Freescale GRM55DR61H106KA88L Rf power field effect transi Datasheet

Freescale Semiconductor
Technical Data
Document Number: MRF6V12500H
Rev. 3, 6/2012
RF Power Field Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
MRF6V12500HR3
MRF6V12500HSR3
RF Power transistors designed for applications operating at frequencies
between 960 and 1215 MHz. These devices are suitable for use in pulse
applications.
• Typical Pulse Performance: VDD = 50 Volts, IDQ = 200 mA,
Pulse Width = 128 μsec, Duty Cycle = 10%
Application
Pout
(W)
f
(MHz)
Gps
(dB)
ηD
(%)
Narrowband
500 Peak
1030
19.7
62.0
Broadband
500 Peak
960--1215
18.5
57.0
960--1215 MHz, 500 W, 50 V
PULSE
LATERAL N--CHANNEL
RF POWER MOSFETs
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 500 Watts Peak
Power
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
Internally Matched for Ease of Use
Qualified Up to a Maximum of 50 VDD Operation
Integrated ESD Protection
Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
For R5 Tape and Reel option, see p. 14.
•
•
•
•
CASE 465--06, STYLE 1
NI--780
MRF6V12500HR3
CASE 465A--06, STYLE 1
NI--780S
MRF6V12500HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +110
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
ZθJC
0.044
°C/W
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Impedance, Junction to Case
Case Temperature 80°C, 500 W Pulse, 128 μsec Pulse Width, 10% Duty Cycle
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2009--2010, 2012. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MRF6V12500HR3 MRF6V12500HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2600 V
Machine Model (per EIA/JESD22--A115)
B, passes 200 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
110
—
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 200 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
20
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 90 Vdc, VGS = 0 Vdc)
IDSS
—
—
200
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 1.32 mA)
VGS(th)
0.9
1.7
2.4
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 200 mAdc, Measured in Functional Test)
VGS(Q)
1.7
2.4
3.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 3.26 Adc)
VDS(on)
—
0.25
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.2
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
697
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
1391
—
pF
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Narrowband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 200 mA, Pout = 500 W Peak (50 W Avg.),
f = 1030 MHz, 128 μsec Pulse Width, 10% Duty Cycle
Power Gain
Gps
18.5
19.7
22.0
dB
Drain Efficiency
ηD
58.0
62.0
—
%
Input Return Loss
IRL
—
--18
--9
dB
Typical Broadband Performance — 960--1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc,
IDQ = 200 mA, Pout = 500 W Peak (50 W Avg.), f = 960--1215 MHz, 128 μsec Pulse Width, 10% Duty Cycle
Power Gain
Gps
—
18.5
—
dB
Drain Efficiency
ηD
—
57.0
—
%
1. Part internally matched both on input and output.
MRF6V12500HR3 MRF6V12500HSR3
2
RF Device Data
Freescale Semiconductor, Inc.
R3
VBIAS
R1
C5
C9
C8
C7
C12
C13
VSUPPLY
+
+
C14
C15
C3
Z19
Z9
RF
INPUT
Z10
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z11
Z12
Z13
Z14
Z15
Z16
Z17
C2
Z8
C1
Z18
RF
OUTPUT
DUT
Z21
Z20
R4
R2
C11
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9, Z20
Z10
C6
C10
C16
C4
0.457″ x 0.080″ Microstrip
0.250″ x 0.080″ Microstrip
0.605″ x 0.040″ Microstrip
0.080″ x 0.449″ Microstrip
0.374″ x 0.608″ Microstrip
0.118″ x 1.252″ Microstrip
0.778″ x 1.710″ Microstrip
0.095″ x 1.710″ Microstrip
0.482″ x 0.050″ Microstrip
0.138″ x 1.500″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
Z19, Z21
PCB
0.161” x 1.500″ Microstrip
0.613” x 1.281″ Microstrip
0.248” x 0.865″ Microstrip
0.087” x 0.425″ Microstrip
0.309” x 0.090″ Microstrip
0.193” x 0.516″ Microstrip
0.279” x 0.080″ Microstrip
0.731” x 0.080″ Microstrip
0.507” x 0.040″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
Figure 1. MRF6V12500HR3(HSR3) Test Circuit Schematic
Table 5. MRF6V12500HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
5.1 pF Chip Capacitors
ATC100B5R1CT500XT
ATC
C3, C4, C5, C6
33 pF Chip Capacitors
ATC100B330JT500XT
ATC
C7, C10
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C8, C11, C13, C16
2.2 μF, 100 V Chip Capacitors
2225X7R225KT3AB
ATC
C9
22 μF, 25 V Chip Capacitor
TPSD226M025R0200
AVX
C12
1 μF, 100 V Chip Capacitor
GRM31CR72A105KA01L
Murata
C14, C15
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
R1, R2
56 Ω, 1/4 W Chip Resistors
CRCW120656R0FKEA
Vishay
R3, R4
0 Ω, 3 A Chip Resistors
CRCW12060000Z0EA
Vishay
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
3
C14
C12
R3
Rev. 1
C8
C7
R1
C15
C13
C5
C3
CUT OUT AREA
MRF6V12500H
