Hynix HMT112S6AFP6C-H8 204pin ddr3 sdram sodimm Datasheet

204pin DDR3 SDRAM SODIMMs
DDR3 SDRAM
Unbuffered SODIMMs
Based on 1Gb A version
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
** Contents are subject to change without prior notice.
Rev. 0.2 / Dec. 2008
1
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Revision History
Revision No.
History
Draft Date
Remark
0.01
Initial draft
Sep. 2007
preliminary
0.02
Added IDD, corrected typos
Mar. 2008
preliminary
0.03
Halogen-free added
May. 2008
preliminary
0.1
Initial Specification Release
May 2008
0.2
Added outline: DIMMs with thermal sensor.
Corrected typo on package ball feature.
Dec. 2008
Rev. 0.2 / Dec. 2008
2
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table of Contents
1. Description
1.1 Device Features and Ordering Information
1.1.1 Features
1.1.2 Ordering Information
1.2 Speed Grade & Key Parameters
1.3 Address Table
2. Pin Architecture
2.1 Pin Definition
2.2 Input/Output Functional Description
2.3 Pin Assignment
3. Functional Block Diagram
3.1 512MB, 64Mx64 Module(1Rank of x16)
3.2 1GB, 128Mx64 Module(2Rank of x16)
3.3 2GB, 256Mx64 Module(2Rank of x8)
4. Absolute Maximum Ratings
4.1 Absolute Maximum DC Ratings
4.2 Operating Temperature Range
5. AC & DC Operating Conditions
5.1 Recommended DC Operating Conditions
5.2 DC & AC Logic Input Levels
5.2.1 For Single-ended Signals
5.2.2 For Differential Signals
5.2.3 Differential Input Cross Point
5.3 Slew Rate Definition
5.3.1 For Ended Input Signals
5.3.2 For Differential Input Signals
5.4 DC & AC Output Buffer Levels
5.4.1 Single Ended DC & AC Output Levels
5.4.2 Differential DC & AC Output Levels
5.4.3 Single Ended Output Slew Rate
5.4.4 Differential Ended Output Slew Rate
5.5 Overshoot/Undershoot Specification
5.5.1 Address and Control Overshoot and Undershoot Specifications
5.5.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
5.6 Input/Output Capacitance & AC Parametrics
5.7 IDD Specifications & Measurement Conditions
6. Electrical Characteristics and AC Timing
6.1 Refresh Parameters by Device Density
6.2 DDR3 Standard speed bins and AC para
7. DIMM Outline Diagram
7.1 512MB, 64Mx64 Module(1Rank of x16)
7.2 1GB, 128Mx64 Module(2Rank of x16)
7.3 2GB, 256Mx64 Module(2Rank of x8)
Rev. 0.2 / Dec. 2008
3
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
1. Description
This Hynix unbuffered Small Outline Dual In-Line Memory Module (SODIMM) series consists of 1Gb A version. DDR3
SDRAMs in Fine Ball Grid Array (FBGA) packages on a 204 pin glass-epoxy substrate. This DDR3 Unbuffered SODIMM
series based on 1Gb A version provide a high performance 8 byte interface in 67.60mm width form factor of industry
standard. It is suitable for easy interchange and addition.
1.1 Device Features & Ordering Information
1.1.1 Features
• VDD=VDDQ=1.5V
• 8 banks
• VDDSPD=3.0V to 3.6V
• 8K refresh cycles /64ms
• Fully differential clock inputs (CK, /CK) operation
• Differential Data Strobe (DQS, /DQS)
• DDR3 SDRAM Package: JEDEC standard 78ball
FBGA(x4/x8), 96ball FBGA(x16)
• On chip DLL align DQ, DQS and /DQS transition with
CK transition
• Driver strength selected by EMRS
• Dynamic On Die Termination supported
• DM masks write data-in at the both rising and falling
edges of the data strobe
• Asynchronous RESET pin supported
• All addresses and control inputs except data, data
strobes and data masks latched on the rising edges of
the clock
• TDQS (Termination Data Strobe) supported (x8 only)
• Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11)
supported
• ZQ calibration supported
• Write Levelization supported
• Auto Self Refresh supported
• 8 bit pre-fetch
• Programmable additive latency 0, CL-1 and CL-2 supported
• Programmable CAS Write latency (CWL) = 5, 6, 7, 8
• Programmable burst length 4/8 with both nibble
sequential and interleave mode
• BL switch on the fly
Rev. 0.2 / Dec. 2008
4
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
1.1.2 Ordering Information
Density
Organization
# of
DRAMs
# of
ranks
Materials
HMT164S6AFP6C-S6/S5/G8/G7/H9/H8
512MB
64Mx64
4
1
Lead free
HMT164S6AFR6C-S6/S5/G8/G7/H9/H8
512MB
64Mx64
4
1
Halogen free
HMT112S6AFP6C-S6/S5/G8/G7/H9/H8
1GB
128Mx64
8
2
Lead free
HMT112S6AFR6C-S6/S5/G8/G7/H9/H8
1GB
128Mx64
8
2
Halogen free
HMT125S6AFP8C-S6/S5/G8/G7/H9/H8
2GB
256Mx64
16
2
Lead free
HMT125S6AFR8C-S6/S5/G8/G7/H9/H8
2GB
256Mx64
16
2
Halogen free
Part Name
Two types, with integrated thermal sensor and with no thermal sensor, exist in each configuration.
Rev. 0.2 / Dec. 2008
5
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
1.2 Speed Grade & Key Parameters
MT/S
DDR3-800
DDR3-1066
DDR3-1333
Unit
Grade
-S6
tCK (min)
-S5
-G8
2.5
-G7
-H9
1.875
-H8
1.5
ns
CAS Latency
6
5
8
7
9
8
tCK
tRCD (min)
15
12.5
15
13.125
13.5
12
ns
tRP (min)
15
12.5
15
13.125
13.5
12
ns
tRAS (min)
37.5
37.5
37.5
37.5
36
36
ns
tRC (min)
52.5
50
52.5
50.625
49.5
48
ns
CL-tRCD-tRP
6-6-6
5-5-5
8-8-8
7-7-7
9-9-9
8-8-8
tCK
1.3 Address Table
512MB
1GB
2GB
Organization
64M x 64
128M x 64
256M x 64
Refresh Method
8K/64ms
8K/64ms
8K/64ms
Row Address
A0-A12
A0-A12
A0-A13
Column Address
A0-A9
A0-A9
A0-A9
Bank Address
BA0-BA2
BA0-BA2
BA0-BA2
Page Size
2KB
2KB
1KB
# of Rank
1
2
2
# of Device
4
8
16
Rev. 0.2 / Dec. 2008
6
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
2. Pin Architecture
2.1 Pin Definition
Pin Name
Description
Pin Name
Description
CK[1:0]
Clock Inputs, positive line
2
DQ[63:0]
Data Input/Output
64
CK[1:0]
Clock Inputs, negative line
2
DM[7:0]
Data Masks
8
CKE[1:0]
Clock Enables
2
DQS[7:0]
Data strobes
8
RAS
Row Address Strobe
1
DQS[7:0]
Data strobes complement
8
CAS
Column Address Strobe
1
RESET
Reset pin
1
WE
Write Enable
1
TEST
Logic Analyzer specific test pin (No
1
connect on SODIMM)
S[1:0]
Chip Selects
2
EVENT
Address Inputs
14
Address Input/Autoprecharge
A[9:0], A11,
A[15:13]
A10/AP
Temperature event pin
1
VDD
Core and I/O power
18
1
VSS
Ground
52
Input/Output Reference
2
SPD and Temp sensor power
1
A12/BC
Address Input/Burst Stop
1
VREFDQ
BA[2:0]
SDRAM Bank Address
3
VREFCA
On-die termination control
2
VDDSPD
ODT[1:0]
SCL
Serial Presence Detect (SPD) Clock
1
input
Vtt
Termination voltage
2
SDA
SPD Data Input/Output
1
NC
Reserved for future use
2
SPD address
2
SA[1:0]
Rev. 0.2 / Dec. 2008
Total
204
7
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
2.2 Input/Output Functional Description
Symbol
Type
Polarity
Function
The system clock inputs. All address and command lines are sampled on the cross
CK0/CK0
CK1/CK1
Input
Cross point
point of the rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock.
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when
CKE[1:0]
Input
Active High
low. By deactivating the clocks, CKE low initiates the Power Down mode or the Self
Refresh mode.
