dsPIC33FJXXXMCX06A/X08A/X10A 16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Motor Control and Advanced Analog Operating Conditions Timers/Output Compare/Input Capture • 3.0V to 3.6V, -40ºC to +150ºC, DC to 20 MIPS • 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS • Up to nine 16-bit timers/counters. Can pair up to make four 32-bit timers. • Eight Output Compare modules configurable as timers/counters • Eight Input Capture modules Core: 16-bit dsPIC33F CPU • • • • Code-efficient (C and Assembly) architecture Two 40-bit wide accumulators Single-cycle (MAC/MPY) with dual data fetch Single-cycle mixed-sign MUL plus hardware divide Communication Interfaces • Two UART modules (10 Mbps) - With support for LIN 2.0 protocols and IrDA® • Two 4-wire SPI modules (15 Mbps) • Up to two I2C™ modules (up to 1 Mbaud) with SMBus support • Up to two Enhanced CAN (ECAN) modules (1 Mbaud) with 2.0B support • Quadrature Encoder Interface (QEI) module • Data Converter Interface (DCI) module with I2S codec support Clock Management • • • • • ±2% internal oscillator Programmable PLLs and oscillator clock sources Fail-Safe Clock Monitor (FSCM) Independent Watchdog Timer (WDT) Fast wake-up and start-up Power Management Input/Output • Low-power management modes (Sleep, Idle, Doze) • Integrated Power-on Reset and Brown-out Reset • 1.35 mA/MHz dynamic current (typical) • 55 μA IPD current (typical) • Sink/Source up to 10 mA (pin specific) for standard VOH/VOL, up to 16 mA (pin specific) for nonstandard VOH1 • 5V-tolerant pins • Selectable open drain, pull-ups, and pull-downs • Up to 5 mA overvoltage clamp current • External interrupts on all I/O pins Motor Control PWM • • • • Up to four PWM generators with eight outputs Dead Time for rising and falling edges 12.5 ns PWM resolution PWM support for Motor Control: BLDC, PMSM, ACIM, and SRM • Programmable Fault inputs • Flexible trigger for ADC conversions and configurations Qualification and Class B Support • AEC-Q100 REVG (Grade 1 -40ºC to +125ºC) • AEC-Q100 REVG (Grade 0 -40ºC to +150ºC) • Class B Safety Library, IEC 60730 Debugger Development Support Advanced Analog Features • • • • • Two ADC modules: - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H - 18 analog inputs on 64-pin devices and up to 32 analog inputs on 100-pin devices • Flexible and independent ADC trigger sources In-circuit and in-application programming Two program and two complex data breakpoints IEEE 1149.2-compatible (JTAG) boundary scan Trace and run-time watch Packages Type QFN Pin Count 64 Contact Lead/Pitch 0.50 I/O Pins 53 Dimensions 9x9x0.9 Note: All dimensions are in millimeters (mm) unless specified. 2009-2012 Microchip Technology Inc. TQFP TQFP TQFP 64 0.50 53 10x10x1 80 0.50 69 12x12x1 100 0.40 85 14x14x1 DS70594D-page 1 dsPIC33FJXXXMCX06A/X08A/X10A The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams. dsPIC33F PRODUCT FAMILIES The dsPIC33FJXXXMCX06A/X08A/X10A family of devices supports a variety of motor control applications, such as brushless DC motors, single and 3-phase induction motors and switched reluctance motors. The dsPIC33F Motor Control products are also well-suited for Uninterrupted Power Supply (UPS), inverters, Switched mode power supplies, power factor correction and also for controlling the power management module in servers, telecommunication equipment and other industrial equipment. Timer 16-bit Input Capture Output Compare Std. PWM Motor Control PWM Quadrature Encoder Interface Codec Interface ADC UART SPI 2 I C™ Enhanced CAN I/O Pins (Max)(2) Packages dsPIC33FJXXXMCX06A/X08A/X10A Controller Families dsPIC33FJ64MC506A 64 64 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ64MC508A 80 64 8 9 8 8 8 ch 1 0 1 ADC, 18 ch 2 2 2 1 69 PT dsPIC33FJ64MC510A 100 64 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ64MC706A 64 64 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ64MC710A 100 64 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ128MC506A 64 128 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ128MC510A 100 128 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ128MC706A 64 128 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ128MC708A 80 128 16 9 8 8 8 ch 1 0 2 ADC, 18 ch 2 2 2 2 69 PT dsPIC33FJ128MC710A 100 128 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ256MC510A 100 256 16 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ256MC710A 100 256 30 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT Device Note 1: 2: Program Flash RAM Pins Memory (Kbyte)(1) (Kbyte) RAM size is inclusive of 2 Kbytes DMA RAM. Maximum I/O pin count includes pins shared by the peripheral functions. DS70594D-page 2 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams 64-Pin QFN(1) PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/VREF-/CN3/RB1 PGED3/AN0/VREF+/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ128MC506A dsPIC33FJ64MC506A dsPIC33FJ128MC706A dsPIC33FJ64MC706A 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note 1: The metal plane at the bottom of the device is not connected to any pins and should be connected to VSS externally. 2009-2012 Microchip Technology Inc. DS70594D-page 3 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ128MC506A dsPIC33FJ256MC506A dsPIC33FJ128MC706A dsPIC33FJ64MC706A 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/VREF-/CN3/RB1 PGED3/AN0/VREF+/CN2/RB0 DS70594D-page 4 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) = Pins are up to 5V tolerant IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 63 62 61 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 OC7/CN15/RD6 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/CN16/UPDN/RD7 75 74 73 72 71 70 69 68 67 66 65 64 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 RG0 RG1 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 80-Pin TQFP PWM3H/RE5 1 60 PGEC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGED2/SOSCI/CN1/RC13 OC1/RD0 PWM4H/RE7 3 58 AN16/T2CK/T7CK/RC1 4 57 IC4/RD11 AN17/T3CK/T6CK/RC2 5 56 IC3/RD10 SCK2/CN8/RG6 6 55 IC2/RD9 SDI2/CN9/RG7 7 54 IC1/RD8 SDO2/CN10/RG8 8 53 SDA2/INT4/RA3 MCLR 9 52 SS2/CN11/RG9 VSS 10 51 SCL2/INT3/RA2 VSS 50 OSC2/CLKO/RC15 VDD 12 49 OSC1/CLKIN/RC12 TMS/FLTA/INT1/RE8 13 14 48 VDD 47 SCL1/RG2 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 15 46 SDA1/RG3 16 45 SCK1/INT0/RF6 AN3/INDX/CN5/RB3 17 44 SDI1/RF7 AN2/SS1/CN4/RB2 PGEC3/AN1/CN3/RB1 18 43 SDO1/RF8 19 42 U1RX/RF2 PGED3/AN0/CN2/RB0 20 41 U1TX/RF3 30 31 32 33 34 35 36 37 38 39 40 VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 27 U2CTS/AN8/RB8 VSS 26 AVSS AN11/RB11 25 AVDD 29 24 28 23 VREF-/RA9 VREF+/RA10 AN9/RB9 22 PGED1/AN7/RB7 2009-2012 Microchip Technology Inc. AN10/RB10 21 PGEC1/AN6/OCFA/RB6 TDO/FLTB/INT2/RE9 dsPIC33FJ256MC508A 11 DS70594D-page 5 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) = Pins are up to 5V tolerant OC2/RD1 IC5/RD12 OC4/RD3 OC3/RD2 OC8/CN16/UPDN/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PWM3L/RE4 PWM2H/RE3 80-Pin TQFP PWM3H/RE5 1 60 PGEC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGED2/SOSCI/CN1/RC13 OC1/RD0 PWM4H/RE7 3 58 AN16/T2CK/T7CK/RC1 4 57 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 5 56 IC4/RD11 IC3/RD10 6 55 IC2/RD9 SDI2/CN9/RG7 SDO2/CN10/RG8 7 54 IC1/RD8 8 53 SDA2/INT4/RA3 MCLR 9 52 SCL2/INT3/RA2 SS2/CN11/RG9 10 51 VSS VSS 11 50 OSC2/CLKO/RC15 VDD 12 49 OSC1/CLKIN/RC12 TMS/FLTA/INT1/RE8 48 VDD TDO/FLTB/INT2/RE9 13 14 47 SCL1/RG2 AN5/QEB/CN7/RB5 15 46 SDA1/RG3 AN4/QEA/CN6/RB4 16 45 SCK1/INT0/RF6 AN3/INDX/CN5/RB3 17 44 SDI1/RF7 AN2/SS1/CN4/RB2 18 43 SDO1/RF8 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 19 42 U1RX/RF2 20 41 U1TX/RF3 DS70594D-page 6 30 31 32 33 34 35 36 37 38 39 40 VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 27 U2CTS/AN8/RB8 VSS 26 AVSS 29 25 AVDD AN11/RB11 24 28 23 VREF-/RA9 VREF+/RA10 AN9/RB9 22 PGED1/AN7/RB7 AN10/RB10 21 PGEC1/AN6/OCFA/RB6 dsPIC33FJ128MC708A 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 VSS 74 73 PGEC2/SOSCO/T1CK/CN0/RC14 72 OC1/RD0 IC4/RD11 71 70 69 68 67 66 dsPIC33FJ64MC510A PGED2/SOSCI/CN1/RC13 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 65 64 INT3/RA14 VSS OSC2/CLKO/RC15 63 62 61 OSC1/CLKIN/RC12 VDD TDO/RA5 60 59 58 57 56 TDI/RA4 SDA2/RA3 SCL2/RA2 55 54 53 52 51 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant 2009-2012 Microchip Technology Inc. DS70594D-page 7 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 VSS 73 72 PGED2/SOSCI/CN1/RC13 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 71 70 69 68 67 66 65 64 dsPIC33FJ128MC510A dsPIC33FJ256MC510A 63 62 61 60 59 58 57 56 55 54 53 52 51 PGEC2/SOSCO/T1CK/CN0/RC14 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant DS70594D-page 8 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 73 13 14 15 16 17 18 19 20 21 22 23 24 25 72 71 70 69 68 67 66 dsPIC33FJ64MC710A dsPIC33FJ128MC710A dsPIC33FJ256MC710A 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VSS PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/CN1/RC13 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGED3/AN0/CN2/RB0 1 2009-2012 Microchip Technology Inc. DS70594D-page 9 dsPIC33FJXXXMCX06A/X08A/X10A Table of Contents dsPIC33F Product Families ................................................................................................................................................................... 2 1.0 Device Overview ........................................................................................................................................................................ 13 2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 19 3.0 CPU ............................................................................................................................................................................................ 23 4.0 Memory Organization ................................................................................................................................................................. 35 5.0 Flash Program Memory .............................................................................................................................................................. 73 6.0 Reset ......................................................................................................................................................................................... 79 7.0 Interrupt Controller ..................................................................................................................................................................... 85 8.0 Direct Memory Access (DMA) .................................................................................................................................................. 133 9.0 Oscillator Configuration ............................................................................................................................................................ 143 10.0 Power-Saving Features ............................................................................................................................................................ 153 11.0 I/O Ports ................................................................................................................................................................................... 161 12.0 Timer1 ...................................................................................................................................................................................... 165 13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 167 14.0 Input Capture............................................................................................................................................................................ 173 15.0 Output Compare ....................................................................................................................................................................... 175 16.0 Motor Control PWM Module ..................................................................................................................................................... 179 17.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 193 18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 197 19.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 203 20.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 211 21.0 Enhanced CAN Module ............................................................................................................................................................ 217 22.0 10-bit/12-bit Analog-to-Digital Converter (ADC) ....................................................................................................................... 245 23.0 Special Features ...................................................................................................................................................................... 259 24.0 Instruction Set Summary .......................................................................................................................................................... 267 25.0 Development Support............................................................................................................................................................... 275 26.0 Electrical Characteristics .......................................................................................................................................................... 279 27.0 High Temperature Electrical Characteristics ............................................................................................................................ 329 28.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 339 29.0 Packaging Information.............................................................................................................................................................. 343 Appendix A: Migrating from dsPIC33FJXXXMCX06/X08/X10 Devices to dsPIC33FJXXXMCX06A/X08A/X10A Devices ............... 357 Appendix B: Revision History............................................................................................................................................................. 358 Index ................................................................................................................................................................................................. 363 The Microchip Web Site ..................................................................................................................................................................... 369 Customer Change Notification Service .............................................................................................................................................. 369 Customer Support .............................................................................................................................................................................. 369 Reader Response .............................................................................................................................................................................. 370 Product Identification System............................................................................................................................................................. 371 DS70594D-page 10 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at [email protected] or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. 2009-2012 Microchip Technology Inc. DS70594D-page 11 dsPIC33FJXXXMCX06A/X08A/X10A Referenced Sources This device data sheet is based on the following individual chapters of the “dsPIC33F/PIC24H Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature. Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256MC710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections. • • • • • • • • • • • • • • • • • • • • • • • • • Section 1. “Introduction” (DS70197) Section 2. “CPU” (DS70204) Section 3. “Data Memory” (DS70202) Section 4. “Program Memory” (DS70203) Section 5. “Flash Programming” (DS70191) Section 6. “Interrupts” (DS70184) Section 7. “Oscillator” (DS70186) Section 8. “Reset” (DS70192) Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196) Section 10. “I/O Ports” (DS70193) Section 11. “Timers” (DS70205) Section 12. “Input Capture” (DS70198) Section 13. “Output Compare” (DS70209) Section 14. “Motor Control PWM” (DS70187) Section 15. “Quadrature Encoder Interface (QEI)” (DS70208) Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) Section 17. “UART” (DS70188) Section 18. “Serial Peripheral Interface (SPI)” (DS70206) Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195) Section 20. “Data Converter Interface (DCI)” (DS70288) Section 21. “Enhanced Controller Area Network (ECAN™)” (DS70185) Section 22. “Direct Memory Access (DMA)” (DS70182) Section 23. “CodeGuard™ Security” (DS70199) Section 24. “Programming and Diagnostics” (DS70207) Section 25. “Device Configuration” (DS70194) DS70594D-page 12 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 1.0 DEVICE OVERVIEW Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. This document contains device-specific information for the following devices: • • • • • • • • • • • • dsPIC33FJ64MC506A dsPIC33FJ64MC508A dsPIC33FJ64MC510A dsPIC33FJ64MC706A dsPIC33FJ64MC710A dsPIC33FJ128MC506A dsPIC33FJ128MC510A dsPIC33FJ128MC706A dsPIC33FJ128MC708A dsPIC33FJ128MC710A dsPIC33FJ256MC510A dsPIC33FJ256MC710A These features make this family suitable for a wide variety of high-performance, digital signal control applications. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application. The dsPIC33FJXXXMCX06A/X08A/X10A family of devices employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control. The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together, provide the dsPIC33FJXXXMCX06A/X08A/X10A Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXMCX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXMCX06A/X08A/X10A devices. The dsPIC33FJXXXMCX06A/X08A/X10A includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes). 2009-2012 Microchip Technology Inc. DS70594D-page 13 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 1-1: dsPIC33FJXXXMCX06A/X08A/X10A GENERAL BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 16 8 PORTA 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch DMA RAM 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 23 PORTB DMA 16 16 16 Controller PORTC Address Generator Units Address Latch Program Memory EA MUX Data Latch 24 Instruction Reg Control Signals to Various Blocks Timing Generation FRC/LPRC Oscillators Precision Band Gap Reference Voltage Regulator VCAP Note: 16 PORTE 16 DSP Engine Power-up Timer Oscillator Start-up Timer Divide Support 16 x 16 W Register Array PORTF 16 Power-on Reset Watchdog Timer 16-Bit ALU Brown-out Reset VDD, VSS PWM IC1-8 Literal Data 16 Instruction Decode and Control OSC2/CLKO OSC1/CLKI PORTD ROM Latch OC/ PWM1-8 PORTG 16 MCLR QEI Timers 1-9 ADC1,2 ECAN1,2 CN1-23 SPI1,2 I2C1,2 UART1,2 Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features present on each device. DS70594D-page 14 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Type Buffer Type AN0-AN31 I Analog AVDD P P Positive supply for analog modules. This pin must be connected at all times. AVSS P P Ground reference for analog modules. CLKI CLKO I O CN0-CN23 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. C1RX C1TX C2RX C2TX I O I O ST — ST — ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin. PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3 I/O I I/O I I/O I ST ST ST ST ST ST Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3. IC1-IC8 I ST Capture Inputs 1 through 8. INDX QEA I I ST ST QEB I ST Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/ gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/ gate input in Timer mode. Position up/down counter direction state. Pin Name Description Analog input channels. ST/CMOS External clock source input. Always associated with OSC1 pin function. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. UPDN O CMOS INT0 INT1 INT2 INT3 INT4 I I I I I ST ST ST ST ST External Interrupt 0. External Interrupt 1. External Interrupt 2. External Interrupt 3. External Interrupt 4. FLTA FLTB PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM4L PWM4H I I O O O O O O O O ST ST — — — — — — — — PWM Fault A input. PWM Fault B input. PWM1 low output. PWM1 high output. PWM2 low output. PWM2 high output. PWM3 low output. PWM3 high output. PWM4 low output. PWM4 high output. MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. OCFA OCFB OC1-OC8 I I O ST ST — Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8. OSC1 I OSC2 I/O ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels 2009-2012 Microchip Technology Inc. Analog = Analog input O = Output P = Power I = Input DS70594D-page 15 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type RA0-RA7 RA9-RA10 RA12-RA15 I/O I/O I/O ST ST ST PORTA is a bidirectional I/O port. RB0-RB15 I/O ST PORTB is a bidirectional I/O port. RC1-RC4 RC12-RC15 I/O I/O ST ST PORTC is a bidirectional I/O port. Pin Name Description RD0-RD15 I/O ST PORTD is a bidirectional I/O port. RE0-RE9 I/O ST PORTE is a bidirectional I/O port. RF0-RF8 RF12-RF13 I/O ST PORTF is a bidirectional I/O port. RG0-RG3 RG6-RG9 RG12-RG15 I/O I/O I/O ST ST ST PORTG is a bidirectional I/O port. SCK1 SDI1 SDO1 SS1 SCK2 SDI2 SDO2 SS2 I/O I O I/O I/O I O I/O ST ST — ST ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 SCL2 SDA2 I/O I/O I/O I/O ST ST ST ST Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. SOSCI SOSCO I O TMS TCK TDI TDO I I I O ST ST ST — JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK I I I I I I I I I ST ST ST ST ST ST ST ST ST Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX I O I O I O I O ST — ST — ST — ST — UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 receive. UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VCAP P — CPU logic filter capacitor connection. ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. — 32.768 kHz low-power oscillator crystal output. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels DS70594D-page 16 Analog = Analog input O = Output P = Power I = Input 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type VSS P — VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input. Pin Name Description Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels 2009-2012 Microchip Technology Inc. Analog = Analog input O = Output P = Power I = Input DS70594D-page 17 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 18 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements G ettin g star ted w ith t he dsPIC33FJXXXMCX06A/X08A/X10A family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins (regardless if ADC module is not used) (see Section 2.2 “Decoupling Capacitors”) • VCAP (see Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 “External Oscillator Pins”) 2.2 Decoupling Capacitors The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: Recommendation of 0.1 F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 F to 0.001 F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 F in parallel with 0.001 F. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance. Additionally, the following pins may be required: • VREF+/VREF- pins used when external voltage reference for ADC module is implemented Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source. 2009-2012 Microchip Technology Inc. DS70594D-page 19 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic 10 µF Tantalum R R1 VSS VDD 2.4 VCAP VDD • Device Reset • Device Programming and Debugging C dsPIC33F VSS VDD VSS VDD AVSS VDD AVDD VSS 0.1 µF Ceramic 0.1 µF Ceramic 0.1 µF Ceramic L1(1) Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1 and the inductor capacity greater than 10 mA. Where: F CNV f = ------------2 1 f = ---------------------- 2 LC Master Clear (MCLR) Pin The MCLR pin provides for two specific device functions: MCLR 0.1 µF Ceramic The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 “On-Chip Voltage Regulator” for details. (i.e., ADC conversion rate/2) During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations. Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS VDD 2 1 L = ---------------------- 2f C R(1) R1(2) 2.2.1 TANK CAPACITORS On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 F to 47 F. 2.3 CPU Logic Filter Capacitor Connection (VCAP) JP MCLR dsPIC33F C Note 1: R 10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1 470 will limit any current flowing into MCLR from the external capacitor, C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor between 4.7 F and 10 F, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 “Electrical Characteristics” for additional information. DS70594D-page 20 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 2.5 ICSP Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the “dsPIC33F/ PIC24H Flash Programming Specification” (DS70152) for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements. Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the MPLAB® ICD 3 or REAL ICE™ in-circuit emulator. For more information on the ICD 3 and REAL ICE in-circuit emulator connection requirements, refer to the following documents that are available on the Microchip web site. • “Using MPLAB® ICD 3” (poster) (DS51765) • “MPLAB® ICD 3 Design Advisory” (DS51764) • “MPLAB® REAL ICE™ In-Circuit Emulator User’s Guide” (DS51616) • “Using MPLAB® REAL ICE™ In-Circuit Emulator” (poster) (DS51749) 2009-2012 Microchip Technology Inc. 2.6 External Oscillator Pins Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 “Oscillator Configuration” for details). The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT Main Oscillator 13 Guard Ring 14 15 Guard Trace Secondary Oscillator 16 17 18 19 20 DS70594D-page 21 dsPIC33FJXXXMCX06A/X08A/X10A 2.7 Oscillator Value Conditions on Device Start-up If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed. Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word. 2.8 Configuration of Analog and Digital Pins During ICSP Operations If the MPLAB ICD 3 or REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as “digital” pins by setting all bits in the AD1PCFGL register. DS70594D-page 22 The bits in this register that correspond to the A/D pins that are initialized by the MPLAB ICD 3 or REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module. When the MPLAB ICD 3 or REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic ‘0’, which may affect user application functionality. 2.9 Unused I/Os Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1k to 10k resistor between VSS and the unused pins. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.0 CPU Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. “CPU” (DS70204) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The dsPIC33FJXXXMCX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33FJXXXMCX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer’s model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The dsPIC33FJXXXMCX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum ‘C’ compiler efficiency. For most instructions, the dsPIC33FJXXXMCX06A/X08A/X10A devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. 3.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes, and is split into two blocks referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers but may be used as general purpose RAM. 3.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers, and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space. A block diagram of the CPU is shown in Figure 3-1 and the programmer’s model for the dsPIC33FJXXXMCX06A/X08A/X10A is shown in Figure 3-2. 2009-2012 Microchip Technology Inc. DS70594D-page 23 dsPIC33FJXXXMCX06A/X08A/X10A 3.3 The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data. Special MCU Features The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). FIGURE 3-1: A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 8 16 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch 23 16 DMA RAM 16 DMA Controller Address Generator Units Address Latch 16 Program Memory EA MUX Data Latch ROM Latch 24 Control Signals to Various Blocks Instruction Reg Literal Data Instruction Decode and Control 16 16 16 DSP Engine Divide Support 16 x 16 W Register Array 16 16-Bit ALU 16 To Peripheral Modules DS70594D-page 24 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 3-2: dsPIC33FJXXXMCX06A/X08A/X10A PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 DSP Operand Registers W5 W6 W7 Working Registers W8 W9 DSP Address Registers W10 W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer Stack Pointer Limit Register SPLIM AD39 DSP Accumulators AD15 AD31 AD0 AccA AccB PC22 PC0 Program Counter 0 0 7 TBLPAG Data Table Page Address 7 0 PSVPAG Program Space Visibility Page Address 15 0 RCOUNT REPEAT Loop Counter 15 0 DCOUNT DO Loop Counter 22 0 DOSTART DO Loop Start Address DOEND DO Loop End Address 22 15 0 Core Configuration Register CORCON OA OB SA SB OAB SAB DA SRH 2009-2012 Microchip Technology Inc. DC IPL2 IPL1 IPL0 RA N OV Z C STATUS Register SRL DS70594D-page 25 dsPIC33FJXXXMCX06A/X08A/X10A 3.4 CPU Control Registers REGISTER 3-1: R-0 OA SR: CPU STATUS REGISTER R-0 R/C-0 R/C-0 OB SA(1) (1) SB R-0 OAB R/C-0 (4) SAB R -0 R/W-0 DA DC bit 15 bit 8 R/W-0(3) R/W-0(3) R/W-0(3) (2) IPL<2:0> R-0 R/W-0 R/W-0 R/W-0 R/W-0 RA N OV Z C bit 7 bit 0 Legend: C = Clearable bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Settable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A overflowed 0 = Accumulator A has not overflowed bit 14 OB: Accumulator B Overflow Status bit 1 = Accumulator B overflowed 0 = Accumulator B has not overflowed bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit(1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit(1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(4) 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred Note 1: 2: 3: 4: This bit may be read or cleared (not set). The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>). This bit may be read or cleared (not set). Clearing this bit will clear SA and SB. DS70594D-page 26 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED) bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(2) 111 = CPU interrupt priority level is 7 (15), user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: 2: 3: 4: This bit may be read or cleared (not set). The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>). This bit may be read or cleared (not set). Clearing this bit will clear SA and SB. 2009-2012 Microchip Technology Inc. DS70594D-page 27 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 3-2: CORCON: CORE CONTROL REGISTER U-0 — bit 15 U-0 — R/W-0 SATA bit 7 R/W-0 SATB bit 11 bit 10-8 R/W-0 US R/W-0 EDT(1) R-0 R-0 DL<2:0> R-0 bit 8 Legend: R = Readable bit 0’ = Bit is cleared bit 15-13 bit 12 U-0 — R/W-1 SATDW R/W-0 ACCSAT C = Clearable bit W = Writable bit ‘x = Bit is unknown R/C-0 IPL3(2) R/W-0 PSV R/W-0 RND R/W-0 IF bit 0 -n = Value at POR ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ Unimplemented: Read as ‘0’ US: DSP Multiply Unsigned/Signed Control bit 1 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are signed EDT: Early DO Loop Termination Control bit(1) 1 = Terminate executing DO loop at end of current loop iteration 0 = No effect DL<2:0>: DO Loop Nesting Level Status bits 111 = 7 DO loops active • • • bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Note 1: 2: 001 = 1 DO loop active 000 = 0 DO loops active SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled SATB: AccB Saturation Enable bit 1 = Accumulator B saturation enabled 0 = Accumulator B saturation disabled SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled 0 = Data space write saturation disabled ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) IPL3: CPU Interrupt Priority Level Status bit 3(2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less PSV: Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space RND: Rounding Mode Select bit 1 = Biased (conventional) rounding enabled 0 = Unbiased (convergent) rounding enabled IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode enabled for DSP multiply ops 0 = Fractional mode enabled for DSP multiply ops This bit will always read as ‘0’. The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level. DS70594D-page 28 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.5 Arithmetic Logic Unit (ALU) 3.6 DSP Engine The dsPIC33FJXXXMCX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic). The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG. Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for information on the SR bits affected by each instruction. The dsPIC33FJXXXMCX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division. 3.5.1 MULTIPLIER Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes: 1. 2. 3. 4. 5. 6. 7. 16-bit x 16-bit signed 16-bit x 16-bit unsigned 16-bit signed x 5-bit (literal) unsigned 16-bit unsigned x 16-bit unsigned 16-bit unsigned x 5-bit (literal) unsigned 16-bit unsigned x 16-bit signed 8-bit unsigned x 8-bit unsigned 3.5.2 DIVIDER The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes: 1. 2. 3. 4. 32-bit signed/16-bit signed divide 32-bit unsigned/16-bit unsigned divide 16-bit signed/16-bit signed divide 16-bit unsigned/16-bit unsigned divide The dsPIC33FJXXXMCX06A/X08A/X10A devices are a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below: 1. 2. 3. 4. 5. 6. 7. Fractional or integer DSP multiply (IF) Signed or unsigned DSP multiply (US) Conventional or convergent rounding (RND) Automatic saturation on/off for AccA (SATA) Automatic saturation on/off for AccB (SATB) Automatic saturation on/off for writes to data memory (SATDW) Accumulator Saturation mode selection (ACCSAT) Table 2-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3. TABLE 3-1: Instruction CLR ED EDAC MAC MAC MOVSAC MPY MPY MPY.N MSC DSP INSTRUCTIONS SUMMARY Algebraic Operation ACC Write Back A=0 A = (x – y)2 A = A + (x – y)2 A = A + (x • y) A = A + x2 No change in A A=x•y A = x2 A=–x•y A=A–x•y Yes No No Yes No Yes No No No Yes The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. 2009-2012 Microchip Technology Inc. DS70594D-page 29 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM 40 S a 40 Round t 16 u Logic r a t e 40-Bit Accumulator A 40-Bit Accumulator B Carry/Borrow Out Carry/Borrow In Saturate Adder Negate 40 40 40 16 X Data Bus Barrel Shifter 40 Y Data Bus Sign-Extend 32 Zero Backfill 16 32 33 17-Bit Multiplier/Scaler 16 16 To/From W Array DS70594D-page 30 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two’s complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two’s complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 21-N). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518 x 10-5. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10-10. The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies. 3.6.2.1 The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented); whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register: • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate. Six STATUS register bits have been provided to support saturation and overflow; they are: 1. 2. 3. The MUL instruction may be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array. 3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation. 2009-2012 Microchip Technology Inc. Adder/Subtracter, Overflow and Saturation 4. 5. 6. OA: AccA overflowed into guard bits OB: AccB overflowed into guard bits SA: AccA saturated (bit 31 overflow and saturation) or AccA overflowed into guard bits and saturated (bit 39 overflow and saturation) SB: AccB saturated (bit 31 overflow and saturation) or AccB overflowed into guard bits and saturated (bit 39 overflow and saturation) OAB: Logical OR of OA and OB SAB: Logical OR of SA and SB The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when they and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to Section 7.0 “Interrupt Controller”) are set. This allows the user to take immediate action, for example, to correct system gain. DS70594D-page 31 dsPIC33FJXXXMCX06A/X08A/X10A The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic, which typically uses both the accumulators. The device supports three Saturation and Overflow modes: 1. 2. 3. Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as ‘super saturation’ and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations). Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set). Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception. DS70594D-page 32 3.6.2.2 Accumulator ‘Write Back’ The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported: 1. 2. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write). 3.6.2.3 Round Logic The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded. Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 3.6.2.4 “Data Space Write Saturation”). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.6.2.4 Data Space Write Saturation 3.6.3 BARREL SHIFTER In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data). If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested. The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts. The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of ‘0’ does not modify the operand. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions. 2009-2012 Microchip Technology Inc. DS70594D-page 33 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 34 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.0 MEMORY ORGANIZATION 4.1 Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. “Data Memory” (DS70202) and Section 4. “Program Memory” (DS70203) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The dsPIC33FJXXXMCX06A/X08A/X10A architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the data space during code execution. FIGURE 4-1: The program address memory space of the dsPIC33FJXXXMCX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 “Interfacing Program and Data Memory Spaces”. User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices is shown in Figure 4-1. PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES dsPIC33FJ64MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table User Memory Space Program Address Space User Program Flash Memory (22K instructions) dsPIC33FJ128MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table dsPIC33FJ256MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table User Program Flash Memory (44K instructions) User Program Flash Memory (88K instructions) 0x000000 0x000002 0x000004 0x0000FE 0x000100 0x000104 0x0001FE 0x000200 0x00ABFE 0x00AC00 0x0157FE 0x015800 Unimplemented (Read ‘0’s) 0x02ABFE 0x02AC00 Unimplemented (Read ‘0’s) Unimplemented (Read ‘0’s) Configuration Memory Space 0x7FFFFE 0x800000 Note: Reserved Reserved Reserved Device Configuration Registers Device Configuration Registers Device Configuration Registers Reserved Reserved Reserved DEVID (2) DEVID (2) DEVID (2) 0xF7FFFE 0xF80000 0xF80017 0xF80010 0xFEFFFE 0xFF0000 0xFFFFFE Memory areas are not shown to scale. 2009-2012 Microchip Technology Inc. DS70594D-page 35 dsPIC33FJXXXMCX06A/X08A/X10A 4.1.1 PROGRAM MEMORY ORGANIZATION 4.1.2 All dsPIC33FJXXXMCX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002. The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2). dsPIC33FJXXXMCX06A/X08A/X10A devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 “Interrupt Vector Table”. Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space. FIGURE 4-2: msw Address PROGRAM MEMORY ORGANIZATION 16 8 PC Address (lsw Address) 0 0x000000 0x000002 0x000004 0x000006 00000000 00000000 00000000 00000000 Program Memory ‘Phantom’ Byte (read as ‘0’) DS70594D-page 36 least significant word most significant word 23 0x000001 0x000003 0x000005 0x000007 INTERRUPT AND TRAP VECTORS Instruction Width 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.2 Data Address Space The dsPIC33FJXXXMCX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 “Reading Data from Program Memory Using Program Space Visibility”). dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned. 4.2.1 DATA SPACE WIDTH The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses. 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. 2009-2012 Microchip Technology Inc. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address. 4.2.3 SFR SPACE The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06A/X08A/X10A core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ‘0’. Note: 4.2.4 The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information. NEAR DATA SPACE The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer. DS70594D-page 37 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 8-Kbyte RAM MSb Address MSb 2-Kbyte SFR Space LSb Address 16 Bits LSb 0x0000 0x0001 SFR Space 0x07FE 0x0800 0x07FF 0x0801 8-Kbyte Near Data Space X Data RAM (X) 8-Kbyte SRAM Space 0x17FF 0x1801 0x1FFF 0x2001 0x27FF 0x2801 0x17FE 0x1800 Y Data RAM (Y) 0x1FFE 0x2000 DMA RAM 0x8001 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS70594D-page 38 0x27FE 0x2800 0xFFFE 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 16-Kbyte RAM MSb Address 16 Bits MSb 2-Kbyte SFR Space LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x1FFF 16-Kbyte SRAM Space LSb Address X Data RAM (X) 0x27FF 0x2801 0x3FFF 0x4001 0x47FF 0x4801 0x07FE 0x0800 8-Kbyte Near Data Space 0x1FFE 0x27FE 0x2800 Y Data RAM (Y) 0x3FFE 0x4000 DMA RAM 0x8001 0x47FE 0x4800 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF 2009-2012 Microchip Technology Inc. 0xFFFE DS70594D-page 39 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM MSb Address MSb 2-Kbyte SFR Space 0x0001 LSb Address 16 Bits LSb 0x0000 SFR Space 0x07FE 0x0800 0x07FF 0x0801 8-Kbyte Near Data Space X Data RAM (X) 30-Kbyte SRAM Space 0x47FF 0x4801 0x47FE 0x4800 Y Data RAM (Y) 0x77FF 0x7800 0x7FFF 0x8001 Optionally Mapped into Program Memory X Data Unimplemented (X) 0xFFFF DS70594D-page 40 DMA RAM 0x77FE 0x7800 0x7FFE 0x8000 0xFFFE 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.2.5 X AND Y DATA SPACES The core has two data spaces: X and Y. These data spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT). The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). 4.2.6 DMA RAM Every dsPIC33FJXXXMCX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory location is part of Y data RAM and is in the DMA RAM space, and is accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU. The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable. All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device. 