M48Z2M1Y M48Z2M1V 5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER® SRAM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ INTEGRATED, ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT, AND BATTERIES CONVENTIONAL SRAM OPERATION; UNLIMITED WRITE CYCLES 10 YEARS OF DATA RETENTION IN THE ABSENCE OF POWER AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION WRITE PROTECT VOLTAGES (VPFD = Power-fail Deselect Voltage): – M48Z2M1Y: VCC = 4.5 to 5.5V 4.2V ≤ VPFD ≤ 4.5V – M48Z2M1V: VCC = 3.0 to 3.6V 2.8V ≤ VPFD ≤ 3.0V BATTERIES ARE INTERNALLY ISOLATED UNTIL POWER IS APPLIED PIN AND FUNCTION COMPATIBLE WITH JEDEC STANDARD 2Mb x 8 SRAMs March 2005 Figure 1. 36-pin, DIP Module 36 1 PLDIP36 (PL) Module 1/17 M48Z2M1Y, M48Z2M1V TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. 36-pin, DIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Table 1. Figure 3. Figure 4. Logic Diagram . . Signal Names . . DIP Connections Block Diagram . . ................... ................... ................... ................... ....... ....... ....... ....... ...... ...... ...... ...... ....... ....... ....... ....... ...... ...... ...... ...... ...... ...... ...... ...... .....4 .....4 .....4 .....5 OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 5. Address Controlled, READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms . . . . . . . . . . . . . 6 Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 9. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12.PLDIP36 – 36-pin Plastic DIP Long Module, Package Outline . . . . . . . . . . . . . . . . . . . . 14 Table 11. PLDIP36 – 36-pin Plastic DIP Long Module, Package Mechanical Data . . . . . . . . . . . . 14 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2/17 M48Z2M1Y, M48Z2M1V Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3/17 M48Z2M1Y, M48Z2M1V SUMMARY DESCRIPTION The M48Z2M1Y/V ZEROPOWER® RAM is a nonvolatile 16,777,216-bit, Static RAM organized as 2,097,152 words by 8 bits. The device combines two internal lithium batteries, CMOS SRAMs and a control circuit in a plastic 36-pin DIP, long Module. The ZEROPOWER RAM replaces industry standard SRAMs. It provides the nonvolatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed. Figure 2. Logic Diagram Table 1. Signal Names A0-A20 VCC DQ0-DQ7 21 8 A0-A20 W DQ0-DQ7 M48Z2M1Y M48Z2M1V E G Chip Enable G Output Enable W WRITE Enable VCC Supply Voltage VSS Ground NC Not Connected Internally AI02048 Figure 3. DIP Connections 1 36 2 35 34 3 33 4 5 32 6 31 30 7 29 8 M48Z2M1Y 9 M48Z2M1V 28 27 10 26 11 25 12 24 13 14 23 15 22 16 21 17 20 18 19 AI02049 4/17 Data Inputs / Outputs E VSS NC A20 A18 A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS Address Inputs VCC A19 NC A15 A17 W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4 DQ3 M48Z2M1Y, M48Z2M1V Figure 4. Block Diagram VCC A0-A20 POWER VOLTAGE SENSE AND SWITCHING CIRCUITRY E 2048K x 8 SRAM ARRAY DQ0-DQ7 E W G INTERNAL BATTERIES VSS AI02050 OPERATION MODES The M48Z2M1Y/V has its own Power-fail Detect Circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operations brought on by low VCC. As VCC falls below approximately 3V, the control circuitry connects the batteries which sustain data until valid power returns. Table 2. Operating Modes Mode VCC Deselect WRITE READ 3.0 to 3.6V or 4.5 to 5.5V READ E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active VIL VIL VIH DOUT Active VIL VIH VIH High Z Active Deselect VSO to VPFD (min)(1) X X X High Z CMOS Standby Deselect ≤ VSO(1) X X X High Z Battery Back-up Mode Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. 