Enables the associated DDR3 SDRAM command decoder when low and disables the
S[1:0]
Input
Active Low
command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank
1 is selected by S1.
RAS, CAS, WE
Input
Active Low
BA[2:0]
Input
-
ODT[1:0]
Input
Active High
When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define the operation to be executed by the SDRAM.
Selects which DDR3 SDRAM internal bank of eight is activated.
Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the
DDR3 SDRAM mode register.
During a Bank Activate command cycle, defines the row address when sampled at
the cross point of the rising edge of CK and falling edge of CK. During a Read or
Write command cycle, defines the column address when sampled at the cross point
of the rising edge of CK and falling edge of CK. In addition to the column address,
A[9:0], A10/AP,
A11, A12/BC,
A[15:13]
AP is used to invoke autoprecharge operation at the end of the burst read or write
Input
-
cycle. If AP is high, autoprecharge is selected and BA0-BAn defines the bank to be
precharged. If AP is low, autoprecharge is disabled. During a Precharge command
cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to
precharge. If AP is high, all banks will be precharged regardless of the state of BA0BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.
A12(BC) is sampled during READ and WRITE commands to determine if burst chop
(on-thefly) will be performed (HIGH, no burst chop; LOW, burst chopped)
DQ[63:0]
In/Out
-
DM[7:0]
Input
Active High
Data Input/Output pins.
The data write masks, associated with one data byte. In Write mode, DM operates
as a byte mask by allowing input data to be written if it is low but blocks the write
operation if it is high. In Read mode, DM lines have no effect.
The data strobes, associated with one data byte, sourced with data transfers. In
DQS[7:0],
DQS[7:0]
Write mode, the data strobe is sourced by the controller and is centered in the data
In/Out
Cross Point
window. In Read mode, the data strobe is sourced by the DDR3 SDRAMs and is sent
at the leading edge of the data window. DQS signals are complements, and timing is
relative to the crosspoint of respective DQS and DQS.
Rev. 0.2 / Dec. 2008
8
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Symbol
Type
VDD,VDDSPD,
VSS,
Supply
Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for
the module.
Supply
Reference voltage for SSTL15 inputs.
VREFDQ,
VREFCA
Polarity
Function
This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and
SDA
In/Out
SCL
Input
This signal is used to clock data into and out of the SPD EEPROM and Temp sensor.
SA[1:0]
Input
Address pins used to select the Serial Presence Detect and Temp sensor base
address.
TEST
In/Out
EVENT
Wire OR
Out
Active Low
RESET
In
Active Low
Temp sensor. A resistor must be connected from the SDA bus line to VDDSPD on the
system planar to act as a pull up.
Rev. 0.2 / Dec. 2008
The TEST pin is reserved for bus analysis tools and is not connected on normal
memory modules (SO-DIMMs).
The EVENT pin is reserved for use to flag critical module temperature. A resistor
may be connected from EVENT bus line to VDDSPD on the system planar to act as a
pullup.
This signal resets the DDR3 SDRAM
9
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
2.3 Pin Assignment
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
1
VREFDQ
2
VSS
53
DQ19
54
VSS
105
VDD
106
VDD
157
DQ42
158
DQ46
3
VSS
4
DQ4
55
VSS
56
DQ28
107 A10/AP 108
BA1
159
DQ43
160
DQ47
5
DQ0
6
DQ5
57
DQ24
58
DQ29
109
BA0
110
RAS
161
VSS
162
VSS
7
DQ1
8
VSS
59
DQ25
60
VSS
111
VDD
112
VDD
163
DQ48
164
DQ52
9
VSS
10
DQS0
61
VSS
62
DQS3
113
WE
114
S0
165
DQ49
166
DQ53
11
DM0
12
DQS0
63
DM3
64
DQS3
115
CAS
116
ODT0
167
VSS
168
VSS
13
VSS
14
VSS
65
VSS
66
VSS
117
VDD
118
VDD
169
DQS6
170
DM6
15
DQ2
16
DQ6
67
DQ26
68
DQ30
119
A132
120
ODT1
171
DQS6
172
VSS
17
DQ3
18
DQ7
69
DQ27
70
DQ31
121
S1
122
NC
173
VSS
174
DQ54
19
VSS
20
VSS
71
VSS
72
VSS
123
VDD
124
VDD
175
DQ50
176
DQ55
21
DQ8
22
DQ12
73
CKE0
74
CKE1
125
TEST
126 VREFCA 177
DQ51
178
VSS
23
DQ9
24
DQ13
75
VDD
76
VDD
127
VSS
128
VSS
179
VSS
180
DQ60
25
VSS
26
VSS
77
NC
78
A152
129
DQ32
130
DQ36
181
DQ56
182
DQ61
27
DQS1
28
DM1
79
BA2
80
A142
131
DQ33
132
DQ37
183
DQ57
184
VSS
29
DQS1
30
RESET
81
VDD
82
VDD
133
VSS
134
VSS
185
VSS
186
DQS7
31
VSS
32
VSS
83 A12/BC
84
A11
135
DQS4
136
DM4
187
DM7
188
DQS7
33
DQ10
34
DQ14
85
A9
86
A7
137
DQS4
138
VSS
189
VSS
190
VSS
35
DQ11
36
DQ15
87
VDD
88
VDD
139
VSS
140
DQ38
191
DQ58
192
DQ62
37
VSS
38
VSS
89
A8
90
A6
141
DQ34
142
DQ39
193
DQ59
194
DQ63
39
DQ16
40
DQ20
91
A5
92
A4
143
DQ35
144
VSS
195
VSS
196
VSS
41
DQ17
42
DQ21
93
VDD
94
VDD
145
VSS
146
DQ44
197
SA0
198
EVENT
43
VSS
44
VSS
95
A3
96
A2
147
DQ40
148
DQ45
199 VDDSPD 200
SDA
45
DQS2
46
DM2
97
A1
98
A0
149
DQ41
150
VSS
201
SA1
202
SCL
47
DQS2
48
VSS
99
VDD
100
VDD
151
VSS
152
DQS5
203
VTT
204
VTT
49
VSS
50
DQ22
101
CK0
102
CK1
153
DM5
154
DQS5
51
DQ18
52
DQ23
103
CK0
104
CK1
155
VSS
156
VSS
NC = No Connect; RFU = Reserved Future Use
1. TEST (pin 125) is reserved for bus analysis probes and is NC on normal memory modules.
2. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.
