MC74LCX541 Low-Voltage CMOS Octal Buffer Flow Through Pinout With 5 V−Tolerant Inputs and Outputs (3−State, Non−Inverting) http://onsemi.com The MC74LCX541 is a high performance, non−inverting octal buffer operating from a 2.3 to 3.6 V supply. This device is similar in function to the MC74LCX244, while providing flow through architecture. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX541 inputs to be safely driven from 5 V devices. The MC74LCX541 is suitable for memory address driving and all TTL level bus oriented transceiver applications. Current drive capability is 24 mA at the outputs. The Output Enable (OE1. OE2) inputs, when HIGH, disables the output by placing them in a HIGH Z condition. SOIC−20 WB DW SUFFIX CASE 751D MARKING DIAGRAMS 20 LCX541 AWLYYWWG Features • • • • • • • • • • • • Designed for 2.3 to 3.6 V VCC Operation 5 V Tolerant − Interface Capability With 5 V TTL Logic Supports Live Insertion and Withdrawal IOFF Specification Guarantees High Impedance When VCC = 0 V LVTTL Compatible LVCMOS Compatible 24 mA Balanced Output Sink and Source Capability Near Zero Static Supply Current in All Three Logic States (10 mA) Substantially Reduces System Power Requirements Latchup Performance Exceeds 500 mA ESD Performance: ♦ Human Body Model > 2000 V ♦ Machine Model > 200 V NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant © Semiconductor Components Industries, LLC, 2014 August, 2014 − Rev. 9 TSSOP−20 DT SUFFIX CASE 948E 1 1 SOIC−20 WB 20 LCX 541 ALYW G G 1 TSSOP−20 A L, WL Y, YY W, WW G or G = = = = = Assembly Location Wafer Lot Year Work Week Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Publication Order Number: MC74LCX541/D MC74LCX541 OE1 VCC OE2 O0 O1 O2 O3 O4 O5 O6 O7 20 19 18 17 16 15 14 13 12 11 OE2 1 19 D0 D1 D2 1 2 3 4 5 6 7 8 9 10 OE1 D0 D1 D2 D3 D4 D5 D6 D7 GND D3 D4 Figure 1. Pinout: 20−Lead (Top View) D5 PIN NAMES Pins Function OEn Output Enable Inputs Dn Data Inputs On 3−State Outputs D6 D7 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 O0 O1 O2 O3 O4 O5 O6 O7 Figure 2. Logic Diagram TRUTH TABLE Inputs Outputs OE1 OE2 Dn On L L L L L L H H X H X Z H X X Z H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable, for ICC reasons, DO NOT FLOAT Inputs MAXIMUM RATINGS Symbol VCC Parameter Value DC Supply Voltage VI DC Input Voltage VO DC Output Voltage Condition Units −0.5 to +7.0 V −0.5 ≤ VI ≤ +7.0 V −0.5 ≤ VO ≤ +7.0 Output in 3−State V −0.5 ≤ VO ≤ VCC + 0.5 (Note 1) V IIK DC Input Diode Current −50 VI < GND mA IOK DC Output Diode Current −50 VO < GND mA +50 VO > VCC mA IO DC Output Source/Sink Current ±50 mA ICC DC Supply Current Per Supply Pin ±100 mA IGND DC Ground Current Per Ground Pin ±100 mA TSTG Storage Temperature Range −65 to +150 °C MSL Moisture Sensitivity Level 1 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Output in HIGH or LOW State. IO absolute maximum rating must be observed. http://onsemi.com 2 MC74LCX541 RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter Min Typ Max 2.0 1.5 3.3 3.3 3.6 3.6 Supply Voltage Operating Data Retention Only Units V VI Input Voltage 0 5.5 VO Output Voltage (HIGH or LOW State) (3−State) 0 0 VCC 5.5 V V IOH HIGH Level Output Current, VCC = 3.0 V − 3.6 V −24 mA IOL LOW Level Output Current, VCC = 3.0 V − 3.6 V 24 mA IOH HIGH Level Output Current, VCC = 2.7 V − 3.0 V −12 mA IOL LOW Level Output Current, VCC = 2.7 V − 3.0 V 12 mA TA Operating Free−Air Temperature −40 +85 °C 0 10 ns/V Dt/DV Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. DC ELECTRICAL CHARACTERISTICS TA = −40°C to +85°C Symbol Characteristic VIH HIGH Level Input Voltage (Note 2) VIL LOW Level Input Voltage (Note 2) VOH HIGH Level Output Voltage VOL LOW Level Output Voltage IOZ 3−State Output Current IOFF Power Off Leakage Current Condition Min 2.7 V ≤ VCC ≤ 3.6 V 2.0 2.7 V ≤ VCC ≤ 3.6 V Max V 0.8 2.7 V ≤ VCC ≤ 3.6 V; IOH = −100 mA VCC − 0.2 VCC = 2.7 V; IOH = −12 mA 2.2 VCC = 3.0 V; IOH = −18 mA 2.4 VCC = 3.0 V; IOH = −24 mA 2.2 Units V V 2.7 V ≤ VCC ≤ 3.6 V; IOL = 100 mA 0.2 VCC = 2.7 V; IOL = 12 mA 0.4 VCC = 3.0 V; IOL = 16 mA 0.4 V VCC = 3.0 V; IOL = 24 mA 0.55 VCC = 3.6 V, VIN = VIH or VIL, VOUT = 0 to 5.5 V ±5 mA VCC = 0, VIN = 5.5 V or VOUT = 5.5 V 10 mA IIN Input Leakage Current VCC = 3.6 V, VIN = 5.5 V or GND ±5 mA ICC Quiescent Supply Current VCC = 3.6 V, VIN = 5.5 V or GND 10 mA 2.3 ≤ VCC ≤ 3.6 V; VIH = VCC − 0.6 V 500 mA DICC Increase in ICC per Input Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. These values of VI are used to test DC electrical characteristics only. http://onsemi.com 3 MC74LCX541 AC ELECTRICAL CHARACTERISTICS (tR = tF = 2.5 ns; CL = 50 pF; RL = 500 W) Limits TA = −40°C to +85°C VCC = 3.0 V to 3.6 V Symbol Parameter VCC = 2.7 V Waveform Min Max Max Units tPLH tPHL Propagation Delay Input to Output 1 1.5 1.5 6.5 6.5 7.5 7.5 ns tPZH tPZL Output Enable Time to High and Low Level 2 1.5 1.5 8.5 8.5 9.5 9.5 ns tPHZ tPLZ Output Disable Time From High and Low Level 2 1.5 1.5 7.5 7.5 8.5 8.5 ns tOSHL tOSLH Output−to−Output Skew (Note 3) 1.0 1.0 ns 3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter guaranteed by design. DYNAMIC SWITCHING CHARACTERISTICS TA = +25°C Symbol Characteristic Condition Min Typ Max Units VOLP Dynamic LOW Peak Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V 0.8 V VOLV Dynamic LOW Valley Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V 0.8 V 4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is measured in the LOW state. CAPACITIVE CHARACTERISTICS Symbol CIN Parameter Condition Typical Units Input Capacitance VCC = 3.3 V, VI = 0 V or VCC 7 pF COUT Output Capacitance VCC = 3.3 V, VI = 0 V or VCC 8 pF CPD Power Dissipation Capacitance 10 MHz, VCC = 3.3 V, VI = 0 V or VCC 25 pF http://onsemi.com 4 MC74LCX541 2.7 V Dn 1.5 V 1.5 V 0V tPLH tPHL VOH 1.5 V On 1.5 V VOL WAVEFORM 1 - PROPAGATION DELAYS tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns 2.7 V 1.5 V OEn 0V tPZH tPHZ VCC VOH - 0.3 V 1.5 V On ≈0V tPZL tPLZ ≈ 3.0 V 1.5 V On VOL + 0.3 V GND WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns Figure 3. AC Waveforms VCC R1 PULSE GENERATOR DUT RT CL RL Test Switch tPLH, tPHL Open tPZL, tPLZ 6V Open Collector/Drain tPLH and tPHL 6V tPZH, tPHZ GND CL = 50 pF or equivalent (Includes jig and probe capacitance) RL = R1 = 500 W or equivalent RT = ZOUT of pulse generator (typically 50 W) Figure 4. Test Circuit http://onsemi.com 5 6V OPEN GND MC74LCX541 ORDERING INFORMATION Package Shipping† MC74LCX541DWR2G SOIC−20 (Pb−Free) 1000 Tape & Reel NLV74LCX541DWR2G* (In Development) SOIC−20 (Pb−Free) 1000 Tape & Reel MC74LCX541DWG SOIC−20 (Pb−Free) 38 Units / Rail NLV74LCX541DWG* (In Development) SOIC−20 (Pb−Free) 38 Units / Rail MC74LCX541DTG TSSOP−20 (Pb−Free) 75 Units / Rail NLV74LCX541DTG* (In Development) TSSOP−20 (Pb−Free) 75 Units / Rail MC74LCX541DTR2G TSSOP−20 (Pb−Free) 2500 Tape & Reel NLV74LCX541DTR2G* (In Development) TSSOP−20 (Pb−Free) 2500 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 6 MC74LCX541 PACKAGE DIMENSIONS TSSOP−20 CASE 948E−02 ISSUE C 20X 0.15 (0.006) T U 2X K REF 0.10 (0.004) S L/2 20 M T U S V K K1 ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ S J J1 11 B −U− L PIN 1 IDENT SECTION N−N 0.25 (0.010) N 1 10 M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C G D H DETAIL E 0.100 (0.004) −T− SEATING DIM A B C D F G H J J1 K K1 L M PLANE SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 16X 0.36 16X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 7 MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.252 0.260 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC74LCX541 PACKAGE DIMENSIONS SOIC−20 WB CASE 751D−05 ISSUE G q A 20 X 45 _ h H M E 0.25 10X NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 1 10 20X B B 0.25 M T A S B S L A 18X e A1 SEATING PLANE C T DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74LCX541/D