1. See Table 10., page 13 for details. 5/17 M48Z2M1Y, M48Z2M1V READ Mode The M48Z2M1Y/V is in the READ Mode whenever W (WRITE Enable) is high and E (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 16,777,216 locations in the static storage array. Thus, the unique address specified by the 21 Address Inputs defines which one of the 2,097,152 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (tAVQV) after the last address input signal is stable, providing that the E (Chip Enable) and G (Output Enable) access times are also satisfied. If the E and G ac- cess times are not met, valid data will be available after the later of Chip Enable Access time (tELQV) or Output Enable Access Time (tGLQV). The state of the eight three-state Data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the Address Inputs are changed while E and G remain low, output data will remain valid for Output Data Hold time (tAXQX) but will go indeterminate until the next Address Access. Figure 5. Address Controlled, READ Mode AC Waveforms A0-A20 tAVAV tAVQV tAXQX DQ0-DQ7 DATA VALID AI02051 Note: Chip Enable (E) and Output Enable (G) = Low, WRITE Enable (W) = High. Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms tAVAV A0-A20 VALID tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ7 DATA OUT AI02052 Note: WRITE Enable (W) = High. 6/17 M48Z2M1Y, M48Z2M1V Table 3. READ Mode AC Characteristics M48Z2M1Y M48Z2M1V –70 –85 (1) Symbol Parameter Min tAVAV READ Cycle Time Max 70 Min Unit Max 85 ns tAVQV(2) Address Valid to Output Valid tAXQX(2) Address Transition to Output Transition tEHQZ(3) Chip Enable High to Output Hi-Z 30 35 ns tELQV(2) Chip Enable Low to Output Valid 70 85 ns tELQX(3) Chip Enable Low to Output Transition tGHQZ(3) Output Enable High to Output Hi-Z 25 35 ns tGLQV(2) Output Enable Low to Output Valid 35 45 ns tGLQX(3) Output Enable Low to Output Transition 70 5 85 5 5 ns 5 5 ns ns 5 ns Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. CL = 100pF or 50pF (see Figure 10., page 11). 3. CL = 5pF (see Figure 10., page 11). WRITE Mode of another READ or WRITE cycle. Data-in must be valid tDVEH or tDVWH prior to the end of WRITE and remain valid for tEHDX or tWHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G, a low on W will disable the outputs tWLQZ after W falls. The M48Z2M1Y/V is in the WRITE Mode whenever W and E are active. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for minimum of tEHAX from E or tWHAX from W prior to the initiation Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveforms tAVAV VALID A0-A20 tAVWH tWHAX tAVEL E tWLWH tAVWL W tWHQX tWLQZ tWHDX DQ0-DQ7 DATA INPUT tDVWH AI02053 Note: Output Enable (G) = High. 7/17 M48Z2M1Y, M48Z2M1V Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms tAVAV VALID A0-A20 tAVEH tAVEL tELEH tEHAX E tAVWL W tEHDX DQ0-DQ7 DATA INPUT tDVEH AI02054 Note: Output Enable (G) = High. Table 4. WRITE Mode AC Characteristics Symbol M48Z2M1Y M48Z2M1V –70 –85 Parameter(1) Min Max Min Unit Max tAVAV WRITE Cycle Time 70 85 ns tAVEH Address Valid to Chip Enable High 65 75 ns tAVEL Address Valid to Chip Enable Low 0 0 ns tAVWH Address Valid to WRITE Enable High 65 75 ns tAVWL Address Valid to WRITE Enable Low 0 0 ns tDVEH Input Valid to Chip Enable High 30 35 ns tDVWH Input Valid to WRITE Enable High 30 35 ns tEHAX Chip Enable High to Address Transition 15 15 ns tEHDX Chip Enable High to Input Transition 10 15 ns tELEH Chip Enable Low to Chip Enable High 55 75 ns tWHAX WRITE Enable High to Address Transition 5 5 ns tWHDX WRITE Enable High to Input Transition 0 0 ns tWHQX(2,3) WRITE Enable High to Output Transition 5 5 ns tWLQZ(2,3) WRITE Enable Low to Output Hi-Z tWLWH WRITE Enable Pulse Width 25 55 30 65 Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. CL = 5pF (see Figure 10., page 11). 