Rev. 0.2 / Dec. 2008
10
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
3. Functional Block Diagram
SPD/TS
VREFCA
VREFDQ
D0–D3
VDD
D0–D3
D0–D3
VSS
D0–D3, SPD, Temp sensor
CK0
D0–D3
CK0
D0–D3
Terminated at near
card edge
ODT1
NC
S1
NC
EVENT
Temp Sensor
RESET
D0-D3
D0
D1
D2
D3
Vtt
A[O:N]/BA[O:N]
ODT
Vtt
VDDSPD
CK1
A[O:N]/BA[O:N]
ODT
SDA
WP
CK1
240ohm
+/-1%
ODT
CKE
Address and Control Lines
A[O:N]/BA[O:N]
CK
CKE
(SPD)
Vtt
240ohm
+/-1%
D3
CK
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CKE
CK
CK
A[O:N]/BA[O:N]
ODT0
CK0
CKE0
WE
CK0
CK
WE
CAS
CAS
WE
ZQ
SCL
A0
A1
A2
SCL
SA0
SA1
240ohm
+/-1%
D2
WE
CK
CAS
ZQ
SDA
The SPD may be
integrated with the Temp
Sensor or may be
a separate component
EVENT
D1
WE
CAS
RAS
CS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
DQS6
DQS6
DM6
DQ [48:55]
DQS7
DQS7
DM7
DQ [56:63]
ZQ
SCL
Sensor
A0 Temp
(with SPD)
A1
A2
EVENT
SCL
SA0
SA1
240ohm
+/-1%
D0
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
DQS4
DQS4
DM4
DQ [32:39]
DQS5
DQS5
DM5
DQ [40:47]
ZQ
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
RAS
DQS2
DQS2
DM2
DQ [16:23]
DQS3
DQS3
DM3
DQ [24:31]
RAS
CS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
RAS
DQS0
DQS0
DM0
DQ [0:7]
DQS1
DQS1
DM1
DQ [8:15]
CAS
S0
RAS
3.1 512MB, 64Mx64 Module(1Rank of x16)
NOTES
1. DQ wiring may differ from that shown
however, DQ, DM, DQS, and DQS relationships are maintained as shown
Rank 0
Vtt
Vtt
VDD
Rev. 0.2 / Dec. 2008
11
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
ODT1
240ohm
+/-1%
SDA
The SPD may be
integrated with the Temp
Sensor or may be
a separate component
EVENT
ODT
CK
CKE
D4
SCL
A0
A1
A2
SCL
SA0
SA1
(SPD)
SDA
WP
Vtt
SPD/TS
VREFCA
VREFDQ
D0–D7
VDD
D0–D7
VSS
D0–D7, SPD, Temp sensor
D0–D7
CK0
D0–D3
CK1
D0–D7
CK0
D0–D3
CK1
D0–D7
EVENT
Temp Sensor
RESET
D0-D7
D4
V1
D0
V2
V2
D5
D1
V3
V3
D6
D2
V4
V4
D7
Vtt
A[O:N]/BA[O:N]
ODT
ODT
CK
CKE
CK
A[O:N]/BA[O:N]
240ohm
+/-1%
D7
WE
A[O:N]/BA[O:N]
ODT
CK
CKE
V1
CK
CKE
CK
ZQ
Vtt
VDDSPD
240ohm
+/-1%
D6
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CAS
CK
ZQ
WE
CAS
RAS
CS
240ohm
+/-1%
D5
WE
CAS
RAS
CS
ZQ
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
RAS
ODT
CK
D3
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
ODT
240ohm
+/-1%
A[O:N]/BA[O:N]
CK
CKE
CK
A[O:N]/BA[O:N]
240ohm
+/-1%
D2
ZQ
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
ZQ
CKE
CAS
RAS
CS
D1
WE
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CAS
DQS6
DQS6
DM6
DQ [48:55]
DQS7
DQS7
DM7
DQ [56:63]
RAS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
DQS4
DQS4
DM4
DQ [32:39]
DQS5
DQS5
DM5
DQ [40:47]
ZQ
WE
CK
CAS
RAS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
DQS2
DQS2
DM2
DQ [16:23]
DQS3
DQS3
DM3
DQ [24:31]
240ohm
+/-1%
D3
Vtt
WE
SCL
A0 Temp Sensor
(with SPD)
A1
A2
EVENT
SCL
SA0
SA1
A[O:N]/BA[O:N]
CK1
ZQ
CK
CAS
CK1
CKE1
S1
RAS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
ODT
CK
CKE
A[O:N]/BA[O:N]
240ohm
+/-1%
D0
CK
A[O:N]/BA[O:N]
ODT0
CK0
CKE0
WE
CK0
ZQ
WE
CAS
RAS
LDQS
LDQS
LDM
DQ [0:7]
UDQS
UDQS
UDM
DQ [8:15]
CS
DQS0
DQS0
DM0
DQ [0:7]
DQS1
DQS1
DM1
DQ [8:15]
CAS
S0
RAS
3.2 1GB, 128Mx64 Module(2Rank of x16)
Address and Control Lines
NOTES
1. DQ wiring may differ from that shown
however, DQ, DM, DQS, and DQS relationships are maintained as shown
Rank 0
Rank 1
Vtt
Vtt
Vtt
VDD
Rev. 0.2 / Dec. 2008
VDD
12
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
VDD
SCL
A0
A1
A2
(SPD)
V4
D0
EVENT
Rev. 0.2 / Dec. 2008
V9
D12
V8
D1
V5
D10
D5
V5
D2
V1
V3
Rank 0
Rank 1
D6
V7
V4
SDA
NOTES
1. DQ wiring may differ from that shown
however, DQ, DM, DQS, and DQS
relationships are maintained as shown
V1
V3
SDA
WP
SCL
A0 Temp Sensor
(with SPD)
A1
A2
EVENT
D3
V2
D11
D13
V6
V6
Vtt
V1
D7
D15
V7
V9
V8
D4
D14
DQS7
DQS7
DM7
DQ[56:43]
A[O:N]/BA[O:N]
ODT
DQS6
DQS6
DM6
DQ[48:55]
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CKE
CK
D7
WE
240ohm
+/-1%
DQS
DQS
DM
DQ [0:7]
ZQ
A[O:N]/BA[O:N]
ODT
CK
CKE
WE
D5
CK
CAS
CK
WE
240ohm
+/-1%
ZQ
Vtt
V2
D9
DQS4
DQS4
DM4
DQ[32:39]
A[O:N]/BA[O:N]
ODT
WE
CK
CAS
RAS
CS
CK
CKE
240ohm
+/-1%
D6
CAS
RAS
CS
ZQ
DQS
DQS
DM
DQ [0:7]
RAS
240ohm
+/-1%
D12
CAS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CAS
D13
ZQ
DQS
DQS
DM
DQ [0:7]
CS
A[O:N]/BA[O:N]
ODT
CK
CKE
240ohm
+/-1%
ZQ
DQS
DQS
DM
DQ [0:7]
RAS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CK
CAS
D15
Vtt
CS
A[O:N]/BA[O:N]
ODT
CK
CKE
WE
CK
CAS
WE
CAS
240ohm
+/-1%
ZQ
WE
RAS
CS
CS
RAS
RAS
CS
CS
A[O:N]/BA[O:N]
ODT
RAS
ODT
A[O:N]/BA[O:N]
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CKE
WE
240ohm
+/-1%
D14
DQS
DQS
DM
DQ [0:7]
D10
D8
SCL
SA0
SA1
ZQ
DQS
DQS
DM
DQ [0:7]
240ohm
+/-1%
The SPD may be
integrated with the Temp
Sensor or may be
a separate component
SCL
SA0
SA1
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CK
ZQ
CK
CAS
WE
WE
CAS
240ohm
+/-1%
240ohm
+/-1%
D4
DQS
DQS
DM
DQ [0:7]
D8
LDQS
LDQS
LDM
DQ [0:7]
ZQ
WE
ODT0
CK0
CK0
CKE0
CK
CKE
WE
CK
CAS
RAS
CS
CS
RAS
RAS
240ohm
+/-1%
ZQ
Cterm
Vtt
DQS
DQS
DM
DQ [0:7]
D9
CAS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
CAS
D2
240ohm
+/-1%
ZQ
VDD
Vtt
D3
LDQS
LDQS
LDM
DQ [0:7]
CS
A[O:N]/BA[O:N]
ODT
CK
CK
CKE
240ohm
+/-1%
ZQ
LDQS
LDQS
LDM
DQ [0:7]
RAS
ODT
A[O:N]/BA[O:N]
A[O:N]/BA[O:N]
ODT
CK
WE
CAS
CK
CKE
240ohm
+/-1%
D0
ZQ
S0
A[O:N]/BA[O:N]
CKE1
ODT1
WE
CK1
CK
WE
CK
CKE
240ohm
+/-1%
ZQ
DQS
DQS
DM
DQ [0:7]
RAS
LDQS
LDQS
LDM
DQ [0:7]
D1
CAS
RAS
CS
ZQ
Cterm
CS
DQS
DQS
DM
DQ [0:7]
RAS
DQS0
DQS0
DM0
DQ[0:7]
CS
DQS
DQS
DM
DQ [0:7]
CS
240ohm
+/-1%
D11
DQS1
DQS1
DM1
DQ[8:15]
DQS2
DQS2
DM2
DQ[6:23]
CK1
ZQ
CAS
CS
RAS
DQS
DQS
DM
DQ [0:7]
WE
RAS
S1
DQS3
DQS3
DM3
DQ[24:31]
CAS
3.3 2GB, 256Mx64 Module(2Rank of x8)
DQS5
DQS5
DM5
DQ[40:47]
Vtt
VDDSPD
SPD/TS
VREFCA
VREFDQ
D0–D15
VDD
D0–D15
D0–D15
VSS
D0–D15, SPD, Temp sensor
CK0
D0–D7
CK1
D8–D15
CK0
D0–D7
CK1
D8–D15
CKE0
D0-D7
CKE1
D8-D15
S0
D0–D7
S1
D8–D15
ODT0
D0–D7
ODT1
D8–D15
EVENT
Temp Sensor
RESET
D0-D15
13
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
4. ABSOLUTE MAXIMUM RATINGS
4.1 Absolute Maximum DC Ratings
Symbol
Parameter
VDD
VDDQ
VIN, VOUT
TSTG
Rating
Units
Notes
Voltage on VDD pin relative to Vss
- 0.4 V ~ 1.975 V
V
1,3
Voltage on VDDQ pin relative to Vss
- 0.4 V ~ 1.975 V
V
1,3
Voltage on any pin relative to Vss
- 0.4 V ~ 1.975 V
V
1
-55 to +100 ℃
℃
1, 2
Storage Temperature
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
4.2 DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Units
Notes
Normal Temperature Range
0 to 85
℃
,2
Extended Temperature Range
85 to 95
℃
1,3
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM.