2009-2012 Microchip Technology Inc. DS70594D-page 41 CPU CORE REGISTERS MAP 2009-2012 Microchip Technology Inc. SFR Name SFR Addr WREG0 0000 Working Register 0 xxxx WREG1 0002 Working Register 1 xxxx WREG2 0004 Working Register 2 xxxx WREG3 0006 Working Register 3 xxxx WREG4 0008 Working Register 4 xxxx WREG5 000A Working Register 5 xxxx WREG6 000C Working Register 6 xxxx WREG7 000E Working Register 7 xxxx WREG8 0010 Working Register 8 xxxx WREG9 0012 Working Register 9 xxxx WREG10 0014 Working Register 10 xxxx WREG11 0016 Working Register 11 xxxx WREG12 0018 Working Register 12 xxxx WREG13 001A Working Register 13 xxxx WREG14 001C Working Register 14 xxxx WREG15 001E Working Register 15 0800 SPLIM 0020 Stack Pointer Limit Register xxxx ACCAL 0022 Accumulator A Low Word Register 0000 ACCAH 0024 Accumulator A High Word Register 0000 ACCAU 0026 Accumulator A Upper Word Register 0000 ACCBL 0028 Accumulator B Low Word Register 0000 ACCBH 002A Accumulator B High Word Register 0000 ACCBU 002C Accumulator B Upper Word Register 0000 PCL 002E Program Counter Low Word Register PCH 0030 — — — — — — — — TBLPAG 0032 — — — — — — — PSVPAG 0034 — — — — — — — RCOUNT 0036 Repeat Loop Counter Register xxxx DCOUNT 0038 DCOUNT<15:0> xxxx DOSTARTL 003A DOSTARTH 003C DOENDL 003E DOENDH Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 Program Counter High Byte Register 0000 — Table Page Address Pointer Register 0000 — Program Memory Visibility Page Address Pointer Register 0000 DOSTARTL<15:1> 0 — — — — — — 0040 — — — — — — — — SR 0042 OA OB SA SB OAB SAB DA DC CORCON 0044 — — — US EDT MODCON 0046 XMODEN YMODEN — — XMODSRT 0048 XS<15:1> 0 xxxx XMODEND 004A XE<15:1> 1 xxxx Legend: — — — DOSTARTH<5:0> — — DOENDH xxxx — 00xx DOENDL<15:1> DL<2:0> 0 xxxx 00xx IPL2 IPL1 IPL0 RA N OV Z C 0000 SATA SATB SATDW ACCSAT IPL3 PSV RND IF 0020 BWM<3:0> YWM<3:0> x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. XWM<3:0> 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 42 TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED) SFR Name SFR Addr YMODSRT 004C YMODEND 004E XBREV 0050 BREN DISICNT 0052 — — BSRAM 0750 — — — — — — — — — — — — — IW_BSR IR_BSR RL_BSR 0000 0752 — — — — — — — — — — — — — IW_SSR IR_SSR RL_SSR 0000 SSRAM Legend: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 0 All Resets YS<15:1> 0 xxxx YE<15:1> 1 xxxx Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 XB<14:0> xxxx Disable Interrupts Counter Register x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. xxxx DS70594D-page 43 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-1: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 CNEN2 0062 — — — — — — — — CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000 CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 CNPU1 0068 CNPU2 006A Legend: CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — CN8PUE — Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 CNEN2 0062 — — — — — — — — — — CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000 CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 — — — CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 CNPU1 0068 CNPU2 006A Legend: CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 All Resets x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CNEN2 0062 — — — — — — — — — — CNPU1 0068 CN8PUE CN7PUE CN6PUE CN5PUE CNPU2 006A — — — 2009-2012 Microchip Technology Inc. Legend: Bit 4 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 5 All Resets CN1IE CN0IE 0000 CN17IE CN16IE 0000 Bit 3 CN5IE CN4IE CN3IE CN2IE CN21IE CN20IE — CN18IE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 CN18PUE CN17PUE CN16PUE 0000 CN21PUE CN20PUE — Bit 2 Bit 0 Bit 4 Bit 1 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 44 TABLE 4-2: SFR Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE INTCON2 0082 ALTIVT DISI — — — IFS0 0084 — DMA1IF AD1IF U1TXIF U1RXIF IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF Bit 5 Bit 4 Bit 3 OSCFAIL — 0000 INT1EP INT0EP 0000 OC1IF IC1IF INT0IF 0000 — MI2C1IF SI2C1IF 0000 OVBTE COVTE — — — — — INT4EP INT3EP INT2EP T3IF T2IF OC2IF IC2IF DMA0IF T1IF OC3IF DMA2IF IC8IF IC7IF AD2IF INT1IF CNIF SPI1IF SPI1EIF Bit 6 All Resets Bit 8 — Bit 7 Bit 0 Bit 9 Bit 2 Bit 1 SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR IFS2 0088 T6IF DMA4IF — OC8IF OC7IF OC6IF OC5IF IC6IF IC5IF IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF 0000 IFS3 008A FLTAIF — DMA5IF — — QEIIF PWMIF C2IF C2RXIF INT4IF INT3IF T9IF T8IF MI2C2IF SI2C2IF T7IF 0000 — — 0000 IFS4 008C — — — — — IEC0 0094 — DMA1IE AD1IE U1TXIE U1RXIE IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE — C2TXIF C1TXIF DMA7IF DMA6IF — U2EIF U1EIF FLTBIF T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE OC3IE DMA2IE IC8IE IC7IE AD2IE INT1IE CNIE — SPI1IE SPI1EIE MI2C1IE SI2C1IE 0000 0000 IEC2 0098 T6IE DMA4IE — OC8IE OC7IE OC6IE OC5IE IC6IE IC5IE IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 IEC3 009A FLTAIE — DMA5IE — — QEIIE PWMIE C2IE C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE 0000 — — — — — — — C2TXIE C1TXIE DMA7IE DMA6IE — U2EIE U1EIE FLTBIE 0000 DS70594D-page 45 IEC4 009C — IPC0 00A4 — T1IP<2:0> — OC1IP<2:0> — IC1IP<2:0> — INT0IP<2:0> 4444 IPC1 00A6 — T2IP<2:0> — OC2IP<2:0> — IC2IP<2:0> — DMA0IP<2:0> 4444 IPC2 00A8 — U1RXIP<2:0> — SPI1IP<2:0> — SPI1EIP<2:0> — T3IP<2:0> 4444 IPC3 00AA — — DMA1IP<2:0> — AD1IP<2:0> — U1TXIP<2:0> 0444 IPC4 00AC — CNIP<2:0> — — MI2C1IP<2:0> — SI2C1IP<2:0> 4044 IPC5 00AE — IC8IP<2:0> — IC7IP<2:0> — AD2IP<2:0> — INT1IP<2:0> 4444 IPC6 00B0 — T4IP<2:0> — OC4IP<2:0> — OC3IP<2:0> — DMA2IP<2:0> 4444 IPC7 00B2 — U2TXIP<2:0> — U2RXIP<2:0> — INT2IP<2:0> — T5IP<2:0> 4444 IPC8 00B4 — C1IP<2:0> — C1RXIP<2:0> — SPI2IP<2:0> — SPI2EIP<2:0> 4444 IPC9 00B6 — IC5IP<2:0> — IC4IP<2:0> — IC3IP<2:0> — DMA3IP<2:0> 4444 IPC10 00B8 — OC7IP<2:0> — OC6IP<2:0> — OC5IP<2:0> — IC6IP<2:0> 4444 IPC11 00BA — T6IP<2:0> — DMA4IP<2:0> — — OC8IP<2:0> 4404 IPC12 00BC — T8IP<2:0> — MI2C2IP<2:0> — SI2C2IP<2:0> — T7IP<2:0> 4444 IPC13 00BE — — INT4IP<2:0> — INT3IP<2:0> — T9IP<2:0> 4444 IPC14 00C0 — — QEIIP<2:0> — PWMIP<2:0> — C2IP<2:0> IPC15 00C2 — — DMA5IP<2:0> — IPC16 00C4 — U2EIP<2:0> — U1EIP<2:0> — FLTBIP<2:0> 0444 IPC17 00C6 — C1TXIP<2:0> — DMA7IP<2:0> — DMA6IP<2:0> 4444 INTTREG 00E0 — Legend: — — — C2RXIP<2:0> — — — FLTAIP<2:0> — — — — C2TXIP<2:0> — — — — — — — — — ILR<3:0> — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — VECNUM<6:0> — — 0444 — 4040 0000 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-5: SFR Name SFR Addr TIMER REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 TMR1 0100 Timer1 Register PR1 0102 Period Register 1 T1CON 0104 TMR2 0106 TON — TSIDL — — — TMR3HLD 0108 — — — Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 FFFF TGATE TCKPS<1:0> — TSYNC TCS — 0000 Timer2 Register 0000 Timer3 Holding Register (for 32-bit timer operations only) xxxx TMR3 010A Timer3 Register 0000 PR2 010C Period Register 2 FFFF PR3 010E Period Register 3 T2CON 0110 TON — TSIDL — — — — T3CON 0112 TON — TSIDL — — — — TMR4 0114 TMR5HLD 0116 FFFF — — TGATE TCKPS<1:0> T32 — TCS — 0000 — — TGATE TCKPS<1:0> — — TCS — 0000 Timer4 Register 0000 Timer5 Holding Register (for 32-bit operations only) xxxx TMR5 0118 Timer5 Register 0000 PR4 011A Period Register 4 FFFF PR5 011C Period Register 5 T4CON 011E TON — TSIDL — — — — T5CON 0120 TON — TSIDL — — — — TMR6 0122 TMR7HLD 0124 FFFF — — TGATE TCKPS<1:0> T32 — TCS — 0000 — — TGATE TCKPS<1:0> — — TCS — 0000 Timer6 Register 0000 Timer7 Holding Register (for 32-bit operations only) xxxx 2009-2012 Microchip Technology Inc. TMR7 0126 Timer7 Register 0000 PR6 0128 Period Register 6 FFFF PR7 012A Period Register 7 T6CON 012C TON — TSIDL — — — — T7CON 012E TON — TSIDL — — — — TMR8 0130 TMR9HLD 0132 FFFF — — TGATE TCKPS<1:0> T32 — TCS — 0000 — — TGATE TCKPS<1:0> — — TCS — 0000 Timer8 Register 0000 Timer9 Holding Register (for 32-bit operations only) xxxx TMR9 0134 Timer9 Register 0000 PR8 0136 Period Register 8 FFFF PR9 0138 Period Register 9 T8CON 013A TON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — TCS — 0000 T9CON 013C TON — TSIDL — — — — — — TGATE TCKPS<1:0> — — TCS — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. FFFF dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 46 TABLE 4-6: SFR Name SFR Addr IC1BUF 0140 IC1CON 0142 IC2BUF 0144 IC2CON 0146 IC3BUF 0148 IC3CON 014A IC4BUF 014C IC4CON 014E IC5BUF 0150 IC5CON 0152 IC6BUF 0154 IC6CON 0156 IC7BUF 0158 IC7CON 015A IC8BUF 015C IC8CON 015E Legend: INPUT CAPTURE REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 — — ICSIDL — — — — — — ICSIDL — — — — Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> ICI<1:0> ICOV ICBNE ICM<2:0> Input 1 Capture Register — ICTMR ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000 xxxx Input 8 Capture Register — 0000 xxxx Input 7 Capture Register — 0000 xxxx Input 6 Capture Register — 0000 xxxx Input 5 Capture Register — 0000 xxxx Input 4 Capture Register — 0000 xxxx Input 3 Capture Register — All Resets xxxx Input 2 Capture Register — Bit 0 0000 xxxx 0000 DS70594D-page 47 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-7: SFR Name OUTPUT COMPARE REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OC1RS 0180 Output Compare 1 Secondary Register OC1R 0182 Output Compare 1 Register OC1CON 0184 OC2RS 0186 Output Compare 2 Secondary Register OC2R 0188 Output Compare 2 Register OC2CON 018A OC3RS 018C Output Compare 3 Secondary Register OC3R 018E Output Compare 3 Register OC3CON 0190 OC4RS 0192 Output Compare 4 Secondary Register OC4R 0194 Output Compare 4 Register OC4CON 0196 — — — — — — — — OCSIDL OCSIDL OCSIDL OCSIDL — — — — — — — — — — — — — — — — — — — — — — — — — — — — OC5RS 0198 Output Compare 5 Secondary Register OC5R 019A Output Compare 5 Register OC5CON 019C OC6RS 019E Output Compare 6 Secondary Register OC6R 01A0 Output Compare 6 Register OC6CON 01A2 OC7RS 01A4 Output Compare 7 Secondary Register OC7R 01A6 Output Compare 7 Register OC7CON 01A8 — — — — — — OCSIDL OCSIDL OCSIDL — — — — — — — — — — — — — — — — — — — — — 2009-2012 Microchip Technology Inc. OC8RS 01AA Output Compare 8 Secondary Register OC8R 01AC Output Compare 8 Register OC8CON 01AE Legend: — — OCSIDL — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 xxxx xxxx — OCFLT OCTSEL OCM<2:0> 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 48 TABLE 4-8: SFR Name Addr. 8-OUTPUT PWM REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 — PTSIDL — — — — Bit 8 Bit 7 Bit 6 — Bit 5 Bit 4 PTOPS<3:0> Bit 3 Bit 2 PTCKPS<1:0> Bit 1 Bit 0 PTMOD<1:0> Reset State P1TCON 01C0 PTEN P1TMR 01C2 PTDIR PWM Timer Count Value Register 0000 0000 0000 0000 P1TPER 01C4 — PWM Time Base Period Register 0000 0000 0000 0000 P1SECMP 01C6 SEVTDIR PWM Special Event Compare Register PWM1CON1 01C8 — — — — PWM1CON2 01CA — — — — P1DTCON1 01CC DTBPS<1:0> P1DTCON2 — — — 01CE — PMOD4 PMOD3 PMOD2 PMOD1 SEVOPS<3:0> DTB<5:0> — — 0000 0000 0000 0000 PEN4H PEN3H PEN2H PEN1H PEN4L PEN3L PEN2L PEN1L 0000 0000 1111 1111 — — — — — IUE OSYNC UDIS 0000 0000 0000 0000 DTAPS<1:0> — — 0000 0000 0000 0000 DTA<5:0> 0000 0000 0000 0000 DTS4A DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I 0000 0000 0000 0000 P1FLTACON 01D0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM — — — FAEN4 FAEN3 FAEN2 FAEN1 0000 0000 0000 0000 P1FLTBCON 01D2 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L FLTBM — — — FBEN4 FBEN3 FBEN2 FBEN1 0000 0000 0000 0000 P1OVDCON 01D4 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L 1111 1111 0000 0000 P1DC1 01D6 PWM Duty Cycle #1 Register 0000 0000 0000 0000 P1DC2 01D8 PWM Duty Cycle #2 Register 0000 0000 0000 0000 P1DC3 01DA PWM Duty Cycle #3 Register 0000 0000 0000 0000 P1DC4 01DC PWM Duty Cycle #4 Register 0000 0000 0000 0000 Legend: u = uninitialized bit, — = unimplemented, read as ‘0’ DS70594D-page 49 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-9: SFR Name Addr . QEI REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 SWPAB PCDOUT CEID QEOUT Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State QEI1CON 01E0 CNTERR — QEISIDL INDX UPDN DFLT1CON 01E2 — — — — POS1CNT 01E4 Position Counter<15:0> 0000 0000 0000 0000 MAX1CNT 01E6 Maximum Count<15:0> 1111 1111 1111 1111 Legend: — QEIM<2:0> IMV<1:0> TQGATE TQCKPS<1:0> QECK<2:0> POSRES TQCS UPDN_SRC 0000 0000 0000 0000 — — — — 0000 0000 0000 0000 u = uninitialized bit, — = unimplemented, read as ‘0’ TABLE 4-11: I2C1 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 I2C1RCV 0200 — — — — — — — — I2C1 Receive Register 0000 I2C1TRN 0202 — — — — — — — — I2C1 Transmit Register 00FF I2C1BRG 0204 — — — — — — — I2C1CON 0206 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 I2C1STAT 0208 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000 I2C1ADD 020A — — — — — — I2C1 Address Register 0000 I2C1MSK 020C — — — — — — I2C1 Address Mask Register 0000 SFR Name Legend: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Baud Rate Generator Register All Resets 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-12: SFR Name Bit 7 I2C2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 2009-2012 Microchip Technology Inc. I2C2RCV 0210 — — — — — — — — I2C2 Receive Register I2C2TRN 0212 — — — — — — — — I2C2 Transmit Register I2C2BRG 0214 — — — — — — — Bit 2 Bit 1 Bit 0 All Resets 0000 00FF Baud Rate Generator Register 0000 I2C2CON 0216 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN I2C2STAT 0218 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF I2C2ADD 021A — — — — — — I2C2 Address Register 0000 021C — — — — — — I2C2 Address Mask Register 0000 I2C2MSK Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1000 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 50 TABLE 4-10: SFR Name SFR Addr UART1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 — USIDL IREN RTSMD — — UTXBRK UTXEN Bit 9 Bit 8 Bit 7 Bit 6 UEN1 UEN0 WAKE LPBACK UTXBF TRMT Bit 5 Bit 4 Bit 3 ABAUD URXINV BRGH ADDEN RIDLE PERR U1MODE 0220 UARTEN U1STA 0222 UTXISEL1 U1TXREG 0224 — — — — — — — UART1 Transmit Register U1RXREG 0226 — — — — — — — UART1 Receive Register U1BRG 0228 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-14: SFR Name SFR Addr UTXINV UTXISEL0 URXISEL<1:0> Bit 2 Bit 1 PDSEL<1:0> FERR OERR Bit 0 All Resets STSEL 0000 URXDA 0110 xxxx 0000 Baud Rate Generator Prescaler 0000 UART2 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 WAKE LPBACK U2MODE 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 U2STA 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> Bit 5 Bit 4 Bit 3 ABAUD URXINV BRGH ADDEN RIDLE PERR Bit 2 Bit 1 PDSEL<1:0> FERR OERR Bit 0 All Resets STSEL 0000 URXDA 0110 U2TXREG 0234 — — — — — — — UART2 Transmit Register xxxx U2RXREG 0236 — — — — — — — UART2 Receive Register 0000 U2BRG 0238 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-15: SFR Name Baud Rate Generator Prescaler SPI1 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 SPI1STAT 0240 SPIEN — SPISIDL — — — — SPI1CON1 0242 — — — DISSCK DISSDO MODE16 SMP FRMEN SPIFSD FRMPOL — — — — — Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 — — CKE SSEN — SPI1CON2 0244 SPI1BUF 0248 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-16: SFR Name 0000 Bit 5 Bit 4 SPIROV — — CKP MSTEN — — Bit 3 Bit 2 Bit 1 Bit 0 — — SPITBF SPIRBF SPRE<2:0> — — PPRE<1:0> — FRMDLY — SPI1 Transmit and Receive Buffer Register All Resets 0000 0000 0000 0000 SPI2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 — DS70594D-page 51 SPI2STAT 0260 SPIEN — SPISIDL — — — — — — SPIROV — SPI2CON1 0262 — — — DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPI2CON2 0264 FRMEN SPIFSD FRMPOL — — — — — — — — SPI2BUF 0268 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SPI2 Transmit and Receive Buffer Register Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — SPITBF SPIRBF 0000 SPRE<2:0> — — PPRE<1:0> — FRMDLY — 0000 0000 0000 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-13: File Name Addr ADC1BUF0 0300 AD1CON1 0320 AD1CON2 0322 ADC1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADON — ADSIDL ADDMABM — AD12B FORM<1:0> — — CSCNA CHPS<1:0> — — Bit 7 Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 — SIMSAM ASAM SAMP DONE 0000 BUFM ALTS 0000 CH123SA 0000 ADC1 Data Buffer 0 VCFG<2:0> AD1CON3 0324 ADRC — — AD1CHS123 0326 — — — AD1CHS0 0328 CH0NB — — xxxx SSRC<2:0> BUFS — CH123SB — — SMPI<3:0> SAMC<4:0> ADCS<7:0> CH123NB<1:0> — — — 0000 CH123NA<1:0> CH0NA — — AD1PCFGH(1) 032A PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16 0000 AD1PCFGL 032C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 AD1CSSH(1) 032E CSS31 CSS30 CSS29 CSS28 CSS27 CSS26 CSS25 CSS24 CSS23 CSS22 CSS21 CSS20 CSS19 CSS18 CSS17 CSS16 0000 AD1CSSL 0330 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 AD1CON4 0332 — — — — — — — — — — — — — Bit 6 Bit 5 Legend: Note 1: Addr ADC2BUF0 0340 AD2CON1 0360 AD2CON2 0362 AD2CON3 0364 0000 DMABL<2:0> 0000 0000 ADC2 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 ADON — ADSIDL ADDMABM — AD12B FORM<1:0> — — CSCNA CHPS<1:0> VCFG<2:0> ADRC — — Bit 8 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — SIMSAM ASAM SAMP DONE 0000 BUFM ALTS 0000 xxxx SSRC<2:0> BUFS — SMPI<3:0> SAMC<4:0> — — — — 0368 CH0NB — — — Reserved 036A — — — — AD2PCFGL 036C PCFG15 PCFG14 PCFG13 PCFG12 Reserved 036E — — — — — — AD2CSSL 0370 CSS15 CSS14 CSS13 CSS12 CSS11 AD2CON4 0372 — — — — — AD2CHS123 0366 Bit 9 ADC2 Data Buffer 0 AD2CHS0 2009-2012 Microchip Technology Inc. Legend: CH0SA<4:0> x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Not all ANx inputs are available on all devices. Refer to the device pin diagrams for available ANx inputs. TABLE 4-18: File Name CH0SB<4:0> All Resets Bit 4 — ADCS<7:0> CH123NB<1:0> CH123SB CH0SB<3:0> — — — — — — CH0NA — — — — 0000 CH123NA<1:0> CH123SA 0000 0000 CH0SA<3:0> 0000 — — — — — — — — — — PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 — — — — — — — — — — 0000 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 0000 — — — — — — — — PCFG11 PCFG10 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DMABL<2:0> 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 52 TABLE 4-17: File Name Addr DMA REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DMA0CON 0380 CHEN SIZE DIR HALF NULLW — — — — — DMA0REQ 0382 FORCE — — — — — — — — Bit 5 Bit 4 AMODE<1:0> Bit 3 Bit 2 — — Bit 1 Bit 0 MODE<1:0> IRQSEL<6:0> All Resets 0000 0000 DMA0STA 0384 STA<15:0> 0000 DMA0STB 0386 STB<15:0> 0000 DMA0PAD 0388 PAD<15:0> DMA0CNT 038A — — — — — — DMA1CON 038C CHEN SIZE DIR HALF NULLW — — — — DMA1REQ 038E FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA1STA 0390 STA<15:0> 0000 DMA1STB 0392 STB<15:0> 0000 DMA1PAD 0394 PAD<15:0> DMA1CNT 0396 — — — — — — DMA2CON 0398 CHEN SIZE DIR HALF NULLW — — — — DMA2REQ 039A FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA2STA 039C STA<15:0> 0000 DMA2STB 039E STB<15:0> 0000 DMA2PAD 03A0 PAD<15:0> DMA2CNT 03A2 — — — — — — DMA3CON 03A4 CHEN SIZE DIR HALF NULLW — — — — DMA3REQ 03A6 FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA3STA 03A8 STA<15:0> 0000 DMA3STB 03AA STB<15:0> 0000 DMA3PAD 03AC PAD<15:0> DMA3CNT 03AE — — — — — — DMA4CON 03B0 CHEN SIZE DIR HALF NULLW — — — — DMA4REQ 03B2 FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA4STA 03B4 STA<15:0> 0000 DMA4STB 03B6 STB<15:0> 0000 DMA4PAD 03B8 PAD<15:0> DS70594D-page 53 DMA4CNT 03BA — — — — — — DMA5CON 03BC CHEN SIZE DIR HALF NULLW — — — — DMA5REQ 03BE FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — IRQSEL<6:0> — MODE<1:0> 0000 0000 DMA5STA 03C0 STA<15:0> 0000 DMA5STB 03C2 STB<15:0> 0000 Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-19: File Name Addr DMA REGISTER MAP (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 DMA5CNT 03C6 — — — — — — DMA6CON 03C8 CHEN SIZE DIR HALF NULLW — — — — — — — — — — — — DMA5PAD Bit 9 Bit 8 03C4 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PAD<15:0> DMA6REQ 03CA FORCE All Resets 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA6STA 03CC STA<15:0> 0000 DMA6STB 03CE STB<15:0> 0000 DMA6PAD 03D0 PAD<15:0> DMA6CNT 03D2 — — — — — — DMA7CON 03D4 CHEN SIZE DIR HALF NULLW — — — — DMA7REQ 03D6 FORCE — — — — — — — — 0000 CNT<9:0> — AMODE<1:0> 0000 — — MODE<1:0> IRQSEL<6:0> 0000 0000 DMA7STA 03D8 STA<15:0> 0000 DMA7STB 03DA STB<15:0> 0000 DMA7PAD 03DC PAD<15:0> DMA7CNT 03DE — — — — — CNT<9:0> DMACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 DMACS1 03E2 DSADR 03E4 Legend: — — — — 0000 — LSTCH<3:0> — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. XWCOL7 PPST7 DSADR<15:0> XWCOL6 XWCOL5 PPST6 PPST5 0000 XWCOL4 XWCOL3 XWCOL2 PPST4 PPST3 PPST2 XWCOL1 XWCOL0 PPST1 PPST0 0000 0000 0000 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 54 TABLE 4-19: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C1CTRL1 0400 — — CSIDL ABAT — C1CTRL2 0402 — — — — — C1VEC 0404 — — — C1FCTRL 0406 — — C1FIFO 0408 — — DMABS<2:0> Bit 10 Bit 9 Bit 8 Bit 7 — — — — — REQOP<2:0> — Bit 5 OPMODE<2:0> FILHIT<4:0> — Bit 6 — — — — — — — Bit 4 Bit 3 — CANCAP Bit 1 Bit 0 — — WIN DNCNT<4:0> — FBP<5:0> Bit 2 All Resets 0480 0000 ICODE<6:0> 0000 FSA<4:0> 0000 FNRB<5:0> 0000 C1INTF 040A — — TXBO TXBP RXBP TXWAR C1INTE 040C — — — — — — C1EC 040E C1CFG1 0410 — — — — — C1CFG2 0412 — WAKFIL — — — C1FEN1 0414 C1FMSKSEL1 0418 F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0> 0000 C1FMSKSEL2 041A F15MSK<1:0> F14MSK<1:0> F13MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0> 0000 Legend: — — IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF 0000 IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE 0000 TERRCNT<7:0> RERRCNT<7:0> — — — SEG2PH<2:0> FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 SJW<1:0> 0000 BRP<5:0> SEG2PHTS SAM SEG1PH<2:0> FLTEN7 FLTEN6 FLTEN5 FLTEN4 0000 PRSEG<2:0> FLTEN3 FLTEN2 FLTEN1 0000 FLTEN0 FFFF — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-21: File Name RXWAR EWARN Addr ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0400041E Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 See definition when WIN = x C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL0 0000 C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 RXFUL8 0000 C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF0 0000 C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 RXOVF8 RXFUL7 RXOVF7 RXFUL6 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 C1TR01CON 0430 TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI<1:0> TXEN0 TXABAT0 TXLARB0 TXERR0 TXREQ0 RTREN0 TX0PRI<1:0> 0000 C1TR23CON 0432 TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI<1:0> TXEN2 TXABAT2 TXLARB2 TXERR2 TXREQ2 RTREN2 TX2PRI<1:0> 0000 C1TR45CON 0434 TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI<1:0> TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI<1:0> 0000 C1TR67CON 0436 TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0> xxxx C1RXD 0440 ECAN1 Received Data Word xxxx C1TXD 0442 ECAN1 Transmit Data Word xxxx DS70594D-page 55 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-20: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0400041E Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets See definition when WIN = x 2009-2012 Microchip Technology Inc. C1BUFPNT1 0420 F3BP<3:0> F2BP<3:0> F1BP<3:0> F0BP<3:0> 0000 C1BUFPNT2 0422 F7BP<3:0> F6BP<3:0> F5BP<3:0> F4BP<3:0> 0000 C1BUFPNT3 0424 F11BP<3:0> F10BP<3:0> F9BP<3:0> F8BP<3:0> 0000 C1BUFPNT4 0426 F15BP<3:0> F14BP<3:0> F13BP<3:0> F12BP<3:0> 0000 C1RXM0SID 0430 SID<10:3> — EID<17:16> xxxx C1RXM0EID 0432 EID<15:8> C1RXM1SID 0434 SID<10:3> — EID<17:16> C1RXM1EID 0436 EID<15:8> C1RXM2SID 0438 SID<10:3> — EID<17:16> C1RXM2EID 043A EID<15:8> C1RXF0SID 0440 SID<10:3> — EID<17:16> C1RXF0EID 0442 EID<15:8> C1RXF1SID 0444 SID<10:3> — EID<17:16> C1RXF1EID 0446 EID<15:8> C1RXF2SID 0448 SID<10:3> — EID<17:16> C1RXF2EID 044A EID<15:8> C1RXF3SID 044C SID<10:3> — EID<17:16> C1RXF3EID 044E EID<15:8> C1RXF4SID 0450 SID<10:3> — EID<17:16> C1RXF4EID 0452 EID<15:8> C1RXF5SID 0454 SID<10:3> — EID<17:16> C1RXF5EID 0456 EID<15:8> C1RXF6SID 0458 SID<10:3> — EID<17:16> C1RXF6EID 045A EID<15:8> C1RXF7SID 045C SID<10:3> — EID<17:16> C1RXF7EID 045E EID<15:8> C1RXF8SID 0460 SID<10:3> — EID<17:16> C1RXF8EID 0462 EID<15:8> C1RXF9SID 0464 SID<10:3> — EID<17:16> C1RXF9EID 0466 EID<15:8> C1RXF10SID 0468 SID<10:3> — EID<17:16> C1RXF10EID 046A EID<15:8> Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SID<2:0> — MIDE EID<7:0> SID<2:0> — MIDE xxxx EID<7:0> SID<2:0> — MIDE xxxx EID<7:0> SID<2:0> — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE EID<7:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx xxxx xxxx xxxx dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 56 TABLE 4-22: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C1RXF11SID 046C SID<10:3> C1RXF11EID 046E EID<15:8> C1RXF12SID 0470 SID<10:3> C1RXF12EID 0472 EID<15:8> C1RXF13SID 0474 SID<10:3> C1RXF13EID 0476 EID<15:8> C1RXF14SID 0478 SID<10:3> C1RXF14EID 047A EID<15:8> C1RXF15SID 047C SID<10:3> C1RXF15EID 047E EID<15:8> Legend: Bit 10 Bit 9 Bit 8 Bit 7 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 SID<2:0> Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — EXIDE — EID<17:16> — EID<17:16> — EID<17:16> — EID<17:16> — EID<17:16> EID<7:0> SID<2:0> — EXIDE — EXIDE — EXIDE — EXIDE EID<7:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> All Resets xxxx xxxx xxxx xxxx DS70594D-page 57 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-22: File Name ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33FJXXXMC708A/710A DEVICES Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 C2CTRL1 0500 — — CSIDL ABAT — C2CTRL2 0502 — — — — — C2VEC 0504 — — — C2FCTRL 0506 — — TXBP RXBP TXWAR — — — Bit 8 Bit 7 — — — — — REQOP<2:0> — Bit 5 OPMODE<2:0> FILHIT<4:0> DMABS<2:0> Bit 6 — — — — Bit 4 Bit 3 — CANCAP Bit 1 Bit 0 — — WIN DNCNT<4:0> — — Bit 2 0480 0000 ICODE<6:0> — All Resets 0000 FSA<4:0> 0000 C2FIFO 0508 — — C2INTF 050A — — TXBO C2INTE 050C — — — C2EC 050E C2CFG1 0510 — — — — — C2CFG2 0512 — WAKFIL — — — SEG2PH<2:0> SEG2PHTS C2FEN1 0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 FLTEN7 C2FMSKSEL1 0518 F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0> 0000 C2FMSKSEL2 051A F15MSK<1:0> F14MSK<1:0> F13MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0> 0000 Legend: RXWAR EWARN — — — — IVRIF WAKIF ERRIF FNRB<5:0> IVRIE WAKIE ERRIE TERRCNT<7:0> 0000 — FIFOIF RBOVIF RBIF TBIF — FIFOIE RBOVIE RBIE TBIE RERRCNT<7:0> — — — SJW<1:0> SEG1PH<2:0> FLTEN6 FLTEN5 FLTEN4 0000 PRSEG<2:0> FLTEN3 0000 0000 BRP<5:0> SAM 0000 FLTEN2 FLTEN1 0000 FLTEN0 FFFF — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-24: File Name FBP<5:0> Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33FJXXXMC708A/710A DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0500051E Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 See definition when WIN = x C2RXFUL1 0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL0 0000 C2RXFUL2 0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 RXFUL9 RXFUL8 RXFUL7 RXFUL6 0000 C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 0000 C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 2009-2012 Microchip Technology Inc. C2TR01CON 0530 TXEN1 TX ABAT1 TX LARB1 TX ERR1 TX REQ1 RTREN1 TX1PRI<1:0> TXEN0 TX ABAT0 TX LARB0 TX ERR0 TX REQ0 RTREN0 TX0PRI<1:0> 0000 C2TR23CON 0532 TXEN3 TX ABAT3 TX LARB3 TX ERR3 TX REQ3 RTREN3 TX3PRI<1:0> TXEN2 TX ABAT2 TX LARB2 TX ERR2 TX REQ2 RTREN2 TX2PRI<1:0> 0000 C2TR45CON 0534 TXEN5 TX ABAT5 TX LARB5 TX ERR5 TX REQ5 RTREN5 TX5PRI<1:0> TXEN4 TX ABAT4 TX LARB4 TX ERR4 TX REQ4 RTREN4 TX4PRI<1:0> 0000 C2TR67CON 0536 TXEN7 TX ABAT7 TX LARB7 TX ERR7 TX REQ7 RTREN7 TX7PRI<1:0> TXEN6 TX ABAT6 TX LARB6 TX ERR6 TX REQ6 RTREN6 TX6PRI<1:0> xxxx C2RXD 0540 ECAN2 Recieved Data Word xxxx C2TXD 0542 ECAN2 Transmit Data Word xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 58 TABLE 4-23: File Name Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33FJXXXMC708A/710A DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0500051E Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets See definition when WIN = x DS70594D-page 59 C2BUFPNT1 0520 F3BP<3:0> F2BP<3:0> F1BP<3:0> F0BP<3:0> 0000 C2BUFPNT2 0522 F7BP<3:0> F6BP<3:0> F5BP<3:0> F4BP<3:0> 0000 C2BUFPNT3 0524 F11BP<3:0> F10BP<3:0> F9BP<3:0> F8BP<3:0> 0000 C2BUFPNT4 0526 F15BP<3:0> F14BP<3:0> F13BP<3:0> F12BP<3:0> 0000 C2RXM0SID 0530 SID<10:3> C2RXM0EID 0532 EID<15:8> C2RXM1SID 0534 SID<10:3> C2RXM1EID 0536 EID<15:8> C2RXM2SID 0538 SID<10:3> C2RXM2EID 053A EID<15:8> C2RXF0SID 0540 SID<10:3> C2RXF0EID 0542 EID<15:8> C2RXF1SID 0544 SID<10:3> C2RXF1EID 0546 EID<15:8> C2RXF2SID 0548 SID<10:3> C2RXF2EID 054A EID<15:8> C2RXF3SID 054C SID<10:3> C2RXF3EID 054E EID<15:8> C2RXF4SID 0550 SID<10:3> C2RXF4EID 0552 EID<15:8> C2RXF5SID 0554 SID<10:3> C2RXF5EID 0556 EID<15:8> C2RXF6SID 0558 SID<10:3> C2RXF6EID 055A EID<15:8> C2RXF7SID 055C SID<10:3> C2RXF7EID 055E EID<15:8> C2RXF8SID 0560 SID<10:3> C2RXF8EID 0562 EID<15:8> C2RXF9SID 0564 SID<10:3> C2RXF9EID 0566 EID<15:8> C2RXF10SID 0568 SID<10:3> C2RXF10EID 056A EID<15:8> Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SID<2:0> — MIDE — EID<17:16> EID<7:0> SID<2:0> — MIDE — EID<17:16> EID<7:0> SID<2:0> — MIDE — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE EID<7:0> xxxx xxxx — EID<17:16> EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx xxxx xxxx — EID<17:16> xxxx xxxx dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-25: File Name Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C2RXF11SID 056C SID<10:3> C2RXF11EID 056E EID<15:8> C2RXF12SID 0570 SID<10:3> C2RXF12EID 0572 EID<15:8> C2RXF13SID 0574 SID<10:3> C2RXF13EID 0576 EID<15:8> C2RXF14SID 0578 SID<10:3> C2RXF14EID 057A EID<15:8> C2RXF15SID 057C SID<10:3> C2RXF15EID 057E EID<15:8> Legend: Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 SID<2:0> Bit 4 Bit 3 Bit 2 — EXIDE — Bit 1 Bit 0 EID<17:16> EID<7:0> SID<2:0> — EXIDE — EXIDE — EID<17:16> — EXIDE — EID<17:16> — EXIDE xxxx xxxx — EID<17:16> EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> xxxx xxxx EID<7:0> SID<2:0> All Resets xxxx xxxx — EID<17:16> EID<7:0> xxxx xxxx x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-26: PORTA REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISA 02C0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF PORTA 02C2 RA15 RA14 — — — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx LATA 02C4 LATA15 LATA14 — — — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx ODCA(2) 06C0 ODCA15 ODCA14 — — — — — — — — ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-27: PORTB REGISTER MAP(1) 2009-2012 Microchip Technology Inc. Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISB 02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF PORTB 02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx LATB 02CA LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 60 TABLE 4-25: PORTC REGISTER MAP(1) Bit 13 Bit 12 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F01E — — — — — — — RC4 RC3 RC2 RC1 — xxxx — — — — — — — LATC4 LATC3 LATC2 LATC1 — xxxx TRISC 02CC PORTC 02CE RC15 RC14 RC13 RC12 LATC 02D0 LATC15 LATC14 LATC13 LATC12 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name Bit 14 Bit 10 Addr TABLE 4-29: Bit 15 Bit 11 File Name TRISC15 TRISC14 TRISC13 TRISC12 PORTD REGISTER MAP(1) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISD 02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF PORTD 02D4 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx LATD 02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx ODCD 06D2 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-30: PORTE REGISTER MAP(1) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISE 02D8 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 01FF PORTE 02DA — — — — — — RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx LATE 02DC — — — — — — LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name TABLE 4-31: PORTF REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets DS70594D-page 61 TRISF 02DE — — TRISF13 TRISF12 — — — TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 31FF PORTF 02E0 — — RF13 RF12 — — — RF8 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0 xxxx LATF 02E2 — — LATF13 LATF12 — — — LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx ODCF 06DE — — ODCF13 ODCF12 — — — ODCF8 ODCF7 ODCF6 ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. TABLE 4-28: PORTG REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISG 02E4 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF PORTG 02E6 RG15 RG14 RG13 RG12 — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RG0 xxxx LATG 02E8 LATG15 LATG14 LATG13 LATG12 — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 LATG1 LATG0 xxxx ODCG 06E4 ODCG15 ODCG14 ODCG13 ODCG12 — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 ODCG1 ODCG0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-33: SYSTEM CONTROL REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RCON 0740 TRAPR IOPUWR — — — — — VREGS EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR xxxx(1) OSCCON 0742 — CLKLOCK — LOCK — CF — LPOSCEN OSWEN 0300(2) COSC<2:0> — CLKDIV 0744 ROI PLLFBD 0746 — — — — — — — OSCTUN 0748 — — — — — — — Legend: Note 1: 2: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. RCON register Reset values dependent on type of Reset. OSCCON register Reset values dependent on the FOSC Configuration bits and type of Reset. TABLE 4-34: DOZE<2:0> NOSC<2:0> DOZEN FRCDIV<2:0> PLLPOST<1:0> — PLLPRE<4::0> — — TUN<5:0> Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 NVMCON 0760 WR WREN WRERR — — — — — — ERASE — — 0766 — — — — — — — — Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000(1) NVMOP<3:0> NVMKEY<7:0> 0000 2009-2012 Microchip Technology Inc. x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset. TABLE 4-35: File Name 0000 NVM REGISTER MAP Addr Legend: Note 1: 0030 — File Name NVMKEY 3040 PLLDIV<8:0> Addr PMD REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets PMD1 0770 T5MD T4MD T3MD T2MD T1MD QEI1MD PWMMD — I2C1MD U2MD U1MD SPI2MD SPI1MD C2MD C1MD AD1MD 0000 PMD2 0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD 0000 PMD3 0774 T9MD T8MD T7MD T6MD — — — — — — — — — — I2C2MD AD2MD 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 62 TABLE 4-32: dsPIC33FJXXXMCX06A/X08A/X10A 4.2.7 4.2.8 SOFTWARE STACK In addition to its use as a working register, the W15 register in the dsPIC33FJXXXMCX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear. Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push. The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to ‘0’ because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE. Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15. FIGURE 4-6: Stack Grows Towards Higher Address 0x0000 CALL STACK FRAME 15 0 PC<15:0> 000000000 PC<22:16> <Free Word> W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH : [W15++] 2009-2012 Microchip Technology Inc. DATA RAM PROTECTION FEATURE The dsPIC33FJXXXMCX06A/X08A/X10A devices support data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs. 4.3 Instruction Addressing Modes The addressing modes in Table 4-36 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types. 4.3.1 FILE REGISTER INSTRUCTIONS Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space. 4.3.2 MCU INSTRUCTIONS The 3-operand MCU instructions are of the following form: Operand 3 = Operand 1 <function> Operand 2 where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions: • • • • • Register Direct Register Indirect Register Indirect Post-Modified Register Indirect Pre-Modified 5-Bit or 10-Bit Literal Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. DS70594D-page 63 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED Addressing Mode Description File Register Direct The address of the file register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the EA. Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Register Indirect Pre-Modified Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset 4.3.3 The sum of Wn and a literal forms the EA. MOVE AND ACCUMULATOR INSTRUCTIONS Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared between both source and destination (but typically only used by one). In summary, the following addressing modes are supported by move and accumulator instructions: • • • • • • • • Register Direct Register Indirect Register Indirect Post-modified Register Indirect Pre-modified Register Indirect with Register Offset (Indexed) Register Indirect with Literal Offset 8-Bit Literal 16-Bit Literal Note: 4.3.4 Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. MAC INSTRUCTIONS The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables. DS70594D-page 64 The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 will always be directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9, and Y data space for W10 and W11. Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space). In summary, the following addressing modes are supported by the MAC class of instructions: • • • • • Register Indirect Register Indirect Post-Modified by 2 Register Indirect Post-Modified by 4 Register Indirect Post-Modified by 6 Register Indirect with Register Offset (Indexed) 4.3.5 OTHER INSTRUCTIONS Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands. 4.4 Modulo Addressing Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively. In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer. The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries). 4.4.1 START AND END ADDRESS The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1). Note: The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes). 4.4.2 W ADDRESS REGISTER SELECTION The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled. The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON<15>. The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON<14>. Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE Byte Address 0x1100 MOV MOV MOV MOV MOV MOV #0x1100, W0 W0, XMODSRT #0x1163, W0 W0, MODEND #0x8001, W0 W0, MODCON MOV #0x0000, W0 ;W0 holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer DO AGAIN, #0x31 MOV W0, [W1++] AGAIN: INC W0, W0 ;set modulo start address ;set modulo end address ;enable W1, X AGU for modulo ;fill the 50 buffer locations ;fill the next location ;increment the fill value 0x1163 Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 Words 2009-2012 Microchip Technology Inc. DS70594D-page 65 dsPIC33FJXXXMCX06A/X08A/X10A 4.4.3 MODULO ADDRESSING APPLICABILITY Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly. Note: 4.5 The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged. Bit-Reversed Addressing Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only. The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order; thus, the only operand requiring reversal is the modifier. 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION Bit-Reversed Addressing mode is enabled when the following conditions exist: 1. 2. 3. The BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing). The BREN bit is set in the XBREV register. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment. DS70594D-page 66 If the length of a bit-reversed buffer is M = 2N bytes, the last ‘N’ bits of the data buffer start address must be zeros. XB<14:0> is the Bit-Reversed Address modifier, or ‘pivot point,’ which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size. Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses. When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data; normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear). Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. In the event that the user attempts to do so, Bit-Reversed Addressing will assume priority for the X WAGU, and X WAGU Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU. If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-8: BIT-REVERSED ADDRESS EXAMPLE Sequential Address b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-Word Bit-Reversed Buffer TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 8 0 0 1 0 2 0 1 0 0 4 0 0 1 1 3 1 1 0 0 12 0 1 0 0 4 0 0 1 0 2 0 1 0 1 5 1 0 1 0 10 0 1 1 0 6 0 1 1 0 6 0 1 1 1 7 1 1 1 0 14 1 0 0 0 8 0 0 0 1 1 1 0 0 1 9 1 0 0 1 9 1 0 1 0 10 0 1 0 1 5 1 0 1 1 11 1 1 0 1 13 1 1 0 0 12 0 0 1 1 3 1 1 0 1 13 1 0 1 1 11 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 1 1 1 15 2009-2012 Microchip Technology Inc. DS70594D-page 67 dsPIC33FJXXXMCX06A/X08A/X10A 4.6 4.6.1 Interfacing Program and Data Memory Spaces Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used. The dsPIC33FJXXXMCX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces. For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full, 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1). Aside from normal execution, the dsPIC33FJXXXMCX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation: • Using table instructions to access individual bytes or words anywhere in the program space • Remapping a portion of the program space into the data space (Program Space Visibility) For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is ‘1’, PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word. TABLE 4-38: Table 4-38 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word. PROGRAM SPACE ADDRESS CONSTRUCTION Access Space Access Type Instruction Access (Code Execution) User TBLRD/TBLWT (Byte/Word Read/Write) User Program Space Address <23> Program Space Visibility (Block Remap/Read) <22:16> 0xxx xxxx xxxx TBLPAG<7:0> 0xxx xxxx User <15> <14:1> PC<22:1> 0 Configuration Note 1: ADDRESSING PROGRAM SPACE <0> 0 xxxx xxxx xxx0 Data EA<15:0> xxxx xxxx xxxx xxxx TBLPAG<7:0> Data EA<15:0> 1xxx xxxx xxxx xxxx xxxx xxxx 0 PSVPAG<7:0> 0 xxxx xxxx Data EA<14:0>(1) xxx xxxx xxxx xxxx Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>. DS70594D-page 68 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION Program Counter(1) Program Counter 0 0 23 bits EA Table Operations(2) 1/0 1/0 TBLPAG 8 bits 16 bits 24 bits Select Program Space Visibility(1) (Remapping) 0 EA 1 0 PSVPAG 8 bits 15 bits 23 bits User/Configuration Space Select Byte Select Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of data in the program and data spaces. 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space. 2009-2012 Microchip Technology Inc. DS70594D-page 69 dsPIC33FJXXXMCX06A/X08A/X10A 4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS 2. The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte. Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations. 1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the ‘phantom’ byte, will always be ‘0’. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be ‘0’ when the upper ‘phantom’ byte is selected (byte select = 1). In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 “Flash Program Memory”. For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is ‘1’; the lower byte is selected when it is ‘0’. FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS Program Space TBLPAG 02 23 15 0 0x000000 23 16 8 0 00000000 0x020000 0x030000 00000000 00000000 00000000 ‘Phantom’ Byte TBLRDH.B (Wn<0> = 0) TBLRDL.B (Wn<0> = 1) TBLRDL.B (Wn<0> = 0) TBLRDL.W 0x800000 DS70594D-page 70 The address for the table operation is determined by the data EA within the page defined by the TBLPAG register. Only read operations are shown; write operations are also valid in the user memory area. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H). Program space access through the data space occurs if the Most Significant bit of the data space EA is ‘1’ and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses. Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the FIGURE 4-11: 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with ‘1111 1111’ or ‘0000 0000’ to force a NOP. This prevents possible issues should the area of code ever be accidentally executed. PSV access is temporarily disabled during table reads/writes. Note: For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time. For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction: • Execution in the first iteration • Execution in the last iteration • Execution prior to exiting the loop due to an interrupt • Execution upon re-entering the loop after an interrupt is serviced Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle. PROGRAM SPACE VISIBILITY OPERATION When CORCON<2> = 1 and EA<15> = 1: Program Space PSVPAG 02 23 15 Data Space 0 0x000000 0x0000 Data EA<14:0> 0x010000 0x018000 The data in the page designated by PSVPAG is mapped into the upper half of the data memory space... 0x8000 PSV Area 0x800000 2009-2012 Microchip Technology Inc. ...while the lower 15 bits of the EA specify an exact address within 0xFFFF the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. DS70594D-page 71 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 72 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 5.0 three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. FLASH PROGRAM MEMORY Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. “Flash Programming” (DS70191) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or ‘rows’) of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or ‘pages’ of 512 instructions (1536 bytes) at a time. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 5.1 The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range. Flash memory can be programmed in two ways: 1. 2. In-Circuit Serial Programming™ (ICSP™) programming capability Run-Time Self-Programming (RTSP) ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and FIGURE 5-1: Table Instructions and Flash Programming Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1. The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode. ADDRESSING FOR TABLE REGISTERS 24 bits Using Program Counter Program Counter 0 0 Working Reg EA Using Table Instruction 1/0 TBLPAG Reg 8 bits User/Configuration Space Select 2009-2012 Microchip Technology Inc. 16 bits 24-bit EA Byte Select DS70594D-page 73 dsPIC33FJXXXMCX06A/X08A/X10A 5.2 RTSP Operation The dsPIC33FJXXXMCX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory at a time, which consists of eight rows (512 instructions), and to program one row or one word at a time. Table 26-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundaries. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions. All of the table write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row. 5.3 Programming Operations A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. The programming time depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the row write time, page erase time and word write cycle time parameters (see Table 26-12). EQUATION 5-1: For example, if the device is operating at +125°C, the FRC accuracy will be ±5%. If the TUN<5:0> bits (see Register 9-4) are set to ‘b111111, the minimum row write time is equal to Equation 5-2. EQUATION 5-2: MINIMUM ROW WRITE TIME 11064 Cycles T RW = ---------------------------------------------------------------------------------------------- = 1.435ms 7.37 MHz 1 + 0.05 1 – 0.00375 The maximum row write time is equal to Equation 5-3. EQUATION 5-3: MAXIMUM ROW WRITE TIME 11064 Cycles T RW = ---------------------------------------------------------------------------------------------- = 1.586ms 7.37 MHz 1 – 0.05 1 – 0.00375 Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished. 5.4 Control Registers There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY. The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle. NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 5.3 “Programming Operations” for further details. PROGRAMMING TIME T -------------------------------------------------------------------------------------------------------------------------7.37 MHz FRC Accuracy % FRC Tuning % DS70594D-page 74 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 5-1: R/SO-0(1) NVMCON: FLASH MEMORY CONTROL REGISTER R/W-0(1) R/W-0(1) U-0 U-0 U-0 U-0 U-0 WREN WRERR — — — — — WR bit 15 bit 8 R/W-0(1) U-0 — U-0 ERASE — U-0 R/W-0(1) R/W-0(1) R/W-0(1) R/W-0(1) NVMOP<3:0>(2) — bit 7 bit 0 Legend: R = Readable bit SO = Settable Only bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 bit 14 bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0 x = Bit is unknown WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally Unimplemented: Read as ‘0’ ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command Unimplemented: Read as ‘0’ NVMOP<3:0>: NVM Operation Select bits(2) If ERASE = 1: 1111 = Memory bulk erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: 2: These bits can only be reset on POR. All other combinations of NVMOP<3:0> are unimplemented. 2009-2012 Microchip Technology Inc. DS70594D-page 75 dsPIC33FJXXXMCX06A/X08A/X10A 5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY 4. 5. The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows: 1. 2. 3. Read eight rows of program memory (512 instructions) and store it in data RAM. Update the program data in RAM with the desired new data. Erase the block (see Example 5-1): a) Set the NVMOP bits (NVMCON<3:0>) to ‘0010’ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits. b) Write the starting address of the page to be erased into the TBLPAG and W registers. c) Write 0x55 to NVMKEY. d) Write 0xAA to NVMKEY. e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically. EXAMPLE 5-1: DS70594D-page 76 For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-3. ERASING A PROGRAM MEMORY PAGE ; Set up NVMCON for block erase operation MOV #0x4042, W0 MOV W0, NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 MOV W0, TBLPAG MOV #tbloffset(PROG_ADDR), W0 TBLWTL W0, [W0] DISI #5 MOV MOV MOV MOV BSET NOP NOP 6. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2). Write the program block to Flash memory: a) Set the NVMOP bits to ‘0001’ to configure for row programming. Clear the ERASE bit and set the WREN bit. b) Write 0x55 to NVMKEY. c) Write 0xAA to NVMKEY. d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically. Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory. #0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR ; ; Initialize NVMCON ; ; ; ; ; ; ; ; ; ; ; ; Initialize PM Page Boundary SFR Initialize in-page EA[15:0] pointer Set base address of erase block Block all interrupts with priority <7 for next 5 instructions Write the 55 key Write the AA key Start the erase sequence Insert two NOPs after the erase command is asserted 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A EXAMPLE 5-2: LOADING THE WRITE BUFFERS ; Set up NVMCON for row programming operations MOV #0x4001, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 1st_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE DISI #5 MOV MOV MOV MOV BSET NOP NOP #0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR 2009-2012 Microchip Technology Inc. ; Block all interrupts with priority <7 ; for next 5 instructions ; ; ; ; ; ; Write the 55 key Write the AA key Start the erase sequence Insert two NOPs after the erase command is asserted DS70594D-page 77 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 78 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 6.0 A simplified block diagram of the Reset module is shown in Figure 6-1. RESET Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. “Reset” (DS70192) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources: • • • • • • • POR: Power-on Reset BOR: Brown-out Reset MCLR: Master Clear Pin Reset SWR: RESET Instruction WDT: Watchdog Timer Reset TRAPR: Trap Conflict Reset IOPUWR: Illegal Opcode and Uninitialized W Register Reset FIGURE 6-1: Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets. Note: Refer to the specific peripheral or CPU section of this data sheet for register Reset states. All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits except for the POR bit (RCON<0>), which is set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur. The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual. Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful. RESET SYSTEM BLOCK DIAGRAM RESET Instruction Glitch Filter MCLR WDT Module Sleep or Idle VDD BOR Internal Regulator SYSRST VDD Rise Detect POR Trap Conflict Illegal Opcode Uninitialized W Register 2009-2012 Microchip Technology Inc. DS70594D-page 79 dsPIC33FJXXXMCX06A/X08A/X10A RCON: RESET CONTROL REGISTER(1) REGISTER 6-1: R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-0 TRAPR IOPUWR — — — — — VREGS(3) bit 15 bit 8 R/W-0 R/W-0 EXTR SWR R/W-0 (2) SWDTEN R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 WDTO SLEEP IDLE BOR POR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred bit 13-9 Unimplemented: Read as ‘0’ bit 8 VREGS: Voltage Regulator Standby During Sleep bit(3) 1 = Voltage regulator is active during Sleep mode 0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 SWDTEN: Software Enable/Disable of WDT bit(2) 1 = WDT is enabled 0 = WDT is disabled bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode Note 1: 2: 3: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value. DS70594D-page 80 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 6-1: RCON: RESET CONTROL REGISTER(1) (CONTINUED) bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred Note 1: 2: 3: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value. 2009-2012 Microchip Technology Inc. DS70594D-page 81 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 6-1: RESET FLAG BIT OPERATION Flag Bit Setting Event Clearing Event TRAPR (RCON<15>) Trap conflict event POR, BOR IOPUWR (RCON<14>) Illegal opcode or uninitialized W register access POR, BOR EXTR (RCON<7>) MCLR Reset POR SWR (RCON<6>) RESET instruction POR, BOR WDTO (RCON<4>) WDT time-out PWRSAV instruction, POR, BOR SLEEP (RCON<3>) PWRSAV #SLEEP instruction POR, BOR IDLE (RCON<2>) PWRSAV #IDLE instruction POR, BOR BOR (RCON<1>) BOR, POR — POR (RCON<0>) POR — Note: 6.1 All Reset flag bits may be set or cleared by the user software. Clock Source Selection at Reset If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to Section 9.0 “Oscillator Configuration” for further details. TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED) Reset Type POR BOR MCLR WDTR Clock Source Determinant Oscillator Configuration bits (FNOSC<2:0>) 6.2 Device Reset Times The Reset times for various types of device Reset are summarized in Table 6-3. The System Reset signal, SYSRST, is released after the POR and PWRT delay times expire. The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times. The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released. COSC Control bits (OSCCON<14:12>) SWR DS70594D-page 82 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 6-3: Reset Type POR BOR RESET DELAY TIMES FOR VARIOUS DEVICE RESETS SYSRST Delay System Clock Delay FSCM Delay EC, FRC, LPRC TPOR + TSTARTUP + TRST — — Clock Source See Notes 1, 2, 3 ECPLL, FRCPLL TPOR + TSTARTUP + TRST TLOCK TFSCM 1, 2, 3, 5, 6 XT, HS, SOSC TPOR + TSTARTUP + TRST TOST TFSCM 1, 2, 3, 4, 6 XTPLL, HSPLL TPOR + TSTARTUP + TRST TOST + TLOCK TFSCM 1, 2, 3, 4, 5, 6 EC, FRC, LPRC TSTARTUP + TRST — — ECPLL, FRCPLL TSTARTUP + TRST TLOCK TFSCM 3, 5, 6 XT, HS, SOSC TSTARTUP + TRST TOST TFSCM 3, 4, 6 XTPLL, HSPLL TSTARTUP + TRST TOST + TLOCK TFSCM 3, 4, 5, 6 3 MCLR Any Clock TRST — — 3 WDT Any Clock TRST — — 3 Software Any Clock TRST — — 3 Illegal Opcode Any Clock TRST — — 3 Uninitialized W Any Clock TRST — — 3 Trap Conflict Any Clock TRST — — 3 Note 1: 2: 3: 4: 5: 6: TPOR = Power-on Reset delay (10 s nominal). TSTARTUP = Conditional POR delay of 20 s nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode if the regulator is enabled. TRST = Internal state Reset time (20 s nominal). TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system. TLOCK = PLL lock time (20 s nominal). TFSCM = Fail-Safe Clock Monitor delay (100 s nominal). 2009-2012 Microchip Technology Inc. DS70594D-page 83 dsPIC33FJXXXMCX06A/X08A/X10A 6.2.1 POR AND LONG OSCILLATOR START-UP TIMES The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released: • The oscillator circuit has not begun to oscillate. • The Oscillator Start-up Timer has not expired (if a crystal oscillator is used). • The PLL has not achieved a lock (if PLL is used). The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known. 6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine. DS70594D-page 84 6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled. 6.3 Special Function Register Reset States Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual. The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 7.0 INTERRUPT CONTROLLER Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. “Interrupts” (DS70184) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The interrupt controller for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXMCX06A/X08A/X10A CPU. It has the following features: • Up to eight processor exceptions and software traps • Seven user-selectable priority levels • Interrupt Vector Table (IVT) with up to 118 vectors • A unique vector for each interrupt or exception source • Fixed priority within a specified user priority level • Alternate Interrupt Vector Table (AIVT) for debug support • Fixed interrupt entry and return latencies 7.1 Interrupt Vector Table The dsPIC33FJXXXMCX06A/X08A/X10A family of devices implement up to 67 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1 and Table 7-2. 7.1.1 ALTERNATE INTERRUPT VECTOR TABLE The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT. 7.2 Reset Sequence A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXMCX06A/X08A/X10A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine. Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction. The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address. 2009-2012 Microchip Technology Inc. DS70594D-page 85 dsPIC33FJXXXMCX06A/X08A/X10A Decreasing Natural Order Priority FIGURE 7-1: Note 1: DS70594D-page 86 dsPIC33FJXXXMCX06A/X08A/X10A INTERRUPT VECTOR TABLE Reset – GOTO Instruction Reset – GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~ ~ Interrupt Vector 116 Interrupt Vector 117 Reserved Reserved Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~ ~ Interrupt Vector 116 Interrupt Vector 117 Start of Code 0x000000 0x000002 0x000004 0x000014 0x00007C 0x00007E 0x000080 Interrupt Vector Table (IVT)(1) 0x0000FC 0x0000FE 0x000100 0x000102 0x000114 Alternate Interrupt Vector Table (AIVT)(1) 0x00017C 0x00017E 0x000180 0x0001FE 0x000200 See Table 7-1 for the list of implemented interrupt vectors. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 7-1: INTERRUPT VECTORS Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 0x000014 0x000016 0x000018 0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026 0x000028 0x00002A 0x00002C 0x00002E 0x000030 0x000032 0x000034 0x000036 0x000038 0x00003A 0x00003C 0x00003E 0x000040 0x000042 0x000044 0x000046 0x000048 0x00004A 0x00004C 0x00004E 0x000050 0x000052 0x000054 0x000056 0x000058 0x00005A 0x00005C 0x00005E 0x000060 0x000062 0x000064 0x000066 0x000068 0x00006A 0x00006C 0x00006E 0x000114 0x000116 0x000118 0x00011A 0x00011C 0x00011E 0x000120 0x000122 0x000124 0x000126 0x000128 0x00012A 0x00012C 0x00012E 0x000130 0x000132 0x000134 0x000136 0x000138 0x00013A 0x00013C 0x00013E 0x000140 0x000142 0x000144 0x000146 0x000148 0x00014A 0x00014C 0x00014E 0x000150 0x000152 0x000154 0x000156 0x000158 0x00015A 0x00015C 0x00015E 0x000160 0x000162 0x000164 0x000166 0x000168 0x00016A 0x00016C 0x00016E 2009-2012 Microchip Technology Inc. Interrupt Source INT0 – External Interrupt 0 IC1 – Input Capture 1 OC1 – Output Compare 1 T1 – Timer1 DMA0 – DMA Channel 0 IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2 T3 – Timer3 SPI1E – SPI1 Error SPI1 – SPI1 Transfer Done U1RX – UART1 Receiver U1TX – UART1 Transmitter ADC1 – ADC 1 DMA1 – DMA Channel 1 Reserved SI2C1 – I2C1 Slave Events MI2C1 – I2C1 Master Events Reserved Change Notification Interrupt INT1 – External Interrupt 1 ADC2 – ADC 2 IC7 – Input Capture 7 IC8 – Input Capture 8 DMA2 – DMA Channel 2 OC3 – Output Compare 3 OC4 – Output Compare 4 T4 – Timer4 T5 – Timer5 INT2 – External Interrupt 2 U2RX – UART2 Receiver U2TX – UART2 Transmitter SPI2E – SPI2 Error SPI1 – SPI1 Transfer Done C1RX – ECAN1 Receive Data Ready C1 – ECAN1 Event DMA3 – DMA Channel 3 IC3 – Input Capture 3 IC4 – Input Capture 4 IC5 – Input Capture 5 IC6 – Input Capture 6 OC5 – Output Compare 5 OC6 – Output Compare 6 OC7 – Output Compare 7 OC8 – Output Compare 8 Reserved DS70594D-page 87 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 7-1: INTERRUPT VECTORS (CONTINUED) Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address 54 55 56 57 58 59 60 61 62 63 64 65 66 69 70 46 47 48 49 50 51 52 53 54 55 56 57 58 61 62 0x000070 0x000072 0x000074 0x000076 0x000078 0x00007A 0x00007C 0x00007E 0x000080 0x000082 0x000084 0x000086 0x000088 0x00008E 0x000090 0x000170 0x000172 0x000174 0x000176 0x000178 0x00017A 0x00017C 0x00017E 0x000180 0x000182 0x000184 0x000186 0x000188 0x00018E 0x000190 Interrupt Source DMA4 – DMA Channel 4 T6 – Timer6 T7 – Timer7 SI2C2 – I2C2 Slave Events MI2C2 – I2C2 Master Events T8 – Timer8 T9 – Timer9 INT3 – External Interrupt 3 INT4 – External Interrupt 4 C2RX – ECAN2 Receive Data Ready C2 – ECAN2 Event PWM – PWM Period Match QEI – Position Counter Compare DMA5 – DMA Channel 5 Reserved 71 63 0x000092 0x000192 FLTA – MCPWM Fault A 72 73 74 75 76 77 78 79 80-125 64 65 66 67 68 69 70 71 72-117 0x000094 0x000096 0x000098 0x00009A 0x00009C 0x00009E 0x0000A0 0x0000A2 0x0000A40x0000FE 0x000194 0x000196 0x000198 0x00019A 0x00019C 0x00019E 0x0001A0 0x0001A2 0x0001A40x0001FE FLTB – MCPWM Fault B U1E – UART1 Error U2E – UART2 Error Reserved DMA6 – DMA Channel 6 DMA7 – DMA Channel 7 C1TX – ECAN1 Transmit Data Request C2TX – ECAN2 Transmit Data Request Reserved TABLE 7-2: TRAP VECTORS Vector Number IVT Address AIVT Address Trap Source 0 0x000004 0x000104 Reserved 1 0x000006 0x000106 Oscillator Failure 2 0x000008 0x000108 Address Error 3 0x00000A 0x00010A Stack Error 4 0x00000C 0x00010C Math Error 5 0x00000E 0x00010E DMA Error Trap 6 0x000010 0x000110 Reserved 7 0x000012 0x000112 Reserved DS70594D-page 88 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 7.3 Interrupt Control and Status Registers dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller: • • • • • • INTCON1 INTCON2 IFS0 through IFS4 IEC0 through IEC4 IPC0 through IPC17 INTTREG Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table. The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software. The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt. The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>). Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits. The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software. All Interrupt registers are described in Register 7-1 through Register 7-32 in the following pages. 2009-2012 Microchip Technology Inc. DS70594D-page 89 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-1: SR: CPU STATUS REGISTER(1) R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0 OA OB SA SB OAB SAB DA DC bit 15 bit 8 R/W-0(3) IPL2 (2) R/W-0(3) R/W-0(3) R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL1(2) IPL0(2) RA N OV Z C bit 7 bit 0 Legend: C = Clearable bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Settable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown IPL<2:0>: CPU Interrupt Priority Level Status bits(2) 111 = CPU interrupt priority level is 7 (15), user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) bit 7-5 Note 1: 2: 3: For complete register details, see Register 3-1: “SR: CPU STATUS Register”. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1. REGISTER 7-2: CORCON: CORE CONTROL REGISTER(1) U-0 — bit 15 U-0 — R/W-0 SATA bit 7 R/W-0 SATB Note 1: 2: R/W-0 US R/W-0 EDT R-0 R-0 DL<2:0> R-0 bit 8 Legend: R = Readable bit 0’ = Bit is cleared bit 3 U-0 — R/W-1 SATDW R/W-0 ACCSAT C = Clearable bit W = Writable bit ‘x = Bit is unknown R/C-0 IPL3(2) R/W-0 PSV R/W-0 RND R/W-0 IF bit 0 -n = Value at POR ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ IPL3: CPU Interrupt Priority Level Status bit 3(2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less For complete register details, see Register 3-2: “CORCON: CORE Control Register”. The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level. DS70594D-page 90 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled bit 14 OVAERR: Accumulator A Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator A 0 = Trap was not caused by overflow of Accumulator A bit 13 OVBERR: Accumulator B Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B bit 12 COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A bit 11 COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B bit 10 OVATE: Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A 0 = Trap disabled bit 9 OVBTE: Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B 0 = Trap disabled bit 8 COVTE: Catastrophic Overflow Trap Enable bit 1 = Trap on catastrophic overflow of Accumulator A or B enabled 0 = Trap disabled bit 7 SFTACERR: Shift Accumulator Error Status bit 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift bit 6 DIV0ERR: Arithmetic Error Status bit 1 = Math error trap was caused by a divide by zero 0 = Math error trap was not caused by a divide by zero bit 5 DMACERR: DMA Controller Error Status bit 1 = DMA controller error trap has occurred 0 = DMA controller error trap has not occurred bit 4 MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred 0 = Math error trap has not occurred 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 91 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED) bit 3 ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred bit 2 STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred bit 1 OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred bit 0 Unimplemented: Read as ‘0’ DS70594D-page 92 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2 R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 ALTIVT DISI — — — — — — bit 15 bit 8 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use Alternate Interrupt Vector Table 0 = Use standard (default) vector table bit 14 DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active bit 13-5 Unimplemented: Read as ‘0’ bit 4 INT4EP: External Interrupt 4 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 3 INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 93 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — DMA1IF AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IF OC2IF IC2IF DMA01IF T1IF OC1IF IC1IF INT0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14 DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 SPI1EIF: SPI1 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 T3IF: Timer3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 T2IF: Timer2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T1IF: Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DS70594D-page 94 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED) bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 INT0IF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 2009-2012 Microchip Technology Inc. DS70594D-page 95 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF DMA21IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 IC8IF IC7IF AD2IF INT1IF CNIF — MI2C1IF SI2C1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 U2TXIF: UART2 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 U2RXIF: UART2 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12 T5IF: Timer5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 T4IF: Timer4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 OC3IF: Output Compare Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC8IF: Input Capture Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 AD2IF: ADC2 Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DS70594D-page 96 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED) bit 3 CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 2 Unimplemented: Read as ‘0’ bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 2009-2012 Microchip Technology Inc. DS70594D-page 97 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IF DMA4IF — OC8IF OC7IF OC6IF OC5IF IC6IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IF IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 T6IF: Timer6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 13 Unimplemented: Read as ‘0’ bit 12 OC8IF: Output Compare Channel 8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 11 OC7IF: Output Compare Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 10 OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 OC5IF: Output Compare Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 IC5IF: Input Capture Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 C1IF: ECAN1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DS70594D-page 98 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED) bit 2 C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 SPI2IF: SPI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 SPI2EIF: SPI2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 2009-2012 Microchip Technology Inc. DS70594D-page 99 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 FLTAIF — DMA5IF — — QEIIF PWMIF C2IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIF INT4IF INT3IF T9IF T8IF MI2C2IF SI2C2IF T7IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FLTAIF: PWM Fault A Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 14 Unimplemented: Read as ‘0’ bit 13 DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 12-11 Unimplemented: Read as ‘0’ bit 10 QEIIF: QEI Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 9 PWMIF: PWM Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 8 C2IF: ECAN2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 7 C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 INT4IF: External Interrupt 4 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 INT3IF: External Interrupt 3 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 T9IF: Timer9 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 T8IF: Timer8 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 2 MI2C2IF: I2C2 Master Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DS70594D-page 100 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED) bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 T7IF: Timer7 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 2009-2012 Microchip Technology Inc. DS70594D-page 101 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 C2TXIF C1TXIF DMA7IF DMA6IF — U2EIF U1EIF FLTBIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as ‘0’ bit 7 C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 6 C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 5 DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 4 DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 3 Unimplemented: Read as ‘0’ bit 2 U2EIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 1 U1EIF: UART1 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 FLTBIF: PWM Fault B Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DS70594D-page 102 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — DMA1IE AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14 DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 T2IE: Timer2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 103 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED) bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 INT0IE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70594D-page 104 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE DMA2IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 IC8IE IC7IE AD2IE INT1IE CNIE — MI2C1IE SI2C1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 IC8IE: Input Capture Channel 8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 AD2IE: ADC2 Conversion Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 105 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED) bit 3 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 Unimplemented: Read as ‘0’ bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70594D-page 106 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T6IE DMA4IE — OC8IE OC7IE OC6IE OC5IE IC6IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC5IE IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 T6IE: Timer6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 Unimplemented: Read as ‘0’ bit 12 OC8IE: Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 OC7IE: Output Compare Channel 7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 OC6IE: Output Compare Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 OC5IE: Output Compare Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 IC6IE: Input Capture Channel 6 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 IC5IE: Input Capture Channel 5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 IC4IE: Input Capture Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 IC3IE: Input Capture Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 C1IE: ECAN1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 107 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED) bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 1 SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70594D-page 108 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 FLTAIE — DMA5IE — — QEIIE PWMIE C2IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 FLTAIE: PWM Fault A Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 Unimplemented: Read as ‘0’ bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12-11 Unimplemented: Read as ‘0’ bit 10 QEIIE: QEI Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 PWMIE: PWM Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 C2IE: ECAN2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 INT3IE: External Interrupt 3 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 T9IE: Timer9 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 T8IE: Timer8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 MI2C2IE: I2C2 Master Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 109 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED) bit 1 SI2C2IE: I2C2 Slave Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 T7IE: Timer7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70594D-page 110 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 C2TXIE C1TXIE DMA7IE DMA6IE — U2EIE U1EIE FLTBIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 Unimplemented: Read as ‘0’ bit 7 C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 Unimplemented: Read as ‘0’ bit 2 U2EIE: UART2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 1 U1EIE: UART1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 FLTBIE: PWM Fault B Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 111 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-15: U-0 IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0 R/W-1 — R/W-0 R/W-0 T1IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC1IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 IC1IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 INT0IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 112 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-16: U-0 IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1 R/W-1 — R/W-0 R/W-0 T2IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC2IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 IC2IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 DMA0IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 113 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-17: U-0 IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2 R/W-1 — R/W-0 R/W-0 U1RXIP<2:0> U-0 R/W-1 — R/W-0 R/W-0 SPI1IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 SPI1EIP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 T3IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 114 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 DMA1IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 AD1IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 U1TXIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 115 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-19: U-0 IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4 R/W-1 — R/W-0 R/W-0 CNIP<2:0> U-0 U-0 U-0 U-0 — — — — bit 15 bit 8 U-0 R/W-1 — R/W-0 MI2C1IP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 SI2C1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as ‘0’ bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 116 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-20: U-0 IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 R/W-1 — R/W-0 R/W-0 IC8IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 IC7IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 AD2IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 117 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-21: U-0 IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6 R/W-1 — R/W-0 R/W-0 T4IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC4IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 OC3IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 DMA2IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 118 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-22: U-0 IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7 R/W-1 — R/W-0 R/W-0 U2TXIP<2:0> U-0 R/W-1 — R/W-0 R/W-0 U2RXIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 INT2IP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 T5IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T5IP<2:0>: Timer5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 119 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-23: U-0 IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8 R/W-1 — R/W-0 R/W-0 C1IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 C1RXIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 SPI2IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 SPI2EIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 C1IP<2:0>: ECAN1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 120 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-24: U-0 IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9 R/W-1 — R/W-0 R/W-0 IC5IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 IC4IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 IC3IP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 DMA3IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 121 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-25: U-0 IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10 R/W-1 — R/W-0 R/W-0 OC7IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC6IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 OC5IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 IC6IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 122 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-26: U-0 IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11 R/W-1 — R/W-0 R/W-0 T6IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 DMA4IP<2:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 OC8IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 T6IP<2:0>: Timer6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7-3 Unimplemented: Read as ‘0’ bit 2-0 OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 123 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-27: U-0 IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12 R/W-1 — R/W-0 R/W-0 T8IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 MI2C2IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 SI2C2IP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 T7IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 T8IP<2:0>: Timer8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T7IP<2:0>: Timer7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 124 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-28: U-0 IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13 R/W-1 — R/W-0 R/W-0 C2RXIP<2:0> U-0 R/W-1 — R/W-0 R/W-0 INT4IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 INT3IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 T9IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 INT4IP<2:0>: External Interrupt 4 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 INT3IP<2:0>: External Interrupt 3 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 T9IP<2:0>: Timer9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 125 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14 U-0 U-1 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 QEIIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 PWMIP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 C2IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 QEIIP<2:0>: QEI Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 PWMIP<2:0>: PWM Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 C2IP<2:0>: ECAN2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 126 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-30: U-0 IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15 R/W-1 — R/W-0 R/W-0 FLTAIP<2:0> U-0 U-0 U-0 U-0 — — — — bit 15 bit 8 U-0 R/W-1 — R/W-0 DMA5IP<2:0> R/W-0 U-0 U-1 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 FLTAIP<2:0>: PWM Fault A Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as ‘0’ bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as ‘0’ 2009-2012 Microchip Technology Inc. DS70594D-page 127 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 U2EIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 U1EIP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 FLTBIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 FLTBIP<2:0>: PWM Fault B Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled DS70594D-page 128 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-32: U-0 IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17 R/W-1 — R/W-0 R/W-0 C2TXIP<2:0> U-0 R/W-1 — R/W-0 R/W-0 C1TXIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 DMA7IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 DMA6IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as ‘0’ bit 10-8 C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as ‘0’ bit 6-4 DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as ‘0’ bit 2-0 DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 129 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER U-0 U-0 U-0 U-0 — — — — R-0 R-0 R-0 R-0 ILR<3:0> bit 15 bit 8 U-0 R-0 R-0 — R-0 R-0 R-0 R-0 R-0 VECNUM<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits 1111 = CPU interrupt priority level is 15 • • • 0001 = CPU interrupt priority level is 1 0000 = CPU interrupt priority level is 0 bit 7 Unimplemented: Read as ‘0’ bit 6-0 VECNUM<6:0>: Vector Number of Pending Interrupt bits 0111111 = Interrupt vector pending is number 135 • • • 0000001 = Interrupt vector pending is number 9 0000000 = Interrupt vector pending is number 8 DS70594D-page 130 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 7.4 Interrupt Setup Procedures 7.4.1 INITIALIZATION To configure an interrupt source, do the following: 1. 2. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value. Note: 3. 4. At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register. 7.4.2 7.4.3 TRAP SERVICE ROUTINE A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR. 7.4.4 INTERRUPT DISABLE All user interrupts can be disabled using the following procedure: 1. 2. Push the current SR value onto the software stack using the PUSH instruction. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL. To enable user interrupts, the POP instruction may be used to restore the previous SR value. Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled. The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction. INTERRUPT SERVICE ROUTINE The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., ‘C’ or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level. 2009-2012 Microchip Technology Inc. DS70594D-page 131 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 132 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 8.0 DIRECT MEMORY ACCESS (DMA) Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. “Direct Memory Access (DMA)” (DS70182) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., the UART Receive register and Input Capture 1 buffer) and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers, and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM. The dsPIC33FJXXXMCX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers. TABLE 8-1: PERIPHERALS WITH DMA SUPPORT Peripheral INT0 Input Capture 1 Input Capture 2 Output Compare 1 Output Compare 2 Timer2 Timer3 SPI1 SPI2 UART1 Reception UART1 Transmission UART2 Reception UART2 Transmission ADC1 ADC2 ECAN1 Reception ECAN1 Transmission ECAN2 Reception ECAN2 Transmission IRQ Number 0 1 5 2 6 7 8 10 33 11 12 30 31 13 21 34 70 55 71 The DMA controller features eight identical data transfer channels. Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data, either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM. The DMA controller supports the following features: • Word or byte-sized data transfers. • Transfers from peripheral to DMA RAM or DMA RAM to peripheral. • Indirect Addressing of DMA RAM locations with or without automatic post-increment. • Peripheral Indirect Addressing – In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral. • One-Shot Block Transfers – Terminating DMA transfer after one block transfer. • Continuous Block Transfers – Reloading DMA RAM buffer start address after every block transfer is complete. • Ping-Pong Mode – Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately. • Automatic or manual initiation of block transfers. • Each channel can select from 20 possible sources of data sources or destinations. For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled. 2009-2012 Microchip Technology Inc. DS70594D-page 133 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS Peripheral Indirect Address DMA Control DMA Controller DMA RAM SRAM DMA Ready Peripheral 3 DMA Channels PORT 1 PORT 2 SRAM X-Bus CPU DMA DMA DS Bus CPU Peripheral DS Bus CPU Non-DMA Ready Peripheral CPU DMA DMA Ready Peripheral 1 CPU DMA DMA Ready Peripheral 2 Note: For clarity, CPU and DMA address buses are not shown. DS70594D-page 134 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 8.1 DMAC Registers Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers: • A 16-Bit DMA Channel Control register (DMAxCON) • A 16-Bit DMA Channel IRQ Select register (DMAxREQ) • A 16-Bit DMA RAM Primary Start Address Offset register (DMAxSTA) REGISTER 8-1: • A 16-Bit DMA RAM Secondary Start Address Offset register (DMAxSTB) • A 16-Bit DMA Peripheral Address register (DMAxPAD) • A 10-Bit DMA Transfer Count register (DMAxCNT) An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMAxCON: DMA CHANNEL x CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 CHEN SIZE DIR HALF NULLW — — — bit 15 bit 8 U-0 U-0 — — R/W-0 R/W-0 AMODE<1:0> U-0 U-0 — — R/W-0 R/W-0 MODE<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address; write to peripheral address 0 = Read from peripheral address; write to DMA RAM address bit 12 HALF: Early Block Transfer Complete Interrupt Select bit 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as ‘0’ bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled 2009-2012 Microchip Technology Inc. DS70594D-page 135 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 FORCE(1) — — — — — — — bit 15 bit 8 U-0 R/W-0 R/W-0 — IRQSEL6(2) IRQSEL5(2) R/W-0 U-0 IRQSEL4(2) IRQSEL3(2) U-0 R/W-0 R/W-0 IRQSEL2(2) IRQSEL1(2) IRQSEL0(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FORCE: Force DMA Transfer bit(1) 1 = Force a single DMA transfer (Manual mode) 0 = Automatic DMA transfer initiation by DMA request bit 14-7 Unimplemented: Read as ‘0’ bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2) 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ Note 1: 2: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete. See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources. DS70594D-page 136 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-3: R/W-0 DMAxSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STA<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STA<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown STA<15:0>: Primary DMA RAM Start Address bits (source or destination) REGISTER 8-4: R/W-0 DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STB<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STB<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown STB<15:0>: Secondary DMA RAM Start Address bits (source or destination) 2009-2012 Microchip Technology Inc. DS70594D-page 137 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-5: R/W-0 DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PAD<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PAD<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 Note 1: x = Bit is unknown PAD<15:0>: Peripheral Address Register bits If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided. REGISTER 8-6: U-0 DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1) U-0 — — U-0 — U-0 U-0 — — U-0 R/W-0 R/W-0 CNT<9:8>(2) — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CNT<7:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-10 Unimplemented: Read as ‘0’ bit 9-0 CNT<9:0>: DMA Transfer Count Register bits(2) Note 1: 2: x = Bit is unknown If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided. Number of DMA transfers = CNT<9:0> + 1. DS70594D-page 138 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 bit 7 bit 0 C = Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 PWCOL7: Channel 7 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 14 PWCOL6: Channel 6 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 13 PWCOL5: Channel 5 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 12 PWCOL4: Channel 4 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 11 PWCOL3: Channel 3 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 10 PWCOL2: Channel 2 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 9 PWCOL1: Channel 1 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 8 PWCOL0: Channel 0 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 7 XWCOL7: Channel 7 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 6 XWCOL6: Channel 6 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 5 XWCOL5: Channel 5 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 4 XWCOL4: Channel 4 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 139 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED) bit 3 XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 2 XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 1 XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected bit 0 XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected DS70594D-page 140 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1 U-0 U-0 U-0 U-0 — — — — R-1 R-1 R-1 R-1 LSTCH<3:0> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 LSTCH<3:0>: Last DMA Channel Active bits 1111 = No DMA transfer has occurred since system Reset 1110-1000 = Reserved 0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0 bit 7 PPST7: Channel 7 Ping-Pong Mode Status Flag bit 1 = DMA7STB register selected 0 = DMA7STA register selected bit 6 PPST6: Channel 6 Ping-Pong Mode Status Flag bit 1 = DMA6STB register selected 0 = DMA6STA register selected bit 5 PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected 0 = DMA5STA register selected bit 4 PPST4: Channel 4 Ping-Pong Mode Status Flag bit 1 = DMA4STB register selected 0 = DMA4STA register selected bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMA3STB register selected 0 = DMA3STA register selected bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMA2STB register selected 0 = DMA2STA register selected bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMA1STB register selected 0 = DMA1STA register selected bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit 1 = DMA0STB register selected 0 = DMA0STA register selected 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 141 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 8-9: R-0 DSADR: MOST RECENT DMA RAM ADDRESS R-0 R-0 R-0 R-0 R-0 R-0 R-0 DSADR<15:8> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 DSADR<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits DS70594D-page 142 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 9.0 The dsPIC33FJXXXMCX06A/X08A/X10A oscillator system provides the following: OSCILLATOR CONFIGURATION Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. “Oscillator” (DS70186) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 9-1: • Various external and internal oscillator options as clock sources • An on-chip PLL to scale the internal operating frequency to the required system clock frequency • The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware • Clock switching between various clock sources • Programmable clock postscaler for system power savings • A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures • A Clock Control register (OSCCON) • Nonvolatile Configuration bits for main oscillator selection A simplified diagram of the oscillator system is shown in Figure 9-1. dsPIC33FJXXXMCX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM Primary Oscillator XT, HS, EC R(2) S3 S1 OSC2 PLL(1) XTPLL, HSPLL, ECPLL, FRCPLL DOZE<2:0> S2 DOZE OSC1 S1/S3 POSCMD<1:0> FCY FP(3) FRCDIV FRC Oscillator FRCDIVN S7 ÷2 FOSC FRCDIV<2:0> TUN<5:0> ÷ 16 FRCDIV16 S6 FRC S0 LPRC LPRC Oscillator Secondary Oscillator SOSC SOSCO S5 S4 LPOSCEN SOSCI Clock Fail S7 Clock Switch NOSC<2:0> Reset FNOSC<2:0> WDT, PWRT, FSCM Timer1 Note 1: 2: 3: See Figure 9-2 for PLL details. If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M must be connected. The term, FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default. 2009-2012 Microchip Technology Inc. DS70594D-page 143 dsPIC33FJXXXMCX06A/X08A/X10A 9.1 CPU Clocking System There are seven system clock options provided by the dsPIC33FJXXXMCX06A/X08A/X10A: • • • • • • • FRC Oscillator FRC Oscillator with PLL Primary (XT, HS or EC) Oscillator Primary Oscillator with PLL Secondary (LP) Oscillator LPRC Oscillator FRC Oscillator with Postscaler 9.1.1 SYSTEM CLOCK SOURCES The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> bits (CLKDIV<10:8>). POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection. The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1. The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJXXXMCX06A/X08A/ X10A architecture. Instruction execution speed or device operating frequency, FCY, is given by the following equation: EQUATION 9-1: F OSC F CY = ------------2 The primary oscillator can use one of the following as its clock source: 1. 2. 3. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins. EC (External Clock): External clock signal is directly applied to the OSC1 pin. The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins. The LPRC (Low-Power RC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in Section 9.1.3 “PLL Configuration”. The FRC frequency depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). 9.1.2 SYSTEM CLOCK SELECTION The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 23.1 “Configuration Bits” for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, DS70594D-page 144 DEVICE OPERATING FREQUENCY 9.1.3 PLL CONFIGURATION The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2. The output of the primary oscillator or FRC, denoted as ‘FIN’, is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL’s Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor, ‘N1’, is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>). The PLL feedback divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ‘M’, by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz. The VCO output is further divided by a postscale factor, ‘N2’. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and must be selected such that the PLL output frequency (FOSC) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator output, ‘FIN’, the PLL output, ‘FOSC’, is given by the following equation: EQUATION 9-2: FOSC CALCULATION M F OSC = F IN ------------------- N1 N2 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A For example, suppose a 10 MHz crystal is being used with “XT with PLL” as the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 * 32 = 160 MHz, which is within the 100-200 MHz ranged needed. EQUATION 9-3: XT WITH PLL MODE EXAMPLE 1 10000000 32 F OSC F CY = ------------- = --- ---------------------------------- = 40 MIPS 2 22 2 If PLLPOST<1:0> = 0, then N2 = 2. This provides a FOSC of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS. FIGURE 9-2: dsPIC33FJXXXMCX06A/X08A/X10A PLL BLOCK DIAGRAM FVCO 100-200 MHz Here(1) 0.8-8.0 MHz Here(1) Source (Crystal, External Clock or Internal RC) PLLPRE X VCO 12.5-80 MHz Here(1) FOSC PLLPOST PLLDIV N1 Divide by 2-33 M Divide by 2-513 N2 Divide by 2, 4, 8 Note 1: This frequency range must be satisfied at all times. TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0> See Note Fast RC Oscillator with Divide-by-N (FRCDIVN) Internal xx 111 1, 2 Fast RC Oscillator with Divide-by-16 (FRCDIV16) Internal xx 110 1 Low-Power RC Oscillator (LPRC) Internal xx 101 1 Secondary xx 100 1 Primary Oscillator (HS) with PLL (HSPLL) Secondary (Timer1) Oscillator (Sosc) Primary 10 011 — Primary Oscillator (XT) with PLL (XTPLL) Primary 01 011 — Primary Oscillator (EC) with PLL (ECPLL) Primary 00 011 1 Primary Oscillator (HS) Primary 10 010 — Primary Oscillator (XT) Primary 01 010 — Primary Oscillator (EC) Primary 00 010 1 Fast RC Oscillator with PLL (FRCPLL) Internal xx 001 1 Fast RC Oscillator (FRC) Internal xx 000 1 Note 1: 2: OSC2 pin function is determined by the OSCIOFNC Configuration bit. This is the default oscillator mode for an unprogrammed (erased) device. 2009-2012 Microchip Technology Inc. DS70594D-page 145 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 9-1: U-0 OSCCON: OSCILLATOR CONTROL REGISTER(1,3) R-0 — R-0 R-0 COSC<2:0> U-0 R/W-y R/W-y R/W-y NOSC<2:0>(2) — bit 15 bit 8 R/W-0 U-0 R-0 U-0 R/C-0 U-0 R/W-0 R/W-0 CLKLOCK — LOCK — CF — LPOSCEN OSWEN bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC oscillator (FRC) with Divide-by-N 110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (Sosc) 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC) bit 11 Unimplemented: Read as ‘0’ bit 10-8 NOSC<2:0>: New Oscillator Selection bits(2) 111 = Fast RC oscillator (FRC) with Divide-by-N 110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (Sosc) 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC) bit 7 CLKLOCK: Clock Lock Enable bit 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked. If (FCKSM0 = 0), then clock and PLL configurations may be modified. 0 = Clock and PLL selections are not locked; configurations may be modified bit 6 Unimplemented: Read as ‘0’ bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled bit 4 Unimplemented: Read as ‘0’ bit 3 CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure Note 1: 2: 3: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the “dsPIC33F/PIC24H Family Reference Manual” for details. Direct clock switches between any primary oscillator mode with PLL and FRCPLL modes are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes. This register is reset only on a Power-on Reset (POR). DS70594D-page 146 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER(1,3) (CONTINUED) bit 2 Unimplemented: Read as ‘0’ bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator bit 0 OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete Note 1: 2: 3: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the “dsPIC33F/PIC24H Family Reference Manual” for details. Direct clock switches between any primary oscillator mode with PLL and FRCPLL modes are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes. This register is reset only on a Power-on Reset (POR). 