
2
7
GND
6
VO2
5
VO1
Q2
3
Q1
4
TRUTH TABLE
LED
OUTPUT
HIGH LEVEL
ON
OFF
LOW LEVEL
Q1
ON
OFF
Q2
OFF
ON
THE USE OF A 0.1µF BYPASS
CAPACITOR CONNECTED BETWEEN
PINS 8 AND 7 IS RECOMMENDED.
ALSO, CURRENT LIMITING RESISTORS
ARE RECOMMENDED (SEE FIGURE 1,
NOTE 2, AND NOTE 7).
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Schematic
I CC
V CC
8
1
ANODE
IF
GND
+
CATHODE
7
Q2
I O2
-
6
Q1
VO2
2
I O1
5
VO1
Ordering Information
HCPL-3000 is UL Recognized with 5000 Vrms for 1 minute per UL1577.
Option
Part
Number
HCPL-3000
RoHS Compliant
-000E
-300E
-500E
Package
300 mil DIP-8
Surface
Mount
Gull
Wing
Tape
& Reel
X
X
X
X
X
Quantity
50 per tube
50 per tube
1000 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
HCPL-3000-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging and
RoHS compliant.
Example 2:
HCPL-3000-000E to order product of 300 mil DIP package in Tube packaging and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and
RoHS compliant will use ‘–XXXE.’
2
Outline Drawing
0.65 (0.026)
1.05 (0.040)
8
0.90 (0.035)
1.50 (0.059)
7
6
0°
13°
5
TYPE
NUMBER
0.16 (0.006)
0.36 (0.014)
A XXXX
DATE
CODE
6.00 (0.236)
7.00 (0.276)
YYWW
7.32 (0.288)
7.92 (0.312)
0°
13°
1
2
3
4
HCPL-3000
ANODE
1
CATHODE
2
8
VCC
7
GND
6
V O2
5
V O1
9.16 (0.361)
10.16 (0.400)
0.50
(0.020)
TYP
3.00 (0.118)
4.00 (0.157)
Q2
3
Q1
2.90 (0.114)
3.90 (0.154)
2.55 (0.100)
3.55 (0.140)
0.40 (0.016)
0.60 (0.024)
2.29 (0.090)
2.79 (0.110)
Regulatory Information
The HCPL-3000 has been
approved by the following
organizations:
UL
Recognized under UL 1577,
Component Recognition Program,
File E55361.
Demonstrated ESD Performance
Human Body Model: MIL-STD883 Method 3015.7: Class 2
Machine Model: EIAJ IC-121
1988 (1988.3.28 Version 2),
Test Method 20, Condition C:
1200 V
3
4
Insulation and Safety Related Specifications
Parameter
Symbol
Value
Units
Min. External Air Gap
(External Clearance)
L(IO1)
6.0
mm
Shortest distance measured through air, between
two conductive leads, input to output
Min. External Tracking
Path (External Creepage)
L(IO2)
6.0
mm
Shortest distance path measured along outside surface
of optocoupler body between the input and output leads
0.15
mm
Through insulation distance conductor to conductor
inside the optocoupler cavity
Min. Internal Plastic
Gap (Internal Clearance)
Conditions
Absolute Maximum Ratings
Parameter
Symbol
Min.
Max.
Unit
Storage Temperature
TS
-55
125
°C
Operating Temperature
TA
-20
80
°C
Input
Continuous Current
IF
25
mA
Reverse Voltage
VR
6
V
Supply Voltage
VCC
18
V
Output 1
IO1
0.5
A
1.0
A
Continuous Current
Peak Current
Output 2
Voltage
VO1
18
V
Continuous Current
IO2
0.6
A
2.0
A
Peak Current
Conditions
Fig.
Note
9
1
10,11
1
TA = 25°C
Pulse Width < 5 µs,
Duty cycle = 1%
Pulse Width < 5 µs,
Duty cycle = 1%
1
10,11,12
1
12
1
Output Power Dissipation
PO
500
mW
10
1
Total Power Dissipation
PT
550
mW
11
1
Lead Solder Temperature
260°C for 10 s, 1.0 mm below seating plane
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Units
VCC
5.4
13
V
Input Current (ON)
IF(ON)
8*
20
mA
Input Current (OFF)
IF(OFF)
-
0.2
mA
TA
-20
80
°C
Power Supply Voltage
Operating Temperature
*The initial switching threshold is 5 mA or less.
