IRF IRF7815PBF Synchronous mosfet for notebook processor power Datasheet

PD - 96284
IRF7815PbF
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 10V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 20V VGS Max. Gate Rating
VDSS
RDS(on) max
Qg (typ.)
150V 43m @VGS = 10V 25nC
:
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
150
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
4.1
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
2.5
ID @ TA = 25°C
ID @ TA = 70°C
f
f
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
V
5.1
c
PD @TA = 70°C
Units
A
41
W
1.6
W/°C
0.02
-55 to + 150
°C
Thermal Resistance
Parameter
RθJL
Junction-to-Drain Lead
RθJA
Junction-to-Ambient
Notes  through
www.irf.com
f
g
Typ.
Max.
–––
20
–––
50
Units
°C/W
are on page 9
1
12/01/09
IRF7815PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
∆ΒVDSS/∆TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
150
–––
–––
0.17
–––
–––
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
RDS(on)
VGS(th)
∆VGS(th)
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
–––
3.0
34
4.0
43
5.0
mΩ
V
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-12.2
–––
–––
20
mV/°C
Gate-to-Source Forward Leakage
–––
–––
–––
–––
250
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
8.2
–––
–––
-100
–––
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
25
6.5
38
–––
Qgs2
Qgs
Post-Vth Gate-to-Source Charge
Gate-to-Source Charge
–––
–––
1.3
7.8
–––
–––
Qgd
Qgodr
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
7.4
9.8
–––
–––
8..7
10
–––
–––
IDSS
IGSS
gfs
Qg
Qgs1
Qsw
Qoss
Output Charge
–––
–––
RG
td(on)
Gate Resistance
Turn-On Delay Time
–––
–––
1.02
8.4
–––
–––
tr
td(off)
Rise Time
Turn-Off Delay Time
–––
–––
3.2
14
–––
–––
tf
Ciss
Fall Time
Input Capacitance
–––
–––
8.3
1647
–––
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
129
30
–––
–––
µA
nA
S
VGS = 10V, ID = 3.1A
e
VDS = VGS, ID = 100µA
VDS = 150V, VGS = 0V
VDS = 150V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 50V, ID = 3.1A
VDS = 75V
nC
VGS = 10V
ID = 3.1A
See Figs. 6, 16a & 16b
nC
Ω
VDS = 16V, VGS = 0V
VDD = 75V, VGS = 10V
ns
ID = 3.1A
e
RG = 1.8Ω
See Figs. 15a & 15b
VGS = 0V
pF
VDS = 75V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
Typ.
–––
–––
d
Units
mJ
A
Max.
529
3.1
Diode Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
–––
–––
41
VSD
trr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
–––
–––
–––
41
Qrr
Reverse Recovery Charge
–––
213
2
c
–––
–––
Conditions
MOSFET symbol
2.3
A
showing the
integral reverse
1.3
62
V
ns
320
nC
p-n junction diode.
TJ = 25°C, IS = 3.1A, VGS = 0V
TJ = 25°C, IF = 3.1A, VDD = 75V
di/dt = 300A/µs
e
e
www.irf.com
IRF7815PbF
100
10
BOTTOM
100
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
0.1
5.0V
0.1
1
10
BOTTOM
5.0V
1
≤60µs PULSE WIDTH
Tj = 150°C
≤60µs PULSE WIDTH Tj = 25°C
0.01
10
0.1
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
100
ID, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
VDS = 50V
≤60µs PULSE WIDTH
10
T J = 150°C
T J = 25°C
1
ID = 5.1A
VGS = 10V
2.0
1.5
1.0
0.5
0.1
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
7.5
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7815PbF
100000
VGS, Gate-to-Source Voltage (V)
ID= 3.1A
C oss = C ds + Cgd
10000
C, Capacitance (pF)
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + Cgd, C ds SHORTED
C rss = C gd
Ciss
1000
Coss
100
Crss
12.0
VDS= 120V
VDS= 75V
10.0
VDS= 30V
8.0
6.0
4.0
2.0
10
0.0
1
10
100
1000
0
VDS, Drain-to-Source Voltage (V)
15
20
25
30
35
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
ID, Drain-to-Source Current (A)
100
ISD, Reverse Drain Current (A)
10
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
T J = 150°C
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
10
10msec
1msec
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
1
0.1
0.3
0.5
0.7
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
5
0.9
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7815PbF
6
VGS(th), Gate threshold Voltage (V)
6.0
ID, Drain Current (A)
5
4
3
2
1
5.0
4.0
ID = 100uA
ID = 150uA
ID = 250uA
ID = 1.0mA
ID = 1.0A
3.0
0
2.0
25
50
75
100
125
150
-75 -50 -25
T A , Ambient Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 10. Threshold Voltage Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
100
Thermal Response ( Z thJA ) °C/W
D = 0.50
10
0.20
0.10
0.05
0.02
0.01
1
τJ
0.1
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci= τi/Ri
0.001
1E-005
0.0001
0.001
0.01
τA
2.8482
0.012383
16.4171
36.75014
20.8292
5.677801
9.8220
0.525832
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
τi (sec)
Ri (°C/W)
R4
R4
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
2500
100
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF7815PbF
ID = 5.1A
90
ID
0.30A
0.44A
BOTTOM 3.1A
TOP
2000
80
T J = 125°C
70
1500
60
1000
50
T J = 25°C
40
30
500
0
20
4
6
8
10
12
14
16
18
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy
Vs. Drain Current
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
tp
A
0.01Ω
I AS
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 15a. Switching Time Test Circuit
6
Fig 14b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off) tf
Fig 15b. Switching Time Waveforms
www.irf.com
IRF7815PbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 16b. Gate Charge Waveform
Fig 16a. Gate Charge Test Circuit
Driver Gate Drive
D.U.T
P.W.
+
ƒ
+
‚
-

*
RG
•
•
•
•
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
VDD
**
P.W.
Period
***
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Qgs2 Qgs1
Qgd
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
VDD
ISD
*** VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
www.irf.com
7
IRF7815PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
',0
%
$
+
>@
(
$
0,1
$ E
F
'
(
H
%$6,&
H
;
H
H
;E
>@
$
$
0,//,0(7(56
0$;
$
,1&+(6
0,1
0$;
%$6,&
%$6,&
%$6,&
+
.
/
\
ƒ
ƒ
ƒ
ƒ
.[ƒ
&
\
>@
;F
;/
& $ %
)22735,17
127(6
',0(16,21,1* 72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5) 026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'( <::
3 ',6*1$7(6/($')5((
352'8&7 237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF7815PbF
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 110mH, RG = 25Ω, IAS = 3.1A
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/2009
www.irf.com
9
Similar pages