For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported.
During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating
conditions
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and
95°… case temperature.
Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.
(This double refresh requirement may not apply for some devices.) It is also possible to specify a component
with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/
or the DIMM SPD for option avail ability.
b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the
Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or
enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
Rev. 0.2 / Dec. 2008
14
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5. AC & DC Operating Conditions
5.1 Recommended DC Operating Conditions
Symbol
Parameter
VDD
VDDQ
Rating
Units
Notes
1.575
V
1,2
1.575
V
1,2
Min.
Typ.
Max.
Supply Voltage
1.425
1.500
Supply Voltage for Output
1.425
1.500
1. Under all conditions, VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD bad VDDQ tied together.
5.2 DC & AC Logic Input Levels
5.2.1 DC & AC Logic Input Levels for Single-Ended Signals
DDR3-800, DDR3-1066, DDR3-1333
Symbol
Parameter
Unit
Notes
-
V
1, 2
Vref - 0.100
V
1, 2
-
V
1, 2
Vref - 0.175
V
1, 2
Min
Max
Vref + 0.100
VIH(DC)
DC input logic high
VIL(DC)
DC input logic low
VIH(AC)
AC input logic high
VIL(AC)
AC input logic low
VRefDQ (DC)
Reference Voltage for
DQ, DM inputs
0.49 * VDD
0.51 * VDD
V
3, 4
VRefCA (DC)
Reference Voltage for
ADD, CMD inputs
0.49 * VDD
0.51 * VDD
V
3, 4
VTT
Termination voltage for
DQ, DQS outputs
VDDQ/2 - TBD
VDDQ/2 + TBD
V
Vref + 0.175
1. For DQ and DM, Vref = VrefDQ. For input only pins except RESET#, Vref = VrefCA.
2. The “t.b.d.” entries might change based on overshoot and undershoot specification.
3. The ac peak noise on VRef may not allow VRef to deviate from VRef (DC) by more than +/-1% VDD
(for reference: approx. +/- 15 mV).
For reference: approx. VDD/2 +/- 15 mV.
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure
6.2.1. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise).VRef(DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet
the min/max requirements in Table 1. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than
+/- 1% VDD.
Rev. 0.2 / Dec. 2008
15
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
voltage
VDD
VRef(t)
VRef ac-noise
VRef(DC)max
VRef(DC)
VDD/2
VRef(DC)min
VSS
time
< Figure 6.2.1: Illustration of Vref (DC) tolerance and Vref AC-noise limits >
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on
VRef. "VRef" shall be understood as VRef (DC), as defined in Figure 6.2.1
This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low
level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account
for VRef (DC) deviations from the optimum position within the data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD)
are included in DRAM timings and their associated deratings.
5.2.2 DC & AC Logic Input Levels for Differential Signals
Symbol
Parameter
VIHdiff
Differential input logic high
VILdiff
Differential input logic low
DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600
Unit
Notes
-
V
1
- 0.200
V
1
Min
Max
+ 0.200
Note1:
Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page
Rev. 0.2 / Dec. 2008
16
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.2.3 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each
cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table 6.2.3
The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to
the midlevel between of VDD and VSS.
VDD
CK#, DQS#
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
< Figure 5.2.3 Vix Definition >
DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600
Symbol
VIX
Parameter
Differential Input Cross Point
Voltage relative to VDD/2
Unit
Min
Max
- 150
+ 150
Notes
mV
< Table 5.2.3: Cross point voltage for differential input signals (CK, DQS) >
Rev. 0.2 / Dec. 2008
17
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.3 Slew Rate Definitions
5.3.1 For Single Ended Input Signals
- Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef
and the first crossing of VIH (AC) min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the
slew rate between the last crossing of VRef and the first crossing of VIL (AC) max.
- Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL (DC) max and
the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate
between the last crossing of VIH (DC) min and the first crossing of VRef.
Measured
Description
Input slew rate for rising edge
Min
Max
Vref
VIH (AC) min
Input slew rate for falling edge
Vref
VIL (AC) max
Input slew rate for rising edge
VIL (DC) max
Vref
Input slew rate for falling edge
VIH (DC) min
Vref
Defined by
Applicable for
VIH (AC) min-Vref
Delta TRS
Vref-VIL (AC) max
Setup
(tIS, tDS)
Delta TFS
Vref-VIL (DC) max
Delta TFH
VIH (DC) min-Vref
Hold
(tIH, tDH)
Delta TRH
< Table 5.3.1: Single-Ended Input Slew Rate Definition >
Part A: Set up
Single Ended input Voltage(DQ,ADD, CMD)
Delta TRS
vIH(AC)min
vIH(DC)min
vRefDQ or
vRefCA
vIL(DC)max
vIL(AC)max
Delta TFS
Rev. 0.2 / Dec. 2008
18
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
P a rt B : H o ld
Single Ended input Voltage(DQ,ADD, CMD)
D e lta T R H
v IH (A C )m in
v IH (D C )m in
v R e fD Q o r
v R e fC A
v IL (D C )m a x
v IL (A C )m a x
D e lta T F H
< Figure 5.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals >
5.3.2 Differential Input Signals
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in below Table
and Figure .
Description
Differential input slew rate for rising edge
(CK-CK and DQS-DQS)
Differential input slew rate for falling edge
(CK-CK and DQS-DQS)
Measured
Min
Max
VILdiffmax
VIHdiffmin
VIHdiffmin
VILdiffmax
Defined by
VIHdiffmin-VILdiffmax
DeltaTRdiff
VIHdiffmin-VILdiffmax
DeltaTFdiff
Note:
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Rev. 0.2 / Dec. 2008
19
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
D e lta
T R d iff
vIH d iffm in
0
vILd iffm a x
D e lta
T F d iff
< Figure 5.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# >
5.4 DC & AC Output Buffer Levels
5.4.1 Single Ended DC & AC Output Levels
Below table shows the output levels used for measurements of single ended signals.
Symbol
VOH(DC)
VOM(DC)
VOL(DC)
VOH(AC)
VOL(AC)
Parameter
DC output high measurement level
(for IV curve linearity)
DC output mid measurement level
(for IV curve linearity)
DC output low measurement level
(for IV curve linearity)
AC output high measurement level
(for output SR)
DDR3-800, 1066, 1333
Unit
0.8 x VDDQ
V
0.5 x VDDQ
V
0.2 x VDDQ
V
VTT + 0.1 x VDDQ
V
Notes
1
AC output low measurement level
VTT - 0.1 x VDDQ
V
1
(for output SR)
1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing
with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2.
Rev. 0.2 / Dec. 2008
20
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.4.2 Differential DC & AC Output Levels
Below table shows the output levels used for measurements of differential signals.
Symbol
VOHdiff
(AC)
Parameter
DDR3-800, 1066, 1333
Unit
Notes
+ 0.2 x VDDQ
V
1
AC differential output high
measurement level (for output SR)
VOLdiff
(AC)
AC differential output low
- 0.2 x VDDQ
V
1
measurement level (for output SR)
1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high
or low swing with a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of
the differential output
5.4.3 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and
measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 6.4.3.
Description
Measured
From
To
Single ended output slew rate for rising edge
VOL(AC)
VOH(AC)
Single ended output slew rate for falling edge
VOH(AC)
VOL(AC)
Defined by
VOH(AC)-VOL(AC)
DeltaTRse
VOH(AC)-VOL(AC)
DeltaTFse
Note:
Output slew rate is verified by design and characterisation, and may not be subject to production test.
Single Ended Output Voltage(l.e.DQ)
D e lt a T R s e
vO H (A C )
V∏
vO L(A C )
D e lt a T F s e
< Figure 5.4.3: Single Ended Output Slew Rate Definition >
Rev. 0.2 / Dec. 2008
21
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Parameter
Symbol
Single-ended Output Slew Rate
SRQse
DDR3-800
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Min
Max
2.5
5
2.5
5
2.5
5
Units
V/ns
*** Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
For Ron = RZQ/7 setting
< Table 5.4.3: Output Slew Rate (single-ended) >
5.4.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in below Table and Figure 5.4.4
Description
Measured
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff (AC)
VOHdiff (AC)
Differential output slew rate for falling edge
VOHdiff (AC)
VOLdiff (AC)
VOHdiff (AC)-VOLdiff (AC)
DeltaTRdiff
VOHdiff (AC)-VOLdiff (AC)
DeltaTFdiff
Note: Output slew rate is verified by design and characterization, and may not be subject to production test..