Recommended Protection for
Output Transistors
During switching transitions, the
output transistors Q1 and Q2 of
the HCPL-3000 can conduct
4
large amounts of current. Figure
1 describes a recommended
circuit design showing current
limiting resistors R1 and R2
which are necessary in order to
prevent damage to the output
transistors Q1 and Q2 (see Note
7). A bypass capacitor C1 is also
recommended to reduce power
supply noise.
HCPL-3000
+5 V
8
240 Ω
1
CONTROL
INPUT
VCC (+ 5.4 V + 13 V)
C1
7
POWER TRANSISTOR
MODULE
Q2
I O1
6
TTL
OR
LSTTL
+ HVDC
R2
2
5
Q1
R1
1
TOTEM
POLE
OUTPUT
GATE
3-PHASE
AC
R1 = 5 - 250 Ω
R2 = 1 - 2 Ω
BYPASS CAPACITOR C1 = 0.1 µF
- HVDC
Figure 1. Recommended output transistor protection and typical application circuit.
Electrical Specifications
Over recommended temperature (TA = -20°C to +80°C) unless otherwise specified.
Parameter
Input Forward Voltage
Sym.
VF
Input Reverse Current
Input Capacitance
Output 1
Output 2
Supply
Current
Low Level
Voltage
Leakage
Current
High Level
Voltage
Low Level
Voltage
Leakage
Current
High Level
Low Level
Low to High IFLH
Threshold Input
Current
5
IR
CIN
Min.
0.6
-
Typ.
1.1
0.9
30
Max.
1.4
10
250
Units
V
V
µA
pF
Test Conditions
IF = 5 mA, TA = 25°C
IF = 0.2 mA, TA = 25°C
VR = 3 V, TA = 25°C
VF = 0 V, f = 1 kHz,
TA = 25°C
VCC = 6 V, IO1 = 0.4 A,
RL2 = 10 Ω, IF = 5 mA
VCC = VO1 = 13 V, VO2 = 0 V,
IF = 0 mA
VCC = 6 V, IO2 = -0.4 A
IF = 5 mA, VO1 = 6 V
VCC = 6 V, IO2 = 0.5 A,
IF = 0 mA
VCC = 13 V, IF = 5 mA,
VO2 = 13 V
Fig.
13
Note
VO1L
-
0.2
0.4
V
2, 16,
17
4
2
IO1L
-
-
200
µA
VO2H
4.5
5.0
-
V
3, 18,
19
20,
21
5
2
VO2L
-
0.2
0.4
V
IO2L
-
-
200
µA
ICCH
-
9
13
mA
TA = 25°C
22
2
ICCL
-
11
17
15
VCC = 6 V, IF = 5 mA
TA = 25°C
mA
23
-
-
20
0.3
1.5
3.0
mA
TA = 25°C
0.2
-
5.0
mA
VCC = 6 V, RL1 = 5 Ω,
RL2 = 10 Ω
VCC = 6 V, IF = 0 mA
6, 14,
15
3
Switching Specifications (TA = 25°C)
Parameter
Propagation Delay
Time to High Output
Level
Propagation Delay Time
to Low Output Level
Rise Time
Fall Time
Output High Level
Common Mode
Transient Immunity
Output Low Level
Common Mode
Transient Immunity
Sym.
tPLH
Min.
-
Typ.
2
Max.
5
Units
µs
Test Conditions
VCC = 6 V, IF = 5 mA,
RL1 = 5 Ω, RL2 = 10 Ω
Fig.
7,
24,
25
Note
2, 6
tPHL
-
2
5
tr
tf
|CMH|
10
0.2
0.1
-
1
1
-
kV/µs
8
2
-
-
kV/µs
VCM = 600 V Peak,
IF = 5mA, RL1 = 470 Ω,
RL2 = 1 kΩ, ∆V02H = 0.5 V
VCM = 600 V Peak,
IF = 0 mA, RL1 = 470 Ω,
RL2 = 1 kΩ, ∆V02L = 0.5 V
|CML|
10
Package Characteristics
Parameter
Input-Output Momentary
Withstand Voltage*
Resistance
(Input-Output)
Capacitance
(Input-Output)
Sym.
VISO
Min.
5000
Typ.
Max.
Units
V rms
RI-O
5x1010
1011
–
Ω
CI-O
–
1.2
–
pF
Test Conditions
RH = 40% to 60%,
t = 1 min., TA = 25°C
VI-O = 500 V, TA = 25°C,
RH = 40% to 60%
f = 1 MHz
Fig.