2009-2012 Microchip Technology Inc. DS70594D-page 147 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 9-2: R/W-0 CLKDIV: CLOCK DIVISOR REGISTER(2) R/W-0 ROI bit 15 R/W-1 R/W-1 R/W-0 R/W-0 DOZEN(1) DOZE<2:0> R/W-0 R/W-0 FRCDIV<2:0> bit 8 R/W-0 R/W-1 PLLPOST<1:0> U-0 — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PLLPRE<4:0> bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit -n = Value at POR W = Writable bit ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ ‘0’ = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits 000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 (default) 100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/128 DOZEN: DOZE Mode Enable bit(1) 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock/peripheral clock ratio forced to 1:1 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 000 = FRC divide by 1 (default) 001 = FRC divide by 2 010 = FRC divide by 4 011 = FRC divide by 8 100 = FRC divide by 16 101 = FRC divide by 32 110 = FRC divide by 64 111 = FRC divide by 256 bit 11 bit 10-8 bit 7-6 bit 5 bit 4-0 Note 1: 2: PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler) 00 = Output/2 01 = Output/4 (default) 10 = Reserved 11 = Output/8 Unimplemented: Read as ‘0’ PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler) 00000 = Input/2 (default) 00001 = Input/3 • • • 11111 = Input/33 This bit is cleared when the ROI bit is set and an interrupt occurs. This register is reset only on a Power-on Reset (POR). DS70594D-page 148 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER(1) U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — PLLDIV<8> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 PLLDIV<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as ‘0’ bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier) 000000000 = 2 000000001 = 3 000000010 = 4 • • • 000110000 = 50 (default) • • • 111111111 = 513 Note 1: This register is reset only on a Power-on Reset (POR). 2009-2012 Microchip Technology Inc. DS70594D-page 149 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER(2) U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TUN<5:0>(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-6 Unimplemented: Read as ‘0’ bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits(1) 011111 = Center frequency + 11.625% (8.23 MHz) 011110 = Center frequency + 11.25% (8.20 MHz) • • • 000001 = Center frequency + 0.375% (7.40 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency – 0.375% (7.345 MHz) • • • 100001 = Center frequency – 11.625% (6.52 MHz) 100000 = Center frequency – 12% (6.49 MHz) Note 1: 2: x = Bit is unknown OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested. This register is reset only on a Power-on Reset (POR). DS70594D-page 150 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 9.2 Clock Switching Operation Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXMCX06A/X08A/X10A devices have a safeguard lock built into the switch process. Note: 9.2.1 Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device. 2. If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1). The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or LP (if LPOSCEN remains set). 3. 4. 5. 6. ENABLING CLOCK SWITCHING To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to ‘0’. (Refer to Section 23.1 “Configuration Bits” for further details.) If the FCKSM1 Configuration bit is unprogrammed (‘1’), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting. Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time. 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes. 3: Refer to Section 7. “Oscillator” (DS70186) in the “dsPIC33F/PIC24H Family Reference Manual” for details. The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits. The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at ‘0’ at all times. 9.2.2 OSCILLATOR SWITCHING SEQUENCE At a minimum, performing a clock switch requires the following basic sequence: 1. 2. 3. 4. 5. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source. Perform the unlock sequence to allow a write to the OSCCON register high byte. Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source. Perform the unlock sequence to allow a write to the OSCCON register low byte. Set the OSWEN bit to initiate the oscillator switch. Once the basic sequence is completed, the system clock hardware responds automatically as follows: 1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted. 2009-2012 Microchip Technology Inc. 9.3 Fail-Safe Clock Monitor (FSCM) The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer. In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure. DS70594D-page 151 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 152 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 10.0 POWER-SAVING FEATURES Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The dsPIC33FJXXXMCX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXMCX06A/X08A/X10A devices can manage power consumption in four different ways: • • • • Clock frequency Instruction-based Sleep and Idle modes Software-controlled Doze mode Selective peripheral control in software Combinations of these methods can be used to selectively tailor an application’s power consumption while still maintaining critical application features, such as timing-sensitive communications. 10.1 Clock Frequency and Clock Switching dsPIC33FJXXXMCX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 “Oscillator Configuration”. EXAMPLE 10-1: 10.2 Instruction-Based Power-Saving Modes dsPIC33FJXXXMCX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to “wake-up”. 10.2.1 SLEEP MODE Sleep mode has the following features: • The system clock source is shut down. If an on-chip oscillator is used, it is turned off. • The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current. • The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled. • The LPRC clock continues to run in Sleep mode if the WDT is enabled. • The WDT, if enabled, is automatically cleared prior to entering Sleep mode. • Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports and peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode. The device will wake-up from Sleep mode on any of the following events: • Any interrupt source that is individually enabled • Any form of device Reset • A WDT time-out On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered. PWRSAV INSTRUCTION SYNTAX PWRSAV #SLEEP_MODE PWRSAV #IDLE_MODE ; Put the device into SLEEP mode ; Put the device into IDLE mode 2009-2012 Microchip Technology Inc. DS70594D-page 153 dsPIC33FJXXXMCX06A/X08A/X10A 10.2.2 IDLE MODE Idle mode has the following features: • The CPU stops executing instructions. • The WDT is automatically cleared. • The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 “Peripheral Module Disable”). • If the WDT or FSCM is enabled, the LPRC also remains active. The device will wake from Idle mode on any of the following events: • Any interrupt that is individually enabled • Any device Reset • A WDT time-out On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR. 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode. 10.3 Doze Mode Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely. Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. DS70594D-page 154 Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting. It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS. 10.4 Peripheral Module Disable The Peripheral Module Disable registers (PMD) provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid. A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC® DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default. Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation). 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 T5MD T4MD T3MD T2MD T1MD QEI1MD PWMMD — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 I2C1MD U2MD U1MD SPI2MD SPI1MD C2MD C1MD AD1MD(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 T5MD: Timer5 Module Disable bit 1 = Timer5 module is disabled 0 = Timer5 module is enabled bit 14 T4MD: Timer4 Module Disable bit 1 = Timer4 module is disabled 0 = Timer4 module is enabled bit 13 T3MD: Timer3 Module Disable bit 1 = Timer3 module is disabled 0 = Timer3 module is enabled bit 12 T2MD: Timer2 Module Disable bit 1 = Timer2 module is disabled 0 = Timer2 module is enabled bit 11 T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled 0 = Timer1 module is enabled bit 10 QEI1MD: QEI1 Module Disable bit 1 = QEI1 module is disabled 0 = QEI1 module is enabled bit 9 PWMMD: PWM Module Disable bit 1 = PWM module is disabled 0 = PWM module is enabled bit 8 Unimplemented: Read as ‘0’ bit 7 I2C1MD: I2C1 Module Disable bit 1 = I2C1 module is disabled 0 = I2C1 module is enabled bit 6 U2MD: UART2 Module Disable bit 1 = UART2 module is disabled 0 = UART2 module is enabled bit 5 U1MD: UART1 Module Disable bit 1 = UART1 module is disabled 0 = UART1 module is enabled bit 4 SPI2MD: SPI2 Module Disable bit 1 = SPI2 module is disabled 0 = SPI2 module is enabled Note 1: x = Bit is unknown The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode. 2009-2012 Microchip Technology Inc. DS70594D-page 155 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED) bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled bit 2 C2MD: ECAN2 Module Disable bit 1 = ECAN2 module is disabled 0 = ECAN2 module is enabled bit 1 C1MD: ECAN1 Module Disable bit 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled bit 0 AD1MD: ADC1 Module Disable bit(1) 1 = ADC1 module is disabled 0 = ADC1 module is enabled Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode. DS70594D-page 156 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 IC8MD: Input Capture 8 Module Disable bit 1 = Input Capture 8 module is disabled 0 = Input Capture 8 module is enabled bit 14 IC7MD: Input Capture 7 Module Disable bit 1 = Input Capture 7 module is disabled 0 = Input Capture 7 module is enabled bit 13 IC6MD: Input Capture 6 Module Disable bit 1 = Input Capture 6 module is disabled 0 = Input Capture 6 module is enabled bit 12 IC5MD: Input Capture 5 Module Disable bit 1 = Input Capture 5 module is disabled 0 = Input Capture 5 module is enabled bit 11 IC4MD: Input Capture 4 Module Disable bit 1 = Input Capture 4 module is disabled 0 = Input Capture 4 module is enabled bit 10 IC3MD: Input Capture 3 Module Disable bit 1 = Input Capture 3 module is disabled 0 = Input Capture 3 module is enabled bit 9 IC2MD: Input Capture 2 Module Disable bit 1 = Input Capture 2 module is disabled 0 = Input Capture 2 module is enabled bit 8 IC1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled 0 = Input Capture 1 module is enabled bit 7 OC8MD: Output Compare 8 Module Disable bit 1 = Output Compare 8 module is disabled 0 = Output Compare 8 module is enabled bit 6 OC7MD: Output Compare 4 Module Disable bit 1 = Output Compare 7 module is disabled 0 = Output Compare 7 module is enabled bit 5 OC6MD: Output Compare 6 Module Disable bit 1 = Output Compare 6 module is disabled 0 = Output Compare 6 module is enabled bit 4 OC5MD: Output Compare 5 Module Disable bit 1 = Output Compare 5 module is disabled 0 = Output Compare 5 module is enabled 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 157 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED) bit 3 OC4MD: Output Compare 4 Module Disable bit 1 = Output Compare 4 module is disabled 0 = Output Compare 4 module is enabled bit 2 OC3MD: Output Compare 3 Module Disable bit 1 = Output Compare 3 module is disabled 0 = Output Compare 3 module is enabled bit 1 OC2MD: Output Compare 2 Module Disable bit 1 = Output Compare 2 module is disabled 0 = Output Compare 2 module is enabled bit 0 OC1MD: Output Compare 1 Module Disable bit 1 = Output Compare 1 module is disabled 0 = Output Compare 1 module is enabled DS70594D-page 158 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 T9MD T8MD T7MD T6MD — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — I2C2MD AD2MD(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 T9MD: Timer9 Module Disable bit 1 = Timer9 module is disabled 0 = Timer9 module is enabled bit 14 T8MD: Timer8 Module Disable bit 1 = Timer8 module is disabled 0 = Timer8 module is enabled bit 13 T7MD: Timer7 Module Disable bit 1 = Timer7 module is disabled 0 = Timer7 module is enabled bit 12 T6MD: Timer6 Module Disable bit 1 = Timer6 module is disabled 0 = Timer6 module is enabled bit 11-2 Unimplemented: Read as ‘0’ bit 1 I2C2MD: I2C2 Module Disable bit 1 = I2C2 module is disabled 0 = I2C2 module is enabled bit 0 AD2MD: AD2 Module Disable bit(1) 1 = AD2 module is disabled 0 = AD2 module is enabled Note 1: x = Bit is unknown The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode. 2009-2012 Microchip Technology Inc. DS70594D-page 159 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 160 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 11.0 I/O PORTS Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. “I/O Ports” (DS70193) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. 11.1 Parallel I/O (PIO) Ports A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral’s output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the FIGURE 11-1: output data and control signals of the I/O pin. The logic also prevents “loop through”, in which a port’s digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port. All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ‘1’, then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pins will read as zeros. When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin. BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE Peripheral Module Output Multiplexers Peripheral Input Data I/O Peripheral Module Enable Peripheral Output Enable 1 Peripheral Output Data 0 PIO Module WR TRIS Output Data 0 Read TRIS Data Bus 1 Output Enable D Q I/O Pin CK TRIS Latch D WR LAT + WR PORT Q CK Data Latch Read LAT Input Data Read Port 2009-2012 Microchip Technology Inc. DS70594D-page 161 dsPIC33FJXXXMCX06A/X08A/X10A 11.2 Open-Drain Configuration 11.4 In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification. See the “Pin Diagrams” section for the available pins and their functionality. 11.3 Configuring Analog Port Pins I/O Port Write/Read Timing One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. 11.5 Input Change Notification The input change notification function of the I/O ports allows the dsPIC33FJXXXMCX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state. The ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted. There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN Interrupt Enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it. Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the Weak Pull-up Enable bits (CNxPUE) for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins. Note: In devices with two ADC modules, if the corresponding PCFG bit in either AD1PCFGH(L) and AD2PCFGH(L) is cleared, the pin is configured as an analog input. When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output. Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. Note: The voltage on an analog input pin can be between -0.3V to (VDD + 0.3 V). EXAMPLE 11-1: MOV MOV NOP btss PORT WRITE/READ EXAMPLE 0xFF00, W0 W0, TRISBB PORTB, #13 DS70594D-page 162 ; ; ; ; Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs Delay 1 cycle Next Instruction 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 11.6 1. 2. In some cases, certain pins as defined in TABLE 26-9: “DC Characteristics: I/O Pin Input Specifications” under “Injection Current”, have internal protection diodes to VDD and VSS. The term “Injection Current” is also referred to as “Clamp Current”. On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts. I/O pins that are shared with any analog input pin, (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a ‘0’ regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a ‘1’. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin. Note: 3. I/O Helpful Tips Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin. 2009-2012 Microchip Technology Inc. 4. 5. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example: VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V The maximum output current sourced by any 8 mA I/O pin = 12 mA. LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 26.0 “Electrical Characteristics” for additional information. 11.7 I/O Resources Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: 11.7.1 In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066 KEY RESOURCES • • • • • • Section 10. “I/O Ports” (DS70193) Code Samples Application Notes Software Libraries Webinars All related dsPIC33F/PIC24H Family Reference Manuals Sections • Development Tools DS70594D-page 163 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 164 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 12.0 Timer1 also supports the following features: TIMER1 • Timer gate operation • Selectable prescaler settings • Timer operation during CPU Idle and Sleep modes • Interrupt on 16-bit Period register match or falling edge of external gate signal Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. “Timers” (DS70205) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). Figure 12-1 presents a block diagram of the 16-bit timer module. To configure Timer1 for operation, do the following: 1. 2. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 3. 4. The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running interval timer/counter. Timer1 can operate in three modes: 5. 6. • 16-Bit Timer • 16-Bit Synchronous Counter • 16-Bit Asynchronous Counter FIGURE 12-1: Set the TON bit (= 1) in the T1CON register. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation. Load the timer period value into the PR1 register. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority. 16-BIT TIMER1 MODULE BLOCK DIAGRAM TCKPS<1:0> 2 TON SOSCO/ T1CK 1x SOSCEN SOSCI Gate Sync 01 TCY 00 Prescaler 1, 8, 64, 256 TGATE TCS TGATE 1 Q D 0 Q CK Set T1IF Reset 0 TMR1 1 Equal Comparator Sync TSYNC PR1 2009-2012 Microchip Technology Inc. DS70594D-page 165 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE R/W-0 R/W-0 TCKPS<1:0> U-0 R/W-0 R/W-0 U-0 — TSYNC TCS — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When T1CS = 1: This bit is ignored. When T1CS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as ‘0’ bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Do not synchronize external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = External clock from T1CK pin (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’ DS70594D-page 166 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9 Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. “Timers” (DS70205) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers that can also be configured as four independent 16-bit timers with selectable operating modes. Note: To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation, do the following: 1. 2. 3. 4. 5. As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes: • Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit operating modes (except Asynchronous Counter mode) • Single 32-Bit Timer • Single 32-Bit Synchronous Counter They also support the following features: • • • • • Timer Gate Operation Selectable Prescaler Settings Timer Operation during Idle and Sleep modes Interrupt on a 32-Bit Period Register Match Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only) • ADC1 Event Trigger (Timer2/3 only) • ADC2 Event Trigger (Timer4/5 only) Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers. 2009-2012 Microchip Technology Inc. For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags. 6. Set the corresponding T32 control bit. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits. Set the Clock and Gating modes using the corresponding TCS and TGATE bits. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word. If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt. Set the corresponding TON bit. The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contain the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contain the least significant word. To configure any of the timers for individual 16-bit operation, do the following: 1. 2. 3. 4. 5. 6. Clear the T32 bit corresponding to that timer. Select the timer prescaler ratio using the TCKPS<1:0> bits. Set the Clock and Gating modes using the TCS and TGATE bits. Load the timer period value into the PRx register. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority. Set the TON bit. A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1, and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2. Note: Only Timer2 and Timer3 can trigger a DMA data transfer. DS70594D-page 167 dsPIC33FJXXXMCX06A/X08A/X10A TIMER2/3 (32-BIT) BLOCK DIAGRAM(1) FIGURE 13-1: T2CK 1x Gate Sync 01 TCY 00 TCKPS<1:0> 2 TON Prescaler 1, 8, 64, 256 TGATE TCS TGATE Q 1 Set T3IF Q D CK 0 PR3 ADC Event Trigger(2) Equal PR2 Comparator MSb LSb TMR3 Reset TMR2 Sync 16 Read TMR2 Write TMR2 16 TMR3HLD 16 16 Data Bus<15:0> Note 1: 2: The 32-Bit Timer Control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the T2CON register. The ADC event trigger is available only on Timer2/3. DS70594D-page 168 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 13-2: TIMER2 (16-BIT) BLOCK DIAGRAM TON T2CK TCKPS<1:0> 2 1x Gate Sync Prescaler 1, 8, 64, 256 01 00 TGATE TCS TCY 1 Set T2IF Q D Q CK TGATE 0 Reset Equal TMR2 Sync Comparator PR2 2009-2012 Microchip Technology Inc. DS70594D-page 169 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE R/W-0 R/W-0 TCKPS<1:0> R/W-0 U-0 R/W-0 U-0 T32 — TCS(1) — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timerx On bit When T32 = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When T32 = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers bit 2 Unimplemented: Read as ‘0’ bit 1 TCS: Timerx Clock Source Select bit(1) 1 = External clock from TxCK pin (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’ Note 1: x = Bit is unknown The TxCK pin is not available on all timers. Refer to the “Pin Diagrams” section for the available pins. DS70594D-page 170 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON(1) — TSIDL(2) — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE(1) R/W-0 R/W-0 TCKPS<1:0>(1) U-0 U-0 R/W-0 U-0 — — TCS(1,3) — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timery On bit(1) 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery bit 14 Unimplemented: Read as ‘0’ bit 13 TSIDL: Stop in Idle Mode bit(2) 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 TGATE: Timery Gated Time Accumulation Enable bit(1) When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(1) 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3-2 Unimplemented: Read as ‘0’ bit 1 TCS: Timery Clock Source Select bit(1,3) 1 = External clock from TyCK pin (on the rising edge) 0 = Internal clock (FCY) bit 0 Unimplemented: Read as ‘0’ Note 1: 2: 3: x = Bit is unknown When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON. When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode. The TyCK pin is not available on all timers. Refer to the “Pin Diagrams” section for the available pins. 2009-2012 Microchip Technology Inc. DS70594D-page 171 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 172 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 14.0 1. INPUT CAPTURE Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. “Input Capture” (DS70198) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXMCX06A/X08A/X10A devices support up to eight input capture channels. The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories: FIGURE 14-1: 2. 3. Simple Capture Event modes - Capture timer value on every falling edge of input at ICx pin - Capture timer value on every rising edge of input at ICx pin Capture timer value on every edge (rising and falling) of input at ICx pin Prescaler Capture Event modes - Capture timer value on every 4th rising edge of input at ICx pin - Capture timer value on every 16th rising edge of input at ICx pin Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock. Other operational features include the following: • Device wake-up from capture pin during CPU Sleep and Idle modes • Interrupt on input capture event • 4-word FIFO buffer for capture values - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled • Input capture can also be used to provide additional sources of external interrupts Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to ‘1’ (ICI<1:0> = 00). INPUT CAPTURE BLOCK DIAGRAM From 16-Bit Timers TMRy TMRz 16 16 1 Edge Detection Logic and Clock Synchronizer Prescaler Counter (1, 4, 16) ICx Pin ICM<2:0> (ICxCON<2:0>) Mode Select ICTMR (ICxCON<7>) FIFO 3 0 FIFO R/W Logic ICOV, ICBNE (ICxCON<4:3>) ICxBUF ICxI<1:0> ICxCON System Bus Interrupt Logic Set Flag ICxIF (in IFSx Register) Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel. 2009-2012 Microchip Technology Inc. DS70594D-page 173 dsPIC33FJXXXMCX06A/X08A/X10A 14.1 Input Capture Registers REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — ICSIDL — — — — — bit 15 bit 8 R/W-0 R/W-0 ICTMR(1) R/W-0 ICI<1:0> R-0, HC R-0, HC ICOV ICBNE R/W-0 R/W-0 R/W-0 ICM<2:0> bit 7 bit 0 HC = Hardware Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 ICSIDL: Input Capture Module Stop in Idle Control bit 1 = Input capture module will halt in CPU Idle mode 0 = Input capture module will continue to operate in CPU Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7 ICTMR: Input Capture Timer Select bits(1) 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred 0 = No input capture overflow occurred bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only) 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty bit 2-0 ICM<2:0>: Input Capture Mode Select bits 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 010 = Capture mode, every falling edge 001 = Capture mode, every edge (rising and falling) (ICI<1:0> bits do not control interrupt generation for this mode.) 000 = Input capture module turned off DS70594D-page 174 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 15.0 The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events. OUTPUT COMPARE Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/PIC24H Family Reference Manual”, Section 13. “Output Compare” (DS70209), which is available on the Microchip web site (www.microchip.com). The output compare module has multiple operating modes: 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 15-1: • • • • • • • Active-Low One-Shot mode Active-High One-Shot mode Toggle mode Delayed One-Shot mode Continuous Pulse mode PWM mode without Fault Protection PWM mode with Fault Protection OUTPUT COMPARE MODULE BLOCK DIAGRAM Set Flag bit OCxIF OCxRS Output Logic OCxR S Q R 3 OCM<2:0> Mode Select Comparator 0 16 1 OCTSEL 0 1 Output Enable OCx Output Enable Logic OCFA 16 TMR2 TMR3 2009-2012 Microchip Technology Inc. TMR2 Rollover TMR3 Rollover DS70594D-page 175 dsPIC33FJXXXMCX06A/X08A/X10A 15.1 application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions. Output Compare Modes Configure the Output Compare modes by setting the appropriate Output Compare Mode bits (OCM<2:0>) in the Output Compare Control register (OCxCON<2:0>). Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user TABLE 15-1: Note: See Section 13. “Output Compare” (DS70209) in the “dsPIC33F/PIC24H Family Reference Manual” for OCxR and OCxRS register restrictions. OUTPUT COMPARE MODES OCM<2:0> Mode OCx Pin Initial State OCx Interrupt Generation 000 Module Disabled 001 Active-Low One-Shot 010 Active-High One-Shot 011 Toggle 100 Delayed One-Shot 0 OCx falling edge 101 Continuous Pulse 0 OCx falling edge 110 PWM without Fault Protection ‘0’ if OCxR is zero, ‘1’ if OCxR is non-zero No interrupt 111 PWM with Fault Protection ‘0’ if OCxR is zero, ‘1’ if OCxR is non-zero OCFA falling edge for OC1 to OC4 FIGURE 15-2: Controlled by GPIO register — 0 OCx rising edge 1 OCx falling edge Current output is maintained OCx rising and falling edge OUTPUT COMPARE OPERATION Output Compare Mode Enabled Timer is Reset on Period Match OCxRS TMRy OCxR Active-Low One-Shot (OCM<2:0> = 001) Active-High One-Shot (OCM<2:0> = 010) Toggle (OCM<2:0> = 011) Delayed One-Shot (OCM<2:0> = 100) Continuous Pulse (OCM<2:0> = 101) PWM (OCM<2:0> = 110 or 111) DS70594D-page 176 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2) U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — OCSIDL — — — — — bit 15 bit 8 U-0 U-0 U-0 R-0, HC R/W-0 — — — OCFLT OCTSEL R/W-0 R/W-0 R/W-0 OCM<2:0> bit 7 bit 0 Legend: HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode bit 12-5 Unimplemented: Read as ‘0’ bit 4 OCFLT: PWM Fault Condition Status bit 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111) bit 3 OCTSEL: Output Compare Timer Select bit 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x bit 2-0 OCM<2:0>: Output Compare Mode Select bits 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled 2009-2012 Microchip Technology Inc. DS70594D-page 177 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 178 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 16.0 MOTOR CONTROL PWM MODULE Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Motor Control PWM” (DS70187) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module: • • • • 3-Phase AC Induction Motor Switched Reluctance (SR) Motor Brushless DC (BLDC) Motor Uninterruptible Power Supply (UPS) 2009-2012 Microchip Technology Inc. The PWM module has the following features: • • • • • • • • • • Eight PWM I/O pins with four duty cycle generators Up to 16-bit resolution ‘On-the-fly’ PWM frequency changes Edge and Center-Aligned Output modes Single Pulse Generation mode Interrupt support for asymmetrical updates in Center-Aligned mode Output override control for Electrically Commutative Motor (ECM) operation ‘Special Event’ comparator for scheduling other peripheral events Fault pins to optionally drive each of the PWM output pins to a defined state Duty cycle updates are configurable to be immediate or synchronized to the PWM time base This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin. The PWM module allows several modes of operation which are beneficial for specific power control applications. DS70594D-page 179 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 16-1: PWM MODULE BLOCK DIAGRAM PWMxCON1 PWM Enable and Mode SFRs PWMxCON2 PxDTCON1 Dead-Time Control SFRs PxDTCON2 PxFLTACON Fault Pin Control SFRs PxFLTBCON PxOVDCON PWM Manual Control SFR PWM Generator 4 16-Bit Data Bus PxDC4 Buffer PxDC4 Comparator PWM Generator 3 PxTMR Channel 4 Dead-Time Generator and Override Logic PWM4H Channel 3 Dead-Time Generator and Override Logic PWM3H PWM4L Output PWM3L Driver Comparator PWM Generator 2 Channel 2 Dead-Time Generator and Override Logic PxTPER PWM Generator 1 Block Channel 1 Dead-Time Generator and Override Logic PxTPER Buffer PWM2H PWM2L PWM1H PWM1L FLTA PxTCON FLTB Comparator SEVTDIR PxSECMP Special Event Postscaler Special Event Trigger PTDIR PWM Time Base Note: For clarity, details of PWM Generator 1, 2 and 3 are not shown. DS70594D-page 180 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-1: PxTCON: PWMx TIME BASE CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 PTEN — PTSIDL — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTOPS<3:0> R/W-0 R/W-0 PTCKPS<1:0> R/W-0 PTMOD<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTEN: PWM Time Base Timer Enable bit 1 = PWM time base is on 0 = PWM time base is off bit 14 Unimplemented: Read as ‘0’ bit 13 PTSIDL: PWM Time Base Stop in Idle Mode bit 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode bit 12-8 Unimplemented: Read as ‘0’ bit 7-4 PTOPS<3:0>: PWM Time Base Output Postscale Select bits 1111 = 1:16 postscale • • 0001 = 1:2 postscale 0000 = 1:1 postscale bit 3-2 PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits 11 = PWM time base input clock period is 64 TCY (1:64 prescale) 10 = PWM time base input clock period is 16 TCY (1:16 prescale) 01 = PWM time base input clock period is 4 TCY (1:4 prescale) 00 = PWM time base input clock period is TCY (1:1 prescale) bit 1-0 PTMOD<1:0>: PWM Time Base Mode Select bits 11 = PWM time base operates in a Continuous Up/Down Count mode with interrupts for double PWM updates 10 = PWM time base operates in a Continuous Up/Down Count mode 01 = PWM time base operates in a Single Pulse mode 00 = PWM time base operates in a Free-Running mode 2009-2012 Microchip Technology Inc. DS70594D-page 181 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-2: R-0 PxTMR: PWMx TIMER COUNT VALUE REGISTER R/W-0 R/W-0 R/W-0 PTDIR R/W-0 R/W-0 R/W-0 R/W-0 PTMR<14:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTMR<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTDIR: PWM Time Base Count Direction Status bit (read-only) 1 = PWM time base is counting down 0 = PWM time base is counting up bit 14-0 PTMR <14:0>: PWM Time Base Register Count Value bits REGISTER 16-3: U-0 PxTPER: PWMx TIME BASE PERIOD REGISTER R/W-0 R/W-0 R/W-0 — R/W-0 R/W-0 R/W-0 R/W-0 PTPER<14:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTPER<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-0 PTPER<14:0>: PWM Time Base Period Value bits DS70594D-page 182 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-4: R/W-0 PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER R/W-0 R/W-0 R/W-0 SEVTDIR(1) R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<14:8>(2) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<7:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SEVTDIR: Special Event Trigger Time Base Direction bit(1) 1 = A Special Event Trigger will occur when the PWM time base is counting downwards 0 = A Special Event Trigger will occur when the PWM time base is counting upwards bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits(2) Note 1: 2: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger. SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger. 2009-2012 Microchip Technology Inc. DS70594D-page 183 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-5: PWMxCON1: PWMx CONTROL REGISTER 1 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — — PMOD4 PMOD3 PMOD2 PMOD1 bit 15 bit 8 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 PEN4H(1) PEN3H(1) PEN2H(1) PEN1H(1) PEN4L(1) PEN3L(1) PEN2L(1) PEN1L(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 PMOD<4:1>: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent PWM Output mode 0 = PWM I/O pin pair is in the Complementary Output mode bit 7-4 PEN4H:PEN1H: PWMxH I/O Enable bits(1) 1 = PWMxH pin is enabled for PWM output 0 = PWMxH pin is disabled; I/O pin becomes general purpose I/O bit 3-0 PEN4L:PEN1L: PWMxL I/O Enable bits(1) 1 = PWMxL pin is enabled for PWM output 0 = PWMxL pin is disabled; I/O pin becomes general purpose I/O Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register. DS70594D-page 184 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-6: PWMxCON2: PWMx CONTROL REGISTER 2 U-0 U-0 U-0 U-0 — — — — R/W-0 R/W-0 R/W-0 R/W-0 SEVOPS<3:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — IUE OSYNC UDIS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits 1111 = 1:16 postscale • • 0001 = 1:2 postscale 0000 = 1:1 postscale bit 7-3 Unimplemented: Read as ‘0’ bit 2 IUE: Immediate Update Enable bit 1 = Updates to the active PDC registers are immediate 0 = Updates to the active PDC registers are synchronized to the PWM time base bit 1 OSYNC: Output Override Synchronization bit 1 = Output overrides via the OVDCON register are synchronized to the PWM time base 0 = Output overrides via the OVDCON register occur on next TCY boundary bit 0 UDIS: PWM Update Disable bit 1 = Updates from Duty Cycle and Period Buffer registers are disabled 0 = Updates from Duty Cycle and Period Buffer registers are enabled 2009-2012 Microchip Technology Inc. DS70594D-page 185 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-7: R/W-0 PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 DTBPS<1:0> R/W-0 R/W-0 R/W-0 R/W-0 DTB<5:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 DTAPS<1:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTA<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 DTBPS<1:0>: Dead-Time Unit B Prescale Select bits 11 = Clock period for Dead-Time Unit B is 8 TCY 10 = Clock period for Dead-Time Unit B is 4 TCY 01 = Clock period for Dead-Time Unit B is 2 TCY 00 = Clock period for Dead-Time Unit B is TCY bit 13-8 DTB<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit B bits bit 7-6 DTAPS<1:0>: Dead-Time Unit A Prescale Select bits 11 = Clock period for Dead-Time Unit A is 8 TCY 10 = Clock period for Dead-Time Unit A is 4 TCY 01 = Clock period for Dead-Time Unit A is 2 TCY 00 = Clock period for Dead-Time Unit A is TCY bit 5-0 DTA<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit A bits DS70594D-page 186 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-8: PxDTCON2: PWMx DEAD-TIME CONTROL REGISTER 2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTS4A DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 Unimplemented: Read as ‘0’ bit 7 DTS4A: Dead-Time Select for PWM4 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 6 DTS4I: Dead-Time Select for PWM4 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 5 DTS3A: Dead-Time Select for PWM3 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 4 DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 3 DTS2A: Dead-Time Select for PWM2 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 2 DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 1 DTS1A: Dead-Time Select for PWM1 Signal Going Active bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A bit 0 DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 187 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L bit 15 bit 8 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTAM — — — FAEN4 FAEN3 FAEN2 FAEN1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 FAOVxH<4:1>:FAOVxL<4:1>: Fault Input A PWM Override Value bits 1 = The PWM output pin is driven active on an external Fault input event 0 = The PWM output pin is driven inactive on an external Fault input event bit 7 FLTAM: Fault A Mode bit 1 = The Fault A input pin functions in the Cycle-by-Cycle mode 0 = The Fault A input pin latches all control pins to the states programmed in FLTACON<15:8> bit 6-4 Unimplemented: Read as ‘0’ bit 3 FAEN4: Fault Input A Enable bit 1 = PWM4H/PWM4L pin pair is controlled by Fault Input A 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input A bit 2 FAEN3: Fault Input A Enable bit 1 = PWM3H/PWM3L pin pair is controlled by Fault Input A 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input A bit 1 FAEN2: Fault Input A Enable bit 1 = PWM2H/PWM2L pin pair is controlled by Fault Input A 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input A bit 0 FAEN1: Fault Input A Enable bit 1 = PWM1H/PWM1L pin pair is controlled by Fault Input A 0 = PWM1H/PWM1L pin pair is not controlled by Fault Input A DS70594D-page 188 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L bit 15 bit 8 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTBM — — — FBEN4(1) FBEN3(1) FBEN2(1) FBEN1(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 FBOVxH<4:1>:FBOVxL<4:1>: Fault Input B PWM Override Value bits 1 = The PWM output pin is driven active on an external Fault input event 0 = The PWM output pin is driven inactive on an external Fault input event bit 7 FLTBM: Fault B Mode bit 1 = The Fault B input pin functions in the Cycle-by-Cycle mode 0 = The Fault B input pin latches all control pins to the states programmed in FLTBCON<15:8> bit 6-4 Unimplemented: Read as ‘0’ bit 3 FBEN4: Fault Input B Enable bit(1) 1 = PWM4H/PWM4L pin pair is controlled by Fault Input B 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B bit 2 FBEN3: Fault Input B Enable bit(1) 1 = PWM3H/PWM3L pin pair is controlled by Fault Input B 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input B bit 1 FBEN2: Fault Input B Enable bit(1) 1 = PWM2H/PWM2L pin pair is controlled by Fault Input B 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input B bit 0 FBEN1: Fault Input B Enable bit(1) 1 = PWM1H/PWM1L pin pair is controlled by Fault Input B 0 = PWM1H/PWM1L pin pair is not controlled by Fault Input B Note 1: Fault A pin has priority over Fault B pin, if enabled. 2009-2012 Microchip Technology Inc. DS70594D-page 189 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-11: PxOVDCON: PWMx OVERRIDE CONTROL REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits 1 = Output on PWMx I/O pin is controlled by the PWM generator 0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit bit 7-0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits 1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared 0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared DS70594D-page 190 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-12: PxDC1: PWMx DUTY CYCLE REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PDC1<15:0>: PWM Duty Cycle #1 Value bits REGISTER 16-13: PxDC2: PWMx DUTY CYCLE REGISTER 2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC2<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC2<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PDC2<15:0>: PWM Duty Cycle #2 Value bits 2009-2012 Microchip Technology Inc. DS70594D-page 191 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 16-14: PxDC3: PWMx DUTY CYCLE REGISTER 3 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC3<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC3<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PDC3<15:0>: PWM Duty Cycle #3 Value bits REGISTER 16-15: PxDC4: PWMx DUTY CYCLE REGISTER 4 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC4<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC4<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PDC4<15:0>: PWM Duty Cycle #4 Value bits DS70594D-page 192 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 17.0 This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data. QUADRATURE ENCODER INTERFACE (QEI) MODULE Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. “Quadrature Encoder Interface (QEI)” (DS70208) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The operational features of the QEI include the following: • Three input channels for two phase signals and an index pulse • 16-bit up/down position counter • Count direction status • Position Measurement (x2 and x4) mode • Programmable digital noise filters on inputs • Alternate 16-Bit Timer/Counter mode • Quadrature Encoder Interface interrupts 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 17-1: The QEI module’s operating mode is determined by setting the appropriate bits, QEIM<2:0> (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram. QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM Sleep Input TQCKPS<1:0> 2 TQCS TCY 0 Synchronize Det Prescaler 1, 8, 64, 256 1 1 QEIM<2:0> 0 CK QEAx Programmable Digital Filter UPDN_SRC 0 QEIxCON<11> QEBx Programmable Digital Filter INDXx Programmable Digital Filter PCDOUT 0 1 Quadrature Encoder Interface Logic Q 16-Bit Up/Down Counter (POSCNT) Reset Comparator/ Zero Detect Equal 3 QEIM<2:0> Mode Select 1 UPDNx 2 QExIF Event Flag Q D TQGATE Max Count Register (MAXCNT) 3 Existing Pin Logic Up/Down 2009-2012 Microchip Technology Inc. DS70594D-page 193 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER R/W-0 U-0 R/W-0 R-0 R/W-0 CNTERR — QEISIDL INDEX UPDN R/W-0 R/W-0 R/W-0 QEIM<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 SWPAB PCDOUT TQGATE R/W-0 R/W-0 TQCKPS<1:0> R/W-0 R/W-0 R/W-0 POSRES TQCS UPDN_SRC(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CNTERR: Count Error Status Flag bit 1 = Position count error has occurred 0 = No position count error has occurred (CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’) bit 14 Unimplemented: Read as ‘0’ bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 INDEX: Index Pin State Status bit (read-only) 1 = Index pin is High 0 = Index pin is Low bit 11 UPDN: Position Counter Direction Status bit 1 = Position counter direction is positive (+) 0 = Position counter direction is negative (-) (Read-only bit when QEIM<2:0> = ‘1xx’. Read/write bit when QEIM<2:0> = 001.) bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits 111 = Quadrature Encoder Interface enabled (x4 mode) with Position Counter Reset by match (MAXCNT) 110 = Quadrature Encoder Interface enabled (x4 mode) with Index Pulse Reset of position counter 101 = Quadrature Encoder Interface enabled (x2 mode) with Position Counter Reset by match (MAXCNT) 100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse Reset of position counter 011 = Unused (module disabled) 010 = Unused (module disabled) 001 = Starts 16-bit Timer 000 = Quadrature Encoder Interface/timer off bit 7 SWPAB: Phase A and Phase B Input Swap Select bit 1 = Phase A and Phase B inputs swapped 0 = Phase A and Phase B inputs not swapped bit 6 PCDOUT: Position Counter Direction State Output Enable bit 1 = Position counter direction status output enable (QEI logic controls state of I/O pin) 0 = Position counter direction status output disabled (normal I/O pin operation) bit 5 TQGATE: Timer Gated Time Accumulation Enable bit 1 = Timer gated time accumulation enabled 0 = Timer gated time accumulation disabled Note 1: When configured for QEI mode, the control bit is a ‘don’t care’. DS70594D-page 194 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER (CONTINUED) bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value (Prescaler utilized for 16-Bit Timer mode only.) bit 2 POSRES: Position Counter Reset Enable bit 1 = Index pulse resets position counter 0 = Index pulse does not reset position counter (Bit only applies when QEIM<2:0> = 100 or 110.) bit 1 TQCS: Timer Clock Source Select bit 1 = External clock from QEA pin (on the rising edge) 0 = Internal clock (TCY) bit 0 UPDN_SRC: Position Counter Direction Selection Control bit(1) 1 = QEB pin state defines position counter direction 0 = Control/status bit, UPDN (QEICON<11>), defines Position Counter (POSxCNT) direction Note 1: When configured for QEI mode, the control bit is a ‘don’t care’. 