Differential Output Voltage(i.e. DQS-DQS)
D e lta
T R d iff
v O H d iff(A C )
O
v O L d iff(A C )
D e lta
T F d iff
< Figure 5.4.4: Differential Output Slew Rate Definition >
Rev. 0.2 / Dec. 2008
22
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
DDR3-800
Parameter
Differential Output Slew Rate
Symbol
SRQdiff
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Min
Max
5
10
5
10
5
10
Units
V/ns
***Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting
< Table 5.4.4: Differential Output Slew Rate >
5.5 Overshoot and Undershoot Specifications
5.5.1 Address and Control Overshoot and Undershoot Specifications
Description
Maximum peak amplitude allowed for
overshoot area (see Figure)
Maximum peak amplitude allowed for
undershoot area (see Figure)
Maximum overshoot area above VDD
(See Figure)
Maximum undershoot area below VSS
(See Figure)
Specification
DDR3-800
DDR3-1066
DDR3-1333
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.67 V-ns
0.5 V-ns
0.4 V-ns
0.67 V-ns
0.5 V-ns
0.4 V-ns
< Table 5.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins >
< Figure 5.5.1: Address and Control Overshoot and Undershoot Definition >
Maximum Amplitude
Overshoot Area
Volts
(V)
VDD
VSS
Undershoot Area
Maximum Amplitude
Time (ns)
Rev. 0.2 / Dec. 2008
23
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.5.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
Description
Maximum peak amplitude allowed for
overshoot area (see Figure)
Maximum peak amplitude allowed for
undershoot area (see Figure)
Maximum overshoot area above VDDQ
(See Figure)
Maximum undershoot area below VSSQ
(See Figure)
Specification
DDR3-800
DDR3-1066
DDR3-1333
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.25 V-ns
0.19 V-ns
0.15 V-ns
0.25 V-ns
0.19 V-ns
0.15 V-ns
< Table 5.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask >
M a x im u m A m p litu d e
O v e rsh o o t A re a
V o lts
(V )
VDDQ
VSSQ
U n d e rsh o o t A re a
M a x im u m A m p litu d e
T im e (n s)
C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n
< Figure 5.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition >
Rev. 0.2 / Dec. 2008
24
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.6 Pin Capacitance
Parameter
Symbol
DDR3-800
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Min
Max
Units Notes
Input/output capacitance
(DQ, DM, DQS, DQS#, TDQS,
TDQS#)
CIO
TBD
TBD
TBD
TBD
TBD
TBD
pF
1,2,3
Input capacitance, CK and CK#
CCK
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,5
Input capacitance delta
CK and CK#
CDCK
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,4
CI
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,6
CDDQS
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,12
CDI_CTRL
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,7,8
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,9,1
0
TBD
TBD
TBD
TBD
TBD
TBD
pF
2,3,11
Input capacitance
(All other input-only pins)
Input capacitance delta, DQS
and DQS#
Input capacitance delta
(All CTRL input-only pins)
Input capacitance delta
(All ADD/CMD input-only pins)
CDI_ADD_C
Input/output capacitance delta
(DQ, DM, DQS, DQS#)
MD
CDIO
Notes:
1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic
characterization of TDQS/TDQS# should be close as much as possible, Cio & Cdio requirement is applied
(recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions,
the loading matches DQ and DQS.”)
2. This parameter is not subject to production test. It is verified by design and characterization. Input capacitance is
measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE,
RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK#.
5. The minimum CCK will be equal to the minimum CI.
6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#.
7. CTRL pins defined as ODT, CS and CKE.
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#))
9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#.
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#))
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#))
12. Absolute value of CIO(DQS) - CIO(DQS#)
Rev. 0.2 / Dec. 2008
25
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.7 IDD Specifications (TCASE: 0 to 95oC)
512MB, 64M x 64 SO-DIMM: HMT164S6AFP6C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
note
IDD0
360
420
480
mA
IDD1
480
540
620
mA
IDD2P(F)
100
120
140
mA
IDD2P(S)
40
40
40
mA
IDD2Q
180
240
280
mA
IDD2N
200
240
300
mA
IDD3P
140
180
200
mA
IDD3N
220
280
340
mA
IDD4W
700
880
1060
mA
IDD4R
700
860
1020
mA
IDD5B
740
780
840
mA
IDD6(D)
40
40
40
mA
1
IDD6(S)
24
24
24
mA
1
IDD7
1300
1420
1720
mA
1GB, 128M x 64 SO-DIMM: HMT112S6AFP6C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
IDD0
560
660
780
mA
IDD1
680
780
960
mA
IDD2P(F)
200
240
280
mA
IDD2P(S)
80
80
80
mA
IDD2Q
360
480
560
mA
IDD2N
400
480
600
mA
IDD3P
280
360
400
mA
IDD3N
440
560
680
mA
IDD4W
900
1120
1360
mA
IDD4R
900
1100
1320
mA
IDD5B
940
1020
1140
mA
IDD6(D)
80
80
80
mA
1
IDD6(S)
48
48
48
mA
1
IDD7
1500
1660
2020
mA
Rev. 0.2 / Dec. 2008
note
26
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
2GB, 256M x 64 SO-DIMM: HMT125S6AFP8C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
IDD0
1040
1240
1440
mA
IDD1
1160
1360
1560
mA
IDD2P(F)
400
480
560
mA
IDD2P(S)
160
160
160
mA
IDD2Q
720
960
1120
mA
IDD2N
800
960
1200
mA
IDD3P
560
720
800
mA
IDD3N
880
1120
1360
mA
IDD4W
1520
1920
2160
mA
IDD4R
1440
1800
2280
mA
IDD5B
1880
2040
2320
mA
IDD6(D)
160
160
160
mA
1
IDD6(S)
96
96
96
mA
1
IDD7
2200
2480
3040
mA
Rev. 0.2 / Dec. 2008
note
27
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
5.7 IDD Measurement Conditions
Within the tables provided further down, an overview about the IDD measurement conditions is
provided as follows:
Table 1 —
Overview of Tables providing IDD Measurement Conditions and DRAM Behavior
Table number
Measurement Conditions
Table 5 on page 33
IDD0 and IDD1
Table 6 on page 36
IDD2N, IDD2Q, IDD2P(0), IDD2P(1)
Table 7 on page 38
IDD3N and IDD3P
Table 8 on page 39
IDD4R, IDD4W, IDD7
Table 9 on page 42
IDD7 for different Speed Grades and different tRRD, tFAW conditions
Table 10 on page 43
IDD5B
Table 11 on page 44
IDD6, IDD6ET
Within the tables about IDD measurement conditions, the following definitions are used:
- LOW is defined as VIN <= VILAC (max.); HIGH is defined as VIN >= VIHAC (min.).
- STABLE is defined as inputs are stable at a HIGH or LOW level.
- FLOATING is defined as inputs are VREF = VDDQ / 2.
- SWITCHING is defined as described in the following 2 tables.
Table 2 —
Definition of SWITCHING for Address and Command Input Signals
SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as:
If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change
Address
(row, column):
then to the opposite value
(e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax .....
please see each IDDx definition for details
Bank address:
If not otherwise mentioned the bank addresses should be switched like the row/column
addresses - please see each IDDx definition for details
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH,HIGH,HIGH}
Command
(CS, RAS, CAS, WE):
Define Command Background Pattern = D D D D D D D D D D D D...
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background
Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary
command.
See each IDDx definition for details and figures 1,2,3 as examples.
Rev. 0.2 / Dec. 2008
28
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 3 —
Definition of SWITCHING for Data (DQ)
SWITCHING for Data (DQ) is defined as
Data DQ is changing between HIGH and LOW every other data transfer (once per clock)
for DQ signals, which means that data DQ is stable during one clock; see each IDDx
definition for exceptions from this rule and for further details.
See figures 1,2,3 as examples.
Data (DQ)
Data Masking (DM)
NO Switching; DM must be driven LOW all the time
Timing parameters are listed in the following table:
Table 4 —
For IDD testing the following parameters are utilized.