Note
4, 5
4
4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage
rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level
safety specification, or Avago Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”
Notes:
1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11.
2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer
characteristics.
3. IFLH represents the forward current when the output goes from low to high.
4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together.
5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by
applying an insulation test voltage ≥ 6000 V rms for one second (leakage current detection limit, II-O ≤ 200 µA).
6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse.
7. R1 sets the base current (IO1 in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the
device is turning off. For more applications and circuit design information see Application Note “Power Transistor Gate/Base
Drive Optocouplers.”
6
HCPL-3000
HCPL-3000
VCC
1
8
GND
2
+ VCC
GND
2
R L2
3
6
IO1
3
VO1L
Q1
+
5
4
6
+
I O2
V O2
V O1
Figure 2. Test circuit for low level output voltage VO1L.
Figure 3. Test circuit for high level output voltage VO2H.
HCPL-3000
HCPL-3000
VCC
+
-
VCC
GND
VCC
1
8
IF
2
–
V O2H
5
VO1
1
7
Q2
–
VO2
4
8
IF
7
Q2
Q1
VCC
1
VCC +-
IF
8
VCC +
-
IF
7
2
6
3
GND
Q2
7
Q2
3
VO2
Q1
4
Q1
IO1L
5
IO2L
6
V O2
4
5
VO1
VO1
Figure 5. Test circuit for leakage current IO2L.
Figure 4. Test circuit for leakage current IO1L.
HCPL-3000
IF
SWEEP
VCC
1
8
+ V
- CC
GND
2
7
–
VO2
RL2
Q2
3
+
6
VO2
Q1
4
RL1
5
VO1
Figure 6. Test circuit for threshold input current IFLH.
HCPL-3000
IF
V IN
VCC
1
t r = t f = 0.01 µs
Z o = 50 Ω
SW
GND
8
3
RL2
Q1
Q1
4
V CC
–
V O2
+
V O2
5
V O1
VO2
5
R L2
6
V O2
+
7
Q2
B
–
6
4
A
3
7
Q2
47 Ω
GND
2
+ V
- CC
2
8
R L1
HCPL-3000
IF
V CC
1
–
+
RL1
VCM
VO1
V CM
V CM
50%
GND
VIN WAVE FORM
t PLH
CMH , VO2
SW AT A, IF = 5 mA
t PHL
VO2H
90%
∆ VO2H
50%
V02 WAVE FORM
10%
CM L , VO2
tr
Figure 7. Test circuit for tPLH, tPHL, tr and tf.
7
tf
∆ VO2L
V O2L
GND
SW AT B, I F = 0 mA
Figure 8. Test circuit for CMH and CML.
+
-
600
20
15
10
5
550
500
400
300
200
100
0
25
50
75
80
100
-20
0
AMBIENT TEMPERATURE TA (°C)
300
200
100
FORWARD CURRENT IF (mA)
I02 MAX (CONTINUOUS)
IS •
DC
DC (TA = 80°C)
0.2
0.1
0.2
1.0
2.0
10.0
0
50
50°C
100
25°C
0°C
-20°C
50
20
10
5
0
0.5
1.0
1.5
2.0
2.5
3.0
1.0
0.9
0.8
4
6
8
10
0.5
VCC = 6 V
LOW LEVEL OUTPUT 1 VOLTAGE V01L (V)
1.0
0.8
R L2 = 10 Ω
T A= 25°C
0.1
14
Figure 14. Normalized low to high threshold
input current vs. supply voltage.
VCC = 6 V
0.2
12
SUPPLY VOLTAGE VCC (V)
0.4
1.2
100
1.1
3.5
Figure 13. Typical forward current vs. forward
voltage.
1.6
1.4
80
TA = 25°C
FORWARD VOLTAGE VF (V)
OUTPUT 2 VOLTAGE V02 (V)
VCC = 6 V
75
0.7
20.0
Figure 12. Typical peak output 2 current vs.
output 2 voltage (safe operating area Q2).
25
Figure 11. Maximum total power dissipation
vs. ambient temperature.
1
5.0
-20
AMBIENT TEMPERATURE TA (°C)
2
VCC (MAX)
0.5
0
100
1.2
200
100 ms•
10 ms• 1 ms•
0.5
80
TA = 75°C
I02 MAX (PULSE)
1.0
75
500
• SINGLE OSC.
PULSE
TA = 25°C
2.0
50
Figure 10. Maximum IC output power
dissipation vs. ambient temperature.
