DATA SHEET BZX55-C SERIES AXIAL LEAD ZENER DIODES VOLTAGE 2.4 to 47 Volts DO-35 500 mWatts POWER Unit: inch (mm) FEATURES .020(0.52)TYP. 1.02(26.0)MIN. • Planar Die construction • 500mW Power Dissipation • Ideally Suited for Automated Assembly Processes .153(3.9)MAX. • Both normal and Pb free product are available : Normal : 80~95% Sn, 5~20% Pb Pb free: 98.5% Sn above MECHANICAL DATA .079(2.0)MAX. 1.02(26.0)MIN. • Case: Molded glass DO-35 • Terminals: Solderable per MIL-STD-202, Method 208 • Polarity: See Diagram Below • Approx. Weight: 0.13 grams • Mounting Position: Any • Ordering information: Suffix :” -35” to order DO-35 Package • Packing information B - 2K per Bulk box T/R - 10K per 13" plastic Reel T/B - 5K per horiz. tape & Ammo box MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (TJ =25°C unless otherwise noted) Parameter Symbol Value Units PTOT 500 mW Junction Temperature TJ 175 O Storage Temperature Range TS -65 to +175 O Power Dissipation at Tamb = 25 O C C C Valid provided that leads at a distance of 8mm from case are kept at ambient temperature. Parameter Thermal Resistance Junction to Ambient Air Forward Voltage at IF = 100mA Symbol Min. Typ. Max. Units RthA -- -- 0.3 K/mW VF -- -- 1 V Valid provided that leads at a distance of 10 mm from case are kept at ambient temperature. STAD-SEP.14.2004 PAGE . 1 Nominal Zener Voltage Part Number V Z @ IZT Max Reverse Leakage Current Max. Zener Impedance Z ZT @ IZT Z ZK @ IZK IR @ V R marking co d e No m. V M i n. V M a x. V Ω mA Ω mA uA V BZX55-C2V4 2.4 2.28 2.56 85 5.0 600 1.0 50 1.0 55C 2V 4 BZX55-C2V7 2.7 2.50 2.90 85 5.0 600 1.0 10 1.0 55C 2V 7 BZX55-C3V0 3.0 2.80 3.20 85 5.0 600 1.0 4.0 1.0 55C 3V 0 BZX55-C3V3 3.3 3.10 3.50 85 5.0 600 1.0 2.0 1.0 55C 3V 3 BZX55-C3V6 3.6 3.40 3.80 85 5.0 600 1.0 2.0 1.0 55C 3V 6 BZX55-C3V9 3.9 3.70 4.10 85 5.0 600 1.0 2.0 1.0 55C 3V 9 BZX55-C4V3 4.3 4.00 4.60 75 5.0 600 1.0 1.0 1.0 55C 4V 3 BZX55-C4V7 4.7 4.40 5.00 60 5.0 600 1.0 0.5 1.0 55C 4V 7 BZX55-C5V1 5.1 4.80 5.40 35 5.0 550 1.0 0.1 1.0 55C 5V 1 BZX55-C5V6 5.6 5.20 6.00 25 5.0 450 1.0 0.1 1.0 55C 5V 6 BZX55-C6V2 6.2 5.80 6.60 10 5.0 200 1.0 0.1 2.0 55C 6V 2 BZX55-C6V8 6.8 6.40 7.20 8 5.0 150 1.0 0.1 3.0 55C 6V 8 BZX55-C7V5 7.5 7.00 7.90 7 5.0 50 1.0 0.1 5.0 55C 7V 5 BZX55-C8V2 8.2 7.70 8.70 7 5.0 50 1.0 0.1 6.0 55C 8V 2 BZX55-C9V1 9.1 8.50 9.60 10 5.0 50 1.0 0.1 7.0 55C 9V 1 BZX55-C10 10.0 9.40 10.60 15 5.0 70 1.0 0.1 7.5 55C 10V BZX55-C11 11.0 10.40 11.60 20 5.0 70 1.0 0.1 8.5 55C11V BZX55-C12 12.0 11.40 12.70 20 5.0 90 1.0 0.1 9.0 55C 12V BZX55-C13 13.0 12.40 14.10 26 5.0 110 1.0 0.1 10.0 55C 13V BZX55-C15 15.0 13.80 15.60 30 5.0 110 1.0 0.1 11.0 55C 15V BZX55-C16 16.0 15.30 17.10 40 5.0 170 1.0 0.1 12.0 55C 16V BZX55-C18 18.0 16.80 19.10 50 5.0 170 1.0 0.1 