Parameter
Bin
DDR3-800
5-5-5
tCKmin(IDD)
6-6-6
DDR3-1066
6-6-6
2.5
CL(IDD)
7-7-7
DDR3-1333
8-8-8
7-7-7
1.875
8-8-8
9-9-9
1.5
Unit
ns
5
6
6
7
8
7
8
9
clk
tRCDmin(IDD)
12.5
15
11.25
13.13
15
10.5
12
13.5
ns
tRCmin(IDD)
50
52.5
48.75
50.63
52.50
46.5
48
49.5
ns
tRASmin(IDD)
37.5
37.5
37.5
37.5
37.5
36
36
36
ns
tRPmin(IDD)
12.5
15
11.25
13.13
15
10.5
12
13.5
ns
x4/x8
40
40
37.5
37.5
37.5
30
30
30
ns
x16
50
50
50
50
50
45
45
45
ns
x4/x8
10
10
7.5
7.5
7.5
6.0
6.0
6.0
ns
x16
10
10
10
10
10
7.5
7.5
7.5
ns
tRFC(IDD) -
90
90
90
90
90
90
90
90
ns
tRFC(IDD) - 1
110
110
110
110
110
110
110
110
ns
tRFC(IDD) - 2
160
160
160
160
160
160
160
160
ns
tRFC(IDD) - 4
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
ns
tFAW(IDD)
tRRD(IDD)
512Mb
Gb
Gb
Gb
The following conditions apply:
- IDD specifications are tested after the device is properly initialized.
- Input slew rate is specified by AC Parametric test conditions.
- IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12).
Rev. 0.2 / Dec. 2008
29
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 5 —
IDD Measurement Conditions for IDD0 and IDD1
IDD0
Current
Operating Current 0
Name
-> One Bank Activate
-> Precharge
IDD1
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Measurement Condition
Timing Diagram Example
Figure 1
CKE
HIGH
HIGH
External Clock
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
tRCmin(IDD)
tRCmin(IDD)
tRAS
tRASmin(IDD)
tRASmin(IDD)
tRCD
n.a.
tRCDmin(IDD)
tRRD
n.a.
n.a.
CL
n.a.
CL(IDD)
AL
n.a.
0
CS
HIGH between. Activate and Precharge
HIGH between Activate, Read and
Commands
Precharge
Command Inputs
SWITCHING as described in Table 2
SWITCHING as described in Table 2; only
(CS,RAS, CAS, WE)
only exceptions are Activate and
exceptions are Activate, Read and
Precharge commands; example of IDD0
Precharge commands; example of IDD1
pattern:
pattern:
A0DDDDDDDDDDDDDD P0
A0DDDDR0DDDDDDDDD P0
(DDR3-800: tRAS = 37.5ns between
(DDR3-800 -555: tRCD = 12.5ns between
(A)ctivate and (P)recharge to bank 0;
(A)ctivate and (R)ead to bank 0;
Definition of D and D: see Table 2
Definition of D and D: see Table 2)
Rev. 0.2 / Dec. 2008
30
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 5 —
IDD Measurement Conditions for IDD0 and IDD1
IDD0
Current
Operating Current 0
Name
-> One Bank Activate
-> Precharge
Row, Column Addresses
IDD1
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Row addresses SWITCHING as described Row addresses SWITCHING as described
in Table 2;
in Table 2;
Address Input A10 must be LOW all the
Address Input A10 must be LOW all the
time!
time!
Bank Addresses
bank address is fixed (bank 0)
bank address is fixed (bank 0)
Data I/O
SWITCHING as described in Table 3
Read Data: output data switches every
clock, which means that Read data is
stable during one clock cycle.
To achieve Iout = 0mA, the output buffer
should be switched off by MR1 Bit A12 set
to “1”.
When there is no read data burst from
DRAM, the DQ I/O should be FLOATING.
Output Buffer DQ,DQS
off / 1
off / 1
ODT
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
Burst length
n.a.
8 fixed / MR0 Bits [A1, A0] = {0,0}
Active banks
one
one
ACT-PRE loop
ACT-RD-PRE loop
all other
all other
/ MR1 bit A12
Idle banks
Precharge Power Down Mode / n.a.
n.a.
Mode Register Bit 12
Rev. 0.2 / Dec. 2008
31
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T12
T14
T16
T18
CK
000
BA[2:0]
ADDR_a[9:0]
000
3FF
000
3FF
000
00
11
00
11
00
3F
ADDR_b[10]
ADDR_c[12:11]
CS
RAS
CAS
WE
CMD
ACT
D
DQ
DM
D#
D#
D
RD
D#
D#
D
D
D#
D#
D
D
D#
PRE
D
D
D#
0 0 1 1 0 0 1 1
IDD1 Measurment Loop
< Figure 1. IDD1 Example > (DDR3-800-555, 512Mb x8): Data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12 =”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
Rev. 0.2 / Dec. 2008
32
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 6 —
IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q
Name
IDD2P(1) a
IDD2N
Current
Precharge Power
Precharge Standby Down Current
Current
Fast Exit MRS A12 Bit = 1
IDD2P(0)
IDD2Q
Precharge Power
Down Current
Slow Exit MRS A12 Bit = 0
Precharge Quiet
Standby Current
Measurement Condition
Timing Diagram
Example
Figure 2
CKE
HIGH
LOW
LOW
HIGH
External Clock
on
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
n.a.
n.a.
tRAS
n.a.
n.a.
n.a.
n.a.
tRCD
n.a.
n.a.
n.a.
n.a.
tRRD
n.a.
n.a.
n.a.
n.a.
CL
n.a.
n.a.
n.a.
n.a.
AL
n.a.
n.a.
n.a.
n.a.
CS
HIGH
STABLE
STABLE
HIGH
Bank Address, Row
Addr. and Command
Inputs
SWITCHING as
described in
Table 2
STABLE
STABLE
STABLE
Data inputs
SWITCHING
FLOATING
FLOATING
FLOATING
Output Buffer
DQ,DQS
/ MR1 bit A12
off / 1
off / 1
off / 1
off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length
n.a.
n.a.
n.a.
n.a.
Active banks
none
none
none
none
Idle banks
all
all
all
all
Fast Exit / 1
(any valid command
after tXPb)
Slow Exit / 0
Slow exit (RD and
n.a.
ODT commands must
satisfy tXPDLL-AL)
Precharge Power
Down Mode /
Mode Register Bit a
n.a.
a.
a. In DDR3, the MRS Bit 12 defines DLL on/off behaviour ONLY for precharge power down. There are 2 different
b. Precharge Power Down states possible: one with DLL on (fast exit, bit 12 = 1) and one with DLL off
(slow exit, bit 12 = 0).
b. Because it is an exit after precharge power down, the valid commands are: Activate, Refresh, Mode-Register Set,
Enter - Self Refresh
Rev. 0.2 / Dec. 2008
33
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
CK
BA[2:0]
ADDR[12:0]
0
7
0
0
7
0
CS
RAS
CAS
WE
D#
CMD
DQ[7:0]
FF
00
D#
00
FF
D
FF
00
D
00
FF
D#
FF
00
D#
00
FF
D
FF
00
D
00
FF
D#
FF
00
D#
00
FF
FF
DM
<Figure 2. IDD2N / IDD3N Example > (DDR3-800-555, 512Mb x8)
Rev. 0.2 / Dec. 2008
34
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 7 —
IDD Measurement Conditions for IDD3N and IDD3P(fast exit)
Current
IDD3N
Name
Active Standby Current
IDD3P
Active Power-Down Currenta
Always Fast Exit
Measurement Condition
Timing Diagram Example
Figure 2
CKE
HIGH
LOW
External Clock
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
AL
n.a.
n.a.
CS
HIGH
STABLE
Addr. and cmd Inputs
SWITCHING as described in Table 2
STABLE
Data inputs
SWITCHING as described in Table 3
FLOATING
off / 1
off / 1
ODT
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
Burst length
n.a.
n.a.
Active banks
all
all
Idle banks
none
none
Output Buffer DQ,DQS
/ MR1 bit A12
Precharge Power Down Mode /
Mode Register Bit
a
n.a.
n.a. (Active Power Down Mode is always
“Fast Exit” with DLL on
a. DDR3 will offer only ONE active power down mode with DLL on (-> fast exit). MRS bit 12 will not be used for active
power down. Instead bit 12 will be used to switch between two different precharge power down modes.