10.0
PEAK OUTPUT 2 CURRENT I02P (A)
400
AMBIENT TEMPERATURE TA (°C)
Figure 9. LED forward current vs. ambient
temperature.
5.0
25
NORMALIZED THRESHOLD INPUT CURRENT
-20
NORMALIZED THRESHOLD INPUT CURRENT
500
0
0
LOW LEVEL OUTPUT 1 VOLTAGE V 01L (V)
LED FORWARD CURRENT IF (mA)
25
600
TOTAL POWER DISSIPATION Ptot (mW)
(LED AND IC)
IC OUTPUT POWER DISSIPATION Po (mW)
30
I F = 5 mA
0.05
0.02
0.01
R L2 = 10 Ω
0.4
I F = 5 mA
0.3
I 01 = 0.5 A
0.2
0.4 A
0.1
0.1 A
0.005
0.6
-25
0
25
50
75
100
AMBIENT TEMPERATURE TA (°C)
Figure 15. Normalized low to high threshold
input current vs. ambient temperature.
8
0.01
0.02
0.05
0.1
0.2
0.5
1.0
OUTPUT 1 CURRENT I01 (A)
Figure 16. Typical low level output 1 voltage
vs. output 1 current.
0
-25
0
25
50
75
100
AMBIENT TEMPERATURE T A (°C)
Figure 17. Typical low level output 1 voltage
vs. ambient temperature.
0.4
5.3
5.2
5.1
5.0
4.9
5.3
VCC = 6 V
VCC = 6 V
IF = 5 mA
TA = 25°C
IF = 0 mA
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
5.4
VCC = 6 V
TA = 25°C
IF = 5 mA
HIGH LEVEL OUTPUT 2 VOLTAGE V02H (V)
HIGH LEVEL OUTPUT 2 VOLTAGE V02L (V)
5.4
I O2 = -0.1 A
5.2
5.1
-0.4 A
5.0
-0.5 A
4.9
0.2
0.1
0.05
0.02
0.01
0.005
4.8
0
-0.1
-0.2
-0.3
-0.4
-0.5
4.8
-25
-0.6
0
Figure 18. Typical high level output 2 voltage
vs. output 2 current.
0.01
100
0.4
0.3
I O2 = 0.6 A
0.5 A
0.2
0.1
0.1 A
25
50
75
12
10
25°C
8
80°C
6
6
8
10
12
14
Figure 22. Typical high level supply current
vs. supply voltage.
5
VCC = 6 V
IF = 5 mA
PROPAGATION DELAY TIME t
TA = 80°C
t PHL
3
25°C
-20°C
2
t PLH
1
0
5
10
15
3
t PLH
2
t PHL
1
-20°C
25°C
TA = 80°C
0
4
,t
PHL PLH
R L2 = 10 Ω
4
VCC = 6 V
R L1 = 5 Ω
R L2 = 10 Ω
I F = 5 mA
(µs)
R L1 = 5 Ω
5
20
25
FORWARD CURRENT IF (mA)
Figure 24. Typical propagation delay time vs.
forward current.
1.0
TA = -20°C
14
12
25°C
10
80°C
8
0
-25
0
25
50
4
6
8
10
12
14
SUPPLY VOLTAGE VCC (V)
SUPPLY VOLTAGE VCC (V)
6
0.5
6
4
AMBIENT TEMPERATURE TA (°C)
Figure 21. Typical low level output 2 voltage
vs. ambient temperature.
0.2
IF = 0 mA
TA = -20°C
100
0.1
16
I F = 5 mA
4
0
0.05
Figure 20. Typical low level output 2 voltage
vs. output 2 current.
LOW LEVEL SUPPLY CURRENT I CCL (mA)
HIGH LEVEL SUPPLY CURRENT ICCH (mA)
IF = 0 mA
0
-25
0.02
OUTPUT 2 CURRENT I 02 (A)
14
VCC = 6 V
LOW LEVEL OUTPUT 2 VOLTAGE V02L (V)
75
Figure 19. Typical high level output 2 voltage
vs. ambient temperature.
0.5
PROPAGATION DELAY TIME tPHL , t PLH (µs)
50
AMBIENT TEMPERATURE TA (°C)
OUTPUT 2 CURRENT I 02 (A)
9
25
75
100
AMBIENT TEMPERATURE TA (°C)
Figure 25. Typical propagation delay time vs.
ambient temperature.
Figure 23. Typical low level supply current vs.
supply voltage.
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2938EN
AV01-0572EN July 7, 2007
Similar pages