2009-2012 Microchip Technology Inc. DS70594D-page 195 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 IMV<2:0> CEID bit 15 bit 8 R/W-0 R/W-0 U-0 U-0 U-0 U-0 QEOUT QECK<2:0> — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 IMV<1:0>: Index Match Value bits These bits allow the user to specify the state of the QEAx and QEBx input pins during an index pulse when the POSxCNT register is to be reset. In 4X Quadrature Count Mode: IMV1 = Required state of Phase B input signal for match on index pulse IMV0 = Required state of Phase A input signal for match on index pulse In 2X Quadrature Count Mode: IMV1 = Selects phase input signal for index state match (0 = Phase A, 1 = Phase B) IMV0 = Required state of the selected Phase input signal for match on index pulse bit 8 CEID: Count Error Interrupt Disable bit 1 = Interrupts due to count errors are disabled 0 = Interrupts due to count errors are enabled bit 7 QEOUT: QEAx/QEBx/INDXx Pin Digital Filter Output Enable bit 1 = Digital filter outputs enabled 0 = Digital filter outputs disabled (normal pin operation) bit 6-4 QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select Bits 111 = 1:256 clock divide 110 = 1:128 clock divide 101 = 1:64 clock divide 100 = 1:32 clock divide 011 = 1:16 clock divide 010 = 1:4 clock divide 001 = 1:2 clock divide 000 = 1:1 clock divide bit 3-0 Unimplemented: Read as ‘0’ DS70594D-page 196 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 18.0 peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola®. SERIAL PERIPHERAL INTERFACE (SPI) Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. “Serial Peripheral Interface (SPI)” (DS70206) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These FIGURE 18-1: Note: Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions. The serial interface consists of 4 pins: SDIx (Serial Data Input), SDOx (Serial Data Output), SCKx (Shift Clock Input or Output) and SSx (Active-Low Slave Select). In Master mode operation, SCK is a clock output, but in Slave mode, it is a clock input. SPI MODULE BLOCK DIAGRAM SCKx SSx In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module. 1:1 to 1:8 Secondary Prescaler Sync Control 1:1/4/16/64 Primary Prescaler Select Edge Control Clock SPIxCON1<1:0> Shift Control SPIxCON1<4:2> SDOx Enable Master Clock bit 0 SDIx FCY SPIxSR Transfer Transfer SPIxRXB SPIxTXB SPIxBUF Read SPIxBUF Write SPIxBUF 16 Internal Data Bus 2009-2012 Microchip Technology Inc. DS70594D-page 197 dsPIC33FJXXXMCX06A/X08A/X10A 18.1 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave: a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx. b) If FRMPOL = 0, use a pull-up resistor on SSx. Note: 2. 5. This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data. SPI Resources Many useful resources related to SPI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: 18.2.1 In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066 KEY RESOURCES • Section 18. “Serial Peripheral Interface (SPI)” (DS70206) • Code Samples • Application Notes • Software Libraries • Webinars • All related dsPIC33F/PIC24H Family Reference Manuals Sections • Development Tools FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame. Note: 4. 18.2 This insures that the first frame transmission after initialization is not shifted or corrupted. In non-framed 3-wire mode, (i.e., not using SSx from a master): a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx. b) If CKP = 0, always place a pull-down resistor on SSx. Note: 3. SPI Helpful Tips Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details. In Master mode only, set the SMP bit (SPIxCON1<9>) to a ‘1’ for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set. To avoid invalid slave read data to the master, the user’s master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins. DS70594D-page 198 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 18.3 SPI Control Registers REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 SPIEN — SPISIDL — — — — — bit 15 bit 8 U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0 — SPIROV — — — — SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module bit 14 Unimplemented: Read as ‘0’ bit 13 SPISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as ‘0’ bit 6 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred bit 5-2 Unimplemented: Read as ‘0’ bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started; SPIxTXB is full 0 = Transmit started; SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete; SPIxRXB is full 0 = Receive is not complete; SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB. 2009-2012 Microchip Technology Inc. DS70594D-page 199 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 18-2: SPIXCON1: SPIx CONTROL REGISTER 1 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — DISSCK DISSDO MODE16 SMP CKE(1) bit 15 bit 8 R/W-0 R/W-0 R/W-0 SSEN(3) CKP MSTEN R/W-0 R/W-0 R/W-0 R/W-0 SPRE<2:0>(2) R/W-0 PPRE<1:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12 DISSCK: Disable SCKx Pin bit (SPI Master modes only) 1 = Internal SPI clock is disabled; pin functions as I/O 0 = Internal SPI clock is enabled bit 11 DISSDO: Disable SDOx Pin bit 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module bit 10 MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) bit 9 SMP: SPIx Data Input Sample Phase bit Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time Slave mode: SMP must be cleared when SPIx is used in Slave mode. bit 8 CKE: SPIx Clock Edge Select bit(1) 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) bit 7 SSEN: Slave Select Enable bit (Slave mode)(3) 1 = SSx pin used for Slave mode 0 = SSx pin not used by module. Pin controlled by port function. bit 6 CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level bit 5 MSTEN: Master Mode Enable bit 1 = Master mode 0 = Slave mode Note 1: 2: 3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed SPI modes (FRMEN = 1). Do not set both the primary and secondary prescalers to a value of 1:1. This bit must be cleared when FRMEN = 1. DS70594D-page 200 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 18-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED) bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)(2) 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 • • • 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)(2) 11 = Primary prescale 1:1 10 = Primary prescale 4:1 01 = Primary prescale 16:1 00 = Primary prescale 64:1 Note 1: 2: 3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed SPI modes (FRMEN = 1). Do not set both the primary and secondary prescalers to a value of 1:1. This bit must be cleared when FRMEN = 1. 2009-2012 Microchip Technology Inc. DS70594D-page 201 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 FRMEN SPIFSD FRMPOL — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — FRMDLY — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FRMEN: Framed SPIx Support bit 1 = Framed SPIx support enabled (SSx pin used as frame Sync pulse input/output) 0 = Framed SPIx support disabled bit 14 SPIFSD: Frame Sync Pulse Direction Control bit 1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master) bit 13 FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame Sync pulse is active-high 0 = Frame Sync pulse is active-low bit 12-2 Unimplemented: Read as ‘0’ bit 1 FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame Sync pulse coincides with first bit clock 0 = Frame Sync pulse precedes first bit clock bit 0 Unimplemented: This bit must not be set to ‘1’ by the user application. DS70594D-page 202 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 19.0 INTER-INTEGRATED CIRCUIT (I2C™) Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. “Inter-Integrated Circuit (I2C™)” (DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 19.1 Operating Modes The hardware fully implements all the master and slave functions of the I2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing. The I2C module can operate either as a slave or a master on an I2C bus. The following types of I2C operation are supported: • • • I2C slave operation with 7-bit addressing I2C slave operation with 10-bit addressing I2C master operation with 7-bit or 10-bit addressing For details about the communication sequence in each of these modes, please refer to the “dsPIC33F/PIC24H Family Reference Manual”. The Inter-Integrated Circuit (I2C) module, with its 16-bit interface, provides complete hardware support for both Slave and Multi-Master modes of the I2C serial communication standard. The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to two I2C interface modules, denoted as I2C1 and I2C2. Each I2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data. Each I2C module ‘x’ (x = 1 or 2) offers the following key features: • I2C interface supports both master and slave operation • I2C Slave mode supports 7-bit and 10-bit addressing • I2C Master mode supports 7 and 10-bit addressing • I2C port allows bidirectional transfers between master and slaves • Serial clock synchronization for the I2C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control) • I2C supports multi-master operation; it detects bus collision and will arbitrate accordingly 2009-2012 Microchip Technology Inc. DS70594D-page 203 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 19-1: I2C™ BLOCK DIAGRAM (X = 1 OR 2) Internal Data Bus I2CxRCV SCLx Read Shift Clock I2CxRSR LSb SDAx Address Match Match Detect Write I2CxMSK Write Read I2CxADD Read Start and Stop Bit Detect Write Start and Stop Bit Generation Control Logic I2CxSTAT Collision Detect Read Write I2CxCON Acknowledge Generation Read Clock Stretching Write I2CxTRN LSb Read Shift Clock Reload Control BRG Down Counter Write I2CxBRG Read TCY/2 DS70594D-page 204 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 19.2 2 C Resources 19.3 Many useful resources related to I2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: 19.2.1 I2C Control Registers I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write. In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066 I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation. KEY RESOURCES The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value. 2 • Section 11. “Inter-Integrated Circuit™ (I C™)” (DS70195) • Code Samples • Application Notes • Software Libraries • Webinars • All related dsPIC33F/PIC24H Family Reference Manuals Sections • Development Tools 2009-2012 Microchip Technology Inc. In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated. DS70594D-page 205 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W-0 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Hardware Settable bit HC = Hardware Clearable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I2C™ pins are controlled by port functions. bit 14 Unimplemented: Read as ‘0’ bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I2C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I2C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave) Used in conjunction with the SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching DS70594D-page 206 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED) bit 5 ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress bit 3 RCEN: Receive Enable bit (when operating as I2C master) 1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress bit 2 PEN: Stop Condition Enable bit (when operating as I2C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress bit 1 RSEN: Repeated Start Condition Enable bit (when operating as I2C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress bit 0 SEN: Start Condition Enable bit (when operating as I2C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress 2009-2012 Microchip Technology Inc. DS70594D-page 207 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER R-0, HSC R-0, HSC U-0 U-0 U-0 R/C-0, HS R-0, HSC R-0, HSC ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 bit 15 R/C-0, HS IWCOL bit 8 R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC I2COV D_A P R-0, HSC R-0, HSC R-0, HSC R_W RBF TBF S bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit C = Clearable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ACKSTAT: Acknowledge Status bit (when operating as I2C™ master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave Hardware set or clear at end of slave Acknowledge. bit 14 TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as ‘0’ bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of bus collision. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-Bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. bit 7 IWCOL: Write Collision Detect bit 1 = An attempt to write the I2CxTRN register failed because the I2C module is busy 0 = No collision Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). bit 6 I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). bit 5 D_A: Data/Address bit (when operating as I2C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was a device address Hardware clear at device address match. Hardware set by reception of slave byte. DS70594D-page 208 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED) bit 4 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I2C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I 2C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete; I2CxRCV is full 0 = Receive not complete; I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission. 2009-2012 Microchip Technology Inc. DS70594D-page 209 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — AMSK9 AMSK8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-10 Unimplemented: Read as ‘0’ bit 9-0 AMSKx: Mask for Address bit x Select bits 1 = Enable masking for bit x of incoming message address; bit match not required in this position 0 = Disable masking for bit x; bit match required in this position DS70594D-page 210 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXMCX06A/X08A/X10A device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA® encoder and decoder. FIGURE 20-1: The primary features of the UART module are: • Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX Pins • Even, Odd or No Parity Options (for 8-bit data) • One or Two Stop bits • Hardware Flow Control Option with UxCTS and UxRTS Pins • Fully Integrated Baud Rate Generator with 16-Bit Prescaler • Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS • 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer • 4-Deep FIFO Receive Data Buffer • Parity, Framing and Buffer Overrun Error Detection • Support for 9-bit mode with Address Detect (9th bit = 1) • Transmit and Receive Interrupts • A Separate Interrupt for all UART Error Conditions • Loopback mode for Diagnostic Support • Support for Sync and Break Characters • Supports Automatic Baud Rate Detection • IrDA Encoder and Decoder Logic • 16x Baud Clock Output for IrDA Support A simplified block diagram of the UART is shown in Figure 20-1. The UART module consists of these key important hardware elements: • Baud Rate Generator • Asynchronous Transmitter • Asynchronous Receiver UART SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® Hardware Flow Control UxRTS/BCLK UxCTS UART Receiver UxRX UART Transmitter UxTX Note 1: Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception. 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00). 2009-2012 Microchip Technology Inc. DS70594D-page 211 dsPIC33FJXXXMCX06A/X08A/X10A 20.1 1. 2. UART Helpful Tips In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit. a) If URXINV = 0, use a pull-up resistor on the RX pin. b) If URXINV = 1, use a pull-down resistor on the RX pin. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected. DS70594D-page 212 20.2 UART Resources Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: 20.2.1 In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066 KEY RESOURCES • • • • • • Section 17. “UART” (DS70188) Code Samples Application Notes Software Libraries Webinars All related dsPIC33F/PIC24H Family Reference Manuals Sections • Development Tools 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 20.3 UART Control Registers REGISTER 20-1: UxMODE: UARTx MODE REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 UARTEN(1) — USIDL IREN(2) RTSMD — R/W-0 R/W-0 UEN<1:0> bit 15 bit 8 R/W-0, HC R/W-0 R/W-0, HC R/W-0 R/W-0 WAKE LPBACK ABAUD URXINV BRGH R/W-0 R/W-0 PDSEL<1:0> R/W-0 STSEL bit 7 bit 0 Legend: HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 UARTEN: UARTx Enable bit(1) 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal bit 14 Unimplemented: Read as ‘0’ bit 13 USIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode. 0 = Continue module operation in Idle mode bit 12 IREN: IrDA® Encoder and Decoder Enable bit(2) 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled bit 11 RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode bit 10 Unimplemented: Read as ‘0’ bit 9-8 UEN<1:0>: UARTx Enable bits 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used and UxRTS/BCLK pins controlled by port latches bit 7 WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit 1 = UARTx will continue to sample the UxRX pin. Interrupt generated on the falling edge; bit cleared in hardware on the following rising edge. 0 = No wake-up enabled bit 6 LPBACK: UARTx Loopback Mode Select bit 1 = Enable Loopback mode 0 = Loopback mode is disabled bit 5 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (0x55) before other data; cleared in hardware upon completion 0 = Baud rate measurement disabled or completed Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for information on enabling the UART module for receive or transmit operation. 2: This feature is only available for the 16x BRG mode (BRGH = 0). 2009-2012 Microchip Technology Inc. DS70594D-page 213 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED) bit 4 URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is ‘0’ 0 = UxRX Idle state is ‘1’ bit 3 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode) bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity bit 0 STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for information on enabling the UART module for receive or transmit operation. 2: This feature is only available for the 16x BRG mode (BRGH = 0). DS70594D-page 214 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER R/W-0 R/W-0 R/W-0 U-0 R/W-0 HC R/W-0 R-0 R-1 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN(1) UTXBF TRMT bit 15 bit 8 R/W-0 R/W-0 URXISEL<1:0> R/W-0 R-1 R-0 R-0 R/C-0 R-0 ADDEN RIDLE PERR FERR OERR URXDA bit 7 bit 0 Legend: HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ C = Clearable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) bit 14 UTXINV: Transmit Polarity Inversion bit If IREN = 0: 1 = UxTX Idle state is ‘0’ 0 = UxTX Idle state is ‘1’ If IREN = 1: 1 = IrDA® encoded UxTX Idle state is ‘1’ 0 = IrDA encoded UxTX Idle state is ‘0’ bit 12 Unimplemented: Read as ‘0’ bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit(1) 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and the buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for information on enabling the UART module for transmit operation. 2009-2012 Microchip Technology Inc. DS70594D-page 215 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on the UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on the UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected bit 1 OERR: Receive Buffer Overrun Error Status bit (read/clear only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 0 transition) will reset the receiver buffer and the UxRSR to the empty state. bit 0 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for information on enabling the UART module for transmit operation. DS70594D-page 216 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 21.0 ENHANCED CAN MODULE Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. “Enhanced Controller Area Network (ECAN™)” (DS70185) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 21.1 Overview The Enhanced Controller Area Network (ECAN™ technology) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJXXXMCX06A/X08A/X10A devices contain up to two ECAN modules. The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details. The module features are as follows: • Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B • Standard and extended data frames • 0-8 bytes data length • Programmable bit rate up to 1 Mbit/sec • Automatic response to remote transmission requests • Up to eight transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data) • Up to 32 receive buffers (each buffer may contain up to 8 bytes of data) • Up to 16 full (standard/extended identifier) acceptance filters • Three full acceptance filter masks • DeviceNet™ addressing support • Programmable wake-up functionality with integrated low-pass filter • Programmable Loopback mode supports self-test operation 2009-2012 Microchip Technology Inc. • Signaling via interrupt capabilities for all CAN receiver and transmitter error states • Programmable clock source • Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization • Low-power Sleep and Idle mode The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers. 21.2 Frame Types The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported: • Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID). • Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an extended identifier as well. • Remote Frame: It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request. • Error Frame: An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field. • Overload Frame: An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message. • Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame. DS70594D-page 217 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 21-1: ECAN™ TECHNOLOGY MODULE BLOCK DIAGRAM RXF15 Filter RXF14 Filter RXF13 Filter RXF12 Filter DMA Controller RXF11 Filter RXF10 Filter RXF9 Filter RXF8 Filter TRB7 TX/RX Buffer Control Register RXF7 Filter TRB6 TX/RX Buffer Control Register RXF6 Filter TRB5 TX/RX Buffer Control Register RXF5 Filter TRB4 TX/RX Buffer Control Register RXF4 Filter TRB3 TX/RX Buffer Control Register RXF3 Filter TRB2 TX/RX Buffer Control Register RXF2 Filter RXM2 Mask TRB1 TX/RX Buffer Control Register RXF1 Filter RXM1 Mask TRB0 TX/RX Buffer Control Register RXF0 Filter RXM0 Mask Transmit Byte Sequencer Message Assembly Buffer CAN Protocol Engine Control Configuration Logic CPU Bus Interrupts CiTX(1) CiRX(1) Note 1: i = 1 or 2 refers to a particular ECAN technology module (ECAN1 or ECAN2). DS70594D-page 218 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 21.3 Modes of Operation The CAN module can operate in one of several operation modes selected by the user. These modes include: • • • • • • Initialization Mode Disable Mode Normal Operation Mode Listen Only Mode Listen All Messages Mode Loopback Mode Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits. 21.3.1 INITIALIZATION MODE In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers: • • • • • All Module Control Registers Baud Rate and Interrupt Configuration Registers Bus Timing Registers Identifier Acceptance Filter Registers Identifier Acceptance Mask Registers 21.3.2 DISABLE MODE In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value. If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode. 2009-2012 Microchip Technology Inc. The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter. Note: 21.3.3 Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set, and the TXREQ bit is cleared. NORMAL OPERATION MODE Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins. 21.3.4 LISTEN ONLY MODE If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other. 21.3.5 LISTEN ALL MESSAGES MODE The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface. 21.3.6 LOOPBACK MODE If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function. DS70594D-page 219 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-1: CiCTRL1: ECAN™ CONTROL REGISTER 1 U-0 U-0 R/W-0 R/W-0 r-0 — — CSIDL ABAT — R/W-1 R/W-0 R/W-0 REQOP<2:0> bit 15 bit 8 R-1 R-0 R-0 OPMODE<2:0> U-0 R/W-0 U-0 U-0 R/W-0 — CANCAP — — WIN bit 7 bit 0 Legend: r = Reserved bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted bit 11 Reserved: Do no use bit 10-8 REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved – do not use 101 = Reserved – do not use 100 = Set Configuration mode 011 = Set Listen Only Mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode bit 7-5 OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode bit 4 Unimplemented: Read as ‘0’ bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive 0 = Disable CAN capture bit 2-1 Unimplemented: Read as ‘0’ bit 0 WIN: SFR Map Window Select bit 1 = Use filter window 0 = Use buffer window DS70594D-page 220 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-2: CiCTRL2: ECAN™ CONTROL REGISTER 2 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R-0 R-0 R-0 R-0 R-0 DNCNT<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 DNCNT<4:0>: DeviceNet™ Filter Bit Number bits 10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17> • • • 00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 221 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-3: CiVEC: ECAN™ INTERRUPT CODE REGISTER U-0 U-0 U-0 — — — R-0 R-0 R-0 R-0 R-0 FILHIT<4:0> bit 15 bit 8 U-0 R-1 R-0 R-0 — R-0 R-0 R-0 R-0 ICODE<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 FILHIT<4:0>: Filter Hit Number bits 10000-11111 = Reserved 01111 = Filter 15 • • • 00001 = Filter 1 00000 = Filter 0 bit 7 Unimplemented: Read as ‘0’ bit 6-0 ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved 1000100 = FIFO almost full interrupt 1000011 = Receiver overflow interrupt 1000010 = Wake-up interrupt 1000001 = Error interrupt 1000000 = No interrupt x = Bit is unknown 0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt • • • 0001001 = RB9 buffer interrupt 0001000 = RB8 buffer interrupt 0000111 = TRB7 buffer interrupt 0000110 = TRB6 buffer interrupt 0000101 = TRB5 buffer interrupt 0000100 = TRB4 buffer interrupt 0000011 = TRB3 buffer interrupt 0000010 = TRB2 buffer interrupt 0000001 = TRB1 buffer interrupt 0000000 = TRB0 Buffer interrupt DS70594D-page 222 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-4: R/W-0 CiFCTRL: ECAN™ FIFO CONTROL REGISTER R/W-0 R/W-0 DMABS<2:0> U-0 U-0 U-0 U-0 U-0 — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FSA<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM bit 12-5 Unimplemented: Read as ‘0’ bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = RB31 buffer 11110 = RB30 buffer • • • 00001 = TRB1 buffer 00000 = TRB0 buffer 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 223 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-5: CiFIFO: ECAN™ FIFO STATUS REGISTER U-0 U-0 — — R-0 R-0 R-0 R-0 R-0 R-0 FBP<5:0> bit 15 bit 8 U-0 U-0 — — R-0 R-0 R-0 R-0 R-0 R-0 FNRB<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13-8 FBP<5:0>: FIFO Write Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer • • • 000001 = TRB1 buffer 000000 = TRB0 buffer bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer • • • 000001 = TRB1 buffer 000000 = TRB0 buffer DS70594D-page 224 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-6: CiINTF: ECAN™ INTERRUPT FLAG REGISTER U-0 — bit 15 U-0 — R-0 TXBO R-0 TXBP R-0 RXBP R-0 TXWAR R-0 RXWAR R-0 EWARN bit 8 R/C-0 IVRIF bit 7 R/C-0 WAKIF R/C-0 ERRIF U-0 — R/C-0 FIFOIF R/C-0 RBOVIF R/C-0 RBIF R/C-0 TBIF bit 0 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 W = Writable bit ‘1’ = Bit is set C = Clearable bit U = Unimplemented bit, read as ‘0’ ‘0’ = Bit is cleared x = Bit is unknown Unimplemented: Read as ‘0’ TXBO: Transmitter in Error State Bus Off bit 1 = Transmitter is in Bus Off state 0 = Transmitter is not in Bus Off state TXBP: Transmitter in Error State Bus Passive bit 1 = Transmitter is in Bus Passive state 0 = Transmitter is not in Bus Passive state RXBP: Receiver in Error State Bus Passive bit 1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state RXWAR: Receiver in Error State Warning bit 1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state EWARN: Transmitter or Receiver in Error State Warning bit 1 = Transmitter or receiver is in Error Warning state 0 = Transmitter or receiver is not in Error Warning state IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred WAKIF: Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as ‘0’ FIFOIF: FIFO Almost Full Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred RBOVIF: RX Buffer Overflow Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred TBIF: TX Buffer Interrupt Flag bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 2009-2012 Microchip Technology Inc. DS70594D-page 225 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-7: CiINTE: ECAN™ INTERRUPT ENABLE REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 Unimplemented: Read as ‘0’ bit 7 IVRIE: Invalid Message Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 WAKIE: Bus Wake-up Activity Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 ERRIE: Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 Unimplemented: Read as ‘0’ bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 1 RBIE: RX Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 TBIE: TX Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70594D-page 226 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-8: R-0 CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER R-0 R-0 R-0 R-0 R-0 R-0 R-0 TERRCNT<7:0> bit 15 bit 8 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RERRCNT<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 TERRCNT<7:0>: Transmit Error Count bits bit 7-0 RERRCNT<7:0>: Receive Error Count bits 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 227 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SJW<1:0> R/W-0 R/W-0 R/W-0 BRP<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 Unimplemented: Read as ‘0’ bit 7-6 SJW<1:0>: Synchronization Jump Width bits 11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 11 1111 = TQ = 2 x 64 x 1/FCAN • • • 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN 00 0000 = TQ = 2 x 1 x 1/FCAN DS70594D-page 228 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2 U-0 R/W-x U-0 U-0 U-0 — WAKFIL — — — R/W-x R/W-x R/W-x SEG2PH<2:0> bit 15 bit 8 R/W-x R/W-x SEG2PHTS SAM R/W-x R/W-x R/W-x SEG1PH<2:0> R/W-x R/W-x R/W-x PRSEG<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as ‘0’ bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as ‘0’ bit 10-8 SEG2PH<2:0>: Phase Buffer Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Buffer Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ 2009-2012 Microchip Technology Inc. DS70594D-page 229 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-11: CiFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 bit 15 bit 8 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTEN7 FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown FLTENn: Enable Filter n to Accept Messages bits 1 = Enable Filter n 0 = Disable Filter n DS70594D-page 230 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F3BP<3:0> R/W-0 R/W-0 R/W-0 F2BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F1BP<3:0> R/W-0 R/W-0 R/W-0 F0BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 F3BP<3:0>: RX Buffer Written when Filter 3 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 7-4 F1BP<3:0>: RX Buffer Written when Filter 1 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 3-0 F0BP<3:0>: RX Buffer Written when Filter 0 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 231 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F7BP<3:0> R/W-0 R/W-0 R/W-0 F6BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F5BP<3:0> R/W-0 R/W-0 R/W-0 F4BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 7-4 F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 3-0 F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 DS70594D-page 232 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F11BP<3:0> R/W-0 R/W-0 R/W-0 F10BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F9BP<3:0> R/W-0 R/W-0 R/W-0 F8BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 7-4 F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 3-0 F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 2009-2012 Microchip Technology Inc. x = Bit is unknown DS70594D-page 233 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F15BP<3:0> R/W-0 R/W-0 R/W-0 F14BP<3:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F13BP<3:0> R/W-0 R/W-0 R/W-0 F12BP<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 11-8 F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 7-4 F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 bit 3-0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 DS70594D-page 234 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-16: R/W-x CiRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ...,15) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID<10:3> bit 15 bit 8 R/W-x R/W-x R/W-x SID<2:0> U-0 R/W-x U-0 — EXIDE — R/W-x R/W-x EID<17:16> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be ‘1’ to match filter 0 = Message address bit, SIDx, must be ‘0’ to match filter bit 4 Unimplemented: Read as ‘0’ bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1, then: 1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses If MIDE = 0, then: Ignore EXIDE bit. bit 2 Unimplemented: Read as ‘0’ bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be ‘1’ to match filter 0 = Message address bit, EIDx, must be ‘0’ to match filter REGISTER 21-17: R/W-x x = Bit is unknown CiRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID<15:8> bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown EID<15:0>: Extended Identifier bits 1 = Message address bit, EIDx, must be ‘1’ to match filter 0 = Message address bit, EIDx, must be ‘0’ to match filter 2009-2012 Microchip Technology Inc. DS70594D-page 235 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER R/W-0 R/W-0 F7MSK<1:0> R/W-0 R/W-0 R/W-0 F6MSK<1:0> R/W-0 R/W-0 F5MSK<1:0> R/W-0 F4MSK<1:0> bit 15 bit 8 R/W-0 R/W-0 F3MSK<1:0> R/W-0 R/W-0 R/W-0 F2MSK<1:0> R/W-0 R/W-0 F1MSK<1:0> R/W-0 F0MSK<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 F7MSK<1:0>: Mask Source for Filter 7 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 13-12 F6MSK<1:0>: Mask Source for Filter 6 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 11-10 F5MSK<1:0>: Mask Source for Filter 5 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 9-8 F4MSK<1:0>: Mask Source for Filter 4 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 7-6 F3MSK<1:0>: Mask Source for Filter 3 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 5-4 F2MSK<1:0>: Mask Source for Filter 2 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 3-2 F1MSK<1:0>: Mask Source for Filter 1 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask bit 1-0 F0MSK<1:0>: Mask Source for Filter 0 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask DS70594D-page 236 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER R/W-0 R/W-0 F15MSK<1:0> bit 15 R/W-0 R/W-0 F14MSK<1:0> R/W-0 R/W-0 F13MSK<1:0> R/W-0 R/W-0 F12MSK<1:0> bit 8 R/W-0 R/W-0 F11MSK<1:0> bit 7 R/W-0 R/W-0 F10MSK<1:0> R/W-0 R/W-0 F9MSK<1:0> R/W-0 R/W-0 F8MSK<1:0> bit 0 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13-12 bit 11-10 bit 9-8 bit 7-6 bit 5-4 bit 3-2 bit 1-0 W = Writable bit ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ ‘0’ = Bit is cleared x = Bit is unknown F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F14MSK<1:0>: Mask Source for Filter 14 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F13MSK<1:0>: Mask Source for Filter 13 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F12MSK<1:0>: Mask Source for Filter 12 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F11MSK<1:0>: Mask Source for Filter 11 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F10MSK<1:0>: Mask Source for Filter 10 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F9MSK<1:0>: Mask Source for Filter 9 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask F8MSK<1:0>: Mask Source for Filter 8 bit 11 = Reserved; do not use 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask 2009-2012 Microchip Technology Inc. DS70594D-page 237 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-20: CiRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID<10:3> bit 15 bit 8 R/W-x R/W-x R/W-x SID<2:0> U-0 R/W-x U-0 — MIDE — R/W-x R/W-x EID<17:16> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit, SIDx, in filter comparison 0 = Bit, SIDx, is a don’t care in filter comparison bit 4 Unimplemented: Read as ‘0’ bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to the EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) bit 2 Unimplemented: Read as ‘0’ bit 1-0 EID<17:16>: Extended Identifier bits 1 = Include bit, EIDx, in filter comparison 0 = Bit, EIDx, is a don’t care in filter comparison REGISTER 21-21: CiRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID<15:8> bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown EID<15:0>: Extended Identifier bits 1 = Include bit, EIDx, in filter comparison 0 = Bit, EIDx, is a don’t care in filter comparison DS70594D-page 238 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 bit 7 bit 0 C= Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown RXFUL15:RXFUL0: Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty (clear by application software) REGISTER 21-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 bit 7 bit 0 C= Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown RXFUL31:RXFUL16: Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty (clear by application software) 2009-2012 Microchip Technology Inc. DS70594D-page 239 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-24: CiRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 bit 7 bit 0 C= Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown RXOVF15:RXOVF0: Receive Buffer n Overflow bits 1 = Module pointed a write to a full buffer (set by module) 0 = Overflow is cleared (clear by application software) REGISTER 21-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 bit 15 bit 8 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 bit 7 bit 0 C= Clearable bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown RXOVF31:RXOVF16: Receive Buffer n Overflow bits 1 = Module pointed a write to a full buffer (set by module) 0 = Overflow is cleared (clear by application software) DS70594D-page 240 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A CiTRmnCON: ECAN™ TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7) REGISTER 21-26: R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 TXENn TXABTn TXLARBn TXERRn TXREQn RTRENn R/W-0 R/W-0 TXnPRI<1:0> bit 15 bit 8 R/W-0 R-0 TXENm TXABTm(1) R-0 R-0 TXLARBm(1) TXERRm(1) R/W-0 R/W-0 TXREQm RTRENm R/W-0 R/W-0 TXmPRI<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-8 See Definition for Bits 7-0, Controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer bit 6 TXABTm: Message Aborted bit(1) 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit(1) 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit(1) 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message is successfully sent. Clearing the bit to ‘0’ while set will request a message abort. bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 10 = High intermediate message priority 01 = Low intermediate message priority 00 = Lowest message priority Note 1: This bit is cleared when TXREQ is set. 2009-2012 Microchip Technology Inc. DS70594D-page 241 dsPIC33FJXXXMCX06A/X08A/X10A Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers, are located in DMA RAM. REGISTER 21-27: CiTRBnSID: ECAN™ BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31) U-0 U-0 U-0 — — — R/W-x R/W-x R/W-x R/W-x R/W-x SID<10:6> bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID<5:0> R/W-x R/W-x SRR IDE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 Unimplemented: Read as ‘0’ bit 12-2 SID<10:0>: Standard Identifier bits bit 1 SRR: Substitute Remote Request bit 1 = Message will request remote transmission 0 = Normal message bit 0 IDE: Extended Identifier bit 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier x = Bit is unknown REGISTER 21-28: CiTRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31) U-0 U-0 U-0 U-0 — — — — R/W-x R/W-x R/W-x R/W-x EID<17:14> bit 15 bit 8 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID<13:6> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 11-0 EID<17:6>: Extended Identifier bits DS70594D-page 242 x = Bit is unknown 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-29: CiTRBnDLC: ECAN™ BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x EID5 EID4 EID3 EID2 EID1 EID0 RTR RB1 bit 15 bit 8 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x — — — RB0 DLC3 DLC2 DLC1 DLC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-10 EID<5:0>: Extended Identifier bits bit 9 RTR: Remote Transmission Request bit 1 = Message will request remote transmission 0 = Normal message bit 8 RB1: Reserved Bit 1 User must set this bit to ‘0’ per CAN protocol. bit 7-5 Unimplemented: Read as ‘0’ bit 4 RB0: Reserved Bit 0 User must set this bit to ‘0’ per CAN protocol. bit 3-0 DLC<3:0>: Data Length Code bits REGISTER 21-30: R/W-x x = Bit is unknown CiTRBnDm: ECAN™ BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)(1) R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x TRBnDm<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 Note 1: x = Bit is unknown TRnDm<7:0>: Data Field Buffer ‘n’ Byte ‘m’ bits The Most Significant Byte contains byte (m + 1) of the buffer. 2009-2012 Microchip Technology Inc. DS70594D-page 243 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 21-31: CiTRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31) U-0 U-0 U-0 — — — R/W-x R/W-x R/W-x R/W-x R/W-x FILHIT<4:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 FILHIT<4:0>: Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer. bit 7-0 Unimplemented: Read as ‘0’ DS70594D-page 244 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. A block diagram of the ADC is shown in Figure 22-1. 22.2 The following configuration steps should be performed. 1. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where ‘x’ = 1 or 2), each with its own set of Special Function Registers. The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC. Note: 22.1 The ADC module needs to be disabled before modifying the AD12B bit. Key Features The 10-bit ADC configuration has the following key features: • • • • • • • • • • Successive Approximation (SAR) conversion Conversion speeds of up to 1.1 Msps Up to 32 analog input pins External voltage reference input pins Simultaneous sampling of up to four analog input pins Automatic Channel Scan mode Selectable conversion trigger source Selectable Buffer Fill modes Four result alignment options (signed/unsigned, fractional/integer) Operation during CPU Sleep and Idle modes The 12-bit ADC configuration supports all the above features, except: • In the 12-bit configuration, conversion speeds of up to 500 ksps are supported. • There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported. 2009-2012 Microchip Technology Inc. ADC Initialization 2. Configure the ADC module: a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>) b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>) c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>) d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>) e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>) f) Select how conversion results are presented in the buffer (ADxCON1<9:8>) g) Turn on ADC module (ADxCON1<15>) Configure ADC interrupt (if required): a) Clear the ADxIF bit b) Select ADC interrupt priority 22.3 ADC and DMA If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence. The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM Buffer Pointer is incremented. The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer. DS70594D-page 245 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 22-1: ADCx MODULE BLOCK DIAGRAM AN0 ANy(3) S/H0 Channel Scan + CH0SA<4:0> CH0 CH0SB<4:0> - CSCNA AN1 VREFL CH0NA CH0NB AN0 AN3 S/H1 VREF+(1) AVDD VREF- (1) AVSS + - CH123SA CH123SB CH1(2) AN6 AN9 VCFG<2:0> VREFL VREFH VREFL CH123NA CH123NB SAR ADC ADC1BUF0 AN1 AN4 S/H2 + CH123SA CH123SB CH2(2) - AN7 AN10 VREFL CH123NA CH123NB AN2 AN5 S/H3 + CH123SA CH123SB CH3(2) - AN8 AN11 VREFL CH123NA CH123NB Alternate Input Selection Note 1: 2: 3: VREF+, VREF- inputs can be multiplexed with other analog inputs. Channels, 1, 2 and 3, are not applicable for the 12-bit mode of operation. For 64-pin devices, y = 15; for 80-pin devices, y = 17; for 100-pin devices, y = 23; for ADC2, y = 15. DS70594D-page 246 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 22-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM ADxCON3<15> ADC Internal RC Clock(2) 1 TAD ADxCON3<5:0> 0 6 TOSC(1) X2 TCY ADC Conversion Clock Multiplier 1, 2, 3, 4, 5,..., 64 Note 1: Refer to Figure 9-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to the clock source frequency, TOSC = 1/FOSC. 2: See the ADC electrical specifications for the exact RC clock value. 2009-2012 Microchip Technology Inc. DS70594D-page 247 dsPIC33FJXXXMCX06A/X08A/X10A 22.4 1. 2. 3. 4. 5. ADC Helpful Tips The SMPI<3:0> (AD1CON2<5:2>) control bits: a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled. b) When the CSCNA bit (AD1CON2<10>) is set to ‘1’, determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning. c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0. On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in. On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic ‘1’ to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic ‘0’ as the digital input buffer is held in Disable mode. DS70594D-page 248 22.5 ADC Resources Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: 22.5.1 In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066 KEY RESOURCES • Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) • Code Samples • Application Notes • Software Libraries • Webinars • All related dsPIC33F/PIC24H Family Reference Manuals Sections • Development Tools 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 ADON — ADSIDL ADDMABM — AD12B R/W-0 R/W-0 FORM<1:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 SSRC<2:0> U-0 R/W-0 R/W-0 R/W-0, HC,HS R/C-0, HC, HS — SIMSAM ASAM SAMP DONE bit 7 bit 0 Legend: HC = Hardware Clearable bit HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ C= Clearable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ADON: ADC Operating Mode bit 1 = ADC module is operating 0 = ADC is off bit 14 Unimplemented: Read as ‘0’ bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer bit 11 Unimplemented: Read as ‘0’ bit 10 AD12B: 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation bit 9-8 FORM<1:0>: Data Output Format bits For 10-Bit Operation: 11 = Signed fractional (DOUT = sddd dddd dd00 0000, where s = .NOT.d<9>) 10 = Fractional (DOUT = dddd dddd dd00 0000) 01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd) For 12-Bit Operation: 11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (DOUT = dddd dddd dddd 0000) 01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (DOUT = 0000 dddd dddd dddd) bit 7-5 SSRC<2:0>: Sample Clock Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved 100 = GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion 011 = MPWM interval ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion bit 4 Unimplemented: Read as ‘0’ 2009-2012 Microchip Technology Inc. DS70594D-page 249 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED) bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’. 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write ‘0’ to end sampling and start conversion. If SSRC 000, automatically cleared by hardware to end sampling and start conversion. bit 0 DONE: ADC Conversion Status bit 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write ‘0’ to clear DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion. DS70594D-page 250 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-2: R/W-0 ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2) R/W-0 R/W-0 VCFG<2:0> U-0 U-0 R/W-0 — — CSCNA R/W-0 R/W-0 CHPS<1:0> bit 15 bit 8 R-0 U-0 BUFS — R/W-0 R/W-0 R/W-0 R/W-0 SMPI<3:0> R/W-0 R/W-0 BUFM ALTS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 x = Bit is unknown VCFG<2:0>: Converter Voltage Reference Configuration bits 000 001 010 011 1xx VREF+ VREF- AVDD External VREF+ AVDD External VREF+ AVDD Avss Avss External VREFExternal VREFAvss bit 12-11 Unimplemented: Read as ‘0’ bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 CHPS<1:0>: Selects Channels Utilized bits When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’. 