Rev. 0.2 / Dec. 2008
35
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 8 —
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
IDD4R
IDD4W
IDD7
Name
Operating Current
Burst Read
Operating Current
Burst Write
All Bank Interleave Read
Current
Measurement Condition
Timing Diagram
Example
Figure 3
CKE
HIGH
HIGH
HIGH
External Clock
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRCmin(IDD)
tRAS
n.a.
n.a.
tRASmin(IDD)
tRCD
n.a.
n.a.
tRCDmin(IDD)
tRRD
n.a.
n.a.
tRRDmin(IDD)
CL
CL(IDD)
CL(IDD)
CL(IDD)
AL
0
0
tRCDmin - 1 tCK
CS
HIGH btw. valid cmds
HIGH btw. valid cmds
HIGH btw. valid cmds
Command Inputs (CS,
RAS, CAS, WE)
SWITCHING as described in
Table 2; exceptions are Read
commands => IDD4R
Pattern:
SWITCHING as described in
Table 2; exceptions are Write
commands => IDD4W
Pattern:
For patterns see Table 9
R0DDDR1DDDR2DDDR3.DD W0DDDW1DDDW2DDDW3
DDD W4...
D R4.....
Rx = Read from bank x;
Wx = Write to bank x;
Definition of D and D: see
Definition of D and D: see
Table 2
Table 2
Rev. 0.2 / Dec. 2008
36
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 8 —
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
IDD4R
IDD4W
IDD7
Name
Operating Current
Burst Read
Operating Current
Burst Write
All Bank Interleave Read
Current
column addresses
column addresses
SWITCHING as described in
SWITCHING as described in
Table 2;
Table 2;
Address Input A10 must be
Address Input A10 must be
LOW all the time!
LOW all the time!
Row, Column
Addresses
Bank Addresses
bank address cycling (0 -> 1 - bank address cycling (0 -> 1 > 2 -> 3...)
Seamless Read Data Burst
(BL8): output data switches
every clock, which means that
Read data is stable during one
DQ I/O
clock cycle.
To achieve Iout = 0mA the
output buffer should be
> 2 -> 3...)
STABLE during DESELECTs
bank address cycling (0 -> 1 > 2 -> 3...), see pattern in
Table 9
Seamless Write Data Burst
Read Data (BL8): output data
(BL8): input data switches
switches every clock, which
every clock, which means that
means that Read data is
Write data is stable during one
stable during one clock cycle.
clock cycle.
To achieve Iout = 0mA the
DM is low all the time.
output buffer should be
switched off by MR1 Bit A12
switched off by MR1 Bit A12
set to “1”.
set to “1”.
Output Buffer
DQ,DQS
off / 1
off / 1
off / 1
ODT
disabled
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
/ [0,0]
8 fixed / MR0 Bits [A1, A0] =
8 fixed / MR0 Bits [A1, A0] =
8 fixed / MR0 Bits [A1, A0] =
{0,0}
{0,0}
{0,0}
Active banks
all
all
all, rotational
Idle banks
none
none
none
n.a.
n.a.
n.a.
/ MR1 bit A12
Burst length
Precharge Power
Down Mode /
Mode Register Bit
Rev. 0.2 / Dec. 2008
37
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
CK
BA[2:0]
ADDR[12:0]
000
001
010
011
000
3FF
000
3FF
00
11
00
11
ADDR_b[10]
ADDR_c[12:11]
CS
RAS
CAS
WE
CMD[2:0]
DQ[7:0]
DM
RD
D
D#
D#
RD
D
D#
00
00
FF
D#
FF
00
RD
00
FF
D
FF
D#
00
00
FF
D#
FF
00
RD
00
FF
FF
-> Start of Measurement Loop
< Figure 3. IDD4R Example > (DDR3-800-555, 512Mb x8): data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12=”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
Rev. 0.2 / Dec. 2008
38
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 9 —
Speed
IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions
Bin
Org.
Mb/s
IDD7 Patterna
tFAW
tFAW
tRRD
tRRD
[ns]
[CLK]
[ns]
[CLK] (Note this entire sequence is repeated.)
all
x4/x8
40
16
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
all
x16
50
20
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x4/x8
37.5
20
7.5
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x16
50
27
10
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D
A6 RA6 D D D D A7 RA7 D D D D D D D
all
x4/x8
30
20
6
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x16
45
30
7.5
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D D D D D D D A4 RA4 D D D A5 RA5 D D
D A6 RA6 D D D A7 RA7 D D D D D D D D D D D D D
all
x4/x8
30
24
6
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D
D A7 RA7 D D D D D D D
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D D D D D D A4 RA4 D D D D A5 RA5
D D D D A6 RA6 D D D D A7 RA7 D D D D D D D D D
DDD
800
1066
1333
1600
all
x16
40
32
7.5
a. A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect
Rev. 0.2 / Dec. 2008
39
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 10 —
IDD Measurement Conditions for IDD5B
IDD5B
Current
Name
Burst Refresh Current
Measurement Condition
CKE
HIGH
External Clock
on
tCK
tCKmin(IDD)
tRC
n.a.
tRAS
n.a.
tRCD
n.a.
tRRD
n.a.
tRFC
tRFCmin(IDD)
CL
n.a.
AL
n.a.
CS
HIGH btw. valid cmds
Addr. and cmd Inputs
SWITCHING
Data inputs
SWITCHING
Output Buffer DQ,DQS / MR1 bit A12
off / 1
ODT / MR1 bits [A6, A2]
disabled / [0,0]
Burst length
n.a.
Active banks
Refresh command every tRFC = tRFCmin
Idle banks
none
Precharge Power Down Mode / Mode Register Bit
n.a.
Rev. 0.2 / Dec. 2008
40
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
Table 11 — IDD Measurement Conditions for IDD6 and IDD6ET
Current
IDD6
IDD6ET
Name
Self-Refresh Current
Normal Temperature Range
TCASE = 0.. 85 °C
Self-Refresh Current
Extended Temperature Range a
TCASE = 0 .. 95 °C
Measurement Condition
Temperature
TCASE = 85 °C
TCASE = 95 °C
Auto Self Refresh (ASR) /
MR2 Bit A6
Disabled / “0”
Disabled / “0”
Self Refresh Temperature
Range (SRT) /
MR2 Bit A7
Normal / “0”
Extended / “1”
CKE
LOW
LOW
External Clock
OFF; CK and CK at LOW
OFF; CK and CK at LOW
tCK
n.a.
n.a.
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
AL
n.a.
n.a.
CS
FLOATING
FLOATING
Command Inputs
(RAS, CAS, WE)
FLOATING
FLOATING
Row, Column Addresses
FLOATING
FLOATING
Bank Addresses
FLOATING
FLOATING
Data I/O
FLOATING
FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12
off / 1
off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length
n.a.
n.a.
Active banks
all during self-refresh actions
all during self-refresh actions
Idle banks
all btw. Self-Refresh actions
all btw. Self-Refresh actions
Precharge Power Down Mode
/ MR0 bit A12
n.a.
n.a.
a. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM
devices support the following options or requirements referred to in this material.