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. 8/17 ns ns M48Z2M1Y, M48Z2M1V Data Retention Mode With valid VCC applied, the M48Z2M1Y/V operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself tWP after VCC falls below VPFD. All outputs become high impedance, and all inputs are treated as “Don't care.” If power fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within the time tWP, write protection takes place. When VCC drops below VSO, the control circuit switches power to the internal energy source which preserves data. The internal coin cells will maintain data in the M48Z2M1Y/V after the initial application of VCC for an accumulated period of at least 10 years when VCC is less than VSO. As system power returns and VCC rises above VSO, the batteries are disconnected, and the power supply is switched to external VCC. Write protection continues for tER after VCC reaches VPFD to allow for processor stabilization. After tER, normal RAM operation can resume. For more information on Battery Storage life refer to the Application Note AN1012. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to connect a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount. Figure 9. Supply Voltage Protection VCC VCC 0.1µF DEVICE VCC Noise And Negative Going Transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in Figure 9.) is recommended in order to provide the needed filtering. VSS AI02169 9/17 M48Z2M1Y, M48Z2M1V MAXIMUM RATING Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Absolute Maximum Ratings Symbol Value Unit TA Ambient Operating Temperature 0 to 70 °C TSTG Storage Temperature (VCC Off) –40 to 85 °C TBIAS Temperature Under Bias –40 to 85 °C 260 °C M48Z2M1Y –0.3 to 7 V M48Z2M1V –0.3 to 4.6 V M48Z2M1Y –0.3 to 7 V M48Z2M1V TSLD (1) VIO Parameter Lead Solder Temperature for 10 seconds Input or Output Voltages VCC Supply Voltage –0.3 to 4.6 V IO Output Current 20 mA PD Power Dissipation 1 W Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). No preheat above 150°C, or direct exposure to IR reflow (or IR preheat) allowed, to avoid damaging the Lithium battery. CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode. 10/17 M48Z2M1Y, M48Z2M1V DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 6. Operating and AC Measurement Conditions Parameter M48Z2M1Y M48Z2M1V Unit 4.5 to 5.5 3.0 to 3.6 V 0 to 70 0 to 70 °C Load Capacitance (CL) 100 50 pF Input Rise and Fall Times ≤5 ≤5 ns 0 to 3 0 to 3 V 1.5 1.5 V Supply Voltage (VCC) Ambient Operating Temperature (TA) Input Pulse Voltages Input and Output Timing Ref. Voltages Note: Output Hi-Z is defined as the point where data is no longer driven. Figure 10. AC Testing Load Circuit 5V 1.9kΩ DEVICE UNDER TEST OUT 1kΩ CL includes JIG capacitance CL = 100pF or 5pF (Y) 50pF or 5pF (V) AI07816 11/17 M48Z2M1Y, M48Z2M1V Table 7. Capacitance Parameter(1,2) Symbol CIN CIO(3) Min Max Unit Input Capacitance 40 pF Input / Output Capacitance 40 pF Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested. 2. Outputs deselected. 