Vishay DG3536DB-T5-E1 0.25-î© low-voltage dual spdt analog switch Datasheet

DG3535/DG3536
Vishay Siliconix
0.25-Ω Low-Voltage Dual SPDT Analog Switch
DESCRIPTION
FEATURES
The DG3535/DG3536 is a sub 1 Ω (0.25 Ω at 2.7 V) dual
SPDT analog switches designed for low voltage
applications.
The DG3535/DG3536 has on-resistance matching (less
than 0.05 Ω at 2.7 V) and flatness (less than 0.2 Ω at 2.7 V)
that are guaranteed over the entire voltage range.
Additionally, low logic thresholds makes the DG3535/
DG3536 an ideal interface to low voltage DSP control
signals.
The DG3535/DG3536 has fast switching speed with breakbefore-make guaranteed. In the On condition, all switching
elements conduct equally in both directions. Off-isolation
and crosstalk is - 69 dB at 100 kHz.
The DG3535/DG3536 is built on Vishay Siliconix’s highdensity low voltage CMOS process. An eptiaxial layer is built
in to prevent latchup. The DG3535/DG3536 contains the
additional benefit of 2000 V ESD protection.
•
•
•
•
•
As a committed partner to the community and the
environment, Vishay Siliconix manufactures this product
with the lead (Pb)-free device terminations. For MICRO
FOOT analog switching products manufactured with tin/
silver/copper (SnAgCu) device terminations, the lead
(Pb)-free "-E1" suffix is being used as a designator.
Low Voltage Operation
Low On-Resistance - rON: 0.25 Ω at 2.7 V
- 69 dB OIRR at 2.7 V, 100 kHz
MICRO FOOT® Package
ESD Protection > 2000 V
RoHS
COMPLIANT
BENEFITS
•
•
•
•
•
Reduced Power Consumption
High Accuracy
Reduce Board Space
1.6 V Logic Compatible
High Bandwidth
APPLICATIONS
•
•
•
•
•
•
Cellular Phones
Speaker Headset Switching
Audio and Video Signal Routing
PCMCIA Cards
Battery Operated Systems
Relay Replacement
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION
DG3535/DG3536
1
2
A
NC2
IN2
B
GND
C
NC1
MICRO FOOT 10-Bump
3
4
V+
COM2
NO2
IN1
NO1
DG3535
Top View
COM1
NC1
NO2
COM2
NC2
IN1
COM1
V+
NO1
TRUTH TABLE
Logic
NC1 and NC2
NO1 and NO2
0
ON
OFF
1
OFF
ON
IN2
1
2
A
NO2
IN2
B
GND
C
NO1
GND
Device Marking
3
COM2
4
NC2
A1 Locator
XXX
3535
DG3536
Top View
IN1
COM1
ORDERING INFORMATION
Temp Range
Package
Part Number
- 40 to 85 °C
MICRO FOOT: 10 Bump
(4 x 3, 0.5 mm Pitch,
238 µm Bump Height)
DG3535DB-T5-E1
DG3535DB-T1-E1
DG3536DB-T5-E1
V+
NC1
3535 = Example Base Part Number
xxx = Data/Lot Traceability Code
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
www.vishay.com
1
DG3535/DG3536
Vishay Siliconix
ABSOLUTE MAXIMUM RATINGS
Parameter
Limit
Reference V+ to GND
IN, COM, NC, NOa
V
- 0.3 to (V+ + 0.3 V)
Continuous Current (NO, NC, COM)
± 300
Peak Current (Pulsed at 1 ms, 10 % duty cycle)
± 500
Storage Temperature
(D Suffix)
Package Solder Reflow Conditionsb
IR/Convection
c
mA
- 65 to 150
°C
250
ESD per Method 3015.7
Power Dissipation (Packages)
Unit
- 0.3 to + 6
d
MICRO FOOT: 10 Bump (4 x 3 mm)
>2
kV
457
mW
Notes:
a Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b Refer to IPC/JEDEC (J-STD-020B)
c All bumps welded or soldered to PC Board.