Rev. 0.2 / Dec. 2008
41
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
6. Electrical Characteristics and AC Timing
6.1 Refresh Parameters by Device Density
Parameter
Symbol
512Mb
1Gb
2Gb
4Gb
8Gb
Units
tRFC
90
110
160
300
350
ns
0 ×C < TCASE < 85 ×C
7.8
7.8
7.8
7.8
7.8
ms
85 ×C < TCASE < 95 ×C
3.9
3.9
3.9
3.9
3.9
ms
REF command to
ACT or REF
command time
Average periodic
refresh interval
tREFI
6.2 DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC
for each corresponding bin
DDR3 800 Speed Bin
DDR3-800D
DDR3-800E
5-5-5
6-6-6
CL - nRCD - nRP
Unit
Symbol
min
max
min
max
Internal read command to first data
tAA
12.5
20
15
20
ns
ACT to internal read or write delay time
tRCD
12.5
—
15
—
ns
PRE command period
tRP
12.5
—
15
—
ns
ACT to ACT or REF command period
tRC
50
—
52.5
—
ns
ACT to PRE command period
tRAS
37.5
9 * tREFI
37.5
9 * tREFI
ns
Parameter
CL = 5
CWL = 5
tCK(AVG)
2.5
3.3
CL = 6
CWL = 5
tCK(AVG)
2.5
3.3
Supported CL Settings
Supported CWL Settings
Rev. 0.2 / Dec. 2008
Reserved
2.5
3.3
Notes
ns
1)2)3)4)
ns
1)2)3)
5, 6
6
nCK
5
5
nCK
42
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
DDR3 1066 Speed Bin
DDR3-1066E
DDR3-1066F
DDR3-1066G
CL - nRCD - nRP
6-6-6
7-7-7
8-8-8
Unit
Parameter
Symbol
min
max
min
max
min
max
Internal read command to
first data
tAA
11.25
20
13.125
20
15
20
ns
ACT to internal read or
write delay time
tRCD
11.25
—
13.125
—
15
—
ns
PRE command period
tRP
11.25
—
13.125
—
15
—
ns
ACT to ACT or REF
command period
tRC
48.75
—
50.625
—
52.5
—
ns
ACT to PRE command
period
tRAS
37.5
9 * tREFI
37.5
9 * tREFI
37.5
9 * tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
2.5
CWL = 6
tCK(AVG)
1.875
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CL = 5
CL = 6
CL = 7
CL = 8
Reserved
3.3
< 2.5
Reserved
1.875
< 2.5
Reserved
1.875
< 2.5
Reserved
Reserved
ns
1)2)3)4)6)
Reserved
Reserved
ns
4)
ns
1)2)3)6)
2.5
3.3
2.5
3.3
Reserved
Reserved
ns
1)2)3)4)
Reserved
Reserved
ns
4)
Reserved
ns
1)2)3)4)
Reserved
ns
4)
ns
1)2)3)
1.875
< 2.5
Reserved
1.875
< 2.5
1.875
< 2.5
Supported CL Settings
5, 6, 7, 8
6, 7, 8
6, 8
nCK
Supported CWL Settings
5, 6
5, 6
5, 6
nCK
Rev. 0.2 / Dec. 2008
Note
43
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
DDR3 1333 Speed Bin
DDR3-1333F
DDR3-1333J
DDR3-1333G DDR3-1333H
(optional)
(optional)
Unit
CL - nRCD - nRP
7-7-7
8-8-8
9-9-9
Parameter
Symbol
min
max
min
max
min
max
min
max
Internal read
command to first
tAA
10.5
20
12
20
13.5
20
15
20
ns
ACT to internal read
or write delay time
tRCD
10.5
—
12
—
13.5
—
15
—
ns
PRE command period
tRP
10.5
—
12
—
13.5
—
15
—
ns
ACT to ACT or REF
command period
tRC
46.5
—
48
—
49.5
—
51
—
ns
ACT to PRE
command period
tRAS
36
9*
tREFI
36
9*
tREFI
36
9*
tREFI
36
9*
tREFI
ns
tCK(AVG)
2.5
3.3
2.5
3.3
CL = 5
CL = 6
CL = 7
CWL = 5
CWL = 6, 7 tCK(AVG)
Reserved
CWL = 5
tCK(AVG)
2.5
3.3
CWL = 6
tCK(AVG)
1.875
< 2.5
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
2.5
3.3
Note
10-10-10
Reserved
Reserved
ns
1,2,3,4,7
Reserved
Reserved
ns
4
ns
1,2,3,7
2.5
3.3
2.5
3.3
Reserved
Reserved
Reserved
ns
1,2,3,4,7
Reserved
Reserved
Reserved
Reserved
ns
4
Reserved
Reserved
Reserved
Reserved
ns
4
Reserved
ns
1,2,3,4,7
Reserved
ns
4
ns
1,2,3,7
1.875
1.875
< 2.5
1.875
< 2.5
< 2.5
(Optional)
Note 9.10
CL = 8
CL = 9
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
< 2.5
1.875
< 2.5
CWL = 7
tCK(AVG)
1.5
<1.875
1.5
<1.875
CWL = 5, 6 tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5, 6 tCK(AVG)
CL = 10
CWL = 7
tCK(AVG)
Reserved
Reserved
1.5
<1.875
Reserved
1.5
<1.875
Reserved
Reserved
1.5
<1.875
Reserved
1.5
<1.875
Reserved
1.875
< 2.5
1.875
< 2.5
Reserved
Reserved
ns
1,2,3,4
Reserved
Reserved
ns
4
Reserved
ns
1,2,3,4
Reserved
ns
4
ns
1,2,3
ns
5
1.5
<1.875
Reserved
1.5
<1.875
1.5
<1.875
(Optional)
(Optional)
(Optional)
Supported CL Settings
5, 6, 7, 8, 9
5, 6, 7, 8, 9
6, 7, 8, 9
6, 8, 10
nCK
Supported CWL Settings
5, 6, 7
5, 6, 7
5, 6, 7
5, 6, 7
nCK
Rev. 0.2 / Dec. 2008
44
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
*Speed Bin Table Notes*
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
Notes:
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection
of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the
DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC
standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK (AVG) [ns],
rounding up to the next ‘Supported CL’.
3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG) down to the
next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to
CLSELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory
feature. Refer to supplier’s data sheet and SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
8. It is not a mandatory bin. Refer to supplier’s data sheet and/or the DIMM SPD information.
9. If it’s supported, the minimum tAA/tRCD/tRP that this device support is 13.125ns. Therefore, In Module application,
tAA/tRCD/tRP should be programed with minimum supported values. For example, DDR3-1333H supporting downshift to DDR3-1066F should program SPD as 13.125ns for tAAmin(Byte16)/tRCDmin(Byte18)/tRP(Byte20). DDR31600K supporting down-shift to DDR3-1333H and/or DDR3-1066F should program SPD as 13.125ns for
tAAmin(Byte16)/tRCDmin(Byte18)/tRP(Byte20).
Rev. 0.2 / Dec. 2008
45
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
7. DIMM Outline Diagram
7.1 64Mx64 - HMT164S6AFP(R)6C
Front View
Side
67.60mm
3.80mm max
Detail-B
pin 1
2.15
2 X φ 1.80 ± 0.10
20.0mm
Detail- A
6.00
30.0mm
2.0
pin 203
21.00
1.00 ± 0.08 mm
39.00
1.65 ± 0.10
3.00
Back View
SPD
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
46
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
64Mx64 - HMT164S6AFP(R)6C (with temperature sensor)
Front View
Side
3.80mm max
67.60mm
2.0
30.0mm
4.00 ± 0.10
Detail-B
pin 1
2.15
2 X φ 1.80 ± 0.10
20.0mm
Detail- A
6.00
SPD (TS)
1.00 ± 0.08 mm
pin 203
21.00
39.00
1.65 ± 0.10
3.00
Back View
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
47
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
7.2 128Mx64 - HMT112S6AFP(R)6C
Front View
Side
3.80mm max
67.60mm
2.0
30.0mm
4.00 ± 0.10
Detail-B
pin 1
20.0mm
Detail- A
6.00
SPD
1.00 ± 0.08 mm
pin 203
21.00
2.15
2 X φ 1.80 ± 0.10
39.00
1.65 ± 0.10
3.00
Back View
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
48
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
128Mx64 - HMT112S6AFP(R)6C (with temperature sensor)
Front View
Side
3.80mm max
67.60mm
2.0
Detail-B
pin 1
2.15
2 X φ 1.80 ± 0.10
20.0mm
Detail- A
6.00
30.0mm
4.00 ± 0.10
1.00 ± 0.08 mm
pin 203
21.00
39.00
1.65 ± 0.10
3.00
Back View
SPD (TS)
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
49
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
7.3 256Mx64 - HMT125S6AFP(R)8C
Front View
Side
67.60mm
3.80mm max
2.0
Detail-B
pin 1
20.0mm
Detail- A
6.00
30.0mm
4.00 ± 0.10
1.00 ± 0.08 mm
pin 203
21.00
1.65 ± 0.10
2.15
2 X φ 1.80 ± 0.10
39.00
3.00
Bacl View
SPD
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
50
HMT164S6AFP(R)6C
HMT112S6AFP(R)6C
HMT125S6AFP(R)8C
256Mx64 - HMT125S6AFP(R)8C (with temperature sensor)
Front View
Side
67.60mm
3.80mm max
SPD (TS)
2.0
Detail-B
pin 1
20.0mm
Detail- A
6.00
30.0mm
4.00 ± 0.10
1.00 ± 0.08 mm
pin 203
21.00
1.65 ± 0.10
2.15
2 X φ 1.80 ± 0.10
39.00
3.00
Back View
Detail of Contacts A
Detail of Contacts B
2.55
0.3 ± 0.15
4.00
2.55
0.20
0.45 ± 0.10
0.3~1.0
0.60
1.00 ± 0.05
3.00
Rev. 0.2 / Dec. 2008
51
Similar pages