3. At 25°C. Table 8. DC Characteristics Sym Parameter ILI(2) Input Leakage Current ILO(2) Output Leakage Current Test Condition(1) M48Z2M1Y M48Z2M1V Unit Min Max Min Max 0V ≤ VIN ≤ VCC ±4 ±4 µA 0V ≤ VOUT ≤ VCC ±4 ±4 µA E = VIL, Outputs open 140 70 mA E = VIH 10 2 mA E ≥ VCC – 0.2V 8 1 mA ICC Supply Current ICC1 Supply Current (Standby) TTL ICC2 Supply Current (Standby) CMOS VIL Input Low Voltage –0.3 0.8 –0.3 0.6 V VIH Input High Voltage 2.2 VCC + 0.3 2.2 VCC + 0.3 V VOL Output Low Voltage IOL = 2.1mA 0.4 V VOH Output High Voltage IOH = –1mA 0.4 2.4 2.2 Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. Outputs deselected. 12/17 V M48Z2M1Y, M48Z2M1V Figure 11. Power Down/Up Mode AC Waveforms VCC VPFD (max) VPFD (min) VSO tDR tF tR tFB tRB tER tWP E DON'T CARE RECOGNIZED RECOGNIZED HIGH-Z OUTPUTS VALID VALID (PER CONTROL INPUT) (PER CONTROL INPUT) AI01031 Table 9. Power Down/Up AC Characteristics Parameter(1) Symbol Min Max Unit 120 ms tER E Recovery Time 40 tF(2) VPFD (max) to VPFD (min) VCC Fall Time 300 µs tFB(3) VPFD (min) to VSO VCC Fall Time M48Z2M1Y 10 µs M48Z2M1V 150 µs 10 µs tR tWP VPFD (min) to VPFD (max) VCC Rise Time Write Protect Time from VCC = VPFD M48Z2M1Y 40 150 µs M48Z2M1V 40 250 µs Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min). 3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data. Table 10. Power Down/Up Trip Points DC Characteristics Symbol Parameter(1,2) VPFD Power-fail Deselect Voltage VSO Battery Back-up Switchover Voltage tDR(3) Expected Data Retention Time Min Typ Max Unit M48Z2M1Y 4.2 4.3 4.5 V M48Z2M1V 2.8 2.9 3.0 V M48Z2M1Y 3.0 V M48Z2M1V 2.45 V 10 YEARS Note: 1. All voltages referenced to VSS. 2. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 3. At 25°C; VCC = 0V. 13/17 M48Z2M1Y, M48Z2M1V PACKAGE MECHANICAL INFORMATION Figure 12. PLDIP36 – 36-pin Plastic DIP Long Module, Package Outline A A1 B S L C eA e1 e3 D N E 1 PMDIP Note: Drawing is not to scale. Table 11. PLDIP36 – 36-pin Plastic DIP Long Module, Package Mechanical Data mm inches Symb Typ 14/17 Min Max Typ Min Max A 9.27 9.52 0.3650 0.3748 A1 0.38 B 0.43 0.59 0.0169 0.0232 C 0.20 0.33 0.0079 0.0130 D 52.58 53.34 2.0701 2.1000 E 18.03 18.80 0.7098 0.7402 e1 2.30 2.81 0.0906 0.1106 e3 38.86 47.50 1.5300 1.8701 eA 14.99 16.00 0.5902 0.6299 L 3.05 3.81 0.1201 0.1500 S 4.45 5.33 0.1752 0.2098 N 36 0.0150 36 M48Z2M1Y, M48Z2M1V PART NUMBERING Table 12. Ordering Information Scheme Example: M48Z 2M1Y –70 PL 1 Device Type M48Z Supply Voltage and Write Protect Voltage 2M1Y = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V 2M1V = VCC = 3.0 to 3.6V; VPFD = 2.8 to 3.0V Speed –70 = 70ns (Y) –85 = 85ns (V) Package PL = PLDIP36 Temperature Range 1 = 0 to 70°C 9(1) = Extended Temperature Shipping Method blank = Tubes Note: 1. Contact Sales Offices for availability of Extended Temperature. For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you. 15/17 M48Z2M1Y, M48Z2M1V REVISION HISTORY Table 13. Document Revision History Date Rev. No. July 1999 1.0 First Issue 31-Aug-00 2.0 From Preliminary Data to Data Sheet 20-Mar-02 3.0 Reformatted; Temperature information added to tables (Table 7, 8, 3, 4, 9, 10) 29-May-02 3.1 Modified “VCC Noise and Negative Going Transients” text 28-Mar-03 3.2 Remove 5V/5%, add 3V part (Figure 2, 3, 10; Table 5, 6, 8, 2, 3, 4, 9, 10, 12) 02-Jul-03 3.3 Changed characteristic (Table 8) 18-Feb-05 4.0 Reformatted; IR reflow update (Table 5) 16/17 Revision Details M48Z2M1Y, M48Z2M1V Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 17/17