C9
C1
R2
C11 C10
R4
C4
C2
C6
C16
Figure 2. MRF6V12500HR3(HSR3) Test Circuit Component Layout
MRF6V12500HR3 MRF6V12500HSR3
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
10000
160
C, CAPACITANCE (pF)
MAXIMUM OPERATING Tcase (°C)
Ciss
1000
Coss
100
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
10
1
Crss
140
120
100
Pout = 525 W
80
Pout = 500 W
60
40
VDD = 50 Vdc, IDQ = 200 mA
f = 1030 MHz, Pulse Width = 128 μsec
20
0
0.1
0
10
20
30
40
0
50
5
10
15
20
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
DUTY CYCLE (%)
Figure 3. Capacitance versus Drain--Source Voltage
Figure 4. Safe Operating Area
22
80
20
60
50
19
18
40
ηD
17
16
30
20
VDD = 50 Vdc, IDQ = 200 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
15
14
30
10
Pout, OUTPUT POWER (WATTS)
70
Gps
ηD, DRAIN EFFICIENCY (%)
21
Gps, POWER GAIN (dB)
Pout = 475 W
0
1000
100
25
62
P3dB = 57.6 dBm (575 W)
61
Ideal
60
59 P1dB = 57.1 dBm (511 W)
58
57
Actual
56
55
54
53
52
51
VDD = 50 Vdc, IDQ = 200 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
50
49
32
34
36
38
40
42
30
Pout, OUTPUT POWER (WATTS) PEAK
Pin, INPUT POWER (dBm) PEAK
Figure 5. Power Gain and Drain Efficiency
versus Output Power
Figure 6. Output Power versus Input Power
22
22
21
IDQ = 800 mA
20
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
21
20
400 mA
19
600 mA
200 mA
19
18
17
16
15
14
18
VDD = 50 Vdc, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
17
30
100
VDD = 30 V
13
1000
12
30
50 V
IDQ = 200 mA, f = 1030 MHz
Pulse Width = 128 μsec
Duty Cycle = 10%
45 V
40 V
35 V
100
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 7. Power Gain versus Output Power
Figure 8. Power Gain versus Output Power
1000
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
600
500
21
85_C
25_C
55_C
400
300
200
VDD = 50 Vdc, IDQ = 200 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
100
0
2
4
6
8
10
20
60
25_C
19
18
85_C
17
50
40
55_C
30
16
20
ηD
VDD = 50 Vdc, IDQ = 200 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
14
30
12
70
TC = --30_C
15
0
80
Gps
100
Pin, INPUT POWER (dBm) PEAK
ηD, DRAIN EFFICIENCY (%)
22
TC = --30_C
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS)
700
10
0
1000
Pout, OUTPUT POWER (WATTS) PEAK
Figure 9. Output Power versus Input Power
Figure 10. Power Gain and Drain Efficiency versus
Output Power
109
VDD = 50 Vdc
Pout = 500 W Peak
Pulse Width = 128 μsec
Duty Cycle = 10%
ηD = 62%
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 11. MTTF versus Junction Temperature
VDD = 50 Vdc, IDQ = 200 mA, Pout = 500 W Peak
f
MHz
Zsource
Ω
Zload
Ω
1030
1.36 -- j1.27
2.50 -- j0.17
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Input
Matching
Network
Output
Matching
Network
Device
Under
Test
Zsource
Zload
Figure 12. Series Equivalent Source and Load Impedance
MRF6V12500HR3 MRF6V12500HSR3
6
RF Device Data
Freescale Semiconductor, Inc.
C11
C9
C7
C5
C17
C15
C13
R1
C18
CUT OUT AREA
C3
C1
C2
C8
MRF6V12500
Rev. 1
C4
R2
C14
C16
C10
C6
C12
Figure 13. MRF6V12500H(HS) Test Circuit Component Layout — 960--1215 MHz
Table 6. MRF6V12500H(HS) Test Circuit Component Designations and Values — 960--1215 MHz
Part
Description
Part Number
Manufacturer
C1
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C2
0.2 pF Chip Capacitor
ATC100B0R2BT500XT
ATC
C3, C4
33 pF Chip Capacitors
ATC100B330JT500XT
ATC
C5, C6, C11, C12
2.2 μF, 100 V Chip Capacitors
G2225X7R225KT3AB
ATC
C7
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C8
8.2 pF Chip Capacitor
ATC100B8R2CT500XT
ATC
C9, C10
39 pF Chip Capacitors
ATC100B390JT500XT
ATC
C13, C14
0.022 μF, 100 V Chip Capacitors
C1825C223K1GAC
Kemet
C15, C16
0.10 μF, 100 V Chip Capacitors
C1812F104K1RAC
Kemet
C17, C18
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
R1, R2
22 Ω, 1/4 W Chip Resistors
CRCW120622R0FKEA
Vishay
PCB
0.030″, εr = 2.55
AD255A
Arlon
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
7
TYPICAL CHARACTERISTICS — 960--1215 MHz
19
64
Gps, POWER GAIN (dB)
18
62
17
60
ηD
16
58
15
56
14
0
IRL
13
--5
12
--10
VDD = 50 Vdc, Pout = 500 W Peak (50 W Avg.), IDQ = 200 mA
Pulse Width = 128 μsec, Duty Cycle = 10%
11
10
ηD, DRAIN
EFFICIENCY (%)
66
Gps
900
950
1000
1050
1100
1150
1200
1250
--15
--20
1300
IRL, INPUT RETURN
LOSS (dB)
20
f, FREQUENCY (MHz)
Figure 14. Power Gain, Drain Efficiency and IRL
versus Frequency
Gps, POWER GAIN (dB)
21
VDD = 50 Vdc
IDQ = 200 mA
Pulse Width = 128 μsec
Duty Cycle = 10%
65
1150 MHz
1215 MHz
60
ηD
960 MHz
20
1150 MHz
19
960 MHz
Gps
18
17
200
55
1030 MHz
1030 MHz
1215 MHz
50
45
ηD, DRAIN EFFICIENCY (%)
22
40
250
300
350
400
450
500
550
600
Pout, OUTPUT POWER (WATTS) PEAK
Figure 15. Power Gain and Drain Efficiency versus
Output Power
MRF6V12500HR3 MRF6V12500HSR3
8
RF Device Data
Freescale Semiconductor, Inc.