d Derate 5.7 mW/°C above 70 °C.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
SPECIFICATIONS (V+ = 3.0 V)
Limits
- 40 to 85 °C
Test Conditions
Otherwise Unless Specified
Parameter
V+ = 3 V, ± 10 %,VIN = 0.5 V or 1.4 Ve
Tempa
Minb
VNO, VNC,
VCOM
Full
0
rON
Room
Full
Symbol
Typc
Maxb
Unit
V+
V
Analog Switch
Analog Signal Ranged
On-Resistanced
rON Flatnessd
On-Resistance
Match Between Channelsd
Switch Off Leakage Current
rON
Flatness
ΔrDS(on)
INO(off)
INC(off)
ICOM(off)
Channel-On Leakage Current
V+ = 2.7 V, VCOM = 0.6/1.5 V
INO, INC = 100 mA
ICOM(on)
V+ = 3.3 V,
VNO, VNC = 0.3 V/3 V, VCOM = 3 V/0.3 V
V+ = 3.3 V, VNO, VNC = VCOM = 0.3 V/3 V
0.25
0.4
0.5
Room
0.15
Room
0.05
Room
Full
-2
- 20
2
20
Room
Full
-2
- 20
2
20
Room
Full
-2
- 20
2
20
1.4
Ω
nA
Digital Control
Input High Voltaged
VINH
Full
Input Low Voltage
VINL
Full
Input Capacitance
Input Current
www.vishay.com
2
Cin
IINL or IINH
0.5
Full
VIN = 0 or V+
Full
10
1
V
pF
1
µA
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
DG3535/DG3536
Vishay Siliconix
SPECIFICATIONS (V+ = 3.0 V)
Limits
- 40 to 85 °C
Test Conditions
Otherwise Unless Specified
Parameter
Symbol
V+ = 3 V, ± 10 %,VIN = 0.5 V or 1.4 Ve
Tempa
Minb
Typc
Maxb
Room
Full
52
82
90
Room
Full
43
73
78
Unit
Dynamic Characteristics
Turn-On Time
tON
Turn-Off Time
tOFF
td
Break-Before-Make Time
Charge Injection
Off-Isolation
Crosstalk
d
QINJ
d
d
Full
1
- 69
- 69
CNO(off)
Room
145
CNC(off)
Room
145
Room
406
Room
406
Room
Full
0.001
CNO(on)
RL = 50 Ω, CL = 5 pF, f = 100 kHz
VIN = 0 or V+, f = 1 MHz
CNC(on)
ns
6
21
Room
XTALK
NO, NC Off Capacitanced
Room
CL = 1 nF, VGEN = 1.5 V, RGEN = 0 Ω
Room
OIRR
d
Channel-On Capacitance
VNO or VNC = 2.0 V, RL = 50 Ω, CL = 35 pF
pC
dB
pF
Power Supply
Power Supply Current
I+
VIN = 0 or V+
1.0
1.0
µA
Notes:
a. Room = 25 °C, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. VIN = input voltage to perform proper function.
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
www.vishay.com
3
DG3535/DG3536
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.7
0.8
T = 25 °C
IS = 100 mA
V+ = 1.8 V
0.5
V+ = 2.0 V
0.4
V+ = 2.7 V
V+ = 3.0 V
0.3
0.2
V+ = 3.3 V
0.1
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V+ = 3.0 V
IS = 100 mA
0.7
r ON - On-Resistance ( )
r ON - On-Resistance (Ω)
0.6
3.5
0.6
0.5
85 °C
0.4
25 °C
0.3
0.2
0.1
0.0
0.0
4.0
0.5
1.0
VCOM - Analog Voltage (V)
2.0
2.5
3.0
rON vs. Analog Voltage and Temperature (NC1)
100000
100 mA
10 mA
V+ = 3.0 V
VIN = 0 V
1000
100
V+ = 3 V
1 mA
I+ - Supply Current (A)
I+ - Supply Current (nA)
1.5
VCOM - Analog Voltage (V)
rON vs. VCOM and Supply Voltage
10000
- 40 °C
100 μA
10 μA
1 μA
100 nA
10 nA
10
- 60
1 nA
- 40
- 20
0
20
40
60
80
100
10
100
1K
10 K
100 K
Temperature (°C)
Supply Current vs. Temperature
10 M
Supply Current vs. Input Switching Frequency
300
10000
250
V+ = 3.0 V
V+ = 3.0 V
200
ICOM(on)
ICOM(on)
150
ICOM(off)
100
INO(off), INC(off)
10
Leakage Current (pA)
1000
Leakage Current (pA)
1M
Input Switching Frequency (Hz)
100
INO(off), INC(off)
50
0
- 50
- 100
- 150
- 200
ICOM(off)
- 250
1
- 60
- 40
- 20
0
20
40
60
80
Temperature (°C)
Leakage Current vs. Temperature
www.vishay.com
4
100
- 300
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VCOM - Analog Voltage (V)
Leakage vs. Analog Voltage
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