14.0 55C 18V BZX55-C20 20.0 18.80 21.20 55 5.0 220 1.0 0.1 15.0 55C 20V BZX55-C22 22.0 20.80 23.30 55 5.0 220 1.0 0.1 17.0 55C 22V BZX55-C24 24.0 22.80 25.60 80 5.0 220 1.0 0.1 18.0 55C 24V BZX55-C27 27.0 25.10 28.90 80 5.0 220 1.0 0.1 20.0 55C 27V BZX55-C30 30.0 28.00 32.00 80 5.0 220 1.0 0.1 22.0 55C 30V BZX55-C33 33.0 31.00 35.00 80 5.0 220 1.0 0.1 24.0 55C 33V BZX55-C36 36.0 34.00 38.00 80 5.0 220 1.0 0.1 27.0 55C 36V BZX55-C39 39.0 37.00 41.00 90 2.5 500 1.0 0.1 30.0 55C 39V BZX55-C43 43.0 40.00 46.00 90 2.5 600 1.0 0.1 33.0 55C 43V BZX55-C47 47.0 44.00 50.00 110 2.5 700 1.0 0.1 36.0 55C 47V STAD-SEP.14.2004 PAGE . 2 1.3 VZtn – RelativeVoltageChange 500 400 300 l l 200 100 0 5 10 TK VZ =10 x 10–4/K 8 x 10–4/K 6 x 10–4/K 1.1 4 x 10–4/K 2 x 10–4/K 0 1.0 –2 x 10–4/K –4 x 10–4/K 0.9 0.8 –60 20 15 l – Lead Length ( mm ) 500 400 300 200 100 0 40 80 120 160 200 Tamb – Ambient Temperature(°C ) 95 9602 60 120 180 240 Fig. 4 Typical Change of Working Voltage vs. Junction Temperature 600 0 0 Tj – Junction Temperature (°C ) 95 9599 Fig. 1 Thermal Resistance vs. Lead Length Ptot –Total Power Dissipation ( mW) 1.2 TL=constant 0 95 9611 15 10 5 I Z=5mA 0 –5 0 10 20 30 40 50 V Z – Z-Voltage ( V ) 95 9600 Fig. 2 Total Power Dissipation vs. Ambient Temperature Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage 1000 200 CD – Diode Capacitance ( pF ) VZ –VoltageChange( mV ) V Ztn=V Zt/V Z(25°C) TK VZ –Temperature Coefficient of VZ ( 10–4 /K) RthJA –Therm.Resist.Junction/ Ambient ( K/W) Typical Characteristics (Tamb = 25 °C unless otherwise specified) Tj =25°C 100 I Z=5mA 10 150 V R=2V Tj =25°C 100 1 50 0 0 95 9598 5 10 15 20 25 V Z – Z-Voltage ( V ) Fig. 3 Typical Change of Working Voltage under Operating Conditions at Tamb=25°C STAD-SEP.14.2004 0 95 9601 5 10 15 20 25 V Z – Z-Voltage ( V ) Fig. 6 Diode Capacitance vs. Z-Voltage PAGE . 3 50 10 40 IZ – Z-Current ( mA) I F – Forward Current ( mA) 100 Tj =25°C 1 0.1 30 20 10 0.01 0 0.001 0 0.2 0.4 0.6 0.8 15 1.0 V F – Forward Voltage ( V ) 95 9605 r Z – Differential Z-Resistance ( Ω ) IZ – Z-Current ( mA) Ptot=500mW Tamb=25°C 60 25 40 20 1000 I Z=1mA 100 0 5mA 10 10mA Tj =25°C 1 0 4 8 12 16 20 0 V Z – Z-Voltage ( V ) 95 9604 35 30 V Z – Z-Voltage ( V ) Fig. 9 Z-Current vs. Z-Voltage 100 80 20 95 9607 Fig. 7 Forward Current vs. Forward Voltage 5 10 15 20 25 V Z – Z-Voltage ( V ) 95 9606 Fig. 8 Z-Current vs. Z-Voltage Zthp –ThermalResistancefor PulseCond.(K/W) Ptot=500mW Tamb=25°C Fig. 10 Differential Z-Resistance vs. Z-Voltage 1000 tp/T=0.5 100 tp/T=0.2 Single Pulse 10 RthJA=300K/W T=Tjmax–Tamb tp/T=0.01 tp/T=0.1 tp/T=0.02 tp/T=0.05 1 10–1 95 9603 i ZM =(–VZ+(V Z2+4rzj x T/Zthp)1/2)/(2rzj) 100 101 102 tp – Pulse Length ( ms ) Fig. 11 Thermal Response STAD-SEP.14.2004 PAGE . 4