Zo = 5 Ω
f = 1215 MHz
f = 1215 MHz
Zsource
Zload
f = 960 MHz
f = 960 MHz
VDD = 50 Vdc, IDQ = 200 mA, Pout = 500 W Peak
f
MHz
Zsource
Ω
Zload
Ω
960
2.25 -- j1.78
1.38 -- j1.53
1030
2.51 -- j1.02
1.48 -- j1.11
1090
2.69 -- j0.73
1.51 -- j0.78
1150
2.71 -- j0.65
1.53 -- j0.49
1215
2.48 -- j0.76
1.53 -- j0.33
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Input
Matching
Network
Output
Matching
Network
Device
Under
Test
Zsource
Zload
Figure 16. Series Equivalent Source and Load Impedance — 960--1215 MHz
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
9
PACKAGE DIMENSIONS
MRF6V12500HR3 MRF6V12500HSR3
10
RF Device Data
Freescale Semiconductor, Inc.
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
11
MRF6V12500HR3 MRF6V12500HSR3
12
RF Device Data
Freescale Semiconductor, Inc.
MRF6V12500HR3 MRF6V12500HSR3
RF Device Data
Freescale Semiconductor, Inc.
13
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents and software to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software
& Tools tab on the part’s Product Summary page to download the respective tool.
R5 TAPE AND REEL OPTION
R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel.
The R5 tape and reel option for MRF6V12500H and MRF6V12500HS parts will be available for 2 years after release of
MRF6V12500H and MRF6V12500HS. Freescale Semiconductor, Inc. reserves the right to limit the quantities that will be
delivered in the R5 tape and reel option. At the end of the 2 year period customers who have purchased these devices in the R5
tape and reel option will be offered MRF6V12500H and MRF6V12500HS in the R3 tape and reel option.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Sept. 2009
• Initial Release of Data Sheet
1
Apr. 2010
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1
• Added RF High Power Model availability to Product Software, p. 9
2
Sept. 2010
• Maximum Ratings table: corrected VDSS from --0.5, +100 to --0.5, +110 Vdc, p. 2
• Added 960--1215 MHz Broadband application as follows:
-- Typical Performance, p. 1, 2
-- Fig. 13, Test Circuit Component Layout and Table 6, Test Circuit Component Designations and Values, p. 8
-- Fig. 14, Pulsed Power Gain, Drain Efficiency and IRL versus Frequency, p. 9
-- Fig. 15, Power Gain and Drain Efficiency versus Output Power, p. 9
-- Fig. 16, Series Equivalent Source and Load Impedance, p. 10
3
June 2012
• Table 3, ESD Protection Characteristics: added the device’s ESD passing level as applicable to each ESD
class, p. 2
• Modified figure titles and/or graph axes labels to clarify application use, p. 5, 6, 9
• Fig. 6, Output Power versus Input Power: corrected Pout, Output Power unit of measure to watts, p. 5
• Fig. 9, Output Power versus Input Power: corrected Pout, Output Power unit of measure to watts, p. 6
• Fig. 11, MTTF versus Junction Temperature: MTTF end temperature on graph changed to match maximum
operating junction temperature, p. 6
MRF6V12500HR3 MRF6V12500HSR3
14
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.
Freescale, the Freescale logo, AltiVec, C--5, CodeTest, CodeWarrior, ColdFire,
C--Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor
Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack,
ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,
QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic
are trademarks of Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.
E 2009--2010, 2012 Freescale Semiconductor, Inc.
MRF6V12500HR3 MRF6V12500HSR3
Document
Number:
RF
Device
Data MRF6V12500H
Rev. 3, 6/2012
Freescale
Semiconductor, Inc.
15
Similar pages