1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1 00 = Converts CH0 bit 7 BUFS: Buffer Fill Status bit (only valid when BUFM = 1) 1 = ADC is currently filling second half of buffer, user should access data in the first half 0 = ADC is currently filling first half of buffer, user should access data in the second half bit 6 Unimplemented: Read as ‘0’ bit 5-2 SMPI<3:0>: Selects Increment Rate for DMA Address Bits or Number of Sample/Conversion Operations per Interrupt bits 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/ conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/ conversion operation • • • 0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample/conversion operation 0000 = Increments the DMA address or generates interrupt after completion of every sample/conversion operation bit 1 BUFM: Buffer Fill Mode Select bit 1 = Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt 0 = Always starts filling buffer from the beginning 2009-2012 Microchip Technology Inc. DS70594D-page 251 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-2: bit 0 ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2) ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample 0 = Always uses channel input selects for Sample A DS70594D-page 252 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-3: ADxCON3: ADCx CONTROL REGISTER 3 R/W-0 U-0 U-0 ADRC — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SAMC<4:0>(1) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADCS<7:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 ADRC: ADC Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock bit 14-13 Unimplemented: Read as ‘0’ bit 12-8 SAMC<4:0>: Auto-Sample Time bits(1) 11111 = 31 TAD • • • 00001 = 1 TAD 00000 = 0 TAD bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits(2) 11111111 = Reserved • • • 01000000 = Reserved 00111111 = TCY · (ADCS<7:0> + 1) = 64 · TCY = TAD • • • 00000010 = TCY · (ADCS<7:0> + 1) = 3 · TCY = TAD 00000001 = TCY · (ADCS<7:0> + 1) = 2 · TCY = TAD 00000000 = TCY · (ADCS<7:0> + 1) = 1 · TCY = TAD x = Bit is unknown Note 1: This bit is only used if ADxCON1<7:5> (SSRC<2:0>) = 111. 2: This bit is not used if ADxCON3<15> (ADRC) = 1. 2009-2012 Microchip Technology Inc. DS70594D-page 253 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-4: ADxCON4: ADCx CONTROL REGISTER 4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 DMABL<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-3 Unimplemented: Read as ‘0’ bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits 111 = Allocates 128 words of buffer to each analog input 110 = Allocates 64 words of buffer to each analog input 101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input 011 = Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input 001 = Allocates 2 words of buffer to each analog input 000 = Allocates 1 word of buffer to each analog input DS70594D-page 254 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 CH123NB<1:0> R/W-0 CH123SB bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 CH123NA<1:0> R/W-0 CH123SA bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’. 11 = CH1 negative input is AN9; CH2 negative input is AN10; CH3 negative input is AN11 10 = CH1 negative input is AN6; CH2 negative input is AN7; CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as ‘0’. 1 = CH1 positive input is AN3; CH2 positive input is AN4; CH3 positive input is AN5 0 = CH1 positive input is AN0; CH2 positive input is AN1; CH3 positive input is AN2 bit 7-3 Unimplemented: Read as ‘0’ bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’. 11 = CH1 negative input is AN9; CH2 negative input is AN10; CH3 negative input is AN11 10 = CH1 negative input is AN6; CH2 negative input is AN7; CH3 negative input is AN8 0x = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’. 1 = CH1 positive input is AN3; CH2 positive input is AN4; CH3 positive input is AN5 0 = CH1 positive input is AN0; CH2 positive input is AN1; CH3 positive input is AN2 2009-2012 Microchip Technology Inc. DS70594D-page 255 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER R/W-0 U-0 U-0 CH0NB — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0SB<4:0> bit 15 bit 8 R/W-0 U-0 U-0 CH0NA — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0SA<4:0>(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7. bit 14-13 Unimplemented: Read as ‘0’ bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits Same definition as bit<4:0>. bit 7 CH0NA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 6-5 Unimplemented: Read as ‘0’ bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits(1) 11111 = Channel 0 positive input is AN31 11110 = Channel 0 positive input is AN30 • • • 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0 Note 1: ADC2 can only select AN0-AN15 as positive inputs. DS70594D-page 256 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH(1,2) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS31 CSS30 CSS29 CSS28 CSS27 CSS26 CSS25 CSS24 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS23 CSS22 CSS21 CSS20 CSS19 CSS18 CSS17 CSS16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown CSS<31:16>: ADC Input Scan Selection bits 1 = Select ANx for input scan 0 = Skip ANx for input scan Note 1: On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREFL. 2: CSSx = ANx, where x = 16 through 31. REGISTER 22-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1,2) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown CSS<15:0>: ADC Input Scan Selection bits 1 = Select ANx for input scan 0 = Skip ANx for input scan Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREF-. 2: CSSx = ANx, where x = 0 through 15. 2009-2012 Microchip Technology Inc. DS70594D-page 257 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 22-9: ADxPCFGH: ADCx PORT CONFIGURATION REGISTER HIGH(1,2,3,4) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PCFG<31:16>: ADC Port Configuration Control bits 1 = Port pin in Digital mode; port read input enabled; ADC input multiplexer connected to AVSS 0 = Port pin in Analog mode; port read input disabled; ADC samples pin voltage Note 1: On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on the device. 2: ADC2 only supports analog inputs, AN0-AN15; therefore, no ADC2 port Configuration register exists. 3: PCFGx = ANx, where x = 16 through 31. 4: The PCFGx bits have no effect if the ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode. REGISTER 22-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW(1,2,3,4) R/W-0 PCFG15 bit 15 R/W-0 PCFG14 R/W-0 PCFG13 R/W-0 PCFG12 R/W-0 PCFG11 R/W-0 PCFG10 R/W-0 PCFG9 R/W-0 PCFG8 bit 8 R/W-0 PCFG7 bit 7 R/W-0 PCFG6 R/W-0 PCFG5 R/W-0 PCFG4 R/W-0 PCFG3 R/W-0 PCFG2 R/W-0 PCFG1 R/W-0 PCFG0 bit 0 Legend: R = Readable bit -n = Value at POR bit 15-0 W = Writable bit ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ ‘0’ = Bit is cleared x = Bit is unknown PCFG<15:0>: ADC Port Configuration Control bits 1 = Port pin in Digital mode; port read input enabled; ADC input multiplexer connected to AVSS 0 = Port pin in Analog mode; port read input disabled; ADC samples pin voltage Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on the device. 2: On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15. 3: PCFGx = ANx, where x = 0 through 15. 4: The PCFGx bits have no effect if the ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode. DS70594D-page 258 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 23.0 SPECIAL FEATURES 23.1 Configuration Bits dsPIC33FJXXXMCX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to Section 25. “Device Configuration” (DS70194) of the “dsPIC33F/PIC24H Family Reference Manual”, for more information on this implementation. Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. “CodeGuard™ Security” (DS70199), Section 24. “Programming and Diagnostics” (DS70207) and Section 25. “Device Configuration” (DS70194) in the “dsPIC33F/PIC24H Family Reference Manual”, which are available from the Microchip web site (www.microchip.com). The Configuration bits can be programmed (read as ‘0’), or left unprogrammed (read as ‘1’), to select various device configurations. These bits are mapped starting at program memory location 0xF80000. The device Configuration register map is shown in Table 23-1. The individual Configuration bit descriptions for the Configuration registers are shown in Table 23-2. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. Note that address, 0xF80000, is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF) which can only be accessed using table reads and table writes. dsPIC33FJXXXMCX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: • • • • • • Flexible Configuration Watchdog Timer (WDT) Code Protection and CodeGuard™ Security JTAG Boundary Scan Interface In-Circuit Serial Programming™ (ICSP™) In-Circuit Emulation TABLE 23-1: Address DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0xF80000 FBS RBS<1:0> — — BSS<2:0> BWRP 0xF80002 FSS RSS<1:0> — — SSS<2:0> SWRP 0xF80004 FGS 0xF80006 FOSCSEL 0xF80008 FOSC — — — — — IESO Reserved(2) — — — FNOSC<2:0> — — — OSCIOFNC POSCMD<1:0> FCKSM<1:0> 0xF8000A FWDT FWDTEN WINDIS 0xF8000C FPOR PWMPIN HPOL 0xF8000E FICD Reserved(1) PLLKEN(3) WDTPRE GSS0 GWRP WDTPOST<3:0> LPOL — — JTAGEN — — 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 Legend: Note 1: 2: 3: GSS1 FPWRT<2:0> — ICS<1:0> — = unimplemented bit, reads as ‘0’. These bits are reserved for use by development tools and must be programmed as ‘1’. When read, this bit returns the current programmed value. This bit is unimplemented on dsPIC33FJ64MCX06A/X08A/X10A and dsPIC33FJ128MCX06A/X08A/X10A devices and reads as ‘0’. 2009-2012 Microchip Technology Inc. DS70594D-page 259 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 23-2: Bit Field CONFIGURATION BITS DESCRIPTION Register RTSP Effect Description BWRP FBS Immediate Boot Segment Program Flash Write Protection bit 1 = Boot segment may be written 0 = Boot segment is write-protected BSS<2:0> FBS Immediate Boot Segment Program Flash Code Protection Size bits x11 = No boot program Flash segment Boot space is 1K IW less VS: 110 = Standard security; boot program Flash segment starts at end of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at end of VS, ends at 0007FEh Boot space is 4K IW less VS: 101 = Standard security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh Boot space is 8K IW less VS: 100 = Standard security; boot program Flash segment starts at end of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at end of VS, ends at 003FFEh RBS<1:0> FBS Immediate Boot Segment RAM Code Protection bits 11 = No boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes SWRP FSS Immediate Secure Segment Program Flash Write Protection bit 1 = Secure segment may be written 0 = Secure segment is write-protected DS70594D-page 260 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 23-2: Bit Field SSS<2:0> CONFIGURATION BITS DESCRIPTION (CONTINUED) Register FSS RTSP Effect Description Immediate Secure Segment Program Flash Code Protection Size bits (FOR 128K and 256K DEVICES) X11 = No secure program Flash segment Secure space is 8K IW less BS: 110 = Standard security; secure program Flash segment starts at end of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE Secure space is 16K IW less BS: 101 = Standard security; secure program Flash segment starts at end of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE Secure space is 32K IW less BS: 100 = Standard security; secure program Flash segment starts at end of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at end of BS, ends at 0x00FFFE (FOR 64K DEVICES) X11 = No Secure program Flash segment Secure space is 4K IW less BS: 110 = Standard security; secure program Flash segment starts at end of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at end of BS, ends at 0x001FFE Secure space is 8K IW less BS: 101 = Standard security; secure program Flash segment starts at end of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE Secure space is 16K IW less BS: 100 = Standard security; secure program Flash segment starts at end of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE RSS<1:0> FSS Immediate Secure Segment RAM Code Protection bits 11 = No secure RAM defined 10 = Secure RAM is 256 bytes less BS RAM 01 = Secure RAM is 2048 bytes less BS RAM 00 = Secure RAM is 4096 bytes less BS RAM GSS<1:0> FGS Immediate General Segment Code-Protect bits 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at end of SS, ends at EOM 0x = High security; general program Flash segment starts at end of SS, ends at EOM 2009-2012 Microchip Technology Inc. DS70594D-page 261 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 23-2: Bit Field CONFIGURATION BITS DESCRIPTION (CONTINUED) Register GWRP FGS RTSP Effect Description Immediate General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected IESO FOSCSEL Immediate Two-Speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source FNOSC<2:0> FOSCSEL FCKSM<1:0> FOSC Immediate Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled OSCIOFNC FOSC Immediate OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin POSCMD<1:0> FOSC Immediate Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode FWDTEN FWDT Immediate Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register.) WINDIS FWDT Immediate Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode PLLKEN FWDT Immediate PLL Lock Enable bit 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal WDTPRE FWDT Immediate Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32 WDTPOST<3:0> FWDT Immediate Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1 DS70594D-page 262 If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 23-2: Bit Field CONFIGURATION BITS DESCRIPTION (CONTINUED) Register RTSP Effect Description PWMPIN FPOR Immediate Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) HPOL FPOR Immediate Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity LPOL FPOR Immediate Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity FPWRT<2:0> FPOR Immediate Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled JTAGEN FICD Immediate JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled ICS<1:0> FICD Immediate ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved 2009-2012 Microchip Technology Inc. DS70594D-page 263 dsPIC33FJXXXMCX06A/X08A/X10A 23.2 On-Chip Voltage Regulator All of the dsPIC33FJXXXMCX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXMCX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-13 of Section 26.1 “DC Characteristics”. Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. On a POR, it takes approximately 20 s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down. FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR(1,2,3) 23.3 BOR: Brown-out Reset The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on). A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is ‘1’. Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM. The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage. 3.3V dsPIC33F VDD VCAP CEFC 10 µF Note 1: 2: 3: VSS These are typical operating voltages. Refer to TABLE 26-13: “Internal Voltage Regulator Specifications” located in Section 26.1 “DC Characteristics” for the full operating ranges of VDD and VCAP. It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. Typical VCAP pin voltage = 2.5V when VDD VDDMIN. DS70594D-page 264 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 23.4 Watchdog Timer (WDT) For dsPIC33FJXXXMCX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode. A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset: • On any device Reset • On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor) • When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered) • When the device exits Sleep or Idle mode to resume normal operation • By a CLRWDT instruction during normal execution FIGURE 23-2: If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up. The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software. Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed. The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled. The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to ‘0’. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings. Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs. WDT BLOCK DIAGRAM All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPRE SWDTEN FWDTEN WDTPOST<3:0> RS Prescaler (divide by N1) LPRC Clock WDT Wake-up 1 RS Postscaler (divide by N2) 0 WINDIS WDT Reset WDT Window Select CLRWDT Instruction 2009-2012 Microchip Technology Inc. DS70594D-page 265 dsPIC33FJXXXMCX06A/X08A/X10A 23.5 JTAG Interface dsPIC33FJXXXMCX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document. 23.6 Code Protection and CodeGuard™ Security The dsPIC33FJXXXMCX06A/X08A/X10A devices offer the advanced implementation of CodeGuard™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property (IP) in collaborative system designs. When coupled with software encryption libraries, CodeGuard™ Security can be used to securely update Flash even when multiple IPs are resident on the single chip. The code protection features vary depending on the actual device implemented. The following sections provide an overview of these features. The code protection features are controlled by the Configuration registers: FBS, FSS and FGS. Note: Refer to Section 23. “CodeGuard™ Security” (DS70199) in the “dsPIC33F/ PIC24H Family Reference Manual” for further information on usage, configuration and operation of CodeGuard Security. 23.7 In-Circuit Serial Programming dsPIC33FJXXXMCX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed. Please refer to the “dsPIC33F/PIC24H Flash Programming Specification” (DS70152) document for details about ICSP. Any one out of three pairs of programming clock/data pins may be used: • PGEC1 and PGED1 • PGEC2 and PGED2 • PGEC3 and PGED3 23.8 In-Circuit Debugger When MPLAB® ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions. Any one out of three pairs of debugging clock/data pins may be used: • PGEC1 and PGED1 • PGEC2 and PGED2 • PGEC3 and PGED3 To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins. DS70594D-page 266 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 24.0 Note: INSTRUCTION SET SUMMARY This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The dsPIC33F instruction set is identical to that of the dsPIC30F. Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations. Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into five basic categories: • • • • • Word or byte-oriented operations Bit-oriented operations Literal operations DSP operations Control operations Table 24-1 shows the general symbols used in describing the instructions. The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction. Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands: • The first source operand which is typically a register ‘Wb’ without any address modifier • The second source operand which is typically a register ‘Ws’ with or without an address modifier • The destination of the result which is typically a register ‘Wd’ with or without an address modifier However, word or byte-oriented file register instructions have two operands: • The file register specified by the value ‘f’ • The destination, which could either be the file register ‘f’ or the W0 register, which is denoted as ‘WREG’ 2009-2012 Microchip Technology Inc. Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands: • The W register (with or without an address modifier) or file register (specified by the value of ‘Ws’ or ‘f’) • The bit in the W register or file register (specified by a literal value or indirectly by the contents of register ‘Wb’) The literal instructions that involve data movement may use some of the following operands: • A literal value to be loaded into a W register or file register (specified by the value of ‘k’) • The W register or file register where the literal value is to be loaded (specified by ‘Wb’ or ‘f’) However, literal instructions that involve arithmetic or logical operations use some of the following operands: • The first source operand which is a register ‘Wb’ without any address modifier • The second source operand which is a literal value • The destination of the result (only if not the same as the first source operand) which is typically a register ‘Wd’ with or without an address modifier The MAC class of DSP instructions may use some of the following operands: • The accumulator (A or B) to be used (required operand) • The W registers to be used as the two operands • The X and Y address space prefetch operations • The X and Y address space prefetch destinations • The accumulator write back destination The other DSP instructions do not involve any multiplication and may include: • The accumulator to be used (required) • The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier • The amount of shift specified by a W register ‘Wn’ or a literal value The control instructions may use some of the following operands: • A program memory address • The mode of the table read and table write instructions DS70594D-page 267 dsPIC33FJXXXMCX06A/X08A/X10A All instructions are a single word, except for certain double-word instructions, which were made doubleword instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are ‘0’s. If this second word is executed as an instruction (by itself), it will execute as a NOP. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single- TABLE 24-1: word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles. Note: For more details on the instruction set, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). SYMBOLS USED IN OPCODE DESCRIPTIONS Field #text Description Means literal defined by “text” (text) Means “content of text” [text] Means “the location addressed by text” { } Optional field or operation <n:m> Register bit field .b Byte mode selection .d Double-Word mode selection .S Shadow register select .w Word mode selection (default) Acc One of two accumulators {A, B} AWB Accumulator Write-Back Destination Address register {W13, [W13]+ = 2} bit4 4-bit bit selection field (used in word addressed instructions) {0...15} C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Expr Absolute address, label or expression (resolved by the linker) f File register address {0x0000...0x1FFF} lit1 1-bit unsigned literal {0,1} lit4 4-bit unsigned literal {0...15} lit5 5-bit unsigned literal {0...31} lit8 8-bit unsigned literal {0...255} lit10 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode lit14 14-bit unsigned literal {0...16384} lit16 16-bit unsigned literal {0...65535} lit23 23-bit unsigned literal {0...8388608}; LSb must be ‘0’ None Field does not require an entry, may be blank OA, OB, SA, SB DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate PC Program Counter Slit10 10-bit signed literal {-512...511} Slit16 16-bit signed literal {-32768...32767} Slit6 6-bit signed literal {-16...16} Wb Base W register {W0..W15} Wd Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Wdo Destination W register { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Wm,Wn Dividend, Divisor working register pair (direct addressing) DS70594D-page 268 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED) Field Description Wm*Wm Multiplicand and Multiplier working register pair for Square instructions {W4 * W4,W5 * W5,W6 * W6,W7 * W7} Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7} Wn One of 16 working registers {W0..W15} Wnd One of 16 destination working registers {W0...W15} Wns One of 16 source working registers {W0...W15} WREG W0 (working register used in file register instructions) Ws Source W register {Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws]} Wso Source W register {Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb]} Wx X Data Space Prefetch Address register for DSP instructions {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none} Wxd X Data Space Prefetch Destination register for DSP instructions {W4...W7} Wy Y Data Space Prefetch Address register for DSP instructions {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none} Wyd Y Data Space Prefetch Destination register for DSP instructions {W4...W7} 2009-2012 Microchip Technology Inc. DS70594D-page 269 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-2: Base Instr # 1 2 3 4 5 6 7 8 INSTRUCTION SET OVERVIEW Assembly Mnemonic ADD ADDC AND ASR BCLR BRA BSET BSW Assembly Syntax # of # of Words Cycles Description Status Flags Affected ADD Acc Add Accumulators 1 1 ADD f f = f + WREG 1 1 OA,OB,SA,SB C,DC,N,OV,Z ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z OA,OB,SA,SB ADD Wso,#Slit4,Acc 16-bit Signed Add to Accumulator 1 1 ADDC f f = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC f,WREG WREG = f + WREG + (C) 1 1 C,DC,N,OV,Z ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C,DC,N,OV,Z ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C,DC,N,OV,Z C,DC,N,OV,Z ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 AND f f = f .AND. WREG 1 1 N,Z AND f,WREG WREG = f .AND. WREG 1 1 N,Z AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N,Z AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N,Z AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N,Z ASR f f = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C,N,OV,Z ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C,N,OV,Z ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N,Z ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N,Z BCLR f,#bit4 Bit Clear f 1 1 None BCLR Ws,#bit4 Bit Clear Ws 1 1 None BRA C,Expr Branch if Carry 1 1 (2) None BRA GE,Expr Branch if greater than or equal 1 1 (2) None BRA GEU,Expr Branch if unsigned greater than or equal 1 1 (2) None BRA GT,Expr Branch if greater than 1 1 (2) None BRA GTU,Expr Branch if unsigned greater than 1 1 (2) None BRA LE,Expr Branch if less than or equal 1 1 (2) None BRA LEU,Expr Branch if unsigned less than or equal 1 1 (2) None BRA LT,Expr Branch if less than 1 1 (2) None BRA LTU,Expr Branch if unsigned less than 1 1 (2) None BRA N,Expr Branch if Negative 1 1 (2) None BRA NC,Expr Branch if Not Carry 1 1 (2) None BRA NN,Expr Branch if Not Negative 1 1 (2) None BRA NOV,Expr Branch if Not Overflow 1 1 (2) None BRA NZ,Expr Branch if Not Zero 1 1 (2) None BRA OA,Expr Branch if Accumulator A overflow 1 1 (2) None BRA OB,Expr Branch if Accumulator B overflow 1 1 (2) None BRA OV,Expr Branch if Overflow 1 1 (2) None BRA SA,Expr Branch if Accumulator A saturated 1 1 (2) None BRA SB,Expr Branch if Accumulator B saturated 1 1 (2) None BRA Expr Branch Unconditionally 1 2 None BRA Z,Expr Branch if Zero 1 1 (2) None BRA Wn Computed Branch 1 2 None BSET f,#bit4 Bit Set f 1 1 None BSET Ws,#bit4 Bit Set Ws 1 1 None BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 None BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 None f,#bit4 Bit Toggle f 1 1 None 9 BTG BTG BTG Ws,#bit4 Bit Toggle Ws 1 1 None 10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 (2 or 3) None BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1 (2 or 3) None DS70594D-page 270 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-2: Base Instr # 11 12 13 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic BTSS BTST BTSTS Assembly Syntax Description # of # of Words Cycles Status Flags Affected BTSS f,#bit4 Bit Test f, Skip if Set 1 1 (2 or 3) None BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 (2 or 3) None BTST f,#bit4 Bit Test f 1 1 Z BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 C BTST.Z Ws,Wb Bit Test Ws<Wb> to Z 1 1 Z BTSTS f,#bit4 Bit Test then Set f 1 1 Z BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z lit23 Call Subroutine 2 2 None 14 CALL CALL CALL Wn Call Indirect Subroutine 1 2 None 15 CLR CLR f f = 0x0000 1 1 None CLR WREG WREG = 0x0000 1 1 None CLR Ws Ws = 0x0000 1 1 None CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA,SB 16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep 17 COM COM f f=f 1 1 N,Z COM f,WREG WREG = f 1 1 N,Z COM Ws,Wd Wd = Ws 1 1 N,Z CP f Compare f with WREG 1 1 C,DC,N,OV,Z CP Wb,#lit5 Compare Wb with lit5 1 1 C,DC,N,OV,Z CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C,DC,N,OV,Z CP0 f Compare f with 0x0000 1 1 C,DC,N,OV,Z CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z CPB Wb,Ws Compare Wb with Ws, with Borrow (Wb – Ws – C) 1 1 C,DC,N,OV,Z 18 19 20 CP CP0 CPB 21 CPSEQ CPSEQ Wb, Wn Compare Wb with Wn, Skip if = 1 1 (2 or 3) None 22 CPSGT CPSGT Wb, Wn Compare Wb with Wn, Skip if > 1 1 (2 or 3) None 23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, Skip if < 1 1 (2 or 3) None 24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, Skip if 1 1 (2 or 3) None 25 DAW DAW Wn Wn = Decimal Adjust Wn 1 1 C 26 DEC DEC f f=f–1 1 1 C,DC,N,OV,Z DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z DEC2 f f=f–2 1 1 C,DC,N,OV,Z DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z C,DC,N,OV,Z 27 DEC2 DEC2 Ws,Wd Wd = Ws – 2 1 1 28 DISI DISI #lit14 Disable Interrupts for k Instruction Cycles 1 1 None 29 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 30 DIVF DIVF 31 DO DO #lit14,Expr Do Code to PC + Expr, lit14 + 1 Times 2 2 None DO Wn,Expr Do Code to PC + Expr, (Wn) + 1 Times 2 2 None Wm,Wn 32 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 33 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB, SA,SB,SAB 2009-2012 Microchip Technology Inc. DS70594D-page 271 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-2: Base Instr # INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic Assembly Syntax # of # of Words Cycles Description Status Flags Affected 34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None 35 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C 36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C 37 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C 38 GOTO GOTO Expr Go to Address 2 2 None GOTO Wn Go to Indirect 1 2 None INC f f=f+1 1 1 C,DC,N,OV,Z INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z INC2 f f=f+2 1 1 C,DC,N,OV,Z INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z 39 40 41 INC INC2 IOR INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z IOR f f = f .IOR. WREG 1 1 N,Z IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z 42 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 43 LNK LNK #lit14 Link Frame Pointer 1 1 None 44 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB Multiply and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MOV f,Wn Move f to Wn 1 1 None MOV f Move f to f 1 1 None MOV f,WREG Move f to WREG 1 1 N,Z MOV #lit16,Wn Move 16-bit Literal to Wn 1 1 None MOV.b #lit8,Wn Move 8-bit Literal to Wn 1 1 None MOV Wn,f Move Wn to f 1 1 None MOV Wso,Wdo Move Ws to Wd 1 1 None MOV WREG,f Move WREG to f 1 1 None 45 46 MAC MOV MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None 47 MOVSAC MOVSAC Prefetch and Store Accumulator 1 1 None 48 MPY MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB Acc,Wx,Wxd,Wy,Wyd,AWB 49 MPY.N MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wm by Wn) to Accumulator 1 1 None 50 MSC MSC Multiply and Subtract from Accumulator 1 1 OA,OB,OAB, SA,SB,SAB DS70594D-page 272 Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-2: Base Instr # 51 52 53 54 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic MUL NEG NOP POP Assembly Syntax PUSH # of # of Words Cycles Status Flags Affected MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws) 1 1 None MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1 None MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1 None MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 None MUL f W3:W2 = f * WREG 1 1 None NEG Acc Negate Accumulator 1 1 OA,OB,OAB, SA,SB,SAB NEG f f=f+1 1 1 C,DC,N,OV,Z NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z NOP No Operation 1 1 None NOPR No Operation 1 1 None None POP f Pop f from Top-of-Stack (TOS) 1 1 POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) 1 2 None Pop Shadow Registers 1 1 All f Push f to Top-of-Stack (TOS) 1 1 None PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None Push Shadow Registers 1 1 None Go into Sleep or Idle mode 1 1 WDTO,Sleep POP.S 55 Description PUSH PUSH.S 56 PWRSAV PWRSAV 57 RCALL RCALL Expr Relative Call 1 2 None RCALL Wn Computed Call 1 2 None REPEAT #lit14 Repeat Next Instruction lit14 + 1 Times 1 1 None REPEAT Wn Repeat Next Instruction (Wn) + 1 Times 1 1 None Software Device Reset 1 1 None 58 REPEAT #lit1 59 RESET RESET 60 RETFIE RETFIE 61 RETLW RETLW 62 RETURN RETURN 63 RLC RLC f RLC RLC 64 65 66 RLNC RRC RRNC Return from Interrupt 1 3 (2) None Return with Literal in Wn 1 3 (2) None Return from Subroutine 1 3 (2) None f = Rotate Left through Carry f 1 1 C,N,Z f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z RLNC f f = Rotate Left (No Carry) f 1 1 N,Z RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z #lit10,Wn RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z RRC f f = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z RRNC f f = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z 67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None 68 SE SE Ws,Wnd Wnd = Sign-Extended Ws 1 1 C,N,Z 69 SETM SETM f f = 0xFFFF 1 1 None SETM WREG WREG = 0xFFFF 1 1 None SETM Ws Ws = 0xFFFF 1 1 None SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB, SA,SB,SAB SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB, SA,SB,SAB 70 SFTAC 2009-2012 Microchip Technology Inc. DS70594D-page 273 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 24-2: Base Instr # 71 72 73 74 75 76 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic SL SUB SUBB SUBR SUBBR SWAP Assembly Syntax Description # of # of Words Cycles Status Flags Affected SL f f = Left Shift f 1 1 C,N,OV,Z SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z SUB Acc Subtract Accumulators 1 1 OA,OB,OAB, SA,SB,SAB SUB f f = f – WREG 1 1 C,DC,N,OV,Z SUB f,WREG WREG = f – WREG 1 1 C,DC,N,OV,Z SUB #lit10,Wn Wn = Wn – lit10 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C,DC,N,OV,Z C,DC,N,OV,Z SUBB f f = f – WREG – (C) 1 1 SUBB f,WREG WREG = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C,DC,N,OV,Z SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C,DC,N,OV,Z SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 SUBR f f = WREG – f 1 1 C,DC,N,OV,Z SUBR f,WREG WREG = WREG – f 1 1 C,DC,N,OV,Z SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C,DC,N,OV,Z SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C,DC,N,OV,Z SUBBR f f = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR f,WREG WREG = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C,DC,N,OV,Z C,DC,N,OV,Z C,DC,N,OV,Z SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 SWAP.b Wn Wn = Nibble Swap Wn 1 1 SWAP Wn Wn = Byte Swap Wn 1 1 None 1 2 None None 77 TBLRDH TBLRDH Ws,Wd Read Prog<23:16> to Wd<7:0> 78 TBLRDL TBLRDL Ws,Wd Read Prog<15:0> to Wd 1 2 None 79 TBLWTH TBLWTH Ws,Wd Write Ws<7:0> to Prog<23:16> 1 2 None 80 TBLWTL TBLWTL Ws,Wd Write Ws to Prog<15:0> 1 2 None 81 ULNK ULNK Unlink Frame Pointer 1 1 None 82 XOR XOR f f = f .XOR. WREG 1 1 N,Z XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z ZE Ws,Wnd Wnd = Zero-Extend Ws 1 1 C,Z,N 83 ZE DS70594D-page 274 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 25.0 DEVELOPMENT SUPPORT The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® IDE Software • Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C® for Various Device Families - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers - MPLAB ICD 3 - PICkit™ 3 Debug Express • Device Programmers - PICkit™ 2 Programmer - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits 25.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either C or assembly) • One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. 2009-2012 Microchip Technology Inc. DS70594D-page 275 dsPIC33FJXXXMCX06A/X08A/X10A 25.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 25.3 HI-TECH C for Various Device Families The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms. 25.4 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: 25.5 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 25.6 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process DS70594D-page 276 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 25.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 25.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC® Flash MCUs and dsPIC® Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. 2009-2012 Microchip Technology Inc. 25.9 MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming™. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. DS70594D-page 277 dsPIC33FJXXXMCX06A/X08A/X10A 25.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express 25.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. 25.12 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications. DS70594D-page 278 The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 26.0 ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied. Absolute Maximum Ratings (See Note 1) Ambient temperature under bias.............................................................................................................-40°C to +125°C Storage temperature .............................................................................................................................. -65°C to +160°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant with respect to VSS(4) .................................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(4) .................................................. -0.3V to +5.6V Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V(4) ...................................................... -0.3V to 3.6V Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin(2) ...........................................................................................................................250 mA Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................8 mA Maximum current sourced/sunk by any 4x I/O pin(3) ..............................................................................................15 mA Maximum current sourced/sunk by any 8x I/O pin(3) ..............................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports(2) ...............................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2). 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA. 4: See the “Pin Diagrams” section for 5V tolerant pins. 2009-2012 Microchip Technology Inc. DS70594D-page 279 dsPIC33FJXXXMCX06A/X08A/X10A 26.1 DC Characteristics TABLE 26-1: OPERATING MIPS vs. VOLTAGE Param No. VDD Range (in Volts) — Note 1: dsPIC33FJXXXMCX06A/X08A/X10A (1) -40°C to +85°C 40 (1) -40°C to +125°C 40 VBOR-3.6V — VBOR-3.6V Max MIPS Temp Range (in °C) Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values. TABLE 26-2: THERMAL OPERATING CONDITIONS Rating Symbol Min Typ Max Unit Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C Operating Junction Temperature Range TJ -40 — +155 °C Operating Ambient Temperature Range TA -40 — +125 °C dsPIC33FJXXXMCX06A/X08A/X10A Extended Temperature Devices Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – IOH) PD PINT + PI/O W PDMAX (TJ – TA)/JA W I/O Pin Power Dissipation: I/O = ({VDD – VOH} x IOH) + (VOL x IOL) Maximum Allowed Power Dissipation TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS Characteristic Symbol Typ Max Unit Notes Package Thermal Resistance, 100-pin TQFP (14x14x1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 100-pin TQFP (12x12x1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 80-pin TQFP (12x12x1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 64-pin TQFP (10x10x1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm) JA 28 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations. DS70594D-page 280 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min Typ(1) Max Units Conditions Operating Voltage DC10 Supply Voltage VDD — 3.0 — 3.6 V — DC12 VDR RAM Data Retention Voltage(2) 1.8 — — V — DC16 VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal — — VSS V — DC17 SVDD VDD Rise Rate to Ensure Internal Power-on Reset Signal 0.03 — — Note 1: 2: V/ms 0-3.0V in 0.1s Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. This is the limit to which VDD can be lowered without losing RAM data. 2009-2012 Microchip Technology Inc. DS70594D-page 281 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Parameter No.(3) Typical(2) Max Units Conditions Operating Current (IDD)(1) DC20d 27 30 mA -40°C DC20a 27 30 mA +25°C DC20b 27 30 mA +85°C +125°C DC20c 27 35 mA DC21d 36 40 mA -40°C DC21a 37 40 mA +25°C DC21b 38 45 mA +85°C DC21c 39 45 mA +125°C DC22d 43 50 mA -40°C DC22a 46 50 mA +25°C DC22b 46 55 mA +85°C DC22c 47 55 mA +125°C DC23d 65 70 mA -40°C DC23a 65 70 mA +25°C DC23b 65 70 mA +85°C +125°C DC23c 65 70 mA DC24d 84 90 mA -40°C DC24a 84 90 mA +25°C DC24b 84 90 mA +85°C 84 90 mA +125°C DC24c Note 1: 2: 3: 3.3V 10 MIPS 3.3V 16 MIPS 3.3V 20 MIPS 3.3V 30 MIPS 3.3V 40 MIPS IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: • Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration word • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD, WDT and FSCM are disabled • CPU, SRAM, program memory and data memory are operational • No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one) • CPU executing while(1) statement • JTAG is disabled These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated. DS70594D-page 282 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Parameter No.(3) Typical(2) Max Units Conditions Idle Current (IIDLE): Core Off, Clock On Base Current(1) DC40d 3 25 mA -40°C DC40a 3 25 mA +25°C DC40b 3 25 mA +85°C DC40c 3 25 mA +125°C DC41d 4 25 mA -40°C DC41a 5 25 mA +25°C DC41b 6 25 mA +85°C DC41c 6 25 mA +125°C DC42d 8 25 mA -40°C DC42a 9 25 mA +25°C DC42b 10 25 mA +85°C DC42c 10 25 mA +125°C DC43a 15 25 mA +25°C DC43d 15 25 mA -40°C DC43b 15 25 mA +85°C DC43c 15 25 mA +125°C DC44d 16 25 mA -40°C DC44a 16 25 mA +25°C DC44b 16 25 mA +85°C 16 25 mA +125°C DC44c Note 1: 2: 3: 3.3V 10 MIPS 3.3V 16 MIPS 3.3V 20 MIPS 3.3V 30 MIPS 3.3V 40 MIPS Base IIDLE current is measured as follows: • CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration word • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD, WDT and FSCM are disabled • No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one) • JTAG is disabled These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated. 2009-2012 Microchip Technology Inc. DS70594D-page 283 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Parameter No.(3) Typical(2) Max Units 200 A Conditions Power-Down Current (IPD)(1) DC60d 50 -40°C DC60a 50 200 A +25°C DC60b 200 500 A +85°C +125°C DC60c 600 1000 A DC61d 8 13 A -40°C DC61a 10 15 A +25°C DC61b 12 20 A +85°C 13 25 A +125°C DC61c Note 1: 2: 3: 4: 5: 3.3V Base Power-Down Current(3) 3.3V Watchdog Timer Current: IWDT(3) IPD (Sleep) current is measured as follows: • CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required) • CLKO is configured as an I/O input pin in the Configuration word • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all ‘1’s). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0. • VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode) • RTCC is disabled. • JTAG is disabled Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated. The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current. These currents are measured on the device containing the most memory in this family. These parameters are characterized, but are not tested in manufacturing. DS70594D-page 284 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Parameter No. Typical(2) Max Doze Ratio Units Conditions Doze Current (IDOZE)(1) DC73a 11 35 1:2 mA DC73f 11 30 1:64 mA DC73g 11 30 1:128 mA DC70a 42 50 1:2 mA DC70f 26 30 1:64 mA DC70g 25 30 1:128 mA DC71a 41 50 1:2 mA DC71f 25 30 1:64 mA DC71g 24 30 1:128 mA DC72a 42 50 1:2 mA DC72f 26 30 1:64 mA DC72g 25 30 1:128 mA Note 1: 2: -40°C 3.3V 40 MIPS +25°C 3.3V 40 MIPS +85°C 3.3V 40 MIPS +125°C 3.3V 40 MIPS IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows: • Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV • CLKO is configured as an I/O input pin in the Configuration word • All I/O pins are configured as inputs and pulled to VSS • MCLR = VDD, WDT and FSCM are disabled • CPU, SRAM, program memory and data memory are operational • No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one) • CPU executing while(1) statement • JTAG is disabled Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated. 2009-2012 Microchip Technology Inc. DS70594D-page 285 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Param Symbol No. VIL Characteristic Min Typ(1) Max Units Conditions Input Low Voltage DI10 I/O Pins VSS — 0.2 VDD V DI15 MCLR VSS — 0.2 VDD V DI16 I/O Pins with OSC1 or SOSCI VSS — 0.2 VDD V DI18 2 I/O Pins with I C™ VSS — 0.3 VDD V SMBus disabled DI19 I/O Pins with I2C VSS — 0.8 V V SMBus enabled I/O Pins Not 5V Tolerant(4) I/O Pins 5V Tolerant(4) 0.7 VDD 0.7 VDD — — VDD 5.5 V V DI28 SDAx, SCLx 0.7 VDD — 5.5 V SMBus disabled DI29 SDAx, SCLx 2.1 — 5.5 V SMBus enabled 50 250 400 A VDD = 3.3V, VPIN = VSS VIH DI20 Input High Voltage ICNPU CNx Pull-up Current IIL Input Leakage Current(2,3) DI30 DI50 I/O Pins 5V Tolerant(4) — — ±2 A VSS VPIN VDD, Pin at high-impedance DI51 I/O Pins Not 5V Tolerant(4) — — ±1 A VSS VPIN VDD, Pin at high-impedance, -40°C TA +85°C DI51a I/O Pins Not 5V Tolerant(4) — — ±2 A Shared with external reference pins, -40°C TA +85°C DI51b I/O Pins Not 5V Tolerant(4) — — ±3.5 A VSS VPIN VDD, Pin at high-impedance, -40°C TA +125°C DI51c I/O Pins Not 5V Tolerant(4) — — ±8 A Analog pins shared with external reference pins, -40°C TA +125°C DI55 MCLR — — ±2 A VSS VPIN VDD DI56 OSC1 — — ±2 A VSS VPIN VDD, XT and HS modes Note 1: 2: 3: 4: 5: 6: 7: 8: 9: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. See “Pin Diagrams” for a list of 5V tolerant pins. VIL source < (VSS – 0.3). Characterized but not tested. Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested. Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V. Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. DS70594D-page 286 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Param Symbol No. IICL Characteristic Min Typ(1) Max Units Input Low Injection Current DI60a 0 IICH — -5(5,8) mA Input High Injection Current DI60b IICT DI60c 3: 4: 5: 6: 7: 8: 9: — +5(6,7,8) mA -20(9) — +20(9) mA All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11 All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins(7) Total Input Injection Current (sum of all I/O and control pins) Note 1: 2: 0 Conditions Absolute instantaneous sum of all ± input injection currents from all I/O pins ( | IICL + | IICH | ) IICT Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. See “Pin Diagrams” for a list of 5V tolerant pins. VIL source < (VSS – 0.3). Characterized but not tested. Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested. Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V. Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. 2009-2012 Microchip Technology Inc. DS70594D-page 287 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Param Symbol No. DO10 DO20 VOL VOH Characteristic Min Typ Max Units Conditions Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins — — 0.4 V IOL 3 mA, VDD = 3.3V Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 — — 0.4 V IOL 6 mA, VDD = 3.3V Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15 — — 0.4 V IOL 10 mA, VDD = 3.3V Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins 2.4 — — V IOL -3 mA, VDD = 3.3V Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 2.4 — — V IOL -6 mA, VDD = 3.3V 2.4 — — V IOL -10 mA, VDD = 3.3V 1.5 — — 2.0 — — 3.0 — — IOH -2 mA, VDD = 3.3V See Note 1 1.5 — — IOH -12 mA, VDD = 3.3V See Note 1 2.0 — — 3.0 — — IOH -3 mA, VDD = 3.3V See Note 1 1.5 — — IOH -16 mA, VDD = 3.3V See Note 1 2.0 — — 3.0 — — Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15 Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins DO20A VOH1 Output High Voltage 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 Output High Voltage 8x Source Driver Pins - OSC2, CLKO, RC15 Note 1: IOH -6 mA, VDD = 3.3V See Note 1 V V V IOH -5 mA, VDD = 3.3V See Note 1 IOH -11 mA, VDD = 3.3V See Note 1 IOH -12 mA, VDD = 3.3V See Note 1 IOH -4 mA, VDD = 3.3V See Note 1 Parameters are characterized, but not tested. DS70594D-page 288 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Characteristic(1) Param. Symbol Min(1) Max(1) Typ Units BOR Event on VDD Transition High-to-Low 2.40 — 2.55 BO10 VBOR Note 1: Parameters are for design guidance only and are not tested in manufacturing. V Conditions VDD TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min Typ(1) Max Units E/W — V VMIN = Minimum operating voltage V VMIN = Minimum operating voltage Year Provided no other specifications are violated mA — D130 D131 EP VPR Program Flash Memory Cell Endurance VDD for Read 10,000 VMIN — — — 3.6 D132b VPEW VDD for Self-Timed Write VMIN — 3.6 D134 TRETD Characteristic Retention 20 — — D135 IDDP — 10 — D136a TRW Supply Current during Programming Row Write Time 1.32 — 1.74 ms D136b TRW Row Write Time 1.28 — 1.79 ms D137a TPE Page Erase Time 20.1 — 26.5 ms D137b TPE Page Erase Time 19.5 — 27.3 ms D138a TWW Word Write Cycle Time 42.3 — 55.9 µs D138b TWW Word Write Cycle Time 41.1 — 57.6 µs Note 1: 2: Conditions TRW = 11064 FRC cycles, TA = +85°C, see Note 2 TRW = 11064 FRC cycles, TA = +150°C, see Note 2 TPE = 168517 FRC cycles, TA = +85°C, see Note 2 TPE = 168517 FRC cycles, TA = +150°C, see Note 2 TWW = 355 FRC cycles, TA = +85°C, see Note 2 TWW = 355 FRC cycles, TA = +150°C, see Note 2 Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 “Programming Operations”. TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Param. Symbol — CEFC Characteristics Min Typ Max Units Comments External Filter Capacitor Value 4.7 10 — F Capacitor must be low series resistance (< 5 ohms) 2009-2012 Microchip Technology Inc. DS70594D-page 289 dsPIC33FJXXXMCX06A/X08A/X10A 26.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC33FJXXXMCX06A/X08A/X10A AC characteristics and timing parameters. TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Operating voltage VDD range as described in Table 26-1. AC CHARACTERISTICS FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 CL Pin RL VSS CL Pin RL = 464 CL = 50 pF for all pins except OSC2 15 pF for OSC2 output VSS TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS Param Symbol No. Characteristic Min Typ Max Units Conditions 15 pF In XT and HS modes when external clock is used to drive OSC1 COSC2 OSC2/SOSC2 Pin — — DO56 CIO All I/O Pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C™ mode DO50 DS70594D-page 290 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 OS30 OS30 Q3 Q4 OSC1 OS20 OS31 OS31 OS25 CLKO OS41 OS40 TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. OS10 Symb FIN OS20 TOSC Min Typ(1) Max Units External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) DC — 40 MHz EC Oscillator Crystal Frequency 3.5 10 — — — — 10 40 33 MHz MHz kHz XT HS SOSC TOSC = 1/FOSC 12.5 — DC ns Characteristic Time(2) Conditions — OS25 TCY Instruction Cycle 25 — DC ns OS30 TosL, TosH External Clock in (OSC1) High or Low Time 0.375 x TOSC — 0.625 x TOSC ns EC OS31 TosR, TosF External Clock in (OSC1) Rise or Fall Time — — 20 ns EC OS40 TckR CLKO Rise Time(3) — 5.2 — ns — OS41 TckF CLKO Fall Time(3) — 5.2 — ns — OS42 GM External Oscillator Transconductance(4) 14 16 18 mA/V Note 1: 2: 3: 4: — VDD = 3.3V, TA = +25ºC Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “max.” cycle time limit is “DC” (no clock) for all devices. Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. Data for this parameter is preliminary. This parameter is characterized, but not tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 291 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ(1) Max Units OS50 FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 0.8 — 8.0 MHz OS51 FSYS On-Chip VCO System Frequency 100 — 200 MHz OS52 TLOCK PLL Start-up Time (Lock Time) 0.9 1.5 3.1 ms OS53 DCLK CLKO Stability (Jitter) -3.0 0.5 3.0 % Note 1: 2: Conditions ECPLL, HSPLL, XTPLL modes — — Measured over 100 ms period Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula: Peripheral Clock Jitter = DCLK / √(FOSC/Peripheral bit rate clock) Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz SPI SCK Jitter = [ DCLK / √(80 MHz/5 MHz)] = [3%/ √16] = [3% / 4] = 0.75% TABLE 26-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param No. Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Characteristic Min Typ Max Units Conditions Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1) F20a FRC -2 — +2 % -40°C TA +85°C VDD = 3.0-3.6V F20b FRC -5 — +5 % -40°C TA +125°C VDD = 3.0-3.6V Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift. TABLE 26-19: INTERNAL LPRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Min Typ Max Units Conditions LPRC @ 32.768 kHz(1) F21a LPRC -30 — +30 % -40°C TA +85°C — F21b LPRC -35 — +35 % -40°C TA +125°C — Note 1: Change of LPRC frequency as VDD changes. DS70594D-page 292 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-3: CLKO AND I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) New Value Old Value DO31 DO32 Note: Refer to Figure 26-1 for load conditions. TABLE 26-20: I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ(1) Max Units Conditions — 10 25 ns — DO31 TIOR DO32 TIOF Port Output Fall Time — 10 25 ns — DI35 TINP INTx Pin High or Low Time (input) 20 — — ns — TRBP CNx High or Low Time (input) 2 — — TCY — DI40 Note 1: Port Output Rise Time Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. 2009-2012 Microchip Technology Inc. DS70594D-page 293 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-4: VDD RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS SY12 MCLR SY10 Internal POR PWRT Time-out OSC Time-out SY11 SY30 Internal Reset Watchdog Timer Reset SY13 SY20 SY13 I/O Pins SY35 FSCM Delay Note: Refer to Figure 26-1 for load conditions. DS70594D-page 294 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Param Symbol No. Min Typ(2) Max Units Characteristic(1) Conditions SY10 TMCL MCLR Pulse Width (low) 2 — — s -40°C to +85°C SY11 TPWRT Power-up Timer Period — — — — — — — 2 4 8 16 32 64 128 — — — — — — — ms -40°C to +85°C User programmable SY12 TPOR Power-on Reset Delay 3 10 30 s -40°C to +85°C SY13 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset 0.68 0.72 1.2 s — SY20 TWDT1 Watchdog Timer Time-out Period — — — — See Section 23.4 “Watchdog Timer (WDT)” and LPRC specification F21 (Table 26-19) SY30 TOST Oscillator Start-up Timer Period — 1024 TOSC — — TOSC = OSC1 period SY35 TFSCM Fail-Safe Clock Monitor Delay — 500 900 s -40°C to +85°C Note 1: 2: These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. 2009-2012 Microchip Technology Inc. DS70594D-page 295 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx11 Tx10 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 26-1 for load conditions. TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. TA10 TA11 Symbol TTXH TTXL Characteristic TxCK High Time TxCK Low Time Min Typ Max Units Conditions Synchronous, no prescaler TCY + 20 — — ns Synchronous, with prescaler (TCY + 20)/N — — ns Must also meet parameter TA15 N = prescale value (1, 8, 64, 256) Asynchronous 20 — — ns Synchronous, no prescaler (TCY + 20)/N — — ns Synchronous, with prescaler 20 — — ns Asynchronous TA15 TTXP 20 — — ns 2TCY + 40 — — ns Synchronous, with prescaler Greater of: 40 ns or (2TCY + 40)/N — — — Asynchronous 40 — — ns — DC — 50 kHz — 1.75 TCY + 40 ns — TxCK Input Period Synchronous, no prescaler OS60 Ft1 TA20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment Note 1: Must also meet parameter TA15 N = prescale value (1, 8, 64, 256) SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>)) 0.75 TCY + 40 — N = prescale value (1, 8, 64, 256) Timer1 is a Type A. DS70594D-page 296 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. TB10 TB11 Symbol TtxH TtxL Characteristic TxCK High Time TxCK Low Time Min Typ Max Units Conditions Synchronous mode Greater of 20 or (TCY + 20)/N — — ns — — ns Must also meet parameter TB15 N = prescale value (1, 8, 64, 256) Synchronous mode Greater of 20 or (TCY + 20)/N — — ns — — ns — ns TB15 TtxP TxCK Input Period Synchronous mode Greater of 40 or (2TCY + 40)/N — TB20 TCKEXT- Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 These parameters are characterized, but are not tested in manufacturing. MRL Note 1: ns Must also meet parameter TB15 N = prescale value (1, 8, 64, 256) N = prescale value (1, 8, 64, 256) — TABLE 26-24: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ Max Units Conditions TC10 TtxH TxCK High Time Synchronous TCY + 20 — — ns Must also meet parameter TC15 TC11 TtxL TxCK Low Time Synchronous TCY + 20 — — ns Must also meet parameter TC15 TC15 TtxP TxCK Input Period Synchronous with prescaler 2 TCY + 40 — — ns N = prescale value (1, 8, 64, 256) TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 — Note 1: — These parameters are characterized, but are not tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 297 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note: Refer to Figure 26-1 for load conditions. TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol IC10 TccL ICx Input Low Time IC11 TccH ICx Input High Time IC15 TccP ICx Input Period Characteristic(1) No prescaler Min Max Units Conditions 0.5 TCY + 20 — ns — With prescaler No prescaler 10 — ns 0.5 TCY + 20 — ns 10 — ns (TCY + 40)/N — ns With prescaler Note 1: — N = prescale value (1, 4, 16) These parameters are characterized but not tested in manufacturing. FIGURE 26-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM Mode) OC10 OC11 Note: Refer to Figure 26-1 for load conditions. TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Param Symbol No. Characteristic(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Min Typ Max Units Conditions OC10 TccF OCx Output Fall Time — — — ns See parameter D032 OC11 TccR OCx Output Rise Time — — — ns See parameter D031 Note 1: These parameters are characterized but not tested in manufacturing. DS70594D-page 298 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-8: OC/PWM MODULE TIMING CHARACTERISTICS OC20 OCFA/OCFB OC15 OCx Active Tri-state TABLE 26-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units Conditions OC15 TFD Fault Input to PWM I/O Change — — TCY + 20 ns — OC20 TFLT Fault Input Pulse Width TCY + 20 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 299 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS MP30 FLTA/B MP20 PWMx FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS MP11 MP10 PWMx Note: Refer to Figure 26-1 for load conditions. TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units Conditions — ns See parameter D032 See parameter D031 MP10 TFPWM PWM Output Fall Time — — MP11 TRPWM PWM Output Rise Time — — — ns TFD Fault Input to PWM I/O Change — — 50 ns — TFH Minimum Pulse Width 50 — — ns — MP20 MP30 Note 1: These parameters are characterized but not tested in manufacturing. DS70594D-page 300 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-11: QEA/QEB INPUT CHARACTERISTICS TQ36 QEA (input) TQ30 TQ31 TQ35 QEB (input) TQ41 TQ40 TQ30 TQ31 TQ35 QEB Internal TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Typ(2) Max Units Conditions TQ30 TQUL Quadrature Input Low Time 6 TCY — ns — TQ31 TQUH Quadrature Input High Time 6 TCY — ns — TQ35 TQUIN Quadrature Input Period 12 TCY — ns — TQ36 TQUP Quadrature Phase Period 3 TCY — ns — TQ40 TQUFL Filter Time to Recognize Low with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3) TQ41 TQUFH Filter Time to Recognize High with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3) Note 1: 2: 3: These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. “Quadrature Encoder Interface (QEI)” (DS70208) in the “dsPIC33F/PIC24H Family Reference Manual”. 2009-2012 Microchip Technology Inc. DS70594D-page 301 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-12: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS QEA (input) QEB (input) Ungated Index TQ50 TQ51 Index Internal TQ55 Position Counter Reset TABLE 26-30: QEI INDEX PULSE TIMING REQUIREMENTS AC CHARACTERISTICS Param No. Symbol TQ50 TqiL TQ51 TQ55 Note 1: 2: Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Characteristic(1) Min Max Units Conditions Filter Time to Recognize Low with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2) TqiH Filter Time to Recognize High with Digital Filter 3 * N * TCY — ns N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2) Tqidxr Index Pulse Recognized to Position Counter Reset (ungated index) 3 TCY — ns — These parameters are characterized but not tested in manufacturing. Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge. DS70594D-page 302 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-13: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS QEB TQ11 TQ10 TQ15 TQ20 POSCNT TABLE 26-31: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units Conditions TQ10 TtQH TQCK High Time Synchronous, with prescaler TCY + 20 — — ns Must also meet parameter TQ15 TQ11 TtQL TQCK Low Time Synchronous, with prescaler TCY + 20 — — ns Must also meet parameter TQ15 TQ15 TtQP TQCP Input Period Synchronous, 2 * TCY + 40 with prescaler — — ns — TQ20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment — 1.5 TCY — — Note 1: 0.5 TCY These parameters are characterized but not tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 303 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Maximum Data Rate Master Transmit Only (Half-Duplex) 15 MHz 10 MHz Master Transmit/Receive (Full-Duplex) Slave Transmit/Receive (Full-Duplex) CKE Table 26-33 — — — Table 26-34 — 10 MHz — Table 26-35 15 MHz — — CKP SMP 0,1 0,1 0,1 1 0,1 1 — 0 0,1 1 Table 26-36 1 0 0 11 MHz — — Table 26-37 1 1 0 15 MHz — — Table 26-38 0 1 0 11 MHz — — Table 26-39 0 0 0 FIGURE 26-14: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 Bit 14 - - - - - -1 MSb SDOx SP30, SP31 LSb SP30, SP31 Note: Refer to Figure 26-1 for load conditions. FIGURE 26-15: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS SP36 SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 SDOx MSb Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 26-1 for load conditions. DS70594D-page 304 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-33: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 SP10 TscP Maximum SCK Frequency — — 15 MHz SP20 TscF SCKx Output Fall Time — — — ns See parameter DO32 and Note 4 SP21 TscR SCKx Output Rise Time — — — ns See parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See parameter DO31 and Note 4 SP35 TscH2doV, TscL2doV SDOx Data Output Valid after SCKx Edge — 6 20 ns — SP36 TdiV2scH, TdiV2scL SDOx Data Output Setup to First SCKx Edge 30 — — ns — Note 1: 2: 3: 4: These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. 2009-2012 Microchip Technology Inc. DS70594D-page 305 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-16: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS SP36 SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 Bit 14 - - - - - -1 MSb SDOx SP30, SP31 SP40 SDIx LSb MSb In LSb In Bit 14 - - - -1 SP41 Note: Refer to Figure 26-1 for load conditions. TABLE 26-34: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 See parameter DO32 and Note 4 See parameter DO31 and Note 4 See parameter DO32 and Note 4 See parameter DO31 and Note 4 — SP10 SP20 TscP TscF Maximum SCK Frequency SCKx Output Fall Time — — — — 10 — MHz ns SP21 TscR SCKx Output Rise Time — — — ns SP30 TdoF SDOx Data Output Fall Time — — — ns SP31 TdoR SDOx Data Output Rise Time — — — ns SP35 TscH2doV, SDOx Data Output Valid after — 6 20 ns TscL2doV SCKx Edge TdoV2sc, SDOx Data Output Setup to 30 — — ns — TdoV2scL First SCKx Edge TdiV2scH, Setup Time of SDIx Data 30 — — ns — TdiV2scL Input to SCKx Edge TscH2diL, Hold Time of SDIx Data Input 30 — — ns — TscL2diL to SCKx Edge These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. SP36 SP40 SP41 Note 1: 2: 3: 4: DS70594D-page 306 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-17: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING CHARACTERISTICS SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 SP30, SP31 SDIx MSb In LSb SP30, SP31 LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 26-1 for load conditions. TABLE 26-35: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions -40ºC to +125ºC and see Note 3 See parameter DO32 and Note 4 See parameter DO31 and Note 4 See parameter DO32 and Note 4 See parameter DO31 and Note 4 — SP10 TscP Maximum SCK Frequency — — 10 MHz SP20 TscF SCKx Output Fall Time — — — ns SP21 TscR SCKx Output Rise Time — — — ns SP30 TdoF SDOx Data Output Fall Time — — — ns SP31 TdoR SDOx Data Output Rise Time — — — ns SP35 TscH2doV, SDOx Data Output Valid after — 6 20 ns TscL2doV SCKx Edge TdoV2scH, SDOx Data Output Setup to 30 — — ns — TdoV2scL First SCKx Edge TdiV2scH, Setup Time of SDIx Data 30 — — ns — TdiV2scL Input to SCKx Edge TscH2diL, Hold Time of SDIx Data Input 30 — — ns — TscL2diL to SCKx Edge These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. SP36 SP40 SP41 Note 1: 2: 3: 4: 2009-2012 Microchip Technology Inc. DS70594D-page 307 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-18: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDIx SDI MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 26-1 for load conditions. DS70594D-page 308 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 SP70 SP72 TscP TscF Maximum SCK Input Frequency SCKx Input Fall Time — — — — 15 — MHz ns SP73 TscR SCKx Input Rise Time — — — ns SP30 TdoF SDOx Data Output Fall Time — — — ns SP31 TdoR SDOx Data Output Rise Time — — — ns SP35 TscH2doV, TscL2doV TdoV2scH, TdoV2scL TdiV2scH, TdiV2scL SDOx Data Output Valid after SCKx Edge SDOx Data Output Setup to First SCKx Edge Setup Time of SDIx Data Input to SCKx Edge — 6 20 ns See parameter DO32 and Note 4 See parameter DO31 and Note 4 See parameter DO32 and Note 4 See parameter DO31 and Note 4 — 30 — — ns — 30 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns — SP50 TssL2scH, TssL2scL SSx to SCKx or SCKx Input 120 — — ns — SP51 TssH2doZ SSx to SDOx Output High-Impedance(4) 10 — 50 ns — SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDOx Data Output Valid after — — 50 ns — SSx Edge These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation. Assumes 50 pF load on all SPIx pins. SP36 SP40 Note 1: 2: 3: 4: 2009-2012 Microchip Technology Inc. DS70594D-page 309 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-19: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 SP52 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDIx SDI MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 26-1 for load conditions. DS70594D-page 310 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-37: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 SP70 TscP Maximum SCK Input Frequency — — 11 MHz SP72 TscF SCKx Input Fall Time — — — ns See parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns — SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns — SP50 TssL2scH, TssL2scL SSx to SCKx or SCKx Input 120 — — ns — SP51 TssH2doZ SSx to SDOx Output High-Impedance(4) 10 — 50 ns — SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDOx Data Output Valid after SSx Edge — — 50 ns — Note 1: 2: 3: 4: These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation. Assumes 50 pF load on all SPIx pins. 2009-2012 Microchip Technology Inc. DS70594D-page 311 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-20: SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX Bit 14 - - - - - -1 LSb SP51 SP30,SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 26-1 for load conditions. DS70594D-page 312 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-38: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 SP70 TscP Maximum SCK Input Frequency — — 15 MHz SP72 TscF SCKx Input Fall Time — — — ns See parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns — SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns — SP50 TssL2scH, TssL2scL SSx to SCKx or SCKx Input 120 — — ns — SP51 TssH2doZ SSx to SDOx Output High-Impedance(4) 10 — 50 ns — SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation. Assumes 50 pF load on all SPIx pins. 2009-2012 Microchip Technology Inc. DS70594D-page 313 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-21: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX Bit 14 - - - - - -1 LSb SP51 SP30,SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 26-1 for load conditions. DS70594D-page 314 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-39: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.4V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 SP70 TscP Maximum SCK Input Frequency — — 11 MHz SP72 TscF SCKx Input Fall Time — — — ns See parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns — SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns — SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns — SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns — SP50 TssL2scH, TssL2scL SSx to SCKx or SCKx Input 120 — — ns — SP51 TssH2doZ SSx to SDOx Output High-Impedance(4) 10 — 50 ns — SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation. Assumes 50 pF load on all SPIx pins. 2009-2012 Microchip Technology Inc. DS70594D-page 315 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-22: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Stop Condition Start Condition Note: Refer to Figure 26-1 for load conditions. FIGURE 26-23: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure 26-1 for load conditions. DS70594D-page 316 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param Symbol No. IM10 IM11 IM20 IM21 IM25 IM26 IM30 IM31 IM33 IM34 IM40 IM45 IM50 Min(1) Max Units Conditions TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) — s — 400 kHz mode 1 MHz mode(2) TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s — — Clock High Time 100 kHz mode 400 kHz mode TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s — — 1 MHz mode(2) SDAx and SCLx 100 kHz mode Fall Time 400 kHz mode TCY/2 (BRG + 1) — — 300 s ns 1 MHz mode(2) 20 + 0.1 CB — 300 100 ns ns SDAx and SCLx 100 kHz mode Rise Time 400 kHz mode — 20 + 0.1 CB 1000 300 ns ns 1 MHz mode(2) 100 kHz mode — 250 300 — ns ns 400 kHz mode 1 MHz mode(2) 100 40 — — ns ns THD:DAT Data Input Hold Time 100 kHz mode 400 kHz mode 0 0 — 0.9 s s TSU:STA 1 MHz mode(2) 100 kHz mode 0.2 TCY/2 (BRG + 1) — — s s 400 kHz mode 1 MHz mode(2) TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s 100 kHz mode 400 kHz mode TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s 1 MHz mode(2) 100 kHz mode TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s 400 kHz mode 1 MHz mode(2) TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — s s THD:STO Stop Condition Hold Time 100 kHz mode 400 kHz mode TCY/2 (BRG + 1) TCY/2 (BRG + 1) — — ns ns TAA:SCL 1 MHz mode(2) 100 kHz mode TCY/2 (BRG + 1) — — 3500 ns s — 400 kHz mode 1 MHz mode(2) — — 1000 400 s s — — 100 kHz mode 400 kHz mode 4.7 1.3 — — s s 1 MHz mode(2) Bus Capacitive Loading 0.5 — — 400 s pF Time the bus must be free before a new transmission can start THI:SCL TF:SCL TR:SCL Characteristic TSU:DAT Data Input Setup Time Start Condition Setup Time THD:STA Start Condition Hold Time TSU:STO Stop Condition Setup Time Output Valid From Clock TBF:SDA Bus Free Time CB — CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF — — Only relevant for Repeated Start condition After this period the first clock pulse is generated — — — Pulse Gobbler Delay 65 390 ns See Note 3 IM51 TPGD 2 Note 1: BRG is the value of the I C™ Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)” (DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”. 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 3: Typical value for this parameter is 130 ns. 2009-2012 Microchip Technology Inc. DS70594D-page 317 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition FIGURE 26-25: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out DS70594D-page 318 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. IS10 IS11 IS20 IS21 IS25 IS26 IS30 IS31 IS33 IS34 IS40 IS45 IS50 Note Symbol TLO:SCL THI:SCL Characteristic Clock Low Time Clock High Time Min Max Units 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 1 MHz mode(1) 100 kHz mode 0.5 4.0 — — s s 400 kHz mode 0.6 — s 0.5 — s 1 MHz mode(1) TF:SCL SDAx and SCLx 100 kHz mode — 300 ns Fall Time 300 ns 400 kHz mode 20 + 0.1 CB 1 MHz mode(1) — 100 ns TR:SCL SDAx and SCLx 100 kHz mode — 1000 ns Rise Time 300 ns 400 kHz mode 20 + 0.1 CB 1 MHz mode(1) — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns (1) 1 MHz mode 100 — ns THD:DAT Data Input 100 kHz mode 0 — s Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(1) 0 0.3 s TSU:STA Start Condition 100 kHz mode 4.7 — s Setup Time 400 kHz mode 0.6 — s 0.25 — s 1 MHz mode(1) THD:STA Start Condition 100 kHz mode 4.0 — s Hold Time 400 kHz mode 0.6 — s 0.25 — s 1 MHz mode(1) TSU:STO Stop Condition 100 kHz mode 4.7 — s Setup Time 400 kHz mode 0.6 — s 1 MHz mode(1) 0.6 — s THD:STO Stop Condition 100 kHz mode 4000 — ns Hold Time 400 kHz mode 600 — ns 1 MHz mode(1) 250 ns TAA:SCL Output Valid 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns 1 MHz mode(1) 0 350 ns TBF:SDA Bus Free Time 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 0.5 — s 1 MHz mode(1) CB Bus Capacitive Loading — 400 pF 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 2009-2012 Microchip Technology Inc. Conditions Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz — Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz — CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF — — Only relevant for Repeated Start condition After this period, the first clock pulse is generated — — — Time the bus must be free before a new transmission can start — DS70594D-page 319 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-26: CAN MODULE I/O TIMING CHARACTERISTICS CiTx Pin (output) New Value Old Value CA10 CA11 CiRx Pin (input) CA20 TABLE 26-42: ECAN™ TECHNOLOGY MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units — — — ns See parameter D032 See parameter D031 CA10 TioF Port Output Fall Time CA11 TioR Port Output Rise Time — — — ns CA20 Tcwf Pulse Width to Trigger CAN Wake-up Filter 120 — — ns Note 1: Conditions — These parameters are characterized but not tested in manufacturing. DS70594D-page 320 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-43: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Param Symbol No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Min. Typ Max. Units Conditions Lesser of VDD + 0.3 or 3.6 V VSS + 0.3 V — — Device Supply AD01 AVDD Module VDD Supply AD02 AVSS Module VSS Supply AD05 VREFH Reference Voltage High Greater of VDD – 0.3 or 3.0 — VSS – 0.3 — — Reference Inputs AD05a AD06 VREFL Reference Voltage Low AD06a AD07 VREF Absolute Reference Voltage AD08 IREF AVSS + 2.5 — AVDD V 3.0 — 3.6 V AVSS — AVDD – 2.5 V 0 — 0 V VREFH = AVDD VREFL = AVSS = 0 2.5 — 3.6 V VREF = VREFH - VREFL VREFH = AVDD VREFL = AVSS = 0 — Current Drain — — 10 A ADC off AD08a IAD Operating Current — — 7.0 2.7 9.0 3.2 mA mA 10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1 AD12 VINH Input Voltage Range VINH VINL — VREFH V This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input AD13 VINL Input Voltage Range VINL VREFL — AVSS + 1V V This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input AD17 RIN Recommended Impedance of Analog Voltage Source — — — — 200 200 10-bit ADC 12-bit ADC Analog Input Note 1: These parameters are not characterized or tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 321 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-44: ADC MODULE SPECIFICATIONS (12-BIT MODE)(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ Max. Units Conditions ADC Accuracy (12-Bit Mode) – Measurements with External VREF+/VREFAD20a Nr Resolution AD21a INL Integral Nonlinearity -2 12 data bits — +2 LSb bits VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V — AD22a DNL Differential Nonlinearity >-1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD23a GERR Gain Error — 3.4 10 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD24a EOFF Offset Error Q 0.9 5 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD25a — Monotonicity — — — — AD20b Nr Guaranteed ADC Accuracy (12-Bit Mode) – Measurements with Internal VREF+/VREFResolution 12 data bits bits — = AVSS = 0V, AVDD = 3.6V AD21b INL Integral Nonlinearity -2 — +2 LSb VINL AD22b DNL Differential Nonlinearity >-1 — <1 LSb VINL = AVSS = 0V, AVDD = 3.6V AD23b GERR Gain Error — 10.5 20 LSb VINL = AVSS = 0V, AVDD = 3.6V AD24b EOFF Offset Error — 3.8 10 LSb VINL = AVSS = 0V, AVDD = 3.6V AD25b — Monotonicity — — — — Guaranteed Dynamic Performance (12-Bit Mode) AD30a THD Total Harmonic Distortion AD31a SINAD Signal to Noise and Distortion AD32a SFDR Spurious Free Dynamic Range — — -75 dB — 68.5 69.5 — dB — 80 — — dB — AD33a FNYQ Input Signal Bandwidth — — 250 kHz — AD34a ENOB Effective Number of Bits 11.09 11.3 — bits — Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. DS70594D-page 322 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ Max. Units Conditions ADC Accuracy (10-Bit Mode) – Measurements with External VREF+/VREFAD20c Nr Resolution 10 data bits bits — AD21c INL Integral Nonlinearity -1.5 — +1.5 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD22c DNL Differential Nonlinearity >-1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD23c GERR Gain Error — 3 6 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD24c EOFF Offset Error — 2 5 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V AD25c — Monotonicity — — — — Guaranteed ADC Accuracy (10-Bit Mode) – Measurements with Internal VREF+/VREFAD20d Nr Resolution AD21d INL Integral Nonlinearity -1 10 data bits — +1 bits — LSb VINL = AVSS = 0V, AVDD = 3.6V AD22d DNL Differential Nonlinearity >-1 — <1 LSb VINL = AVSS = 0V, AVDD = 3.6V AD23d GERR Gain Error — 7 15 LSb VINL = AVSS = 0V, AVDD = 3.6V AD24d EOFF Offset Error — 3 7 LSb AD25d — Monotonicity — — — — AD30b THD Total Harmonic Distortion — — -64 dB — AD31b SINAD Signal to Noise and Distortion 57 58.5 — dB — AD32b SFDR Spurious Free Dynamic Range 72 — — dB — AD33b FNYQ Input Signal Bandwidth — — 550 kHz — AD34b ENOB Effective Number of Bits 9.16 9.4 — bits — VINL = AVSS = 0V, AVDD = 3.6V Guaranteed Dynamic Performance (10-Bit Mode) Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. 2009-2012 Microchip Technology Inc. DS70594D-page 323 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-27: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp eoc AD61 AD60 TSAMP AD55 CONV ADxIF Buffer(0) 1 2 3 4 5 6 7 8 9 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F Family Reference Manual”. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 11. 6 – Convert bit 10. 7 – Convert bit 1. 8 – Convert bit 0. 9 – One TAD for end of conversion. DS70594D-page 324 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ Max. Units Conditions Clock Parameters AD50a TAD ADC Clock Period AD51a tRC ADC Internal RC Oscillator Period 117.6 — — ns — — 250 — ns — Conversion Rate AD55a tCONV Conversion Time — 14 TAD — — AD56a FCNV Throughput Rate — — 500 ksps — AD57a TSAMP Sample Time 3.0 TAD — — — — Timing Parameters AD60a tPCS Conversion Start from Sample Trigger(1,2) 2.0 TAD — 3.0 TAD — — AD61a tPSS Sample Start from Setting Sample (SAMP) bit(1,2) 2.0 TAD — 3.0 TAD — — AD62a tCSS Conversion Completion to Sample Start (ASAM = 1)(1,2) — 0.5 TAD — — — AD63a tDPU Time to Stabilize Analog Stage from ADC Off to ADC On(1,2,3) — — 20 s — Note 1: 2: 3: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. These parameters are characterized but not tested in manufacturing. tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate. 2009-2012 Microchip Technology Inc. DS70594D-page 325 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-28: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp ch1_dischrg ch1_samp eoc AD61 AD60 AD55 TSAMP AD55 CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 8 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F Family Reference Manual”. 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 9. 6 – Convert bit 8. 7 – Convert bit 0. 8 – One TAD for end of conversion. DS70594D-page 326 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 26-29: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) AD50 ADCLK Instruction Execution Set ADON SAMP ch0_dischrg ch0_samp ch1_dischrg ch1_samp eoc TSAMP AD55 TSAMP AD55 TCONV CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 3 4 5 6 8 3 4 1 – Software sets ADxCON. ADON to start AD operation. 5 – Convert bit 0. 2 – Sampling starts after discharge period. TSAMP is described in Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F Family Reference Manual”. 6 – One TAD for end of conversion. 3 – Convert bit 9. 8 – Sample for time specified by SAMC<4:0>. 7 – Begin conversion of next channel. 4 – Convert bit 8. 2009-2012 Microchip Technology Inc. DS70594D-page 327 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 26-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C AC CHARACTERISTICS Param Symbol No. Characteristic Typ(1) Min. Max. Units Conditions Clock Parameters AD50b TAD ADC Clock Period 76 — — ns — AD51b tRC ADC Internal RC Oscillator Period — 250 — ns — AD55b tCONV Conversion Time — 12 TAD — — — FCNV Throughput Rate — — 1.1 Msps — 2 TAD — — — — Conversion Rate AD56b AD57b TSAMP Sample Time AD60b tPCS Conversion Start from Sample Trigger(1,2) 2.0 TAD — 3.0 TAD — Auto-Convert Trigger (SSRC<2:0> = 111) not selected AD61b tPSS Sample Start from Setting Sample (SAMP) bit(1,2) 2.0 TAD — 3.0 TAD — — AD62b tCSS Conversion Completion to Sample Start (ASAM = 1)(1,2) — 0.5 TAD — — — AD63b tDPU Time to Stabilize Analog Stage from ADC Off to ADC On(1,3) — — 20 s — Timing Parameters Note 1: 2: 3: These parameters are characterized but not tested in manufacturing. Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate. TABLE 26-48: DMA READ/WRITE TIMING REQUIREMENTS AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial -40°C TA +125°C for Extended Min. Typ Max. Units Conditions DM1a DMA Read/Write Cycle Time — — 2 TCY ns This characteristic applies to dsPIC33FJ256MCX06A/X08A/X10A devices only. DM1b DMA Read/Write Cycle Time — — 1 TCY ns This characteristic applies to all devices with the exception of the dsPIC33FJ256MCX06A/X08A/X10A. DS70594D-page 328 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 27.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C. The specifications between -40°C to +150°C are identical to those shown in Section 26.0 “Electrical Characteristics” for operation between -40°C to +125°C, with the exception of the parameters listed in this section. Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in Section 26.0 “Electrical Characteristics” is the Industrial and Extended temperature equivalent of HDC10. Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied. Absolute Maximum Ratings(1) Ambient temperature under bias(4) .........................................................................................................-40°C to +150°C Storage temperature .............................................................................................................................. -65°C to +160°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant with respect to VSS(5) .................................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(5) ....................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(5) .................................................... -0.3V to 5.6V Voltage on VCAP with respect to VSS ...................................................................................................... 2.25V to 2.75V Maximum current out of VSS pin .............................................................................................................................60 mA Maximum current into VDD pin(2) .............................................................................................................................60 mA Maximum junction temperature............................................................................................................................. +155°C Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................2 mA Maximum current sourced/sunk by any 4x I/O pin(3) ................................................................................................4 mA Maximum current sourced/sunk by any 8x I/O pin(3) ................................................................................................8 mA Maximum current sunk by all ports combined ........................................................................................................10 mA Maximum current sourced by all ports combined(2) ................................................................................................10 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2). 3: Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins. 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc. 5: Refer to the “Pin Diagrams” section for 5V tolerant pins. 2009-2012 Microchip Technology Inc. DS70594D-page 329 dsPIC33FJXXXMCX06A/X08A/X10A 27.1 High Temperature DC Characteristics TABLE 27-1: OPERATING MIPS VS. VOLTAGE VDD Range (in Volts) Characteristic dsPIC33FJXXXMCX06A/X08A/X10A -40°C to +150°C 20 (1) HDC5 Max MIPS Temperature Range (in °C) VBOR to 3.6V Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values. Note 1: TABLE 27-2: THERMAL OPERATING CONDITIONS Rating Symbol Min Typ Max Unit Operating Junction Temperature Range TJ -40 — +155 °C Operating Ambient Temperature Range TA -40 — +150 °C High Temperature Devices Power Dissipation: Internal chip power dissipation: PINT = VDD x (IDD - IOH) PD PINT + PI/O W PDMAX (TJ - TA)/JA W I/O Pin Power Dissipation: I/O = ({VDD - VOH} x IOH) + (VOL x IOL) Maximum Allowed Power Dissipation TABLE 27-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature DC CHARACTERISTICS Parameter No. Symbol Characteristic Min Typ Max Units 3.0 3.3 3.6 V Conditions Operating Voltage HDC10 Supply Voltage — VDD TABLE 27-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature DC CHARACTERISTICS Parameter No. -40°C to +150°C Typical Max Units 2000 A Conditions Power-Down Current (IPD) HDC60e Note 1: 2: 3: 4: 250 +150°C 3.3V Base Power-Down Current(1,3) Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. These currents are measured on the device containing the most memory in this family. These parameters are characterized, but are not tested in manufacturing. DS70594D-page 330 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature DC CHARACTERISTICS Parameter No. Typical Max Units 5 A Conditions Power-Down Current (IPD) HDC61c Note 1: 2: 3: 4: 3 Watchdog Timer Current: IWDT(2,4) DC CHARACTERISTICS: DOZE CURRENT (IDOZE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature DC CHARACTERISTICS Parameter No. Typical(1) Max Doze Ratio Units 39 45 1:2 mA HDC72f 18 25 1:64 mA HDC72g 18 25 1:128 mA Note 1: 3.3V Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. These currents are measured on the device containing the most memory in this family. These parameters are characterized, but are not tested in manufacturing. TABLE 27-5: HDC72a +150°C Conditions +150°C 3.3V 20 MIPS Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing. 2009-2012 Microchip Technology Inc. DS70594D-page 331 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 27-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for High Temperature DC CHARACTERISTICS Param. Symbol HDO10 HDO20 VOL VOH Characteristic Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15 Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15 Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins HDO20A VOH1 Output High Voltage 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3 Output High Voltage 8x Source Driver Pins - OSC2, CLKO, RC15 Note 1: Min. Typ. Max. Units Conditions — — 0.4 V IOL 1.8 mA, VDD = 3.3V See Note 1 — — 0.4 V IOL 3.6 mA, VDD = 3.3V See Note 1 — — 0.4 V IOL 6 mA, VDD = 3.3V See Note 1 2.4 — — V IOL -1.8 mA, VDD = 3.3V See Note 1 2.4 — — V IOL -3 mA, VDD = 3.3V See Note 1 2.4 — — V IOL -6 mA, VDD = 3.3V See Note 1 1.5 — — 2.0 — — 3.0 — — 1.5 — — 2.0 — — 3.0 — — 1.5 — — 2.0 — — 3.0 — — V V V IOH -1.9 mA, VDD = 3.3V See Note 1 IOH -1.85 mA, VDD = 3.3V See Note 1 IOH -1.4 mA, VDD = 3.3V See Note 1 IOH -3.9 mA, VDD = 3.3V See Note 1 IOH -3.7 mA, VDD = 3.3V See Note 1 IOH -2 mA, VDD = 3.3V See Note 1 IOH -7.5 mA, VDD = 3.3V See Note 1 IOH -6.8 mA, VDD = 3.3V See Note 1 IOH -3 mA, VDD = 3.3V See Note 1 Parameters are characterized, but not tested. DS70594D-page 332 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 27.2 AC Characteristics and Timing Parameters The information contained in this section defines dsPIC33FJXXXMCX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 26.2 “AC Characteristics and Timing Parameters”, with the exception of the parameters listed in this section. Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 26.2 “AC Characteristics and Timing Parameters” is the Industrial and Extended temperature equivalent of HOS53. TABLE 27-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature Operating voltage VDD range as described in Table 27-1. AC CHARACTERISTICS FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 CL Pin RL VSS CL Pin RL = 464 CL = 50 pF for all pins except OSC2 15 pF for OSC2 output VSS TABLE 27-8: PLL CLOCK TIMING SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic CLKO Stability (Jitter)(1) Min Typ Max Units -5 0.5 5 % HOS53 DCLK Note 1: These parameters are characterized, but are not tested in manufacturing. 2009-2012 Microchip Technology Inc. Conditions Measured over 100 ms period DS70594D-page 333 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 27-9: INTERNAL LPRC ACCURACY AC CHARACTERISTICS Param No. Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature Characteristic Min Typ Max Units -70(2) — +70(2) % Conditions LPRC @ 32.768 kHz (1) HF21 Note 1: 2: LPRC -40°C TA +150°C — Change of LPRC frequency as VDD changes. Characterized but not tested. TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic(1) Min Typ Max Units Conditions HSP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 10 25 ns — HSP40 TdiV2scH, Setup Time of SDIx Data Input TdiV2scL to SCKx Edge 28 — — ns — HSP41 TscH2diL, TscL2diL 35 — — ns — Note 1: These parameters are characterized but not tested in manufacturing. Hold Time of SDIx Data Input to SCKx Edge TABLE 27-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic(1) Min Typ Max Units Conditions HSP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 10 25 ns — HSP36 TdoV2sc, TdoV2scL 35 — — ns — HSP40 TdiV2scH, Setup Time of SDIx Data Input TdiV2scL to SCKx Edge 28 — — ns — HSP41 TscH2diL, TscL2diL 35 — — ns — Note 1: SDOx Data Output Setup to First SCKx Edge Hold Time of SDIx Data Input to SCKx Edge These parameters are characterized but not tested in manufacturing. DS70594D-page 334 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 27-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic(1) Min Typ Max Units Conditions HSP35 TscH2doV, TscL2doV SDOx Data Output Valid after SCKx Edge — — 35 ns — HSP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 25 — — ns — HSP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 25 — — ns — HSP51 TssH2doZ SSx to SDOx Output High-Impedance 15 — 55 ns Note 1: 2: See Note 2 These parameters are characterized but not tested in manufacturing. Assumes 50 pF load on all SPIx pins. TABLE 27-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS AC CHARACTERISTICS Param No. Symbol Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature Characteristic(1) Min Typ Max Units Conditions HSP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — — 35 ns — HSP40 TdiV2scH, Setup Time of SDIx Data Input TdiV2scL to SCKx Edge 25 — — ns — HSP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 25 — — ns — HSP51 TssH2doZ SSx to SDOX Output High-Impedance 15 — 55 ns HSP60 TssL2doV SDOx Data Output Valid after SSx Edge — — 55 ns Note 1: 2: These parameters are characterized but not tested in manufacturing. Assumes 50 pF load on all SPIx pins. 2009-2012 Microchip Technology Inc. See Note 2 — DS70594D-page 335 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 27-14: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Param No. HAD08 Note 1: Symbol Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +150°C for High Temperature Characteristic Min Typ Max Units Reference Inputs — 250 600 A — — 50 A These parameters are not characterized or tested in manufacturing. IREF Current Drain Conditions ADC operating, See Note 1 ADC off, See Note 1 TABLE 27-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)(3) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. AD23a AD24a AD23a AD24a HAD33a Note 1: 2: 3: Symbol Characteristic Min Typ Max Units Conditions ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(1) GERR Gain Error — 5 10 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V Offset Error — 2 5 LSb VINL = AVSS = VREFL = 0V, EOFF AVDD = VREFH = 3.6V ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(1) GERR Gain Error 2 10 20 LSb VINL = AVSS = 0V, AVDD = 3.6V Offset Error 2 5 10 LSb VINL = AVSS = 0V, AVDD = 3.6V EOFF Dynamic Performance (12-bit Mode)(2) FNYQ Input Signal Bandwidth — — 200 kHz — These parameters are characterized, but are tested at 20 ksps only. These parameters are characterized by similarity, but are not tested in manufacturing. Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. TABLE 27-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)(3) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. AD23b AD24b AD23b AD24b HAD33b Note 1: 2: 3: Symbol Characteristic Min Typ Max Units Conditions ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(1) GERR Gain Error — 3 6 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V EOFF Offset Error — 2 5 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(1) GERR Gain Error — 7 15 LSb VINL = AVSS = 0V, AVDD = 3.6V Offset Error — 3 7 LSb VINL = AVSS = 0V, AVDD = 3.6V EOFF (2) Dynamic Performance (10-bit Mode) FNYQ Input Signal Bandwidth — — 400 kHz — These parameters are characterized, but are tested at 20 ksps only. These parameters are characterized by similarity, but are not tested in manufacturing. Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. DS70594D-page 336 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 27-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic Min Typ Max Units Conditions — — ns — — 400 Ksps — Clock Parameters HAD50 TAD ADC Clock Period(1) HAD56 FCNV Throughput Rate(1) 147 Conversion Rate Note 1: — These parameters are characterized but not tested in manufacturing. TABLE 27-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C TA +150°C for High Temperature Param No. Symbol Characteristic Min Typ Max Units Conditions — ns — 800 Ksps — Clock Parameters HAD50 TAD ADC Clock Period(1) HAD56 FCNV Throughput Rate(1) Note 1: These parameters are characterized but not tested in manufacturing. 104 — Conversion Rate 2009-2012 Microchip Technology Inc. — — DS70594D-page 337 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 338 2009-2012 Microchip Technology Inc. DC AND AC DEVICE CHARACTERISTICS GRAPHS Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. FIGURE 28-1: VOH – 2x DRIVER PINS -0.040 -0.016 -0.035 3.6V IOH (A) -0.012 -0.010 3V -0.008 -0.006 -0.015 -0.010 -0.005 0.50 1.00 1.50 2.00 2.50 3.00 3.50 0.000 0.00 4.00 VOH (V) FIGURE 28-2: VOH – 4x DRIVER PINS FIGURE 28-4: 2.00 -0.070 4.00 3.00 4.00 VOH – 16x DRIVER PINS 3.6V -0.060 3.3V -0.020 IOH (A) 3V -0.015 -0.010 DS70594D-page 339 3.00 -0.080 3.6V IOH (A) 1.00 VOH (V) -0.030 3.3V -0.050 3V -0.040 -0.030 -0.020 -0.005 0.000 0.00 3V -0.020 -0.002 -0.025 3.3V -0.025 -0.004 0.000 0.00 3.6V -0.030 3.3V IOH (A) -0.014 VOH – 8x DRIVER PINS FIGURE 28-3: -0.010 0.50 1.00 1.50 2.00 VOH (V) 2.50 3.00 3.50 4.00 0.000 0.00 1.00 2.00 VOH (V) dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. 28.0 VOL – 2x DRIVER PINS FIGURE 28-7: 0.060 0.020 0.018 3.6V 0.016 3.6V 0.050 3.3V 3.3V 0.014 0.040 3V 0.012 IOL (A) IOL (A) VOL – 8x DRIVER PINS 0.010 0.008 3V 0.030 0.020 0.006 0.004 0.010 0.002 0.000 0.00 1.00 2.00 3.00 0.000 0.00 4.00 1.00 FIGURE 28-6: VOL – 4x DRIVER PINS FIGURE 28-8: 3.00 4.00 VOL – 16x DRIVER PINS 0.120 0.040 0.035 3.6V 0.030 3.6V 0.100 3.3V 0.025 3.3V 0.080 3V IOL (A) 2009-2012 Microchip Technology Inc. IOL (A) 2.00 VOL (V) VOL (V) 0.020 0.015 3V 0.060 0.040 0.010 0.020 0.005 0.000 0.00 1.00 2.00 VOL (V) 3.00 4.00 0.000 0.00 1.00 2.00 VOL (V) 3.00 4.00 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 340 FIGURE 28-5: TYPICAL FRC FREQUENCY @ VDD = 3.3V FIGURE 28-10: 7450 50 7400 45 7350 40 Frequency (kHz) Frequency (kHz) TYPICAL LPRC FREQUENCY @ VDD = 3.3V 7300 7250 7200 35 30 25 7150 20 7100 -40 -30 -20 -10 0 10 20 30 40 50 60 70 Temperature Celsius 80 90 100 110 120 40 30 20 10 0 10 20 30 40 50 60 TemperatureCelsius 70 80 90 100 110 120 DS70594D-page 341 dsPIC33FJXXXMCX06A/X08A/X10A 2009-2012 Microchip Technology Inc. FIGURE 28-9: dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 342 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 29.0 PACKAGING INFORMATION 29.1 Package Marking Information 64-Lead QFN (9x9x0.9mm) XXXXXXXXXX XXXXXXXXXX YYWWNNN XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN e3 * Note: Example dsPIC33FJ 256MC706A -I/PT e3 0910017 80-Lead TQFP (12x12x1 mm) Legend: XX...X Y YY WW NNN 33FJ64MC 506A-I/MR e3 0910017 64-Lead TQFP (10x10x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Example Example dsPIC33FJ128 MC708A-I/PT e3 0910017 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 2009-2012 Microchip Technology Inc. DS70594D-page 343 dsPIC33FJXXXMCX06A/X08A/X10A 29.1 Package Marking Information (Continued) 100-Lead TQFP (12x12x1 mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN 100-Lead TQFP (14x14x1mm) XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Legend: XX...X Y YY WW NNN e3 * Note: DS70594D-page 344 Example dsPIC33FJ256 MC710A-I/PT e3 0910017 Example dsPIC33FJ256 MC710A-I/PF e3 0910017 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 29.2 Note: Package Details For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 345 dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70594D-page 346 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 347 dsPIC33FJXXXMCX06A/X08A/X10A /HDG3ODVWLF7KLQ4XDG)ODWSDFN 37 ±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 123 NOTE 2 α A φ c A2 β A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS70594D-page 348 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 349 dsPIC33FJXXXMCX06A/X08A/X10A /HDG3ODVWLF7KLQ4XDG)ODWSDFN 37 ±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 12 3 α NOTE 2 A c β φ A2 A1 L1 L 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS70594D-page 350 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 351 dsPIC33FJXXXMCX06A/X08A/X10A /HDG3ODVWLF7KLQ4XDG)ODWSDFN 37 ±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E E1 N b NOTE 1 1 23 NOTE 2 α c A φ L β A1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV A2 L1 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS70594D-page 352 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 353 dsPIC33FJXXXMCX06A/X08A/X10A /HDG3ODVWLF7KLQ4XDG)ODWSDFN 3) ±[[PP%RG\PP>74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E1 E b N α NOTE 1 1 23 A NOTE 2 φ c β A2 A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$; /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $ 6WDQGRII $ ± )RRW/HQJWK / )RRWSULQW / 5() )RRW$QJOH 2YHUDOO:LGWK ( %6& 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& /HDG7KLFNQHVV F ± /HDG:LGWK E 0ROG'UDIW$QJOH7RS 0ROG'UDIW$QJOH%RWWRP 1RWHV 3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\ 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0 %6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV 5() 5HIHUHQFH'LPHQVLRQXVXDOO\ZLWKRXWWROHUDQFHIRULQIRUPDWLRQSXUSRVHVRQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &% DS70594D-page 354 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2009-2012 Microchip Technology Inc. DS70594D-page 355 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 356 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A APPENDIX A: MIGRATING FROM dsPIC33FJXXXMCX06/ X08/X10 DEVICES TO dsPIC33FJXXXMCX06A/ X08A/X10A DEVICES The dsPIC33FJXXXMCX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXMCX06/ X08/X10 families of devices. In general, the dsPIC33FJXXXMCX06A/X08A/X10A devices are backward-compatible with dsPIC33FJXXXMCX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXMCX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXMCX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if dsPIC33FJXXXMCX06A/X08A/X10A devices are used to replace dsPIC33FJXXXMCX06/X08/X10 devices. The following enhancements were introduced: • Extended temperature support of up to +125ºC • Enhanced Flash module with higher endurance and retention • New PLL Lock Enable Configuration bit • Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2 2009-2012 Microchip Technology Inc. DS70594D-page 357 dsPIC33FJXXXMCX06A/X08A/X10A APPENDIX B: REVISION HISTORY Revision A (May 2009) This is the initial released version of the document. Revision B (October 2009) The revision includes the following global update: • Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits. This revision also includes minor typographical and formatting changes throughout the data sheet text. All other major changes are referenced by their respective section in the following table. TABLE B-1: MAJOR SECTION UPDATES Section Name Update Description “16-bit Digital Signal Controllers (up to 256 Added information on high temperature operation (see “Operating KB Flash and 30 KB SRAM) with Motor Range:”). Control and Advanced Analog” Section 11.0 “I/O Ports” Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 “Open-Drain Configuration”. Section 20.0 “Universal Asynchronous Receiver Transmitter (UART)” Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS. Section 22.0 “10-bit/12-bit Analog-to-Digital Updated the ADCx block diagram (see Figure 22-1). Converter (ADC)” Section 23.0 “Special Features” Updated the second paragraph and removed the fourth paragraph in Section 23.1 “Configuration Bits”. Updated the Device Configuration Register Map (see Table 23-1). Section 26.0 “Electrical Characteristics” Updated the Absolute Maximum Ratings for high temperature and added Note 4. Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 26-7). Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 26-40). Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 26-17). Updated the Internal LPRC Accuracy parameters (see Table 26-19). Updated the ADC Module Specifications (12-bit Mode) parameters AD23a, AD24a, AD23b, and AD24b (see Table 26-46). Updated the ADC Module Specifications (10-bit Mode) parameters AD23c, AD24c, AD23d, and AD24d (see Table 26-46). Section 27.0 “High Temperature Electrical Characteristics” Added new chapter with high temperature specifications. “Product Identification System” Added the “H” definition for high temperature. DS70594D-page 358 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Revision C (March 2011) This revision includes typographical and formatting changes throughout the data sheet text. In addition, all instances of VDDCORE have been removed. All other major changes are referenced by their respective section in the following table. TABLE B-2: MAJOR SECTION UPDATES Section Name Section 2.0 “Guidelines for Getting Started with 16-bit Digital Signal Controllers” Update Description Updated the title of Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)”. The frequency limitation for device PLL start-up conditions was updated in Section 2.7 “Oscillator Value Conditions on Device Start-up”. The second paragraph in Section 2.9 “Unused I/Os” was updated. Section 4.0 “Memory Organization” The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7 • TMR8 • TMR9 Section 9.0 “Oscillator Configuration” Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1). Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2). Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3). Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4). Section 22.0 “10-bit/12-bit Analog-to-Digital Updated the VREFL references in the ADC1 module block diagram Converter (ADC)” (see Figure 22-1). Section 23.0 “Special Features” Added a new paragraph and removed the third paragraph in Section 23.1 “Configuration Bits”. Added the column “RTSP Effects” to the Configuration Bits Descriptions (see Table 23-2). 2009-2012 Microchip Technology Inc. DS70594D-page 359 dsPIC33FJXXXMCX06A/X08A/X10A TABLE B-2: MAJOR SECTION UPDATES (CONTINUED) Section Name Section 26.0 “Electrical Characteristics” Update Description Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 26-4). Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 26-9). Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 26-18). Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 26-20). Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 26-43). Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 26-44). Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 26-45). Added DMA Read/Write Timing Requirements (see Table 26-48). Section 27.0 “High Temperature Electrical Characteristics” Updated all ambient temperature end range values to +150ºC throughout the chapter. Updated the storage temperature end range to +160ºC. Updated the maximum junction temperature from +145ºC to +155ºC. Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 27-2). Updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 27-14). Updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 27-16). DS70594D-page 360 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Revision D (June 2012) This revision includes typographical and formatting changes throughout the data sheet text. All other major changes are referenced by their respective section in the following table. TABLE B-3: MAJOR SECTION UPDATES Section Name Update Description Section 2.0 “Guidelines for Getting Started Updated the Recommended Minimum Connection (see Figure 2-1). with 16-bit Digital Signal Controllers” Section 9.0 “Oscillator Configuration” Updated the COSC<2:0> and NOSC<2:0> bit value definitions for ‘001’ (see Register 9-1). Section 22.0 “10-bit/12-bit Analog-to-Digital Updated the Analog-to-Digital Conversion Clock Period Block Converter (ADC)” Diagram (see Figure 22-2). Section 23.0 “Special Features” Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 23-1). Section 26.0 “Electrical Characteristics” Updated “Absolute Maximum Ratings”. Updated Operating MIPS vs. Voltage (see Table 26-1). Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 26-4). Updated the notes in the following tables: • • • • Table 26-5 Table 26-6 Table 26-7 Table 26-8 Updated the I/O Pin Output Specifications (see Table 26-10). Updated the Conditions for parameter BO10 (see Table 26-11). Updated the Conditions for parameters D136b, D137b and D138b (TA = 150ºC) (see Table 26-12). Section 27.0 “High Temperature Electrical Characteristics” Updated “Absolute Maximum Ratings(1)”. Updated the I/O Pin Output Specifications (see Table 27-6). Removed Table 26-7: DC Characteristics: Program Memory. 2009-2012 Microchip Technology Inc. DS70594D-page 361 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 362 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A INDEX A A/D Converter ................................................................... 245 DMA .......................................................................... 245 Initialization ............................................................... 245 Key Features............................................................. 245 AC Characteristics .................................................... 290, 333 ADC Module.............................................................. 336 ADC Module (10-bit Mode) ....................................... 336 ADC Module (12-bit Mode) ....................................... 336 Internal RC Accuracy ................................................ 292 Load Conditions ................................................ 290, 333 ADC Module ADC1 Register Map .................................................... 52 ADC2 Register Map .................................................... 52 Alternate Vector Interrupt Table (AIVT) .............................. 85 Arithmetic Logic Unit (ALU)................................................. 29 Assembler MPASM Assembler................................................... 276 B Barrel Shifter ....................................................................... 33 Bit-Reversed Addressing .................................................... 66 Example ...................................................................... 67 Implementation ........................................................... 66 Sequence Table (16-Entry)......................................... 67 Block Diagrams 16-Bit Timer1 Module................................................ 165 A/D Module ............................................................... 246 Connections for On-Chip Voltage Regulator............. 264 Device Clock (Oscillator)........................................... 143 Device Clock (PLL) ................................................... 145 DSP Engine ................................................................ 30 dsPIC33F .................................................................... 14 dsPIC33F CPU Core................................................... 24 ECAN Technology .................................................... 218 I2C Module ................................................................ 204 Input Capture ............................................................ 173 Output Compare ....................................................... 175 Programmer’s Model................................................... 25 PWM Module ............................................................ 180 Quadrature Encoder Interface .................................. 193 Reset System.............................................................. 79 Shared Port Structure ............................................... 161 SPI Module ............................................................... 197 Timer2 (16-Bit) .......................................................... 169 Timer2/3 (32-Bit) ....................................................... 168 Top Level System Architecture Using Dedicated Transaction Bus ................................................ 134 UART Module ........................................................... 211 Watchdog Timer (WDT) ............................................ 265 Brown-out Reset (BOR) .................................................... 264 C C Compilers MPLAB C18 .............................................................. 276 Clock Switching................................................................. 151 Enabling .................................................................... 151 Sequence.................................................................. 151 Code Examples Erasing a Program Memory Page............................... 76 Initiating a Programming Sequence............................ 77 Loading Write Buffers ................................................. 77 Port Write/Read ........................................................ 162 PWRSAV Instruction Syntax..................................... 153 2009-2012 Microchip Technology Inc. Code Protection ........................................................ 259, 266 CodeGuard Security ................................................. 259, 266 Configuration Bits ............................................................. 259 Configuration Register Map .............................................. 259 Configuring Analog Port Pins............................................ 162 CPU Control Register.......................................................... 26 CPU Clocking System ...................................................... 144 PLL ........................................................................... 144 Selection................................................................... 144 Sources .................................................................... 144 Customer Change Notification Service............................. 369 Customer Notification Service .......................................... 369 Customer Support............................................................. 369 D Data Accumulators and Adder/Subtracter .......................... 31 Data Space Write Saturation ...................................... 33 Overflow and Saturation ............................................. 31 Round Logic ............................................................... 32 Write Back .................................................................. 32 Data Address Space........................................................... 37 Alignment.................................................................... 37 Memory Map for dsPIC33FJXXXMCX06A/X08A/X10A Devices with 16-Kbyte RAM ............................... 39 Memory Map for dsPIC33FJXXXMCX06A/X08A/X10A Devices with 30-Kbyte RAM ............................... 40 Memory Map for dsPIC33FJXXXMCX06A/X08A/X10A Devices with 8-Kbyte RAM ................................. 38 Near Data Space ........................................................ 37 Software Stack ........................................................... 63 Width .......................................................................... 37 DC and AC Characteristics Graphs and Tables ................................................... 339 DC Characteristics............................................................ 280 Doze Current (IDOZE)........................................ 285, 331 High Temperature..................................................... 330 I/O Pin Input Specifications ...................................... 286 I/O Pin Output Specifications............................ 288, 332 Idle Current (IIDLE) .................................................... 283 Operating Current (IDD) ............................................ 282 Operating MIPS vs. Voltage ..................................... 330 Power-Down Current (IPD)........................................ 284 Power-down Current (IPD) ........................................ 330 Program Memory...................................................... 289 Temperature and Voltage......................................... 330 Temperature and Voltage Specifications.................. 281 Thermal Operating Conditions.................................. 330 Development Support ....................................................... 275 DMA Module DMA Register Map ..................................................... 53 DMAC Registers ............................................................... 135 DMAxCNT ................................................................ 135 DMAxCON................................................................ 135 DMAxPAD ................................................................ 135 DMAxREQ ................................................................ 135 DMAxSTA ................................................................. 135 DMAxSTB ................................................................. 135 DSP Engine ........................................................................ 29 Multiplier ..................................................................... 31 DS70594D-page 363 dsPIC33FJXXXMCX06A/X08A/X10A ECAN Module ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) ......... 55 ECAN1 Register Map (C1CTRL1.WIN = 0) ................ 55 ECAN1 Register Map (C1CTRL1.WIN = 1) ................ 56 ECAN2 Register Map (C2CTRL1.WIN = 0 or 1) ......... 58 ECAN2 Register Map (C2CTRL1.WIN = 0) .......... 58, 59 ECAN Technology Frame Types ............................................................. 217 Modes of Operation .................................................. 219 Overview ................................................................... 217 Electrical Characteristics................................................... 279 AC ..................................................................... 290, 333 Enhanced CAN Module..................................................... 217 Equations Device Operating Frequency .................................... 144 FOSC Calculation....................................................... 144 Programming Time ..................................................... 74 XT with PLL Mode..................................................... 145 Errata .................................................................................. 11 Instruction-Based Power-Saving Modes........................... 153 Idle ............................................................................ 154 Sleep ........................................................................ 153 Internal RC Oscillator Use with WDT........................................................... 265 Internet Address ............................................................... 369 Interrupt Control and Status Registers ............................... 89 IECx ............................................................................ 89 IFSx ............................................................................ 89 INTCON1 .................................................................... 89 INTCON2 .................................................................... 89 INTTREG .................................................................... 89 IPCx ............................................................................ 89 Interrupt Setup Procedures............................................... 131 Initialization ............................................................... 131 Interrupt Disable ....................................................... 131 Interrupt Service Routine (ISR)................................. 131 Trap Service Routine ................................................ 131 Interrupt Vector Table (IVT) ................................................ 85 Interrupts Coincident with Power Save Instructions ......... 154 F J E Flash Program Memory....................................................... 73 Control Registers ........................................................ 74 Operations .................................................................. 74 Programming Algorithm .............................................. 76 RTSP Operation.......................................................... 74 Table Instructions........................................................ 73 Flexible Configuration ....................................................... 259 FSCM Delay for Crystal and PLL Clock Sources ................... 84 Device Resets ............................................................. 84 G Getting Started with 16-Bit DSCs........................................ 19 H High Temperature Electrical Characteristics..................... 329 I I/O Ports ............................................................................ 161 Parallel I/O (PIO)....................................................... 161 Write/Read Timing .................................................... 162 I2C Operating Modes ...................................................... 203 I2C Module I2C1 Register Map ...................................................... 50 I2C2 Register Map ...................................................... 50 In-Circuit Debugger ........................................................... 266 In-Circuit Emulation........................................................... 259 In-Circuit Serial Programming (ICSP) ....................... 259, 266 Input Capture Registers ................................................................... 174 Input Change Notification Module ..................................... 162 Instruction Addressing Modes............................................. 63 File Register Instructions ............................................ 63 Fundamental Modes Supported.................................. 64 MAC Instructions......................................................... 64 MCU Instructions ........................................................ 63 Move and Accumulator Instructions ............................ 64 Other Instructions........................................................ 64 Instruction Set Overview ................................................................... 270 Summary................................................................... 267 DS70594D-page 364 JTAG Boundary Scan Interface ........................................ 259 M Memory Organization ......................................................... 35 Microchip Internet Web Site.............................................. 369 Migration ........................................................................... 357 Modes of Operation Disable...................................................................... 219 Initialization ............................................................... 219 Listen All Messages.................................................. 219 Listen Only................................................................ 219 Loopback Mode ........................................................ 219 Normal Operation ..................................................... 219 Modulo Addressing ............................................................. 64 Applicability................................................................. 66 Operation Example ..................................................... 65 Start and End Address ............................................... 65 W Address Register Selection .................................... 65 Motor Control PWM .......................................................... 179 Motor Control PWM Module 8-Output Register Map ............................................... 49 MPLAB ASM30 Assembler, Linker, Librarian ................... 276 MPLAB Integrated Development Environment Software .............................................. 275 MPLAB PM3 Device Programmer .................................... 278 MPLAB REAL ICE In-Circuit Emulator System ................ 277 MPLINK Object Linker/MPLIB Object Librarian ................ 276 N NVM Module Register Map .............................................................. 62 O Open-Drain Configuration................................................. 162 Output Compare ............................................................... 175 Modes ....................................................................... 176 P Packaging ......................................................................... 343 Details....................................................................... 345 Marking ............................................................. 343, 344 Peripheral Module Disable (PMD) .................................... 154 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pinout I/O Descriptions (table) ............................................ 15 PMD Module Register Map............................................................... 62 POR and Long Oscillator Start-up Times............................ 84 PORTA Register Map............................................................... 60 PORTB Register Map............................................................... 60 PORTC Register Map............................................................... 61 PORTD Register Map............................................................... 61 PORTE Register Map............................................................... 61 PORTF Register Map............................................................... 61 PORTG Register Map............................................................... 62 Power-Saving Features .................................................... 153 Clock Frequency and Switching................................ 153 Program Address Space ..................................................... 35 Construction................................................................ 68 Data Access from Program Memory Using Program Space Visibility ..................................... 71 Data Access from Program Memory Using Table Instructions ............................................... 70 Data Access from, Address Generation...................... 69 Memory Map ............................................................... 35 Table Read High Instructions TBLRDH ............................................................. 70 Table Read Low Instructions TBLRDL .............................................................. 70 Visibility Operation ...................................................... 71 Program Memory Interrupt Vector ........................................................... 36 Organization................................................................ 36 Reset Vector ............................................................... 36 Q Quadrature Encoder Interface (QEI) ................................. 193 Quadrature Encoder Interface (QEI) Module Register Map............................................................... 50 R Reader Response ............................................................. 370 Registers ADxCHS0 (ADCx Input Channel 0 Select) ............... 256 ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) ..................................... 255 ADxCON1 (ADCx Control 1)..................................... 249 ADxCON2 (ADCx Control 2)..................................... 251 ADxCON3 (ADCx Control 3)..................................... 253 ADxCON4 (ADCx Control 4)..................................... 254 ADxCSSH (ADCx Input Scan Select High)............... 257 ADxCSSL (ADCx Input Scan Select Low) ................ 257 ADxPCFGH (ADCx Port Configuration High) ........... 258 ADxPCFGL (ADCx Port Configuration Low)............. 258 CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)........... 231 CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)........... 232 CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)......... 233 CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)....... 234 CiCFG1 (ECAN Baud Rate Configuration 1) ............ 228 CiCFG2 (ECAN Baud Rate Configuration 2) ............ 229 CiCTRL1 (ECAN Control 1) ...................................... 220 CiCTRL2 (ECAN Control 2) ...................................... 221 CiEC (ECAN Transmit/Receive Error Count)............ 227 2009-2012 Microchip Technology Inc. CiFCTRL (ECAN FIFO Control) ............................... 223 CiFEN1 (ECAN Acceptance Filter Enable)............... 230 CiFIFO (ECAN FIFO Status) .................................... 224 CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) ..... 236 CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection) ......................................................... 237 CiINTE (ECAN Interrupt Enable) .............................. 226 CiINTF (ECAN Interrupt Flag) .................................. 225 CiRXFnEID (ECAN Acceptance Filter n Extended Identifier) .......................................... 235 CiRXFnSID (ECAN Acceptance Filter n Standard Identifier) ........................................... 235 CiRXFUL1 (ECAN Receive Buffer Full 1)................. 239 CiRXFUL2 (ECAN Receive Buffer Full 2)................. 239 CiRXMnEID (ECAN Acceptance Filter Mask n Extended Identifier).............................. 238 CiRXMnSID (ECAN Acceptance Filter Mask n Standard Identifier) ........................................... 238 CiRXOVF1 (ECAN Receive Buffer Overflow 1)........ 240 CiRXOVF2 (ECAN Receive Buffer Overflow 2)........ 240 CiTRBnDLC (ECAN Buffer n Data Length Control)................................................. 243 CiTRBnDm (ECAN Buffer n Data Field Byte m) ....... 243 CiTRBnEID (ECAN Buffer n Extended Identifier) ..... 242 CiTRBnSID (ECAN Buffer n Standard Identifier)...... 242 CiTRBnSTAT (ECAN Receive Buffer n Status)........ 244 CiTRmnCON (ECAN TX/RX Buffer m Control) ........ 241 CiVEC (ECAN Interrupt Code) ................................. 222 CLKDIV (Clock Divisor) ............................................ 148 CORCON (Core Control) ...................................... 28, 90 DFLTxCON (Digital Filter x Control) ......................... 196 DMACS0 (DMA Controller Status 0) ........................ 139 DMACS1 (DMA Controller Status 1) ........................ 141 DMAxCNT (DMA Channel x Transfer Count) ........... 138 DMAxCON (DMA Channel x Control)....................... 135 DMAxPAD (DMA Channel x Peripheral Address).......................................... 138 DMAxREQ (DMA Channel x IRQ Select) ................. 136 DMAxSTA (DMA Channel x RAM Start Address Offset A) ............................................. 137 DMAxSTB (DMA Channel x RAM Start Address Offset B) ............................................. 137 DSADR (Most Recent DMA RAM Address) ............. 142 I2CxCON (I2Cx Control)........................................... 206 I2CxMSK (I2Cx Slave Mode Address Mask)............ 210 I2CxSTAT (I2Cx Status) ........................................... 208 ICxCON (Input Capture x Control)............................ 174 IEC0 (Interrupt Enable Control 0) ............................. 103 IEC1 (Interrupt Enable Control 1) ............................. 105 IEC2 (Interrupt Enable Control 2) ............................. 107 IEC3 (Interrupt Enable Control 3) ............................. 109 IEC4 (Interrupt Enable Control 4) ............................. 111 IFS0 (Interrupt Flag Status 0) ..................................... 94 IFS1 (Interrupt Flag Status 1) ..................................... 96 IFS2 (Interrupt Flag Status 2) ..................................... 98 IFS3 (Interrupt Flag Status 3) ................................... 100 IFS4 (Interrupt Flag Status 4) ................................... 102 INTCON1 (Interrupt Control 1) ................................... 91 INTCON2 (Interrupt Control 2) ................................... 93 INTTREG (Interrupt Control and Status) .................. 130 IPC0 (Interrupt Priority Control 0) ............................. 112 IPC1 (Interrupt Priority Control 1) ............................. 113 IPC10 (Interrupt Priority Control 10) ......................... 122 IPC11 (Interrupt Priority Control 11) ......................... 123 IPC12 (Interrupt Priority Control 12) ......................... 124 DS70594D-page 365 dsPIC33FJXXXMCX06A/X08A/X10A IPC13 (Interrupt Priority Control 13) ......................... 125 IPC14 (Interrupt Priority Control 14) ......................... 126 IPC15 (Interrupt Priority Control 15) ......................... 127 IPC16 (Interrupt Priority Control 16) ......................... 128 IPC17 (Interrupt Priority Control 17) ......................... 129 IPC2 (Interrupt Priority Control 2) ............................. 114 IPC3 (Interrupt Priority Control 3) ............................. 115 IPC4 (Interrupt Priority Control 4) ............................. 116 IPC5 (Interrupt Priority Control 5) ............................. 117 IPC6 (Interrupt Priority Control 6) ............................. 118 IPC7 (Interrupt Priority Control 7) ............................. 119 IPC8 (Interrupt Priority Control 8) ............................. 120 IPC9 (Interrupt Priority Control 9) ............................. 121 NVMCOM (Flash Memory Control) ............................. 75 OCxCON (Output Compare x Control) ..................... 177 OSCCON (Oscillator Control) ................................... 146 OSCTUN (FRC Oscillator Tuning) ............................ 150 PLLFBD (PLL Feedback Divisor) .............................. 149 PMD1 (Peripheral Module Disable Control 1) ........... 155 PMD2 (Peripheral Module Disable Control 2) ........... 157 PMD3 (Peripheral Module Disable Control 3) ........... 159 PWMxCON1 (PWMx Control 1) ................................ 184 PWMxCON2 (PWMx Control 2) ................................ 185 PxDC1 (PWMx Duty Cycle 1) ................................... 191 PxDC2 (PWMx Duty Cycle 2) ................................... 191 PxDC3 (PWMx Duty Cycle 3) ................................... 192 PxDC4 (PWMx Duty Cycle 4) ................................... 192 PxDTCON1 (PWMx Dead-Time Control 1)............... 186 PxDTCON2 (PWMx Dead-Time Control 2)............... 187 PxFLTACON (PWMx Fault A Control) ...................... 188 PxFLTBCON (PWMx Fault B Control) ...................... 189 PxOVDCON (PWMx Override Control)..................... 190 PxSECMP (PWMx Special Event Compare) ............ 183 PxTCON (PWMx Time Base Control) ....................... 181 PxTMR (PWMx Timer Count Value) ......................... 182 PxTPER (PWMx Time Base Period)......................... 182 QEIxCON (QEIx Control) .......................................... 194 RCON (Reset Control) ................................................ 80 SPIxCON1 (SPIx Control 1) ...................................... 200 SPIxCON2 (SPIx Control 2) ...................................... 202 SPIxSTAT (SPIx Status and Control) ....................... 199 SR (CPU STATUS) ..................................................... 90 SR (CPU Status) ......................................................... 26 T1CON (Timer1 Control)........................................... 166 TxCON (T2CON, T4CON, T6CON or T8CON Control) ................................................ 170 TyCON (T3CON, T5CON, T7CON or T9CON Control) ................................................ 171 UxMODE (UARTx Mode) .......................................... 213 UxSTA (UARTx Status and Control) ......................... 215 Reset Clock Source Selection ............................................... 82 Special Function Register States ................................ 84 Times .......................................................................... 82 Reset Sequence.................................................................. 85 Resets ................................................................................. 79 Revision History ................................................................ 358 DS70594D-page 366 S Serial Peripheral Interface (SPI) ....................................... 197 Software Simulator (MPLAB SIM) .................................... 277 Software Stack Pointer, Frame Pointer CALL Stack Frame ..................................................... 63 Special Features of the CPU ............................................ 259 SPI Module SPI1 Register Map...................................................... 51 SPI2 Register Map...................................................... 51 Symbols Used in Opcode Descriptions ............................ 268 System Control Register Map .............................................................. 62 T Temperature and Voltage Specifications AC..................................................................... 290, 333 Timer1............................................................................... 165 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..................... 167 Timing Characteristics CLKO and I/O ........................................................... 293 Timing Diagrams 10-Bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) ........................................... 326 10-Bit A/D Conversion (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)....................................... 327 12-Bit A/D Conversion (ASAM = 0, SSRC = 000) .... 324 CAN I/O .................................................................... 320 External Clock........................................................... 291 I2Cx Bus Data (Master Mode) .................................. 316 I2Cx Bus Data (Slave Mode) .................................... 318 I2Cx Bus Start/Stop Bits (Master Mode)................... 316 I2Cx Bus Start/Stop Bits (Slave Mode)..................... 318 Input Capture (CAPx) ............................................... 298 Motor Control PWM .................................................. 300 Motor Control PWM Fault ......................................... 300 OC/PWM................................................................... 299 Output Compare (OCx)............................................. 298 QEA/QEB Input ........................................................ 301 QEI Module Index Pulse ........................................... 302 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer ......................................... 294 Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock .............. 296 TimerQ (QEI Module) External Clock ....................... 303 Timing Requirements ADC Conversion (10-bit mode)................................. 337 ADC Conversion (12-bit Mode)................................. 337 CLKO and I/O ........................................................... 293 External Clock........................................................... 291 Input Capture ............................................................ 298 SPIx Master Mode (CKE = 0) ................................... 334 SPIx Module Master Mode (CKE = 1) ...................... 334 SPIx Module Slave Mode (CKE = 0) ........................ 335 SPIx Module Slave Mode (CKE = 1) ........................ 335 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Timing Specifications 10-Bit A/D Conversion Requirements ....................... 328 12-Bit A/D Conversion Requirements ....................... 325 CAN I/O Requirements ............................................. 320 I2Cx Bus Data Requirements (Master Mode) ........... 317 I2Cx Bus Data Requirements (Slave Mode) ............. 319 Motor Control PWM Requirements ........................... 300 Output Compare Requirements ................................ 298 PLL Clock.......................................................... 292, 333 QEI External Clock Requirements ............................ 303 QEI Index Pulse Requirements................................. 302 Quadrature Decoder Requirements.......................... 301 Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset Requirements ......................................... 295 Simple OC/PWM Mode Requirements ..................... 299 Timer1 External Clock Requirements ....................... 296 Timer2, Timer4, Timer6 and Timer8 External Clock Requirements ......................................... 297 Timer3, Timer5, Timer7 and Timer9 External Clock Requirements ........................... 297 2009-2012 Microchip Technology Inc. U UART Module UART1 Register Map ................................................. 51 UART2 Register Map ................................................. 51 V Voltage Regulator (On-Chip) ............................................ 264 W Watchdog Timer (WDT)............................................ 259, 265 Programming Considerations ................................... 265 WWW Address ................................................................. 369 WWW, On-Line Support ..................................................... 11 DS70594D-page 367 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 368 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions. 2009-2012 Microchip Technology Inc. DS70594D-page 369 dsPIC33FJXXXMCX06A/X08A/X10A READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. TO: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y N Device: dsPIC33FJXXXMCX06A/X08A/X10A Literature Number: DS70594D Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS70594D-page 370 2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. dsPIC 33 FJ 256 MC7 10 A T I / PT - XXX Examples: a) Microchip Trademark Architecture Flash Memory Family dsPIC33FJ256MC710ATI/PT: Motor Control dsPIC33, 64-Kbyte program memory, 64-pin, Industrial temperature, TQFP package. Program Memory Size (KB) Product Group Pin Count Revision Level Tape and Reel Flag (if applicable) Temperature Range Package Pattern Architecture: 33 = 16-bit Digital Signal Controller Flash Memory Family: FJ = Flash program memory, 3.3V Product Group: MC5 = MC7 = Motor Control family Motor Control family Pin Count: 06 08 10 = = = 64-pin 80-pin 100-pin Temperature Range: I E H = = = -40C to +85C (Industrial) -40C to +125C (Extended) -40C to +150C (High) Package: PT PF MR = = = 10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9 mm QFN (Plastic Quad Flatpack) Pattern Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) 2009-2012 Microchip Technology Inc. DS70594D-page 371 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 372 2009-2012 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62076-343-8 QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == 2009-2012 Microchip Technology Inc. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS70594D-page 373 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 DS70594D-page 374 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 11/29/11 2009-2012 Microchip Technology Inc.