DG3535/DG3536
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
10
tON V+ = 2 V
80
- 10
Loss, OIRR, X TALK (dB)
t ON / t OFF - Switching Time (ns)
90
70
60
tON V+ = 3 V
50
40
tOFF V+ = 3 V
30
tOFF V+ = 2 V
20
Loss
OIRR
XTALK
- 30
- 50
V+ = 3.0 V
RL = 50 Ω
- 70
10
0
- 60
- 90
- 40
- 20
0
20
40
60
80
100
1M
100 K
2.00
300
250
1.75
200
1.50
Q - Charge Injection (pC)
- Switching Threshold (V)
1G
Insertion Loss, Off-Isolation
Crosstalk vs. Frequency
Switching Time vs. Temperature
VT
100 M
10 M
Frequency (Hz)
Temperature (°C)
1.25
1.00
0.75
0.50
150
100
50
V+ = 2.0 V
0
V+ = 3.0 V
- 50
- 100
- 150
- 200
0.25
- 250
0.00
0
1
2
3
4
5
V+ - Supply Voltage (V)
Switching Threshold vs. Supply Voltage
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
6
- 300
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VCOM - Analog Voltage (V)
Charge Injection vs. Analog Voltage
www.vishay.com
5
DG3535/DG3536
Vishay Siliconix
TEST CIRCUITS
V+
Logic
Input
V+
NO or NC
Switch
Input
tr < 5 ns
tf < 5 ns
50 %
VINL
Switch Output
COM
VINH
VOUT
0.9 x V OUT
IN
Logic
Input
RL
300
GND
Switch
Output
CL
35 pF
0V
tOFF
tON
0V
Logic "1" = Switch On
Logic input waveforms inverted for switches that have
the opposite logic sense.
CL (includes fixture and stray capacitance)
VOUT = VCOM
RL
R L + R ON
Figure 1. Switching Time
V+
Logic
Input
V+
VNO
VNC
COM
NO
VO
VINH
tr < 5 ns
tf < 5 ns
VINL
NC
RL
300 Ω
IN
CL
35 pF
GND
VNC = V NO
VO
90 %
Switch
0V
Output
tD
tD
CL (includes fixture and stray capacitance)
Figure 2. Break-Before-Make Interval
V+
ΔVOUT
VOUT
Rgen
V+
NC or NO
COM
VOUT
+
IN
IN
On
Off
On
CL = 1 nF
VIN = 0 - V+
Q = ΔVOUT x CL
GND
IN depends on switch configuration: input polarity
determined by sense of switch.
Figure 3. Charge Injection
www.vishay.com
6
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
DG3535/DG3536
Vishay Siliconix
TEST CIRCUITS
V+
10 nF
V+
NC or NO
IN
COM
COM
RL
Analyzer
0 V, 2.4 V
GND
VCOM
Off Isolation = 20 log V
NO/ NC
Figure 4. Off-Isolation
V+
10 nF
V+
COM
Meter
IN
0 V, 2.4 V
NC or NO
GND
HP4192A
Impedance
Analyzer
or Equivalent
f = 1 MHz
Figure 5. Channel Off/On Capacitance
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
www.vishay.com
7
DG3535/DG3536
Vishay Siliconix
PACKAGE OUTLINE
MICRO FOOT: 10 BUMP (4 x 3, 0.5 mm PITCH, 0.238 mm BUMP HEIGHT)
10 X Ø 0.150 ∼ 0.229
Note b
Solder Mask Ø ∼ Pad Diameter + 0.1
Silicon
0.5
A2
A
A1
Bump
Note a
0.5
3
4
Recommended Land Pattern
2
1
b Diameter
A
e
Index-Bump A1
Note c
B
E
e
XXX
3535
C
S
S
e
e
e
Top Side (Die Back)
D
Notes (Unless Otherwise Specified):
a. Bump is Lead Free Sn/Ag/Cu.
b. Non-solder mask defined copper landing pad.
c. Laser Mark on silicon die back; back-lapped, no coating. Shown is not actual marking; sample only.
Dim
A
Millimetersa
Inches
Min
Max
Min
Max
0.688
0.753
0.0271
0.0296
A1
0.218
0.258
0.0086
0.0102
A2
0.470
0.495
0.0185
0.0195
b
0.306
0.346
0.0120
0.0136
D
1.980
2.020
0.0780
0.0795
E
1.480
1.520
0.0583
0.0598
e
S
0.5 BASIC
0.230
0.270
0.0197 BASIC
0.0091
0.0106
Notes:
a. Use millimeters as the primary measurement.
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability
data, see http://www.vishay.com/ppg?72961.
www.vishay.com
8
Document Number: 72961
S-70853-Rev. F, 30-Apr-07
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages