v6.0 40MX and 42MX FPGA Families Features HiRel Features • High Capacity • • • • • • Single-Chip ASIC Alternative 3,000 to 54,000 System Gates Up to 2.5 kbits Configurable Dual-Port SRAM Fast Wide-Decode Circuitry Up to 202 User-Programmable I/O Pins • • Commercial, Industrial, Automotive, and Military Temperature Plastic Packages Commercial, Military Temperature, and MIL-STD-883 Ceramic Packages QML Certification Ceramic Devices Available to DSCC SMD Ease of Integration High Performance • • • • • • • 5.6 ns Clock-to-Out 250 MHz Performance 5 ns Dual-Port SRAM Access 100 MHz FIFOs 7.5 ns 35-Bit Address Decode • • • • Mixed-Voltage Operation (5.0V or 3.3V for core and I/Os), with PCI-Compliant I/Os Up to 100% Resource Utilization and 100% Pin Locking Deterministic, User-Controllable Timing Unique In-System Diagnostic and Verification Capability with Silicon Explorer II Low Power Consumption IEEE Standard 1149.1 (JTAG) Boundary Scan Testing Product Profile Device A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 Capacity System Gates SRAM Bits 3,000 – 6,000 – 14,000 – 24,000 – 36,000 – 54,000 2,560 Logic Modules Sequential Combinatorial Decode – 295 – – 547 – 348 336 – 624 608 – 954 912 24 1,230 1,184 24 9.5 ns 9.5 ns 5.6 ns 6.1 ns 6.1 ns 6.3 ns SRAM Modules (64x4 or 32x8) – – – – – 10 Dedicated Flip-Flops – – 348 624 954 1,230 Maximum Flip-Flops 147 273 516 928 1,410 1,822 Clocks 1 1 2 2 2 6 User I/O (maximum) 57 69 104 140 176 202 PCI – – – – Yes Yes Boundary Scan Test (BST) – – – – Yes Yes 44, 68 100 80 – – – 44, 68, 84 100 80 – – – 84 100, 160 100 176 – – 84 100, 160, 208 100 176 – – 84 160, 208 – 176 – – – 208, 240 – – 208, 256 272 Clock-to-Out Packages (by pin count) PLCC PQFP VQFP TQFP CQFP PBGA January 2004 © 2004 Actel Corporation i See the Actel website (www.actel.com) for the latest version of this datasheet. 40MX and 42MX FPGA Families Ordering Information A42MX16 _ PQ 1 100 ES Application (Temperature Range) Blank = Commercial (0 to +70˚C) I = Industrial (–40 to +85˚C) M = Military (–55 to +125˚C) B = MIL-STD-883 A = Automotive (–40 to +125˚C) Package Lead Count Package Type PL = Plastic Leaded Chip Carrier PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack VQ = Very Thin (1.0 mm) Quad Flat Pack BG = Plastic Ball Grid Array CQ = Ceramic Quad Flat Pack Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard –F = Approximately 40% Slower than Standard Part Number A40MX02 = 3,000 System Gates A40MX04 = 6,000 System Gates A42MX09 = 14,000 System Gates A42MX16 = 24,000 System Gates A42MX24 = 36,000 System Gates A42MX36 = 54,000 System Gates Plastic Device Resources User I/Os PLCC 44-Pin PLCC 68-Pin PLCC 84-Pin A40MX02 34 57 – A40MX04 34 57 69 69 – A42MX09 – – 72 83 101 A42MX16 – – 72 83 125 A42MX24 – – 72 – A42MX36 – – – – Device PQFP PQFP PQFP PQFP 100-Pin 160-Pin 208-Pin 240-Pin 57 – – VQFP 80-Pin VQFP TQFP PBGA 100-Pin 176-Pin 272-Pin – 57 – – – – – 69 – – – – – – 83 104 – 140 – – 83 140 – 125 176 – – – 150 – – 176 202 – – – 202 Note: Package Definitions PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array ii v6.0 40MX and 42MX FPGA Families Ceramic Device Resources User I/Os Device CQFP 208-Pin CQFP 256-Pin 176 202 A42MX36 Note: Package Definitions CQFP = Ceramic Quad Flat Pack Temperature Grade Offerings Package A40MX02 A40MX04 PLCC 44 C, I, M C, I, M PLCC 68 C, I, A, M C, I, M PLCC 84 PQFP 100 C, I, A, M A42MX09 A42MX16 A42MX24 C, I, A, M C, I, A, M C, I, M C, I, M C, I, A, M C, I, A, M C, I, M C, I, A, M C, I, M C, I, A, M C, I, A, M C, I, A, M PQFP 160 PQFP 208 PQFP 240 VQFP 80 A42MX36 C, I, A, M C, I, A, M C, I, A, M C, I, A, M VQFP 100 C, I, A, M C, I, A, M TQFP 176 C, I, A, M C, I, A, M C, I, A, M PBGA 272 C, I, M CQFP 208 C, M, B CQFP 256 C, M, B Note: C = Commercial I = Industrial A = Automotive M = Military B = MIL-STD-883 Class B Speed Grade Offerings –F –1 –2 –3 ✓ ✓ ✓ ✓ I ✓ ✓ ✓ ✓ A ✓ M ✓ ✓ B ✓ ✓ C ✓ Std Note: Refer to the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings. Contact your local Actel representative for device availability. v6.0 iii 40MX and 42MX FPGA Families Table of Contents 40MX and 42MX FPGA Families General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 5.0V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 5V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 3.3V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . 1-18 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Output Drive Characteristics for 5.0V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Output Drive Characteristics for 3.3V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 Dual-Port SRAM Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 Predictable Performance: Tight Delay Distributions . . . . . . . . . . . . . . . . . . . . . . . 1-30 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30 Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31 PCI System Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35 PCI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77 Package Pin Assignments 44-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 68-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 84-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 v6.0 v 40MX and 42MX FPGA Families Table of Contents 100-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 160-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 208-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 240-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 80-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 100-Pin VQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 176-Pin TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28 256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 272-Pin BGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 vi v6.0 40MX and 42MX FPGA Families 40MX and 42MX FPGA Families General Description MX Architectural Overview Actel's 40MX and 42MX families offer a cost-effective design solution at 5V. The MX devices are single-chip solutions and provide high performance while shortening the system design and development cycle. MX devices can integrate and consolidate logic implemented in multiple PALs, CPLDs, and FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus interfaces, DSP, and coprocessor functions. The MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All devices within these families are composed of logic modules, I/O modules, routing resources and clock networks, which are the building blocks for fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM modules, which are optimized for high-speed datapath functions such as FIFOs, LIFOs and scratchpad memory. A42MX24 and A42MX36 also contain widedecode modules. The MX device architecture is based on Actel’s patented antifuse technology implemented in a 0.45µm triplemetal CMOS process. With capacities ranging from 3,000 to 54,000 system gates, the MX devices provide performance up to 250 MHz, are live on power-up and have one-fifth the standby power consumption of comparable FPGAs. Actel’s MX FPGAs provide up to 202 user I/Os and are available in a wide variety of packages and speed grades. Logic Modules The 40MX logic module is an eight-input, one-output logic circuit designed to implement a wide range of logic functions with efficient use of interconnect routing resources (Figure 1-1). The logic module can implement the four basic logic functions (NAND, AND, OR and NOR) in gates of two, three, or four inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the array; latches and flipflops can be constructed from logic modules whenever required in the application. Actel’s A42MX24 and A42MX36 devices also feature MultiPlex I/Os, which support mixed-voltage systems, enable programmable PCI, deliver high-performance operation at both 5.0V and 3.3V, and provide a lowpower mode. The devices are fully compliant with the PCI Local Bus Specification (version 2.1). They deliver 200 MHz on-chip operation and 6.1 ns clock-to-output performance. The 42MX24 and 42MX36 devices include system-level features such as IEEE Standard 1149.1 (JTAG) Boundary Scan Testing and fast wide-decode modules. In addition, the A42MX36 device offers dual-port SRAM for implementing fast FIFOs, LIFOs, and temporary data storage. The storage elements can efficiently address applications requiring wide datapath manipulation and can perform transformation functions such as those required for telecommunications, networking, and DSP. All MX devices are fully tested over automotive and military temperature ranges. In addition, the largest member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened to MILSTD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and PQ208 devices are pincompatible. Figure 1-1 • 40MX Logic Module v6.0 1-1 40MX and 42MX FPGA Families The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). Figure 1-2 illustrates the combinatorial logic module. The S-module, shown in Figure 1-3, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic. A0 B0 S0 D00 D01 Y D10 D11 S1 A1 B1 Figure 1-2 • 42MX C-Module Implementation D00 D01 D00 D01 Y D10 D S0 D11 S1 Q OUT Y D10 D11 S1 CLR Up to 7-Input Function Plus D-Type Flip-Flop with Clear S0 D Q GATE Up to 7-Input Function Plus Latch D00 D0 D01 Y D1 S D Q OUT D11 S1 GATE CLR OUT S0 Up to 8-Input Function (Same as C-Module) Up to 4-Input Function Plus Latch with Clear Figure 1-3 • 42MX S-Module Implementation 1 -2 Y D10 v6.0 OUT 40MX and 42MX FPGA Families A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 1-4). The D-module allows A42MX24 and A42MX36 devices to perform widedecode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic. highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks. The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Actel's Designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design. Dual-Port SRAM Modules The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 1-5. 7 Inputs Hard-Wire to I/O Programmable Inverter The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the WD[7:0] Feedback to Array Figure 1-4 • A42MX24 and A42MX36 D-Module Implementation Latches [7:0] WRAD[5:0] MODE BLKEN WEN [5:0] Write Port Logic SRAM Module 32 x 8 or 64 x 4 (256 Bits) WCLK Latches Read Logic Latches Write Logic [5:0] Read Port Logic RD[7:0] RDAD[5:0] REN RCLK Routing Tracks Figure 1-5 • A42MX36 Dual-Port SRAM Block v6.0 1-3 40MX and 42MX FPGA Families Routing Structure Segmented Horizontal Routing The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses. Horizontal Routing Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 1-6. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets. Vertical Routing Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 1-6. Antifuse Structures An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified. 1 -4 v6.0 Logic Modules Antifuses Vertical Routing Tracks Figure 1-6 • MX Routing Structure Clock Networks The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer. In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 1-7 on page 1-5): • Externally from the CLKA pad, using CLKBUF buffer • Externally from the CLKB pad, using CLKBUF buffer • Internally from the CLKINTA input, using CLKINT buffer • Internally from the CLKINTB input, using CLKINT buffer The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks. The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 1-8 on page 1-5). Each quadrant clock provides a local, highfanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable. 40MX and 42MX FPGA Families CLKB CLKINB CLKA From Pads CLKINA CLKMOD S0 S1 Internal Signal CLKO(17) Clock Drivers CLKO(16) CLKO(15) CLKO(2) CLKO(1) Clock Tracks Figure 1-7 • Clock Networks of 42MX Devices QCLKA QCLKB QCLKC Quad Clock Modul QCLK1 QCLK3 Quad Clock Modul *QCLK1IN QCLKD *QCLK3IN S0 S1 Quad Clock Modul S1 S0 QCLK2 QCLK4 Quad Clock Modul *QCLK2IN *QCLK4IN S0 S1 S1 S0 Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals. Figure 1-8 • Quadrant Clock Network of A42MX36 Devices v6.0 1-5 40MX and 42MX FPGA Families MultiPlex I/O Modules STD 42MX devices feature Multiplex I/Os and support 5.0V, 3.3V, and mixed 3.3V/5.0V operations. The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 1-9 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (Refer to the Antifuse Macro Library Guide for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation. All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 1-9). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Actel Designer software tools can build a Dtype flip-flop using a C-module combined with an I/O module to register input and output signals. Refer to the Antifuse Macro Library Guide for more details. A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500µA. To achieve 5.0V or 3.3V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 1-10). When the PCI fuse is not programmed, the output drive is standard. Actel's Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs. EN Q D PAD From Array Q D G/CLK* Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module) PCI Drive PCI Enable Fuse Figure 1-10 • PCI Output Structure of A42MX24 and A42MX36 Devices Other Architectural Features Performance MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-tomarket. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance. User Security The Actel FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and prevent unauthorized users from accessing the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Actel antifuse FPGAs immune to both invasive and noninvasive attacks. Look for this symbol to ensure your valuable IP is secure. For more information, refer to Actel's Implementation of Security in Actel Antifuse FPGAs application note. Figure 1-9 • 42MX I/O Module 1 -6 Output Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device. G/CLK* To Array Signal v6.0 40MX and 42MX FPGA Families nonprogrammed), Silicon Sculptor II also allows self-test to verify its own hardware extensively. ™ The procedure for programming an MX device using Silicon Sculptor II is as follows: 1. Load the .AFM file u e Figure 1-11 • Fuselock 2. Select the device to be programmed 3. Begin programming Programming When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via In-House Programming from the factory. Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC. For more details on programming MX devices, please refer to the Programming Antifuse Devices and the Silicon Sculptor II user's guides. Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and Table 1 • Power Supply MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0V/3.3V systems. Table 1 describes the voltage support of MX devices. Voltage Support of MX Devices Device VCC VCCA VCCI Maximum Input Tolerance Nominal Output Voltage 40MX 5.0V – – 5.5V 5.0V 3.3V – – 3.6V 3.3V – 5.0V 5.0V 5.5V 5.0V – 3.3V 3.3V 3.6V 3.3V – 5.0V 3.3V 5.5V 3.3V 42MX Power-Up/Down in Mixed-Voltage Mode Low Power Mode When powering up 42MX in mixed voltage mode (VCCA = 5.0V and VCCI = 3.3V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power up, either the I/Os' input protection junction on the I/Os will be forward-biased or the I/Os will be at logical HIGH, and ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented. 42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/ Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin. v6.0 1-7 40MX and 42MX FPGA Families Power Dissipation The power dissipated by a CMOS circuit can be expressed by the equation: The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation: Power (µW) = CEQ * VCCA2 * F(1) where: CEQ =Equivalent capacitance expressed in picofarads (pF) General Power Equation VCCA =Power supply in volts (V) F =Switching frequency in megahertz (MHz) P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N + IOH * (VCCI – VOH) * M Equivalent Capacitance where: ICCstandby is the current flowing when no inputs or outputs are changing. ICCactive is the current flowing due to CMOS switching. IOL, IOH are TTL sink/source currents. VOL, VOH are TTL level output voltages. N equals the number of outputs driving TTL loads to VOL. M equals the number of outputs driving TTL loads to VOH. Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active. Static Power Component The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time. Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below. CEQ Values for Actel MX FPGAs Modules (CEQM)3.5 Input Buffers (CEQI)6.9 Output Buffers (CEQO)18.2 Routed Array Clock Buffer Loads (CEQCR)1.4 To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components. Power = VCCA2 * [(m x CEQM * fm)Modules + (n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2) where: m = Number of frequency fm logic modules switching at n = Number of frequency fn input buffers switching at p = Number of frequency fp output buffers switching at q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r1 = Fixed capacitance due to first routed array clock r2 = Fixed capacitance due to second routed array clock Active Power Component Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation. 1 -8 v6.0 40MX and 42MX FPGA Families resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations. CEQM = Equivalent capacitance of logic modules in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of routed array clock in pF CL = Output load capacitance in pF fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average first routed array clock rate in MHz fq2 = Average second routed array clock rate in MHz Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds. Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH. Fixed Capacitance Values for MX FPGAs (pF) Device Type A40MX02 A40MX04 A42MX09 A42MX16 A42MX24 A42MX36 r2 routed_Clk2 N/A N/A 118 165 185 220 r1 routed_Clk1 41.4 68.6 118 165 185 220 Figure 1-12 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 1-13 on page 1-10 illustrates the interconnection between Silicon Explorer II and 42MX devices To allow for probing capabilities, the security fuses must not be programmed. (Refer to <zBlue>“User Security” section on page 6 for the security fuses of 40MX and 42MX devices). Table 2 on page 1-10 summarizes the possible device configurations for probing. Test Circuitry and Silicon Explorer II Probe MX devices contain probing circuitry that provides builtin access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins. 16 Logic Analyzer Channels Serial Connection to Windows PC 40MX MODE SDI DCLK Silicon Explorer II SDO PRB PRA Figure 1-12 • Silicon Explorer II Setup with 40MX v6.0 1-9 40MX and 42MX FPGA Families 16 Logic Analyzer Channels 42MX Serial Connection to Windows PC MODE SDI DCLK Silicon Explorer II SDO PRB PRA Figure 1-13 • Silicon Explorer II Setup with 42MX Table 2 • Device Configuration Options for Probe Capability Security Fuse(s) Programmed MODE PRA, PRB1 SDI, SDO, DCLK1 No LOW User I/Os2 User I/Os2 No HIGH Probe Circuit Outputs Probe Circuit Inputs Yes – Probe Circuit Secured Probe Circuit Secured Notes: 1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention. 2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the <zBlue>“Pin Descriptions” section on page 77 for information on unused I/O pins. Design Consideration It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum. IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry 42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 1-14 on page 1-11). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/ PRELOAD and BYPASS) and some optional instructions. Table 3 on page 1-11 describes the ports that control JTAG testing, while Table 4 on page 1-11 describes the test instructions supported by these MX devices. 1 -1 0 v6.0 Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector). The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state. The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. 42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin. 40MX and 42MX FPGA Families Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundaryscan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O. Boundary Scan Register Output MUX TDO Bypass Register Control Logic JTAG TMS TAP Controller TCK Instruction Decode JTAG Instruction Register TDI Figure 1-14 • 42MX IEEE 1149.1 Boundary Scan Circuitry Table 3 • Test Access Port Descriptions Port Description TMS (Test Select) Mode Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK). TCK (Test Clock Input) Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz. TDI (Test Data Input) TDO (Test Output) Table 4 • Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock. Data Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high impedance) when data scanning is not in progress. Supported BST Public Instructions Instruction IR Code (IR2.IR0) Instruction Type Description EXTEST 000 Mandatory Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. SAMPLE/PRELOAD 001 Mandatory Allows a snapshot of the signals at the device pins to be captured and examined during operation HIGH Z 101 Optional Tristates all I/Os to allow external signals to drive pins. Please refer to the IEEE Standard 1149.1 specification. CLAMP 110 Optional Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. Please refer to the IEEE Standard 1149.1 specification for details. BYPASS 111 Mandatory Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain. v6.0 1-11 40MX and 42MX FPGA Families JTAG Mode Activation The JTAG test logic circuit is activated in the Designer software by selecting Tools -> Device Selection. This brings up the Device Selection dialog box as shown in Figure 1-15. The JTAG test logic circuit can be enabled by clicking the "Reserve JTAG Pins" check box. Table 5 explains the pins' behavior in either mode. Figure 1-15 • Device Selection Wizard Table 5 • Boundary Scan Pin Configuration and Functionality Reserve JTAG Checked Unchecked TCK BST input; must be terminated to logical HIGH or LOW to avoid floating User I/O TDI, TMS BST input; may float or be tied to HIGH User I/O TDO BST output; may float or be connected to TDI of another device User I/O TRST Pin and TAP Controller Reset An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles. Boundary Scan Description Language (BSDL) File Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, please refer to Actel BSDL Files Format Description application note. Actel BSDL files are grouped into two categories generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts. Generic files for MX devices are available on Actel's website at http://www.actel.com/techdocs/models/bsdl.html. 1 -1 2 v6.0 40MX and 42MX FPGA Families Development Tool Support Related Documents The MX family of FPGAs is fully supported by both Actel's Libero™ Integrated Design Environment and Designer FPGA Development software. Actel Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw for Actel from Mentor Graphics, ModelSim™ HDL Simulator from Mentor Graphics®, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow (located on Actel’s website) diagram for more information. Application Notes Actel BSDL Files Format Description www.actel.com/documents/BSDLformat_AN.pdf Programming Antifuse Devices http://www.actel.com/documents/ AntifuseProgram_AN.pdf Actel's Implementation of Security in Actel Antifuse FPGAs www.actel.com/documents/Antifuse_Security_AN.pdf User’s Guides and Manuals Antifuse Macro Library Guide www.actel.com/documents/libguide_UG.pdf Actel's Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the backannotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel’s integrated verification and logic analysis tool. Another tool included in the Designer software is the ACTgen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems. Silicon Sculptor II www.actel.com/techdocs/manuals/default.asp#programmers Miscellaneous Libero IDE Flow Diagram www.actel.com/products/tools/libero/flow.html Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems. v6.0 1-13 40MX and 42MX FPGA Families 5.0V Operating Conditions Table 6 • Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units –0.5 to +7.0 V VCC DC Supply Voltage VI Input Voltage –0.5 to VCC+0.5 V VO Output Voltage –0.5 to VCC+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. Table 7 • Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCI+0.5 V VO Output Voltage –0.5 to VCCI+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. Table 8 • Recommended Operating Conditions Parameter Commercial Industrial Military Units 0 to +70 -40 to +85 –55 to +125 °C VCC (40MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCA (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI (42MX) 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V Temperature Range* Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. 1 -1 4 v6.0 40MX and 42MX FPGA Families 5V TTL Electrical Specifications Table 9 • 5V TTL Electrical Specifications Commercial Symbol Parameter Min. VOH1 IOH = -10mA 2.4 Max. Commercial -F Min. Max. Min. Max. Military Min. 0.5 Units V 3.7 IOL = 10mA Max. 2.4 IOH = -4mA VOL1 Industrial 3.7 V 0.5 V IOL = 6mA 0.4 0.4 V VIL -0.3 0.8 -0.3 0.8 -0.3 0.8 -0.3 0.8 V VIH (40MX) 2.0 VCC+0.3 2.0 VCC+0.3 2.0 VCC+0.3 2.0 VCC+0.3 V VIH (42MX) 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 V IIL VIN = 0.5V -10 -10 -10 -10 µA IIH VIN = 2.7V -10 -10 -10 -10 µA Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA 42MX devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA Standby ICC2 Current, Low-Power Mode Standby Current IIO, I/O source sink Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html) current Notes: 1. Only one output tested at a time. VCC/VCCI = min. 2. All outputs unloaded. All inputs = VCC/VCCI or GND. v6.0 1-15 40MX and 42MX FPGA Families 3.3V Operating Conditions Table 10 • Absolute Maximum Ratings for 40MX Devices* Symbol Parameter Limits Units –0.5 to +7.0 V VCC DC Supply Voltage VI Input Voltage –0.5 to VCC+0.5 V VO Output Voltage –0.5 to VCC+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. Table 11 • Absolute Maximum Ratings for 42MX Devices* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCI+0.5 V VO Output Voltage –0.5 to VCCI+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. Table 12 • Recommended Operating Conditions Parameter Commercial Industrial Military Units Temperature Range* 0 to +70 –40 to +85 –55 to +125 °C VCC (40MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCA (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V VCCI (42MX) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. 1 -1 6 v6.0 40MX and 42MX FPGA Families 3.3V LVTTL Electrical Specifications Table 13 • 3.3V LVTTL Electrical Specifications Commercial Symbol Parameter Min. VOH1 IOH = –4mA 2.15 VOL1 IOL = 6mA Max. Commercial -F Min. Max. 2.15 0.4 Industrial Min. Max. 2.4 0.4 Military Min. Max. 2.4 0.48 Units V 0.48 V VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V VIH (40MX) 2.0 VCC+0.3 2.0 VCC+0.3 2.0 VCC+0.3 2.0 VCC+0.3 V VIH (42MX) 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 V IIL –10 –10 –10 –10 µA IIH –10 –10 –10 –10 µA Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A40MX02, A40MX04 3 25 10 25 mA A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 15 25 25 25 mA 42MX devices only 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA Standby Current, ICC2 Low-Power Mode Standby Current IIO, I/O current source sink Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html) Notes: 1. Only one output tested at a time. VCC/VCCI = min. 2. All outputs unloaded. All inputs = VCC/VCCI or GND. v6.0 1-17 40MX and 42MX FPGA Families Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only) Table 14 • Absolute Maximum Ratings* Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.5 to +7.0 V VCCA DC Supply Voltage for Array –0.5 to +7.0 V VI Input Voltage –0.5 to VCCI+0.5 V VO Output Voltage –0.5 to VCCI+0.5 V tSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. Table 15 • Recommended Operating Conditions Parameter Commercial Industrial Military Units 0 to +70 -40 to +85 –55 to +125 °C VCCA 4.75 to 5.25 4.5 to 5.5 4.5 to 5.5 V VCCI 3.14 to 3.47 3.0 to 3.6 3.0 to 3.6 V Temperature Range* Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades. Mixed 5.0V/3.3V Electrical Specifications Table 16 • Mixed 5.0V/3.3V Electrical Specifications Symbol VOH1 Commercial Commercial '-F Parameter Min. Min. IOH = –10mA 2.4 Max. Max. Min. Max. Min. Max. 0.5 Units V 3.7 IOL = 10mA Military 2.4 IOH = –4mA VOL1 'Industrial 3.7 V 0.5 V IOL = 6mA 0.4 0.4 V VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V VIH 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 2.0 VCCI+0.3 V IL VIN = 0.5V –10 –10 –10 –10 µA IH VIN = 2.7V –10 –10 –10 –10 µA Input Transition Time, TR and TF 500 500 500 500 ns CIO I/O Capacitance 10 10 10 10 pF A42MX09 5 25 25 25 mA A42MX16 6 25 25 25 mA A42MX24, A42MX36 20 25 25 25 mA 0.5 ICC - 5.0 ICC - 5.0 ICC - 5.0 mA Standby Current, ICC2 Low-Power Mode Standby Current IIO I/O source sink current Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html) Notes: 1. Only one output tested at a time. VCCI = min. 2. All outputs unloaded. All inputs = VCCI or GND. 1 -1 8 v6.0 40MX and 42MX FPGA Families Output Drive Characteristics for 5.0V PCI Signaling MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 1-16 on page 1-21 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification. Table 17 • DC Specification (5.0V PCI Signaling)1 PCI Symbol Parameter Condition MX Min. Max. Min. Max. Units VCCI Supply Voltage for I/Os 4.75 5.25 4.75 5.252 V VIH Input High Voltage 2.0 VCC + 0.5 2.0 VCCI + 0.3 V VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V IIH Input High Leakage Current VIN = 2.7V 70 — 10 µA IIL Input Low Leakage Current VIN=0.5V –70 — –10 µA Output High Voltage IOUT = –2 mA VOH 2.4 V IOUT = –6 mA VOL Output Low Voltage CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN 3.84 IOUT = 3 mA, 6 mA 0.55 — 0.33 V 10 — 10 pF 12 — 10 pF 5 Pin Inductance 20 — <8 nH3 nH Notes: 1. PCI Local Bus Specification, Version 2.1, Section 4.2.1.1. 2. Maximum rating for VCCI –0.5V to 7.0V. 3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. Table 18 • AC Specifications (5.0V PCI Signaling)* PCI Symbol Parameter Condition Min. Low Clamp Current –5 < VIN ≤ –1 –25 + (VIN +1) /0.015 Slew (r) Output Rise Slew Rate 0.4V to 2.4V load 1 Slew (f) Output Fall Slew Rate 2.4V to 0.4V load 1 ICL MX Max. Min. Max. Units –60 –10 mA 5 1.8 2.8 V/ns 5 2.8 4.3 V/ns Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2. v6.0 1-19 40MX and 42MX FPGA Families Output Drive Characteristics for 3.3V PCI Signaling Table 19 • DC Specification (3.3V PCI Signaling)1 PCI Symbol Parameter Condition MX Min. Max. Min. Max. Units VCCI Supply Voltage for I/Os 3.0 3.6 3.0 3.6 V VIH Input High Voltage 0.5 VCC + 0.5 0.5 VCCI + 0.3 V VIL Input Low Voltage –0.5 0.8 –0.3 0.8 V IIH Input High Leakage Current 70 10 µA IIL Input Leakage Current –70 –10 µA VIN = 2.7V VOH Output High Voltage IOUT = –2 mA VOL Output Low Voltage IOUT = 3 mA, 6 mA CIN Input Pin Capacitance CCLK CLK Pin Capacitance LPIN 0.9 3.3 5 Pin Inductance V 0.1 0.1 VCCI V 10 10 pF 12 10 pF 20 <8 nH3 nH Notes: 1. PCI Local Bus Specification, Version 2.1, Section 4.2.2.1. 2. Maximum rating for VCCI –0.5V to 7.0V. 3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance. Table 20 • AC Specifications for (3.3V PCI Signaling)* PCI Symbol Parameter Condition Min. Low Clamp Current –5 < VIN ≤ –1 –25 + (VIN +1) /0.015 Slew (r) Output Rise Slew Rate 0.2V to 0.6V load 1 Slew (f) Output Fall Slew Rate 0.6V to 0.2V load 1 ICL Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2. 1 -2 0 v6.0 MX Max. Min. Max. Units –60 –10 mA 4 1.8 2.8 V/ns 4 2.8 4.0 V/ns 40MX and 42MX FPGA Families 0.50 0.45 0.40 PCI I OL Maximum 0.35 0.30 0.25 Current (A) 0.20 MX PCI I OL 0.15 0.10 PCI I OL Minimum 0.05 0.00 0 –0.05 1 2 3 4 PCI I OH Maximum 5 6 MX PCI I OH –0.10 –0.15 PCI I OH Minimum –0.20 Voltage Out (V) Figure 1-16 • Typical Output Drive Characteristics (Based Upon Measured Data) v6.0 1-21 40MX and 42MX FPGA Families Junction Temperature (TJ) P = Power θja = Junction to ambient of package. θja numbers are The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1-1, shown below, can be used to calculate junction temperature. located in the Package Thermal Characteristics table below. Package Thermal Characteristics The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. EQ 1-1 Junction Temperature = ∆T + Ta(1) Where: The maximum junction temperature is 150°C. Ta = Ambient Temperature Maximum power dissipation for commercialindustrial-grade devices is a function of θja. ∆T = Temperature gradient between junction (silicon) and ambient and A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follow: ∆T = θja * P(2) Max. junction temp. (°C) – Max. ambient temp. (°C) 150°C – 70°C Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------- = ----------------------------------- = 2.86W 28°C/W θ ja (°C/W) The maximum power dissipation for military-grade devices is a function of θjc. A sample calculation of the absolute maximum power dissipation allowed for CQFP 208-pin package at military temperature and still air is as follows: Max. junction temp. (°C) – Max. ambient temp. (°C) 150°C – 125°C Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------- = -------------------------------------- = 3.97W θ jc (°C/W) 6.3°C/W Table 21 • Package Thermal Characteristics θja 1.0 m/s 2.5 m/s 200 ft/min. 500 ft/min. Pin Count θjc Still Air Plastic Quad Flat Pack 100 12.0 27.8 23.4 21.2 °C/W Plastic Quad Flat Pack 160 10.0 26.2 22.8 21.1 °C/W Plastic Quad Flat Pack 208 8.0 26.1 22.5 20.8 °C/W Plastic Quad Flat Pack 240 8.5 25.6 22.3 20.8 °C/W Plastic Leaded Chip Carrier 44 16.0 20.0 24.5 22.0 °C/W Plastic Leaded Chip Carrier 68 13.0 25.0 21.0 19.4 °C/W Plastic Leaded Chip Carrier 84 12.0 22.5 18.9 17.6 °C/W Thin Plastic Quad Flat Pack 176 11.0 24.7 19.9 18.0 °C/W Very Thin Plastic Quad Flat Pack 80 12.0 38.2 31.9 29.4 °C/W Very Thin Plastic Quad Flat Pack 100 10.0 35.3 29.4 27.1 °C/W Plastic Ball Grid Array 272 3.0 18.3 14.9 13.9 °C/W Ceramic Quad Flat Pack 208 2.0 22.0 19.8 18.0 °C/W Ceramic Quad Flat Pack 256 2.0 20.0 16.5 15.0 °C/W Plastic Packages Units Ceramic Packages 1 -2 2 v6.0 40MX and 42MX FPGA Families Timing Models Input Delay Internal Delays I/O Module tINYL=0.62 ns t IRD2=2.59 ns Predicted Routing Delays Output Delay I/O Module Logic Module tIRD1=2.09 ns tIRD4=3.64 ns tIRD8=5.73 ns Array Clock tCKH=4.55 ns FMAX=180 MHz tPD=1.24 ns tCO=1.24 ns tDLH=3.32 ns tENHZ=7.92 ns tRD1=1.28 ns tRD2=1.80 ns tRD4=2.33 ns tRD8=4.93 ns FO=128 Note: * Values are shown for 40MX ‘–3’ speed devices at 5.0V worst-case commercial conditions. Figure 1-17 • 40MX Timing Model* Input Delays I/O Module tINYL=0.8 ns Internal Delays t Predicted Routing Delays IRD1=2.0 ns † Output Delays I/O Module Combinatorial Logic Module D PD=1.2 ns tDLH=2.5 ns Sequential Logic Module tINH=0.0 ns t INSU=0.3 ns tINGL=1.3 ns Combin -atoria l D Q tRD1=0.70 ns Logic tSUD=0.3 ns t HD=0.00 ns tCKH=2.70 ns MAX=296 MHz D Q t ENHZ=4.9 ns G include F DLH=2.5 ns I/O Module G Array Clocks t tRD1=0.7 ns tRD2=1.9 ns tRD4=1.4 ns t RD8=2.3 ns t Q t CO=1.3 ns tOUTH=0.00 ns t OUTSU=0.3 ns tGLH=2.6 ns FO = 32 tLCO=5.2 ns (light loads, pad-to-pad) Notes: *Values are shown for A42MX09 ‘–3’ at 5.0V worst-case commercial conditions. † Input module predicted routing delay. Figure 1-18 • 42MX Timing Model* v6.0 1-23 40MX and 42MX FPGA Families Input Delays I/O Module tINYL=0.8 ns Internal Delays tIRD1=2.0 ns † Predicted Routing Delays Output Delays I/O Module Combinatorial Logic Module D tDLH=2.5 ns tRD1=0.7 ns t RD2=1.9 ns tRD4=1.4 ns tRD8=2.3 ns tPD=1.2 ns Q I/O Module G tDLH=2.5 ns Sequential Logic Module tINH=0.0 ns t INSU=0.3 ns tINGL=1.3 ns Combin -atoria l D Q D tRD1=0.70 ns t Logic tSUD=0.3 ns tHD=0.00 ns t CKH=2.70 ns FMAX=296 MHz ENHZ=4.9 ns G include Array Clocks Q tOUTH=0.00 ns tOUTSU=0.3 ns tGLH=2.6 ns tCO=1.3 ns FO = 32 t LCO=5.2 ns (light loads, pad-to-pad) Notes: * Values are shown for A42MX36 ‘–3’ at 5.0V worst-case commercial conditions. ** Load-dependent Figure 1-19 • 42MX Timing Model (Logic Functions Using Quadrant Clocks) Input Delays I/O Module tINPY=1.0ns D tIRD1=2.0ns Q G tINSU=0.5ns tINH=0.0ns tINGO=1.4ns Predicted Routing Delays WD [7:0] WRAD [5:0] RD [7:0] RDAD [5:0] Array Clocks tADSU=1.6ns tADH=0.0ns tWENSU=2.7ns tBENS=2.8ns tRD1=0.9ns REN BLKEN WEN WCLK RCLK tADSU=1.6ns tADH=0.0ns tRENSU=0.6ns tRCO=3.4ns FMAX =167 MHz Note: *Values are shown for A42MX36 ‘–3 at 5.0V worst-case commercial conditions. Figure 1-20 • 42MX Timing Model (SRAM Functions) 1 -2 4 I/O Module tDLH=2.6ns v6.0 D Q G tGHL=2.9ns tLSU=0.5ns tLH=0.0ns 40MX and 42MX FPGA Families Parameter Measurement E D In 50% 50% VOH 1.5V PAD 1.5V VOL tDHL tDLH TRIBUFF PAD To AC test loads (shown below) E 50% 50% VCCI 1.5V PAD 10% VOL tENZL tENLZ E 50% 50% VOH PAD 90% 1.5V GND tENHZ tENZH Figure 1-21 • Output Buffer Delays Load 1 (Used to measure propagation delay) Load 2 (Used to measure rising/falling edges) VC CI To the output under test GND R to VCCI for tPLZ/tPZL R to GND for tPHZ/tPZH R=1k Ω 35 pF To the output under test 35 pF Figure 1-22 • AC Test Loads INBUF PAD S A B Y Y S, A or B 50% 50% PAD Y GND 3V 1.5V 1.5V VCCI 50% tINYH Y 0V 50% Y tPLH 50% tPHL tINYL 50% 50% PHL 50% tPLH Figure 1-24 • Module Delays Figure 1-23 • Input Buffer Delays v6.0 1-25 40MX and 42MX FPGA Families Sequential Module Timing Characteristics D E CLK PRE Y CLR (Positive Edge-Triggered) tHD D* tSUD tA t WCLKA G, CLK tWCLKI tSUENA tHENA E tCO Q tRS PRE, CLR tWASYN Note: *D represents all data functions involving A, B, and S for multiplexed flip-flops. Figure 1-25 • Flip-Flops and Latches 1 -2 6 v6.0 40MX and 42MX FPGA Families Sequential Timing Characteristics PAD DATA IBDL G CLK PAD DATA tINH G tINSU tH EXT CLK tSU EXT Figure 1-26 • Input Buffer Latches D PAD OBDLHS G D tOUTSU G tOUTH Figure 1-27 • Output Buffer Latches v6.0 1-27 40MX and 42MX FPGA Families Decode Module Timing A B C D E F G Y H A–G, H 50% Y tPHL tPLH Figure 1-28 • Decode Module Timing SRAM Timing Characteristics Read Port Write Port WRAD [5:0] BLKEN WEN RDAD [5:0] RAM Array LEW 3 2x8 or 64x4 REN (2 56 Bits) WCLK RCLK WD [7:0] RD [7:0] Figure 1-29 • SRAM Timing Characteristics Dual-Port SRAM Timing Waveforms t RCKHL WCLK t ADSU WD[7:0] WRAD[5:0] tADH Valid t WENSU t WENH t BENSU t BENH WEN BLKEN Valid Note: Identical timing for falling edge clock. Figure 1-30 • 42MX SRAM Write Operation 1 -2 8 v6.0 t RCKHL 40MX and 42MX FPGA Families tCKHL tRCKHL RCLK tRENSU tRENH REN tADSU tADH Valid RDAD[5:0] tRCO tDOH New Data Old Data RD[7:0] Note: Identical timing for falling edge clock. Figure 1-31 • 42MX SRAM Synchronous Read Operation t RDAD[5:0] RDADV ADDR1 ADDR2 t RPD t DOH Data 1 RD[7:0] Data 2 Figure 1-32 • 42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled) WEN WD[7:0] WRAD[5:0] BLKEN tWENH tWENSU Valid tADH tADSU WCLK tRPD tDOH RD[7:0] Old Data New Data Figure 1-33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled) v6.0 1-29 40MX and 42MX FPGA Families Predictable Performance: Tight Delay Distributions Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases. From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks. The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path. Actel’s patented antifuse offers a very low resistive/ capacitive interconnect. The antifuses, fabricated in 0.45 µm lithography, offer nominal levels of 100Ω resistance and 7.0fF capacitance per antifuse. MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses. Timing Characteristics Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays. 1 -3 0 v6.0 Critical Nets and Typical Nets Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Actel's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical. Long Tracks Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing delays in the data sheet specifications section, shown in Table 28 on page 1-36. Timing Derating MX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature and worst-case processing. 40MX and 42MX FPGA Families Temperature and Voltage Derating Factors Table 22 • 42MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCCA = 5.0V) Temperature 42MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 4.50 0.93 0.95 1.05 1.09 1.25 1.29 1.41 4.75 0.88 0.90 1.00 1.03 1.18 1.22 1.34 5.00 0.85 0.87 0.96 1.00 1.15 1.18 1.29 5.25 0.84 0.86 0.95 0.97 1.12 1.14 1.28 5.50 0.83 0.85 0.94 0.96 1.10 1.13 1.26 1.50 1.40 Factor 1.30 –55˚C 1.20 –40˚C Derating 1.10 0˚C 1.00 25˚C 0.90 70˚C 0.80 85˚C 0.70 125˚C 0.60 4.50 4.75 5.00 Voltage 5.25 5.50 (V) Note: This derating factor applies to all routing and propagation delays. Figure 1-34 • 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 5.0V) v6.0 1-31 40MX and 42MX FPGA Families Table 23 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 5.0V) Temperature 40MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 4.50 0.89 0.93 1.02 1.09 1.25 1.31 1.45 4.75 0.84 0.88 0.97 1.03 1.18 1.24 1.37 5.00 0.82 0.85 0.94 1.00 1.15 1.20 1.33 5.25 0.80 0.82 0.91 0.97 1.12 1.16 1.29 5.50 0.79 0.82 0.90 0.96 1.10 1.15 1.28 1.50 1.40 Derating Factor 1.30 –55˚C 1.20 –40˚C 1.10 0˚C 1.00 25˚C 0.90 70˚C 0.80 85˚C 0.70 125˚C 0.60 4.50 4.75 5.00 Voltage 5.25 (V) Note: This derating factor applies to all routing and propagation delays. Figure 1-35 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 5.0V) 1 -3 2 v6.0 5.50 40MX and 42MX FPGA Families Table 24 • 42MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCCA = 3.3V) Temperature 42MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 3.00 0.97 1.00 1.10 1.15 1.32 1.36 1.45 3.30 0.84 0.87 0.96 1.00 1.15 1.18 1.26 3.60 0.81 0.84 0.92 0.96 1.10 1.13 1.21 1.60 1.50 Derating Factor 1.40 1.30 55˚C 1.20 40˚C 1.10 0˚C 1.00 25˚C 0.90 70˚C 0.80 85˚C 0.70 125˚C 0.60 0.50 0.40 3.00 3.30 3.60 Voltage (V) (V) Note: This derating factor applies to all routing and propagation delays. Figure 1-36 • 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 3.3V) v6.0 1-33 40MX and 42MX FPGA Families Table 25 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3V) Temperature 40MX Voltage –55°C –40°C 0°C 25°C 70°C 85°C 125°C 3.00 1.08 1.12 1.21 1.26 1.50 1.64 2.00 3.30 0.86 0.89 0.96 1.00 1.19 1.30 1.59 3.60 0.83 0.85 0.92 0.96 1.14 1.25 1.53 2.20 2.00 55˚C Derating Factor 1.80 40˚C 0˚C 1.60 25˚C 1.40 70˚C 1.20 85˚C 1.00 125˚C 0.80 0.60 3.00 3.30 Voltage (V) Note: This derating factor applies to all routing and propagation delays. Figure 1-37 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 3.3V) 1 -3 4 v6.0 3.60 40MX and 42MX FPGA Families PCI System Timing Specification PCI Models Table 26 and Table 27 list the critical PCI timing parameters and the corresponding timing parameters for the MX PCI-compliant devices. Actel provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact your Actel sales representative for more details. Table 26 • Clock Specification for 33 MHz PCI PCI Symbol Parameter tCYC A42MX24 A42MX36 Min. Max. Min. Max. Min. Max. Units CLK Cycle Time 30 – 4.0 – 4.0 – ns tHIGH CLK High Time 11 – 1.9 – 1.9 – ns tLOW CLK Low Time 11 – 1.9 – 1.9 – ns Table 27 • Timing Parameters for 33 MHz PCI PCI Symbol Parameter tVAL CLK to Signal Valid—Bused Signals A42MX24 A42MX36 Min. Max. Min. Max. Min. Max. Units 2 11 2.0 9.0 2.0 9.0 ns 12 2.0 9.0 2.0 9.0 ns 2 tVAL(PTP) CLK to Signal Valid—Point-to-Point tON Float to Active 2 – 2.0 4.0 2.0 4.0 ns tOFF Active to Float – 28 – 8.31 – 8.31 ns tSU Input Set-Up Time to CLK—Bused Signals 7 – 1.5 – 1.5 – ns – 1.5 – 1.5 – ns – 0 – 0 – ns tSU(PTP) Input Set-Up Time to CLK—Point-to-Point tH Input Hold to CLK 2 10, 12 0 2 Notes: 1. TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns. 2. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times than do bussed signals. GNT# has a setup of 10; REW# has a setup of 12. v6.0 1-35 40MX and 42MX FPGA Families Timing Characteristics Table 28 • A40MX02 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns tPD2 Dual-Module Macros 2.7 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns Logic Module Predicted Routing Delays1 tRD1 FO=1 Routing Delay 1.3 1.5 1.7 2.0 2.8 ns tRD2 FO=2 Routing Delay 1.8 2.1 2.4 2.8 3.9 ns tRD3 FO=3 Routing Delay 2.3 2.7 3.0 3.6 5.0 ns tRD4 FO=4 Routing Delay 2.9 3.3 3.7 4.4 6.1 ns tRD8 FO=8 Routing Delay 4.9 5.7 6.5 7.6 10.6 ns Logic Module Sequential Timing2 tSUD Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tA Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 181 168 154 134 80 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 0.7 0.8 0.9 1.1 1.5 ns tINYL Pad-to-Y LOW 0.6 0.7 0.8 1.0 1.3 ns Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35pF loading. 1 -3 6 v6.0 40MX and 42MX FPGA Families Table 28 • A40MX02 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 1 tIRD1 FO=1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO=2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO=3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns tIRD4 FO=4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO=8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input Low to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.0 7.0 9.8 9.8 ns tCKL Input High to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.4 7.4 10.4 10.4 ns tPWH Minimum Pulse Width HIGH FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 ns tPWL Minimum Pulse Width LOW FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.01 3.4 3.6 4.8 5.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 FO = 128 fMAX Maximum Frequency FO = 16 FO = 128 0.4 0.5 4.7 4.8 0.5 0.6 5.4 5.6 188 181 0.5 0.7 6.1 6.3 175 168 0.6 0.8 7.2 7.5 160 154 0.8 1.2 10.0 10.4 139 134 ns ns 83 80 MHz Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35pF loading. v6.0 1-37 40MX and 42MX FPGA Families Table 28 • A40MX02 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units TTL Output Module Timing 4 tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable HIGH Pad Z to 3.7 4.3 4.9 5.8 8.0 ns tENZL Enable LOW Pad Z to 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF CMOS Output Module Timing4 tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable HIGH Pad Z to 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable LOW Pad Z to 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35pF loading. 1 -3 8 v6.0 40MX and 42MX FPGA Families Table 29 • A40MX02 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.7 2.0 2.3 2.7 3.7 ns tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns 1 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tRD2 FO=2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO=3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO=4 Routing Delay 4.2 4.8 5.4 6.3 8.9 ns tRD8 FO=8 Routing Delay 7.1 8.2 9.2 10.9 15.2 ns 2 Logic Module Sequential Timing tSUD Flip-Flop (Latch) Data Input Set-Up 4.3 4.9 5.6 6.6 9.2 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 4.9 5.6 6.6 9.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 6.0 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 6.0 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 109 101 92 80 48 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.1 1.3 1.5 2.1 ns tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. v6.0 1-39 40MX and 42MX FPGA Families Table 29 • A40MX02 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 1 tIRD1 FO=1 Routing Delay 2.9 3.4 3.8 4.5 6.3 ns tIRD2 FO=2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO=3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO=4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO=8 Routing Delay 8.0 9.26 10.5 12.6 17.3 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 6.4 6.4 7.4 7.4 8.3 8.3 9.8 9.8 13.7 13.7 ns tCKL Input HIGH to LOW FO = 16 FO = 128 6.7 6.7 7.8 7.8 8.8 8.8 10.4 10.4 14.5 14.5 ns tPWH Minimum Pulse Width HIGH FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tPWL Minimum Pulse Width LOW FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 FO = 128 fMAX Maximum Frequency FO = 16 FO = 128 0.6 0.8 6.5 6.8 0.6 0.9 7.5 7.8 0.7 1.0 8.5 8.9 0.8 1.2 10.1 10.4 1.2 1.6 14.1 14.6 ns ns 113 109 105 101 96 92 83 80 50 48 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.8 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. 1 -4 0 v6.0 40MX and 42MX FPGA Families Table 29 • A40MX02 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 4 CMOS Output Module Timing tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. v6.0 1-41 40MX and 42MX FPGA Families Table 30 • A40MX04 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.2 1.4 1.6 1.9 2.7 ns tPD2 Dual-Module Macros 2.3 3.1 3.5 4.1 5.7 ns tCO Sequential Clock-to-Q 1.2 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.9 2.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.4 1.6 1.9 2.7 ns 1 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 1.2 1.6 1.8 2.1 3.0 ns tRD2 FO=2 Routing Delay 1.9 2.2 2.5 2.9 4.1 ns tRD3 FO=3 Routing Delay 2.4 2.8 3.2 3.7 5.2 ns tRD4 FO=4 Routing Delay 2.9 3.4 3.9 4.5 6.3 ns tRD8 FO=8 Routing Delay 5.0 5.8 6.6 7.8 10.9 ns 2 Logic Module Sequential Timing tSUD Flip-Flop (Latch) Data Input Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 3.1 3.5 4.0 4.7 6.6 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 3.3 3.8 4.3 5.0 7.0 ns tA Flip-Flop Clock Input Period 4.8 5.6 6.3 7.5 10.4 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 181 167 154 134 80 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 0.7 0.8 0.9 1.1 1.5 ns tINYL Pad-to-Y LOW 0.6 0.7 0.8 1.0 1.3 ns Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. 1 -4 2 v6.0 40MX and 42MX FPGA Families Table 30 • A40MX04 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 1 tIRD1 FO=1 Routing Delay 2.1 2.4 2.2 3.2 4.5 ns tIRD2 FO=2 Routing Delay 2.6 3.0 3.4 4.0 5.6 ns tIRD3 FO=3 Routing Delay 3.1 3.6 4.1 4.8 6.7 ns tIRD4 FO=4 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD8 FO=8 Routing Delay 5.7 6.6 7.5 8.8 12.4 ns Global Clock Network tCKH Input Low to HIGH FO = 16 FO = 128 4.6 4.6 5.3 5.3 6.0 6.0 7.0 7.0 9.8 9.8 ns tCKL Input High to LOW FO = 16 FO = 128 4.8 4.8 5.6 5.6 6.3 6.3 7.4 7.4 10.4 10.4 ns tPWH Minimum Width HIGH Pulse FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.1 3.4 3.6 4.8 5.1 ns tPWL Minimum Width LOW Pulse FO = 16 FO = 128 2.2 2.4 2.6 2.7 2.9 3.01 3.4 3.6 4.8 5.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 FO = 128 fMAX Maximum Frequency FO = 16 FO = 128 0.4 0.5 4.7 4.8 0.5 0.6 5.4 5.6 0.5 0.7 6.1 6.3 0.6 0.8 7.2 7.5 0.8 1.2 10.0 10.4 188 181 175 168 160 154 139 134 ns ns 83 80 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 3.3 3.8 4.3 5.1 7.2 ns tDHL Data-to-Pad LOW 4.0 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.3 4.9 5.8 8.0 ns tENZL Enable Pad Z to LOW 4.7 5.4 6.1 7.2 10.1 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.1 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.02 0.02 0.03 0.03 0.04 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. v6.0 1-43 40MX and 42MX FPGA Families Table 30 • A40MX04 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 1 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.9 4.5 5.1 6.05 8.5 ns tDHL Data-to-Pad LOW 3.4 3.9 4.4 5.2 7.3 ns tENZH Enable Pad Z to HIGH 3.4 3.9 4.4 5.2 7.3 ns tENZL Enable Pad Z to LOW 4.9 5.6 6.4 7.5 10.5 ns tENHZ Enable Pad HIGH to Z 7.9 9.1 10.4 12.2 17.0 ns tENLZ Enable Pad LOW to Z 5.9 6.8 7.7 9.0 12.6 ns dTLH Delta LOW to HIGH 0.03 0.04 0.04 0.05 0.07 ns/pF dTHL Delta HIGH to LOW 0.02 0.02 0.03 0.03 0.04 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer utility from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. 1 -4 4 v6.0 40MX and 42MX FPGA Families Table 31 • A40MX04 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays tPD1 Single Module 1.7 2.0 2.3 2.7 3.7 ns tPD2 Dual-Module Macros 3.7 4.3 4.9 5.7 8.0 ns tCO Sequential Clock-to-Q 1.7 2.0 2.3 2.7 3.7 ns tGO Latch G-to-Q 1.7 2.0 2.3 2.7 3.7 ns tRS Flip-Flop (Latch) Reset-to-Q 1.7 2.0 2.3 2.7 3.7 ns 1 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 1.9 2.2 2.5 3.0 4.2 ns tRD2 FO=2 Routing Delay 2.7 3.1 3.5 4.1 5.7 ns tRD3 FO=3 Routing Delay 3.4 3.9 4.4 5.2 7.3 ns tRD4 FO=4 Routing Delay 4.1 4.8 5.4 6.3 8.9 ns tRD8 FO=8 Routing Delay 7.1 8.1 9.2 10.9 15.2 ns 2 Logic Module Sequential Timing tSUD Flip-Flop (Latch) Data Input Set-Up 4.3 5.0 5.6 6.6 9.2 ns tHD3 Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 4.3 5.0 5.6 6.6 9.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.3 5.6 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.6 5.3 5.6 7.0 9.8 ns tA Flip-Flop Clock Input Period 6.8 7.8 8.9 10.4 14.6 ns fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 109 101 92 80 48 MHz Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.1 1.3 1.5 2.1 ns tINYL Pad-to-Y LOW 0.9 1.0 1.1 1.3 1.9 ns Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. v6.0 1-45 40MX and 42MX FPGA Families Table 31 • A40MX04 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 1 tIRD1 FO=1 Routing Delay 2.9 3.3 3.8 4.5 6.3 ns tIRD2 FO=2 Routing Delay 3.6 4.2 4.8 5.6 7.8 ns tIRD3 FO=3 Routing Delay 4.4 5.0 5.7 6.7 9.4 ns tIRD4 FO=4 Routing Delay 5.1 5.9 6.7 7.8 11.0 ns tIRD8 FO=8 Routing Delay 8.0 9.3 10.5 12.4 17.2 ns Global Clock Network tCKH Input LOW to HIGH FO = 16 FO = 128 6.4 6.4 7.4 7.4 8.4 8.4 9.9 9.9 13.8 13.8 ns tCKL Input HIGH to LOW FO = 16 FO = 128 6.8 6.8 7.8 7.8 8.9 8.9 10.4 10.4 14.6 14.6 ns tPWH Minimum Pulse Width HIGH FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tPWL Minimum Pulse Width LOW FO = 16 FO = 128 3.1 3.3 3.6 3.8 4.1 4.3 4.8 5.1 6.7 7.1 ns tCKSW Maximum Skew FO = 16 FO = 128 tP Minimum Period FO = 16 FO = 128 fMAX Maximum Frequency FO = 16 FO = 128 0.6 0.8 6.5 6.8 0.6 0.9 7.5 7.8 0.7 1.0 8.5 8.9 0.8 1.2 10.1 10.4 1.2 1.6 14.1 14.6 ns ns 113 109 105 101 96 92 83 80 50 48 MHz TTL Output Module Timing4 tDLH Data-to-Pad HIGH 4.7 5.4 6.1 7.2 10.0 ns tDHL Data-to-Pad LOW 5.6 6.4 7.3 8.6 12.0 ns tENZH Enable Pad Z to HIGH 5.2 6.0 6.9 8.1 11.3 ns tENZL Enable Pad Z to LOW 6.6 7.6 8.6 10.1 14.1 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.03 0.03 0.04 0.04 0.06 ns/pF dTHL Delta HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. 1 -4 6 v6.0 40MX and 42MX FPGA Families Table 31 • A40MX04 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCC = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 4 CMOS Output Module Timing tDLH Data-to-Pad HIGH 5.5 6.4 7.2 8.5 11.9 ns tDHL Data-to-Pad LOW 4.8 5.5 6.2 7.3 10.2 ns tENZH Enable Pad Z to HIGH 4.7 5.5 6.2 7.3 10.2 ns tENZL Enable Pad Z to LOW 6.8 7.9 8.9 10.5 14.7 ns tENHZ Enable Pad HIGH to Z 11.1 12.8 14.5 17.1 23.9 ns tENLZ Enable Pad LOW to Z 8.2 9.5 10.7 12.6 17.7 ns dTLH Delta LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Delta HIGH to LOW 0.03 0.03 0.04 0.04 0.06 ns/pF Notes: 1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility. 3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro. 4. Delays based on 35 pF loading. v6.0 1-47 40MX and 42MX FPGA Families Table 32 • A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays1 tPD1 Single Module 1.2 1.3 1.5 1.8 2.5 ns tCO Sequential Clock-to-Q 1.3 1.4 1.6 1.9 2.7 ns tGO Latch G-to-Q 1.2 1.4 1.6 1.8 2.6 ns tRS Flip-Flop (Latch) Reset-to-Q 1.2 1.6 1.8 2.1 2.9 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns tRD2 FO=2 Routing Delay 0.9 1.0 1.2 1.4 1.9 ns tRD3 FO=3 Routing Delay 1.2 1.3 1.5 1.7 2.4 ns tRD4 FO=4 Routing Delay 1.4 1.5 1.7 2.0 2.9 ns tRD8 FO=8 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns Logic Module Sequential Timing3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.0 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.5 4.9 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 3.5 3.8 4.3 5.1 7.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.4 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency 268 244 224 195 117 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -4 8 v6.0 40MX and 42MX FPGA Families Table 32 • A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.0 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.3 1.4 1.6 1.9 2.7 ns tINGL G to Y LOW 1.3 1.4 1.6 1.9 2.7 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 2.0 2.2 2.5 3.0 4.2 ns tIRD2 FO=2 Routing Delay 2.3 2.5 2.9 3.4 4.7 ns tIRD3 FO=3 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD4 FO=4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tIRD8 FO=8 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 2.4 2.7 2.7 3.0 3.0 3.4 3.6 4.0 5.0 5.5 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 3.5 3.9 3.9 4.3 4.4 4.9 5.2 5.7 7.3 8.0 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 256 1.2 1.3 1.4 1.5 1.5 1.7 1.8 2.0 2.5 2.7 ns ns tCKSW Maximum Skew FO = 32 FO = 256 tSUEXT Input Latch External FO = 32 Set-Up FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 256 2.3 2.2 2.6 2.4 3.0 3.3 3.5 3.9 4.9 5.5 ns ns tP Minimum Period 3.4 3.7 3.7 4.1 4.0 4.5 4.7 5.2 7.8 8.6 ns ns fMAX Maximum Frequency FO = 32 FO = 256 FO = 32 FO = 256 0.3 0.3 0.3 0.3 296 268 269 244 0.4 0.4 247 224 0.5 0.5 215 195 0.6 0.6 129 117 ns ns MHz MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-49 40MX and 42MX FPGA Families Table 32 • A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description TTL Output Module Timing ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 tDLH Data-to-Pad HIGH 2.5 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.6 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 2.6 2.9 3.3 3.8 5.3 ns tGHL G-to-Pad LOW 2.6 2.9 3.3 3.8 5.3 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -5 0 v6.0 40MX and 42MX FPGA Families Table 32 • A42MX09 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 4.75V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tENZH Enable Pad Z to HIGH 2.7 2.9 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.2 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 4.9 5.4 6.2 7.3 10.2 ns tENLZ Enable Pad LOW to Z 5.3 5.9 6.7 7.9 11.1 ns tGLH G-to-Pad HIGH 4.2 4.6 5.2 6.1 8.6 ns tGHL G-to-Pad LOW 4.2 4.6 5.2 6.1 8.6 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 5.2 5.8 6.6 7.7 10.8 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 7.4 8.2 9.3 10.9 15.3 ns dTLH Capacity Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacity Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-51 40MX and 42MX FPGA Families Table 33 • A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description Logic Module Propagation ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 tPD1 Single Module 1.6 1.8 2.1 2.5 3.5 ns tCO Sequential Clock-to-Q 1.8 2.0 2.3 2.7 3.8 ns tGO Latch G-to-Q 1.7 1.9 2.1 2.5 3.5 ns tRS Flip-Flop (Latch) Reset-to-Q 2.0 2.2 2.5 2.9 4.1 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 1.0 1.1 1.2 1.4 2.0 ns tRD2 FO=2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO=3 Routing Delay 1.6 1.8 2.0 2.4 3.3 ns tRD4 FO=4 Routing Delay 1.9 2.1 2.4 2.9 4.0 ns tRD8 FO=8 Routing Delay 3.2 3.6 4.1 4.8 6.7 ns Logic Module Sequential Timing 3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.7 5.3 6.0 7.0 9.8 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.8 9.2 12.9 ns tA Flip-Flop Clock Input Period 5.0 5.6 6.2 7.1 9.9 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.3 0.3 0.3 0.4 0.6 ns fMAX Flip-Flop (Latch) Clock Frequency 161 146 135 117 70 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -5 2 v6.0 40MX and 42MX FPGA Families Table 33 • A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.8 2.17 3.0 ns tINYL Pad-to-Y LOW 1.2 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 1.8 2.0 2.3 2.7 3.7 ns tINGL G to Y LOW 1.8 2.0 2.3 2.7 3.7 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 2.8 3.2 3.6 4.2 5.9 ns tIRD2 FO=2 Routing Delay 3.2 3.5 4.0 4.7 6.6 ns tIRD3 FO=3 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD4 FO=4 Routing Delay 3.9 4.3 4.9 5.7 8.0 ns tIRD8 FO=8 Routing Delay 5.2 5.8 6.6 7.7 10.8 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 256 4.1 4.5 4.5 5.0 5.1 5.6 6.0 6.7 8.4 9.3 ns ns tCKL Input HIGH to LOW FO = 32 FO = 256 5.0 5.4 5.5 6.0 6.2 6.8 7.3 8.0 10.2 11.2 ns ns tPWH Minimum Width HIGH Pulse FO = 32 FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tPWL Minimum Width LOW Pulse FO = 32 FO = 256 1.7 1.9 1.9 2.1 2.1 2.3 2.5 2.7 3.5 3.8 ns ns tCKSW Maximum Skew tSUEXT Input Latch External FO = 32 Set-Up FO = 256 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 256 3.3 3.7 3.7 4.1 4.2 4.6 4.9 5.5 6.9 7.6 ns ns tP Minimum Period FO = 32 FO = 256 5.6 6.1 6.2 6.8 6.7 7.4 7.8 8.5 12.9 14.2 ns ns fMAX Maximum Frequency FO = 32 FO = 256 FO = 32 FO = 256 0.4 0.4 0.5 0.5 177 161 161 146 0.5 0.5 148 135 0.6 0.6 129 117 0.9 0.9 77 70 ns ns MHz MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-53 40MX and 42MX FPGA Families Table 33 • A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units TTL Output Module Timing 5 tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.1 7.1 ns tDHL Data-to-Pad LOW 4.0 4.5 5.1 6.1 8.3 ns tENZH Enable HIGH Pad Z to 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable LOW Pad Z to 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-toOut (Pad-to-Pad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns dTLH Capacity Loading, LOW to HIGH 0.00 0.00 0.00 0.10 0.01 ns/pF dTHL Capacity Loading, HIGH to LOW 0.09 0.10 0.10 0.10 0.10 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -5 4 v6.0 40MX and 42MX FPGA Families Table 33 • A42MX09 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, VCCA = 3.0V, TJ = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.4 3.8 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 4.1 4.5 4.2 5.0 7.0 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.6 5.5 7.6 ns tENZL Enable Pad Z to LOW 4.1 4.5 5.1 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 6.9 7.6 8.6 10.2 14.2 ns tENLZ Enable Pad LOW to Z 7.5 8.3 9.4 11.1 15.5 ns tGLH G-to-Pad HIGH 5.8 6.5 7.3 8.6 12.0 ns tGHL G-to-Pad LOW 5.8 6.5 7.3 8.6 12.0 ns tLSU I/O Latch Set-Up 0.7 0.8 0.9 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 8.7 9.7 10.9 12.9 18.0 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 12.2 13.5 15.4 18.1 25.3 ns dTLH Capacity Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacity Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-55 40MX and 42MX FPGA Families Table 34 • A42MX16 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 1 Logic Module Propagation Delays tPD1 Single Module 1.4 1.5 1.7 2.0 2.8 ns tCO Sequential Clock-to-Q 1.4 1.6 1.8 2.1 3.0 ns tGO Latch G-to-Q 1.4 1.5 1.7 2.0 2.8 ns tRS Flip-Flop (Latch) Reset-to-Q 1.6 1.7 2.0 2.3 3.3 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 0.8 0.9 1.0 1.2 1.6 ns tRD2 FO=2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns tRD3 FO=3 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD4 FO=4 Routing Delay 1.6 1.7 2.0 2.3 3.2 ns tRD8 FO=8 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns Logic Module Sequential Timing3,4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.3 5.0 7.1 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.5 5.0 5.6 6.6 9.2 ns tA Flip-Flop Clock Input Period 6.8 7.6 8.6 10.1 14.1 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns fMAX Flip-Flop (Latch) Clock Frequency 215 195 179 156 94 MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -5 6 v6.0 40MX and 42MX FPGA Families Table 34 • A42MX16 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.1 1.2 1.3 1.6 2.2 ns tINYL Pad-to-Y LOW 0.8 0.9 1.0 1.2 1.7 ns tINGH G to Y HIGH 1.4 1.6 1.8 2.1 2.9 ns tINGL G to Y LOW 1.4 1.6 1.8 2.1 2.9 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 1.8 2.0 2.3 2.7 4.0 ns tIRD2 FO=2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO=3 Routing Delay 2.3 2.6 3.0 3.5 4.9 ns tIRD4 FO=4 Routing Delay 2.6 3.0 3.3 3.9 5.4 ns tIRD8 FO=8 Routing Delay 3.6 4.0 4.6 5.4 7.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 6.0 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 3.8 4.5 4.2 5.0 4.8 5.6 5.6 6.6 7.8 9.2 ns ns tPWH Minimum Width HIGH Pulse FO = 32 FO = 384 3.2 3.7 3.5 4.1 4.0 4.6 4.7 5.4 6.6 7.6 ns ns tPWL Minimum Width LOW Pulse FO = 32 FO = 384 3.2 3.7 3.5 4.1 4.0 4.6 4.7 5.4 6.6 7.6 ns ns tCKSW Maximum Skew tSUEXT Input Latch External FO = 32 Set-Up FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 384 2.8 3.2 3.1 3.5 5.5 4.0 4.1 4.7 5.7 6.6 ns ns tP Minimum Period FO = 32 FO = 384 4.2 4.6 4.67 5.1 5.1 5.6 5.8 6.4 9.7 10.7 ns ns fMAX Maximum Frequency FO = 32 FO = 384 FO = 32 FO = 384 0.3 0.3 0.4 0.4 237 215 215 195 0.4 0.4 198 179 0.5 0.5 172 156 0.7 0.7 103 94 ns ns MHz MHz Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-57 40MX and 42MX FPGA Families Table 34 • A42MX16 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description TTL Output Module ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing5 tDLH Data-to-Pad HIGH 2.5 2.8 3.2 3.7 5.2 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns dTLH Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.04 0.05 0.07 ns/pF 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.2 3.6 4.0 4.7 6.6 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.4 4.0 5.6 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.8 4.4 6.2 ns tENHZ Enable Pad HIGH to Z 5.4 6.0 6.8 8.0 11.2 ns tENLZ Enable Pad LOW to Z 5.0 5.6 6.3 7.4 10.4 ns tGLH G-to-Pad HIGH 5.1 5.6 6.4 7.5 10.5 ns tGHL G-to-Pad LOW 5.1 5.6 6.4 7.5 10.5 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 5.7 6.3 7.1 8.4 11.9 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns dTLH Capacitive Loading, LOW to HIGH 0.03 0.03 0.03 0.04 0.06 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, point and position whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -5 8 v6.0 40MX and 42MX FPGA Families Table 35 • A42MX16 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Logic Module Propagation Delays1 tPD1 Single Module 1.9 2.1 2.4 2.8 4.0 ns tCO Sequential Clock-to-Q 2.0 2.2 2.5 3.0 4.2 ns tGO Latch G-to-Q 1.9 2.1 2.4 2.8 4.0 ns tRS Flip-Flop (Latch) Reset-to-Q 2.2 2.4 2.8 3.3 4.6 ns Logic Module Predicted Routing Delays2 tRD1 FO=1 Routing Delay 1.1 1.2 1.4 1.6 2.3 ns tRD2 FO=2 Routing Delay 1.5 1.6 1.8 2.1 3.0 ns tRD3 FO=3 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tRD4 FO=4 Routing Delay 2.2 2.4 2.7 3.2 4.5 ns tRD8 FO=8 Routing Delay 3.6 4.0 4.5 5.3 7.5 ns Logic Module Sequential Timing3, 4 tSUD Flip-Flop (Latch) Data Input Set-Up 0.5 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.8 5.3 6.0 7.1 9.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.2 6.9 7.9 9.2 12.9 ns tA Flip-Flop Clock Input Period 9.5 10.6 12.0 14.1 19.8 ns tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Buffer Latch Set-Up 0.7 0.8 0.9 1.01 1.4 ns tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tOUTSU Output Buffer Latch Set-Up 0.7 0.8 0.89 1.01 1.4 ns fMAX Flip-Flop (Latch) Clock Frequency 129 117 108 94 56 MHz Notes: 1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-59 40MX and 42MX FPGA Families Table 35 • A42MX16 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Propagation Delays tINYH Pad-to-Y HIGH 1.5 1.6 1.9 2.2 3.1 ns tINYL Pad-to-Y LOW 1.1 1.3 1.4 1.7 2.4 ns tINGH G to Y HIGH 2.0 2.2 2.5 2.9 4.1 ns tINGL G to Y LOW 2.0 2.2 2.5 2.9 4.1 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO=2 Routing Delay 2.9 3.2 3.7 4.3 6.1 ns tIRD3 FO=3 Routing Delay 3.3 3.6 4.1 4.9 6.8 ns tIRD4 FO=4 Routing Delay 3.6 4.0 4.6 5.4 7.6 ns tIRD8 FO=8 Routing Delay 5.1 5.6 6.4 7.5 10.5 ns Global Clock Network tCKH Input LOW to HIGH FO = 32 FO = 384 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.0 9.9 ns ns tCKL Input HIGH to LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 6.7 7.9 7.8 9.2 11.0 12.9 ns ns tPWH Minimum Pulse Width HIGH FO = 32 FO = 384 5.7 6.6 6.3 7.4 7.1 8.3 8.4 9.8 11.8 13.7 ns ns tPWL Minimum Pulse Width LOW FO = 32 FO = 384 5.3 6.2 5.9 6.9 6.7 7.9 7.8 9.2 11.0 12.9 ns ns tCKSW Maximum Skew FO = 32 FO = 384 tSUEXT Input Latch External FO = 32 Set-Up FO = 384 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO = 32 Hold FO = 384 3.9 4.5 4.3 4.9 4.9 5.6 5.7 6.6 8.0 9.2 ns ns tP Minimum Period 7.0 7.7 7.8 8.6 8.4 9.3 9.7 10.7 16.2 17.8 ns ns fMAX Maximum Frequency FO = 32 FO = 384 FO = 32 FO = 384 0.5 2.2 0.5 2.4 142 129 129 117 0.6 2.7 119 108 0.7 3.2 103 94 1.0 4.5 62 56 ns ns MHz MHz Notes: 1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -6 0 v6.0 40MX and 42MX FPGA Families Table 35 • A42MX16 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description TTL Output Module ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing5 tDLH Data-to-Pad HIGH 3.5 3.9 4.4 5.2 7.3 ns tDHL Data-to-Pad LOW 4.1 4.6 5.2 6.1 8.6 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF CMOS Output Module Timing5 tDLH Data-to-Pad HIGH 4.5 5.0 5.6 6.6 9.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.8 4.2 4.8 5.6 7.8 ns tENZL Enable Pad Z to LOW 4.2 4.6 5.3 6.2 8.7 ns tENHZ Enable Pad HIGH to Z 7.6 8.4 9.5 11.2 15.7 ns tENLZ Enable Pad LOW to Z 7.0 7.8 8.8 10.4 14.5 ns tGLH G-to-Pad HIGH 7.1 7.9 8.9 10.5 14.7 ns tGHL G-to-Pad LOW 7.1 7.9 8.9 10.5 14.7 ns tLCO I/O Latch Clock-to-Out (Pad-toPad), 64 Clock Loading 8.0 8.9 10.1 11.9 16.7 ns tACO Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 11.3 12.5 14.2 16.7 23.3 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.05 0.06 0.08 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.05 0.05 0.06 0.07 0.10 ns/pF Notes: 1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-61 40MX and 42MX FPGA Families Table 36 • A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Logic Module Combinatorial ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay 1.2 1.3 1.5 1.8 2.5 ns 1.4 1.6 1.8 2.1 3.0 ns 2 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 0.8 0.9 1.0 1.2 1.7 ns tRD2 FO=2 Routing Delay 1.0 1.2 1.3 1.5 2.1 ns tRD3 FO=3 Routing Delay 1.3 1.4 1.6 1.9 2.6 ns tRD4 FO=4 Routing Delay 1.5 1.7 1.9 2.2 3.1 ns tRD5 FO=8 Routing Delay 2.4 2.7 3.0 3.6 5.0 ns Logic Module Sequential Timing3, 4 tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.2 1.3 1.5 1.8 2.5 ns tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.4 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.4 0.5 0.5 0.6 0.8 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.3 6.5 9.0 1.4 1.6 1.8 2.1 2.9 ns ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.6 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -6 2 v6.0 40MX and 42MX FPGA Families Table 36 • A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 2 tIRD1 FO=1 Routing Delay 1.8 2.0 2.3 2.7 3.8 ns tIRD2 FO=2 Routing Delay 2.1 2.3 2.6 3.1 4.3 ns tIRD3 FO=3 Routing Delay 2.3 2.5 2.9 3.4 4.8 ns tIRD4 FO=4 Routing Delay 2.5 2.8 3.2 3.7 5.2 ns tIRD8 FO=8 Routing Delay 3.4 3.8 4.3 5.1 7.1 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=486 2.6 2.9 2.9 3.2 3.3 3.6 3.9 4.3 5.4 5.9 ns ns tCKL Input HIGH to LOW FO=32 FO=486 3.7 4.3 4.1 4.7 4.6 5.4 5.4 6.3 7.6 8.8 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=486 2.2 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=486 2.2 2.4 2.4 2.6 2.7 3.0 3.2 3.5 4.5 4.9 ns ns tCKSW Maximum Skew FO=32 FO=486 tSUEXT Input Latch External FO=32 Set-Up FO=486 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO=32 Hold FO=486 2.8 3.3 3.1 3.7 3.5 4.2 4.1 4.9 5.7 6.9 ns ns tP Minimum Period (1/fMAX) 4.7 5.1 5.2 5.7 5.7 6.2 6.5 7.1 10.9 11.9 ns ns FO=32 FO=486 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1.1 1.1 ns ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-63 40MX and 42MX FPGA Families Table 36 • A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description TTL Output Module Timing ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 tDLH Data-to-Pad HIGH 2.4 2.7 3.1 3.6 5.1 ns tDHL Data-to-Pad LOW 2.8 3.2 3.6 4.2 5.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.9 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 2.9 3.2 3.6 4.3 6.0 ns tGHL G-to-Pad LOW 2.9 3.2 3.6 4.3 6.0 ns tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 5.6 6.1 6.9 8.1 11.4 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -6 4 v6.0 40MX and 42MX FPGA Families Table 36 • A42MX24 Timing Characteristics (Nominal 5.0V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 CMOS Output Module Timing tDLH Data-to-Pad HIGH 3.1 3.5 3.9 4.6 6.4 ns tDHL Data-to-Pad LOW 2.4 2.6 3.0 3.5 4.9 ns tENZH Enable Pad Z to HIGH 2.5 2.8 3.2 3.8 5.3 ns tENZL Enable Pad Z to LOW 2.8 3.1 3.5 4.2 5.8 ns tENHZ Enable Pad HIGH to Z 5.2 5.7 6.5 7.6 10.7 ns tENLZ Enable Pad LOW to Z 4.8 5.3 6.0 7.1 9.9 ns tGLH G-to-Pad HIGH 4.9 5.4 6.2 7.2 10.1 ns tGHL G-to-Pad LOW 4.9 5.4 6.2 7.2 10.1 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad) 32 I/O 5.5 6.1 6.9 8.1 11.3 ns tACO Array Latch Clock-to-Out (Padto-Pad) 32 I/O 10.6 11.8 13.4 15.7 22.0 ns dTLH Capacitive Loading, LOW to HIGH 0.04 0.04 0.04 0.05 0.07 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.03 0.03 0.03 0.04 0.06 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-65 40MX and 42MX FPGA Families Table 37 • A42MX24 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Logic Module Combinatorial ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay tPDD Internal Decode Module Delay 2.0 1.8 2.1 2.5 3.4 ns 1.1 2.2 2.5 3.0 4.2 ns 2 Logic Module Predicted Routing Delays tRD1 FO=1 Routing Delay 1.7 1.3 1.4 1.7 2.3 ns tRD2 FO=2 Routing Delay 2.0 1.6 1.8 2.1 3.0 ns tRD3 FO=3 Routing Delay 1.1 2.0 2.2 2.6 3.7 ns tRD4 FO=4 Routing Delay 1.5 2.3 2.6 3.1 4.3 ns tRD5 FO=8 Routing Delay 1.8 3.7 4.2 5.0 7.0 ns Logic Module Sequential Timing3, 4 tCO Flip-Flop Clock-to-Output 2.1 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 3.4 1.9 2.1 2.5 3.4 ns tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.6 0.7 0.8 1.2 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 2.0 2.2 2.5 2.9 4.1 ns ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.2 3.0 ns tINGO Input Latch Gate-toOutput 1.8 1.9 2.2 2.6 3.6 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -6 6 v6.0 40MX and 42MX FPGA Families Table 37 • A42MX24 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays 2 tIRD1 FO=1 Routing Delay 2.6 2.9 3.2 3.8 5.3 ns tIRD2 FO=2 Routing Delay 2.9 3.2 3.6 4.3 6.0 ns tIRD3 FO=3 Routing Delay 3.2 3.6 4.0 4.8 6.6 ns tIRD4 FO=4 Routing Delay 3.5 3.9 4.4 5.2 7.3 ns tIRD8 FO=8 Routing Delay 4.8 5.3 6.1 7.1 10.0 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=486 4.4 4.8 4.8 5.3 5.5 6.0 6.5 7.1 9.1 10.0 ns ns tCKL Input HIGH to LOW FO=32 FO=486 5.1 6.0 5.7 6.6 6.4 7.5 7.6 8.8 10.6 12.4 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=486 3.0 3.3 3.3 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=486 3.0 3.3 3.4 3.7 3.8 4.2 4.5 4.9 6.3 6.9 ns ns tCKSW Maximum Skew FO=32 FO=486 tSUEXT Input Latch External FO=32 Set-Up FO=486 0.8 0.8 0.0 0.0 0.8 0.8 0.0 0.0 1.0 1.0 0.0 0.0 1.1 1.1 0.0 0.0 1.6 1.6 0.0 0.0 ns ns ns ns TTL Output Module Timing5 tDLH Data-to-Pad HIGH 3.4 3.8 4.3 5.0 7.1 ns tDHL Data-to-Pad LOW 4.0 4.4 5.0 5.9 8.3 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.9 4.4 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.1 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 4.8 5.3 6.0 7.2 10.0 ns tGHL G-to-Pad LOW 4.8 5.3 6.0 7.2 10.0 ns tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-67 40MX and 42MX FPGA Families Table 37 • A42MX24 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units 5 TTL Output Module Timing (Continued) tLH I/O Latch Output Hold tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF CMOS Output Module 0.0 0.0 0.0 0.0 0.0 ns Timing5 tDLH Data-to-Pad HIGH 4.8 5.3 5.5 6.4 9.0 ns tDHL Data-to-Pad LOW 3.5 3.9 4.1 4.9 6.8 ns tENZH Enable Pad Z to HIGH 3.6 4.0 4.5 5.3 7.4 ns tENZL Enable Pad Z to LOW 3.4 4.0 5.0 5.8 8.2 ns tENHZ Enable Pad HIGH to Z 7.2 8.0 9.0 10.7 14.9 ns tENLZ Enable Pad LOW to Z 6.7 7.5 8.5 9.9 13.9 ns tGLH G-to-Pad HIGH 6.8 7.6 8.6 10.1 14.2 ns tGHL G-to-Pad LOW 6.8 7.6 8.6 10.1 14.2 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O 7.7 8.5 9.6 11.3 15.9 ns tACO Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O 14.8 16.5 18.7 22.0 30.8 ns dTLH Capacitive Loading, LOW to HIGH 0.05 0.05 0.06 0.07 0.10 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.04 0.04 0.05 0.06 0.08 ns/pF tHEXT Input Latch External FO=32 Hold FO=486 3.9 4.6 4.3 5.2 4.9 5.8 5.7 6.9 8.1 9.6 ns ns tP Minimum Period (1/fMAX) FO=32 FO=486 7.8 8.6 8.7 9.5 9.5 10.4 10.8 11.9 18.2 19.9 ns ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -6 8 v6.0 40MX and 42MX FPGA Families Table 38 • A42MX36 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description Logic Module Combinatorial ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay 1.3 1.5 1.7 2.0 2.7 ns tPDD Internal Decode Module Delay 1.6 1.8 2.0 2.4 3.3 ns Delays2 Logic Module Predicted Routing tRD1 FO=1 Routing Delay 0.9 1.0 1.2 1.4 2.0 ns tRD2 FO=2 Routing Delay 1.3 1.4 1.6 1.9 2.7 ns tRD3 FO=3 Routing Delay 1.6 1.8 2.0 2.4 3.4 ns tRD4 FO=4 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tRD5 FO=8 Routing Delay 3.3 3.7 4.2 4.9 6.9 ns tRDD Decode-to-Output Routing Delay 0.3 0.4 0.4 0.5 0.7 ns 3, 4 Logic Module Sequential Timing tCO Flip-Flop Clock-to-Output 1.3 1.4 1.6 1.9 2.7 ns tGO Latch Gate-to-Output 1.3 1.4 1.6 1.9 2.7 ns tSUD Flip-Flop (Latch) Set-Up Time 0.3 0.3 0.4 0.5 0.7 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.3 3.7 4.2 4.9 6.9 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.4 4.8 5.5 6.4 9.0 1.6 1.7 2.0 2.3 3.2 ns ns Synchronous SRAM Operations tRC Read Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tWC Write Cycle Time 6.8 7.5 8.5 10.0 14.0 ns tRCKHL Clock HIGH/LOW Time 3.4 3.8 4.3 5.0 7.0 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 3.4 1.6 3.8 1.8 4.3 2.0 5.0 2.4 7.0 3.4 ns ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-69 40MX and 42MX FPGA Families Table 38 • A42MX36 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Synchronous SRAM Operations (Continued) tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.3 ns tRENH Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 2.8 3.1 3.5 4.1 5.7 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid 8.8 9.8 11.1 13.0 18.2 ns tADSU Address/Data Set-Up Time 1.6 1.8 2.0 2.4 3.4 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.6 0.7 0.8 0.9 1.3 ns tRENHA Read Enable Hold 3.4 3.8 4.3 5.0 7.0 ns tWENSU Write Enable Set-Up 2.7 3.0 3.4 4.0 5.6 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 8.1 9.0 10.2 12.0 16.8 ns 1.2 1.3 1.5 1.8 2.5 ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.0 1.1 1.3 1.5 2.1 ns tINGO Input Latch Gate-to-Output 1.4 1.6 1.8 2.1 2.9 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tILA Latch Active Pulse Width 4.7 5.2 5.9 6.9 9.7 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -7 0 v6.0 40MX and 42MX FPGA Families Table 38 • A42MX36 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 2.0 2.2 2.5 2.9 4.1 ns tIRD2 FO=2 Routing Delay 2.3 2.6 2.9 3.4 4.8 ns tIRD3 FO=3 Routing Delay 2.6 2.9 3.3 3.9 5.5 ns tIRD4 FO=4 Routing Delay 3.0 3.3 3.8 4.4 6.2 ns tIRD8 FO=8 Routing Delay 4.3 4.8 5.5 6.4 9.0 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 2.7 3.0 3.0 3.3 3.4 3.8 4.0 4.4 5.6 6.2 ns ns tCKL Input HIGH to LOW FO=32 FO=635 3.8 4.9 4.2 5.4 4.8 6.1 5.6 7.2 7.8 10.1 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 1.8 2.0 2.0 2.2 2.2 2.5 2.6 2.9 3.6 4.1 ns ns tCKSW Maximum Skew FO=32 FO=635 tSUEXT Input Latch External FO=32 Set-Up FO=635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External FO=32 Hold FO=635 2.8 3.3 3.2 3.7 3.6 4.2 4.2 4.9 5.9 6.9 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 5.5 6.0 6.1 6.6 6.6 7.2 7.6 8.3 12.7 13.8 ns ns fMAX Maximum Datapath FO=32 Frequency FO=635 0.8 0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.4 1.4 ns ns 180 166 164 151 151 139 131 121 79 73 MHz MHz TTL Output Module Timing5 tDLH Data-to-Pad HIGH 2.6 2.8 3.2 3.8 5.3 ns tDHL Data-to-Pad LOW 3.0 3.3 3.7 4.4 6.2 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 3.0 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-71 40MX and 42MX FPGA Families Table 38 • A42MX36 Timing Characteristics (Nominal 5.0V Operation) (Worst-Case Commercial Conditions, V CCA = 4.75V, T J = 70°C) ‘–3’ Speed Parameter Description TTL Output Module Timing5 ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units (Continued) tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 2.9 3.3 3.7 4.4 6.1 ns tGHL G-to-Pad LOW 2.9 3.3 3.7 4.4 6.1 ns tLSU I/O Latch Output Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Padto-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns dTLH Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF CMOS Output Module Timing5 tDLH Data-to-Pad HIGH 3.5 3.9 4.5 5.2 7.3 ns tDHL Data-to-Pad LOW 2.5 2.7 3.1 3.6 5.1 ns tENZH Enable Pad Z to HIGH 2.7 3.0 3.3 3.9 5.5 ns tENZL Enable Pad Z to LOW 2.9 3.3 3.7 4.3 6.1 ns tENHZ Enable Pad HIGH to Z 5.3 5.8 6.6 7.8 10.9 ns tENLZ Enable Pad LOW to Z 4.9 5.5 6.2 7.3 10.2 ns tGLH G-to-Pad HIGH 5.0 5.6 6.3 7.5 10.4 ns tGHL G-to-Pad LOW 5.0 5.6 6.3 7.5 10.4 ns tLSU I/O Latch Set-Up 0.5 0.5 0.6 0.7 1.0 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad) 32 I/O 5.7 6.3 7.1 8.4 11.8 ns tACO Array Latch Clock-to-Out (Padto-Pad) 32 I/O 7.8 8.6 9.8 11.5 16.1 ns dTLH Capacitive Loading, LOW to HIGH 0.07 0.08 0.09 0.10 0.14 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.07 0.08 0.09 0.10 0.14 ns/pF Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -7 2 v6.0 40MX and 42MX FPGA Families Table 39 • A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description Logic Module Combinatorial ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Functions1 tPD Internal Array Module Delay 1.9 2.1 2.3 2.7 3.8 ns tPDD Internal Decode Module Delay 2.2 2.5 2.8 3.3 4.7 ns Delays2 Logic Module Predicted Routing tRD1 FO=1 Routing Delay 1.3 1.5 1.7 2.0 2.7 ns tRD2 FO=2 Routing Delay 1.8 2.0 2.3 2.7 3.7 ns tRD3 FO=3 Routing Delay 2.3 2.5 2.8 3.4 4.7 ns tRD4 FO=4 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tRD5 FO=8 Routing Delay 4.6 5.2 5.8 6.9 9.6 ns tRDD Decode-to-Output Routing Delay 0.5 0.5 0.6 0.7 1.0 ns 3, 4 Logic Module Sequential Timing tCO Flip-Flop Clock-to-Output 1.8 2.0 2.3 2.7 3.7 ns tGO Latch Gate-to-Output 1.8 2.0 2.3 2.7 3.7 ns tSUD Flip-Flop (Latch) Set-Up Time 0.4 0.5 0.6 0.7 0.9 ns tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRO Flip-Flop (Latch) Reset-to-Output tSUENA Flip-Flop (Latch) Enable Set-Up 1.0 1.1 1.2 1.4 2.0 ns tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.6 5.2 5.8 6.9 9.6 ns tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 6.1 6.8 7.7 9.0 12.6 ns 2.2 2.4 2.7 3.2 4.5 ns Synchronous SRAM Operations tRC Read Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tWC Write Cycle Time 9.5 10.5 11.9 14.0 19.6 ns tRCKHL Clock HIGH/LOW Time 4.8 5.3 6.0 7.0 9.8 ns tRCO Data Valid After Clock HIGH/LOW tADSU Address/Data Set-Up Time 4.8 2.3 5.3 2.5 6.0 2.8 7.0 3.4 9.8 4.8 ns ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-73 40MX and 42MX FPGA Families Table 39 • A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Synchronous SRAM Operations (Continued) tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSU Read Enable Set-Up 0.9 1.0 1.1 1.3 1.8 ns tRENH Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tBENS Block Enable Set-Up 3.9 4.3 4.9 5.7 8.0 ns tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 ns Asynchronous SRAM Operations tRPD Asynchronous Access Time tRDADV Read Address Valid 12.3 13.7 15.5 18.2 25.5 ns tADSU Address/Data Set-Up Time 2.3 2.5 2.8 3.4 4.8 ns tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 ns tRENSUA Read Enable Set-Up to Address Valid 0.9 1.0 1.1 1.3 1.8 ns tRENHA Read Enable Hold 4.8 5.3 6.0 7.0 9.8 ns tWENSU Write Enable Set-Up 3.8 4.2 4.8 5.6 7.8 ns tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 ns tDOH Data Out Hold Time 11.3 12.6 14.3 16.8 23.5 ns 1.8 2.0 2.1 2.5 3.5 ns Input Module Propagation Delays tINPY Input Data Pad-to-Y 1.4 1.6 1.8 2.1 3.0 ns tINGO Input Latch Gate-toOutput 2.0 2.2 2.5 2.9 4.1 ns tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tINSU Input Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tILA Latch Active Pulse Width 6.5 7.3 8.2 9.7 13.5 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -7 4 v6.0 40MX and 42MX FPGA Families Table 39 • A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 2.8 3.1 3.5 4.1 5.7 ns tIRD2 FO=2 Routing Delay 3.2 3.5 4.1 4.8 6.7 ns tIRD3 FO=3 Routing Delay 3.7 4.1 4.7 5.5 7.7 ns tIRD4 FO=4 Routing Delay 4.2 4.6 5.3 6.2 8.7 ns tIRD8 FO=8 Routing Delay 6.1 6.8 7.7 9.0 12.6 ns Global Clock Network tCKH Input LOW to HIGH FO=32 FO=635 4.6 5.0 5.1 5.6 5.7 6.3 6.7 7.4 9.3 10.3 ns ns tCKL Input HIGH to LOW FO=32 FO=635 5.3 6.8 5.9 7.6 6.7 8.6 7.8 10.1 11.0 14.1 ns ns tPWH Minimum Pulse Width HIGH FO=32 FO=635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tPWL Minimum Pulse Width LOW FO=32 FO=635 2.5 2.8 2.7 3.1 3.1 3.5 3.6 4.1 5.1 5.7 ns ns tCKSW Maximum Skew FO=32 FO=635 tSUEXT Input Latch External Set-Up FO=32 FO=635 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns ns tHEXT Input Latch External Hold FO=32 FO=635 4.0 4.6 4.4 5.2 5.0 5.9 5.9 6.9 8.2 9.6 ns ns tP Minimum Period (1/fMAX) FO=32 FO=635 9.2 9.9 10.2 11.0 11.1 12.0 12.7 13.8 21.2 23.0 ns ns fMAX Maximum Datapath FO=32 Frequency FO=635 1.0 1.0 1.2 1.2 1.3 1.3 1.5 1.5 2.2 2.2 ns ns 108 100 98 91 90 83 79 73 47 44 MHz MHz TTL Output Module Timing5 tDLH Data-to-Pad HIGH 3.6 4.0 4.5 5.3 7.4 ns tDHL Data-to-Pad LOW 4.2 4.6 5.2 6.2 8.6 ns tENZH Enable Pad Z to HIGH 3.7 4.2 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.34 8.2 9.3 10.9 15.3 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. v6.0 1-75 40MX and 42MX FPGA Families Table 39 • A42MX36 Timing Characteristics (Nominal 3.3V Operation) (Continued) (Worst-Case Commercial Conditions, V CCA = 3.0V, T J = 70°C) ‘–3’ Speed Parameter Description TTL Output Module ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing5 tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 4.9 5.5 6.2 7.3 10.2 ns tGHL G-to-Pad LOW 4.9 5.5 6.2 7.3 10.2 ns tLSU I/O Latch Output Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns tACO Array Latch Clock-to-Out (Padto-Pad) 32 I/O 10.9 12.1 13.7 16.1 22.5 ns dTLH Capacitive Loading, LOW to HIGH 0.10 0.11 0.12 0.14 0.20 ns/pF dTHL Capacitive Loading, HIGH to LOW 0.10 0.11 0.12 0.14 0.20 ns/pF CMOS Output Module Timing5 tDLH Data-to-Pad HIGH 4.9 5.5 6.2 7.3 10.3 ns tDHL Data-to-Pad LOW 3.4 3.8 4.3 5.1 7.1 ns tENZH Enable Pad Z to HIGH 3.7 4.1 4.7 5.5 7.7 ns tENZL Enable Pad Z to LOW 4.1 4.6 5.2 6.1 8.5 ns tENHZ Enable Pad HIGH to Z 7.4 8.2 9.3 10.9 15.3 ns tENLZ Enable Pad LOW to Z 6.9 7.6 8.7 10.2 14.3 ns tGLH G-to-Pad HIGH 7.0 7.8 8.9 10.4 14.6 ns tGHL G-to-Pad LOW 7.0 7.8 8.9 10.4 14.6 ns tLSU I/O Latch Set-Up 0.7 0.7 0.8 1.0 1.4 ns tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns tLCO I/O Latch Clock-to-Out (Pad-toPad) 32 I/O 7.9 8.8 10.0 11.8 16.5 ns Notes: 1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility. 4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/ hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 5. Delays based on 35 pF loading. 1 -7 6 v6.0 40MX and 42MX FPGA Families Pin Descriptions CLK/A/B, I/O Global Clock PRA, I/O Clock inputs for clock distribution networks. CLK is for 40MX while CLKA and CLKB are for 42MX devices. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. DCLK, I/O PRB, I/O The Probe pin is used to output data from any userdefined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a userdefined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. Diagnostic Clock Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. GND Probe A/B Ground Input LOW supply voltage. QCLKA/B/C/D, I/O I/O Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os. Input/Output Input, output, tristate or bi-directional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 40. Table 40 • SDI, I/O Configuration A40MX02, A40MX04 Pulled LOW A42MX09, A42MX16 Pulled LOW A42MX24, A42MX36 Tristated Serial Data Input Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. Configuration of Unused I/Os Device Quadrant Clock SDO, I/O Serial Data Output Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only. In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dualpurpose pins when configured as I/Os as well. When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete. LP TCK, I/O Low Power Mode Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200µs after the LP pin is driven to a logic LOW. MODE Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. TDI, I/O Test Data In Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. Mode Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a 10kΩ resistor so that the MODE pin can be pulled HIGH when required. NC Test Clock TDO, I/O Test Data Out Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices. No Connection This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. v6.0 1-77 40MX and 42MX FPGA Families TMS, I/O Test Mode Select VCC The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a 10kΩ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices. 1 -7 8 v6.0 Supply Voltage Input supply voltage for 40MX devices VCCA Supply Voltage Supply voltage for array in 42MX devices VCCI Supply Voltage Supply voltage for I/Os in 42MX devices WD, I/O Wide Decode Output When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins. 40MX and 42MX FPGA Families Package Pin Assignments 44-Pin PLCC 1 44 44-Pin PLCC Figure 2-1 • 44-Pin PLCC 44-pin PLCC 44-pin PLCC Pin Number Pin Number A40MX02 Function A40MX04 Function A40MX02 Function A40MX04 Function 1 I/O I/O 23 I/O I/O 2 I/O I/O 24 I/O I/O 3 VCC VCC 25 VCC VCC 4 I/O I/O 26 I/O I/O 5 I/O I/O 27 I/O I/O 6 I/O I/O 28 I/O I/O 7 I/O I/O 29 I/O I/O 8 I/O I/O 30 I/O I/O 9 I/O I/O 31 I/O I/O 10 GND GND 32 GND GND 11 I/O I/O 33 CLK, I/O CLK, I/O 12 I/O I/O 34 MODE MODE 13 I/O I/O 35 VCC VCC 14 VCC VCC 36 SDI, I/O SDI, I/O 15 I/O I/O 37 DCLK, I/O DCLK, I/O 16 VCC VCC 38 PRA, I/O PRA, I/O 17 I/O I/O 39 PRB, I/O PRB, I/O 18 I/O I/O 40 I/O I/O 19 I/O I/O 41 I/O I/O 20 I/O I/O 42 I/O I/O 21 GND GND 43 GND GND 22 I/O I/O 44 I/O I/O v6.0 2-1 40MX and 42MX FPGA Families 68-Pin PLCC 1 68 68-Pin PLCC Figure 2-2 • 68-Pin PLCC 44-pin PLCC 44-pin PLCC 44-pin PLCC Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 24 I/O I/O 47 I/O I/O 2 I/O I/O 25 VCC VCC 48 I/O I/O 3 I/O I/O 26 I/O I/O 49 GND GND 4 VCC VCC 27 I/O I/O 50 I/O I/O 5 I/O I/O 28 I/O I/O 51 I/O I/O 6 I/O I/O 29 I/O I/O 52 CLK, I/O CLK, I/O 7 I/O I/O 30 I/O I/O 53 I/O I/O 8 I/O I/O 31 I/O I/O 54 MODE MODE 9 I/O I/O 32 GND GND 55 VCC VCC 10 I/O I/O 33 I/O I/O 56 SDI, I/O SDI, I/O 11 I/O I/O 34 I/O I/O 57 DCLK, I/O DCLK, I/O 12 I/O I/O 35 I/O I/O 58 PRA, I/O PRA, I/O 13 I/O I/O 36 I/O I/O 59 PRB, I/O PRB, I/O 14 GND GND 37 I/O I/O 60 I/O I/O 15 GND GND 38 VCC VCC 61 I/O I/O 16 I/O I/O 39 I/O I/O 62 I/O I/O 17 I/O I/O 40 I/O I/O 63 I/O I/O 18 I/O I/O 41 I/O I/O 64 I/O I/O 19 I/O I/O 42 I/O I/O 65 I/O I/O 20 I/O I/O 43 I/O I/O 66 GND GND 21 VCC VCC 44 I/O I/O 67 I/O I/O 22 I/O I/O 45 I/O I/O 68 I/O I/O 23 I/O I/O 46 I/O I/O 2 -2 v6.0 40MX and 42MX FPGA Families 84-Pin PLCC 1 84 84-Pin PLCC Figure 2-3 • 84-Pin PLCC v6.0 2-3 40MX and 42MX FPGA Families 84-Pin PLCC 84-Pin PLCC Pin Number 2 -4 Pin Number A40MX04 A42MX09 A42MX16 A42MX24 Function Function Function Function A40MX04 A42MX09 A42MX16 A42MX24 Function Function Function Function 1 I/O I/O I/O I/O 36 I/O I/O I/O WD, I/O 2 I/O CLKB, I/O CLKB, I/O CLKB, I/O 37 I/O I/O I/O I/O 3 I/O I/O I/O I/O 38 I/O I/O I/O WD, I/O 4 VCC PRB, I/O PRB, I/O PRB, I/O 39 I/O I/O I/O WD, I/O 5 I/O I/O I/O WD, I/O 40 GND I/O I/O I/O 6 I/O GND GND GND 41 I/O I/O I/O I/O 7 I/O I/O I/O I/O 42 I/O I/O I/O I/O 8 I/O I/O I/O WD, I/O 43 I/O VCCA VCCA VCCA 9 I/O I/O I/O WD, I/O 44 I/O I/O I/O WD, I/O 10 I/O DCLK, I/O DCLK, I/O DCLK, I/O 45 I/O I/O I/O WD, I/O 11 I/O I/O I/O I/O 46 VCC I/O I/O WD, I/O 12 NC MODE MODE MODE 47 I/O I/O I/O WD, I/O 13 I/O I/O I/O I/O 48 I/O I/O I/O I/O 14 I/O I/O I/O I/O 49 I/O GND GND GND 15 I/O I/O I/O I/O 50 I/O I/O I/O WD, I/O 16 I/O I/O I/O I/O 51 I/O I/O I/O WD, I/O 17 I/O I/O I/O I/O 52 I/O SDO, I/O SDO, I/O SDO, TDO, I/O 18 GND I/O I/O I/O 53 I/O I/O I/O I/O 19 GND I/O I/O I/O 54 I/O I/O I/O I/O 20 I/O I/O I/O I/O 55 I/O I/O I/O I/O 21 I/O I/O I/O I/O 56 I/O I/O I/O I/O 22 I/O VCCA VCCI VCCI 57 I/O I/O I/O I/O 23 I/O VCCI VCCA VCCA 58 I/O I/O I/O I/O 24 I/O I/O I/O I/O 59 I/O I/O I/O I/O 25 VCC I/O I/O I/O 60 GND I/O I/O I/O 26 VCC I/O I/O I/O 61 GND I/O I/O I/O 27 I/O I/O I/O I/O 62 I/O I/O I/O TCK, I/O 28 I/O GND GND GND 63 I/O LP LP LP 29 I/O I/O I/O I/O 64 CLK, I/O VCCA VCCA VCCA 30 I/O I/O I/O I/O 65 I/O VCCI VCCI VCCI 31 I/O I/O I/O I/O 66 MODE I/O I/O I/O 32 I/O I/O I/O I/O 67 VCC I/O I/O I/O 33 VCC I/O I/O I/O 68 VCC I/O I/O I/O 34 I/O I/O I/O TMS, I/O 69 I/O I/O I/O I/O 35 I/O I/O I/O TDI, I/O 70 I/O GND GND GND v6.0 40MX and 42MX FPGA Families 84-Pin PLCC 84-Pin PLCC Pin Number Pin Number A40MX04 A42MX09 A42MX16 A42MX24 Function Function Function Function A40MX04 A42MX09 A42MX16 A42MX24 Function Function Function Function 71 I/O I/O I/O I/O 78 I/O I/O I/O WD, I/O 72 SDI, I/O I/O I/O I/O 79 I/O I/O I/O WD, I/O 73 DCLK, I/O I/O I/O I/O 80 I/O I/O I/O WD, I/O 74 PRA, I/O I/O I/O I/O 81 I/O PRA, I/O PRA, I/O PRA, I/O 75 PRB, I/O I/O I/O I/O 82 GND I/O I/O I/O 76 I/O SDI, I/O SDI, I/O SDI, I/O 83 I/O CLKA, I/O CLKA, I/O CLKA, I/O 77 I/O I/O I/O I/O 84 I/O VCCA VCCA VCCA v6.0 2-5 40MX and 42MX FPGA Families 100-Pin PQFP Package 100-Pin PQFP 100 1 Figure 2-4 • 100-Pin PQFP Package (Top View) 2 -6 v6.0 40MX and 42MX FPGA Families 100-Pin PQFP 100-Pin PQFP Pin Number Pin Number A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function 1 NC NC I/O I/O 36 GND GND I/O I/O 2 NC NC DCLK, I/O DCLK, I/O 37 GND GND I/O I/O 3 NC NC I/O I/O 38 I/O I/O I/O I/O 4 NC NC MODE MODE 39 I/O I/O I/O I/O 5 NC NC I/O I/O 40 I/O I/O VCCA VCCA 6 PRB, I/O PRB, I/O I/O I/O 41 I/O I/O I/O I/O 7 I/O I/O I/O I/O 42 I/O I/O I/O I/O 8 I/O I/O I/O I/O 43 VCC VCC I/O I/O 9 I/O I/O GND GND 44 VCC VCC I/O I/O 10 I/O I/O I/O I/O 45 I/O I/O I/O I/O 11 I/O I/O I/O I/O 46 I/O I/O GND GND 12 I/O I/O I/O I/O 47 I/O I/O I/O I/O 13 GND GND I/O I/O 48 NC I/O I/O I/O 14 I/O I/O I/O I/O 49 NC I/O I/O I/O 15 I/O I/O I/O I/O 50 NC I/O I/O I/O 16 I/O I/O VCCA VCCA 51 NC NC I/O I/O 17 I/O I/O VCCI VCCA 52 NC NC SDO, I/O SDO, I/O 18 I/O I/O I/O I/O 53 NC NC I/O I/O 19 VCC VCC I/O I/O 54 NC NC I/O I/O 20 I/O I/O I/O I/O 55 NC NC I/O I/O 21 I/O I/O I/O I/O 56 VCC VCC I/O I/O 22 I/O I/O GND GND 57 I/O I/O GND GND 23 I/O I/O I/O I/O 58 I/O I/O I/O I/O 24 I/O I/O I/O I/O 59 I/O I/O I/O I/O 25 I/O I/O I/O I/O 60 I/O I/O I/O I/O 26 I/O I/O I/O I/O 61 I/O I/O I/O I/O 27 NC NC I/O I/O 62 I/O I/O I/O I/O 28 NC NC I/O I/O 63 GND GND I/O I/O 29 NC NC I/O I/O 64 I/O I/O LP LP 30 NC NC I/O I/O 65 I/O I/O VCCA VCCA 31 NC I/O I/O I/O 66 I/O I/O VCCI VCCI 32 NC I/O I/O I/O 67 I/O I/O VCCA VCCA 33 NC I/O I/O I/O 68 I/O I/O I/O I/O 34 I/O I/O GND GND 69 VCC VCC I/O I/O 35 I/O I/O I/O I/O 70 I/O I/O I/O I/O v6.0 2-7 40MX and 42MX FPGA Families 100-Pin PQFP 100-Pin PQFP Pin Number 2 -8 Pin Number A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function A40MX02 A40MX04 A42MX09 A42MX16 Function Function Function Function 71 I/O I/O I/O I/O 86 GND GND I/O I/O 72 I/O I/O GND GND 87 GND GND PRA, I/O PRA, I/O 73 I/O I/O I/O I/O 88 I/O I/O I/O I/O 74 I/O I/O I/O I/O 89 I/O I/O CLKA, I/O CLKA, I/O 75 I/O I/O I/O I/O 90 CLK, I/O CLK, I/O VCCA VCCA 76 I/O I/O I/O I/O 91 I/O I/O I/O I/O 77 NC NC I/O I/O 92 MODE MODE CLKB, I/O CLKB, I/O 78 NC NC I/O I/O 93 VCC VCC I/O I/O 79 NC NC SDI, I/O SDI, I/O 94 VCC VCC PRB, I/O PRB, I/O 80 NC I/O I/O I/O 95 NC I/O I/O I/O 81 NC I/O I/O I/O 96 NC I/O GND GND 82 NC I/O I/O I/O 97 NC I/O I/O I/O 83 I/O I/O I/O I/O 98 SDI, I/O SDI, I/O I/O I/O 84 I/O I/O GND GND 99 DCLK, I/O DCLK, I/O I/O I/O 85 I/O I/O I/O I/O 100 PRA, I/O PRA, I/O I/O I/O v6.0 40MX and 42MX FPGA Families 160-Pin PQFP Package 160 1 160-Pin PQFP Figure 2-5 • 160-Pin PQFP Package (Top View) v6.0 2-9 40MX and 42MX FPGA Families 160-Pin PQFP 160-Pin PQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 1 I/O I/O I/O 36 I/O I/O WD, I/O 2 DCLK, I/O DCLK, I/O DCLK, I/O 37 I/O I/O WD, I/O 3 NC I/O I/O 38 SDI, I/O SDI, I/O SDI, I/O 4 I/O I/O WD, I/O 39 I/O I/O I/O 5 I/O I/O WD, I/O 40 GND GND GND 6 NC VCCI VCCI 41 I/O I/O I/O 7 I/O I/O I/O 42 I/O I/O I/O 8 I/O I/O I/O 43 I/O I/O I/O 9 I/O I/O I/O 44 GND GND GND 10 NC I/O I/O 45 I/O I/O I/O 11 GND GND GND 46 I/O I/O I/O 12 NC I/O I/O 47 I/O I/O I/O 13 I/O I/O WD, I/O 48 I/O I/O I/O 14 I/O I/O WD, I/O 49 GND GND GND 15 I/O I/O I/O 50 I/O I/O I/O 16 PRB, I/O PRB, I/O PRB, I/O 51 I/O I/O I/O 17 I/O I/O I/O 52 NC I/O I/O 18 CLKB, I/O CLKB, I/O CLKB, I/O 53 I/O I/O I/O 19 I/O I/O I/O 54 NC VCCA VCCA 20 VCCA VCCA VCCA 55 I/O I/O I/O 21 CLKA, I/O CLKA, I/O CLKA, I/O 56 I/O I/O I/O 22 I/O I/O I/O 57 VCCA VCCA VCCA 23 PRA, I/O PRA, I/O PRA, I/O 58 VCCI VCCI VCCI 24 NC I/O WD, I/O 59 GND GND GND 25 I/O I/O WD, I/O 60 VCCA VCCA VCCA 26 I/O I/O I/O 61 LP LP LP 27 I/O I/O I/O 62 I/O I/O TCK, I/O 28 NC I/O I/O 63 I/O I/O I/O 29 I/O I/O WD, I/O 64 GND GND GND 30 GND GND GND 65 I/O I/O I/O 31 NC I/O WD, I/O 66 I/O I/O I/O 32 I/O I/O I/O 67 I/O I/O I/O 33 I/O I/O I/O 68 I/O I/O I/O 34 I/O I/O I/O 69 GND GND GND 35 NC VCCI VCCI 70 NC I/O I/O 2 -1 0 v6.0 40MX and 42MX FPGA Families 160-Pin PQFP 160-Pin PQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 71 I/O I/O I/O 106 I/O I/O WD, I/O 72 I/O I/O I/O 107 I/O I/O WD, I/O 73 I/O I/O I/O 108 I/O I/O I/O 74 I/O I/O I/O 109 GND GND GND 75 NC I/O I/O 110 NC I/O I/O 76 I/O I/O I/O 111 I/O I/O WD, I/O 77 NC I/O I/O 112 I/O I/O WD, I/O 78 I/O I/O I/O 113 I/O I/O I/O 79 NC I/O I/O 114 NC VCCI VCCI 80 GND GND GND 115 I/O I/O WD, I/O 81 I/O I/O I/O 116 NC I/O WD, I/O 82 SDO, I/O SDO, I/O SDO, TDO, I/O 117 I/O I/O I/O 83 I/O I/O WD, I/O 118 I/O I/O TDI, I/O 84 I/O I/O WD, I/O 119 I/O I/O TMS, I/O 85 I/O I/O I/O 120 GND GND GND 86 NC VCCI VCCI 121 I/O I/O I/O 87 I/O I/O I/O 122 I/O I/O I/O 88 I/O I/O WD, I/O 123 I/O I/O I/O 89 GND GND GND 124 NC I/O I/O 90 NC I/O I/O 125 GND GND GND 91 I/O I/O I/O 126 I/O I/O I/O 92 I/O I/O I/O 127 I/O I/O I/O 93 I/O I/O I/O 128 I/O I/O I/O 94 I/O I/O I/O 129 NC I/O I/O 95 I/O I/O I/O 130 GND GND GND 96 I/O I/O WD, I/O 131 I/O I/O I/O 97 I/O I/O I/O 132 I/O I/O I/O 98 VCCA VCCA VCCA 133 I/O I/O I/O 99 GND GND GND 134 I/O I/O I/O 100 NC I/O I/O 135 NC VCCA VCCA 101 I/O I/O I/O 136 I/O I/O I/O 102 I/O I/O I/O 137 I/O I/O I/O 103 NC I/O I/O 138 NC VCCA VCCA 104 I/O I/O I/O 139 VCCI VCCI VCCI 105 I/O I/O I/O 140 GND GND GND v6.0 2-11 40MX and 42MX FPGA Families 160-Pin PQFP 160-Pin PQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 141 NC I/O I/O 151 NC I/O I/O 142 I/O I/O I/O 152 NC I/O I/O 143 I/O I/O I/O 153 NC I/O I/O 144 I/O I/O I/O 154 NC I/O I/O 145 GND GND GND 155 GND GND GND 146 NC I/O I/O 156 I/O I/O I/O 147 I/O I/O I/O 157 I/O I/O I/O 148 I/O I/O I/O 158 I/O I/O I/O 149 I/O I/O I/O 159 MODE MODE MODE 150 NC VCCA VCCA 160 GND GND GND 2 -1 2 v6.0 40MX and 42MX FPGA Families 208-Pin PQFP Package 1 208 208-Pin PQFP Figure 2-6 • 208-Pin PQFP Package (Top View) v6.0 2-13 40MX and 42MX FPGA Families 208-Pin PQFP 208-Pin PQFP Pin Number A42MX16 Function A42MX24 Function A42MX36 Function Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 1 GND GND GND 36 I/O I/O I/O 2 NC VCCA VCCA 37 I/O I/O I/O 3 MODE MODE MODE 38 I/O I/O I/O 4 I/O I/O I/O 39 I/O I/O I/O 5 I/O I/O I/O 40 I/O I/O I/O 6 I/O I/O I/O 41 NC I/O I/O 7 I/O I/O I/O 42 NC I/O I/O 8 I/O I/O I/O 43 NC I/O I/O 9 NC I/O I/O 44 I/O I/O I/O 10 NC I/O I/O 45 I/O I/O I/O 11 NC I/O I/O 46 I/O I/O I/O 12 I/O I/O I/O 47 I/O I/O I/O 13 I/O I/O I/O 48 I/O I/O I/O 14 I/O I/O I/O 49 I/O I/O I/O 15 I/O I/O I/O 50 NC I/O I/O 16 NC I/O I/O 51 NC I/O I/O 17 VCCA VCCA VCCA 52 GND GND GND 18 I/O I/O I/O 53 GND GND GND 19 I/O I/O I/O 54 I/O TMS, I/O TMS, I/O 20 I/O I/O I/O 55 I/O TDI, I/O TDI, I/O 21 I/O I/O I/O 56 I/O I/O I/O 22 GND GND GND 57 I/O WD, I/O WD, I/O 23 I/O I/O I/O 58 I/O WD, I/O WD, I/O 24 I/O I/O I/O 59 I/O I/O I/O 25 I/O I/O I/O 60 VCCI VCCI VCCI 26 I/O I/O I/O 61 NC I/O I/O 27 GND GND GND 62 NC I/O I/O 28 VCCI VCCI VCCI 63 I/O I/O I/O 29 VCCA VCCA VCCA 64 I/O I/O I/O 30 I/O I/O I/O 65 I/O I/O QCLKA, I/O 31 I/O I/O I/O 66 I/O WD, I/O WD, I/O 32 VCCA VCCA VCCA 67 NC WD, I/O WD, I/O 33 I/O I/O I/O 68 NC I/O I/O 34 I/O I/O I/O 69 I/O I/O I/O 35 I/O I/O I/O 70 I/O WD, I/O WD, I/O 2 -1 4 v6.0 40MX and 42MX FPGA Families 208-Pin PQFP 208-Pin PQFP Pin Number A42MX16 Function A42MX24 Function A42MX36 Function Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 71 I/O WD, I/O WD, I/O 106 NC VCCA VCCA 72 I/O I/O I/O 107 I/O I/O I/O 73 I/O I/O I/O 108 I/O I/O I/O 74 I/O I/O I/O 109 I/O I/O I/O 75 I/O I/O I/O 110 I/O I/O I/O 76 I/O I/O I/O 111 I/O I/O I/O 77 I/O I/O I/O 112 NC I/O I/O 78 GND GND GND 113 NC I/O I/O 79 VCCA VCCA VCCA 114 NC I/O I/O 80 NC VCCI VCCI 115 NC I/O I/O 81 I/O I/O I/O 116 I/O I/O I/O 82 I/O I/O I/O 117 I/O I/O I/O 83 I/O I/O I/O 118 I/O I/O I/O 84 I/O I/O I/O 119 I/O I/O I/O 85 I/O WD, I/O WD, I/O 120 I/O I/O I/O 86 I/O WD, I/O WD, I/O 121 I/O I/O I/O 87 I/O I/O I/O 122 I/O I/O I/O 88 I/O I/O I/O 123 I/O I/O I/O 89 NC I/O I/O 124 I/O I/O I/O 90 NC I/O I/O 125 I/O I/O I/O 91 I/O I/O QCLKB, I/O 126 GND GND GND 92 I/O I/O I/O 127 I/O I/O I/O 93 I/O WD, I/O WD, I/O 128 I/O TCK, I/O TCK, I/O 94 I/O WD, I/O WD, I/O 129 LP LP LP 95 NC I/O I/O 130 VCCA VCCA VCCA 96 NC I/O I/O 131 GND GND GND 97 NC I/O I/O 132 VCCI VCCI VCCI 98 VCCI VCCI VCCI 133 VCCA VCCA VCCA 99 I/O I/O I/O 134 I/O I/O I/O 100 I/O WD, I/O WD, I/O 135 I/O I/O I/O 101 I/O WD, I/O WD, I/O 136 VCCA VCCA VCCA 102 I/O I/O I/O 137 I/O I/O I/O 103 SDO, I/O 138 I/O I/O I/O 104 I/O I/O I/O 139 I/O I/O I/O 105 GND GND GND 140 I/O I/O I/O SDO, TDO, I/O SDO, TDO, I/O v6.0 2-15 40MX and 42MX FPGA Families 208-Pin PQFP 208-Pin PQFP Pin Number A42MX16 Function A42MX24 Function A42MX36 Function Pin Number A42MX16 Function A42MX24 Function A42MX36 Function 141 NC I/O I/O 175 I/O I/O I/O 142 I/O I/O I/O 176 I/O WD, I/O WD, I/O 143 I/O I/O I/O 177 I/O WD, I/O WD, I/O 144 I/O I/O I/O 178 PRA, I/O PRA, I/O PRA, I/O 145 I/O I/O I/O 179 I/O I/O I/O 146 NC I/O I/O 180 CLKA, I/O CLKA, I/O CLKA, I/O 147 NC I/O I/O 181 NC I/O I/O 148 NC I/O I/O 182 NC VCCI VCCI 149 NC I/O I/O 183 VCCA VCCA VCCA 150 GND GND GND 184 GND GND GND 151 I/O I/O I/O 185 I/O I/O I/O 152 I/O I/O I/O 186 CLKB, I/O CLKB, I/O CLKB, I/O 153 I/O I/O I/O 187 I/O I/O I/O 154 I/O I/O I/O 188 PRB, I/O PRB, I/O PRB, I/O 155 I/O I/O I/O 189 I/O I/O I/O 156 I/O I/O I/O 190 I/O WD, I/O WD, I/O 157 GND GND GND 191 I/O WD, I/O WD, I/O 158 I/O I/O I/O 192 I/O I/O I/O 159 SDI, I/O SDI, I/O SDI, I/O 193 NC I/O I/O 160 I/O I/O I/O 194 NC WD, I/O WD, I/O 161 I/O WD, I/O WD, I/O 195 NC WD, I/O WD, I/O 162 I/O WD, I/O WD, I/O 196 I/O I/O QCLKC, I/O 163 I/O I/O I/O 197 NC I/O I/O 164 VCCI VCCI VCCI 198 I/O I/O I/O 165 NC I/O I/O 199 I/O I/O I/O 166 NC I/O I/O 200 I/O I/O I/O 167 I/O I/O I/O 201 NC I/O I/O 168 I/O WD, I/O WD, I/O 202 VCCI VCCI VCCI 169 I/O WD, I/O WD, I/O 203 I/O WD, I/O WD, I/O 170 I/O I/O I/O 204 I/O WD, I/O WD, I/O 171 NC I/O QCLKD, I/O 205 I/O I/O I/O 172 I/O I/O I/O 206 I/O I/O I/O 173 I/O I/O I/O 207 DCLK, I/O DCLK, I/O DCLK, I/O 174 I/O I/O I/O 208 I/O I/O I/O 2 -1 6 v6.0 40MX and 42MX FPGA Families • • • 240-Pin PQFP Package 240 1 240-Pin PQFP • • • • • • • • • Figure 2-7 • 240-Pin PQFP Package (Top View) v6.0 2-17 40MX and 42MX FPGA Families 240-Pin PQFP 240-Pin PQFP 240-Pin PQFP 240-Pin PQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 I/O 36 I/O 71 VCCI 106 I/O 2 DCLK, I/O 37 WD, I/O 72 I/O 107 I/O 3 I/O 38 WD, I/O 73 I/O 108 VCCI 4 I/O 39 I/O 74 I/O 109 I/O 5 I/O 40 I/O 75 I/O 110 I/O 6 WD, I/O 41 I/O 76 I/O 111 I/O 7 WD, I/O 42 I/O 77 I/O 112 I/O 8 VCCI 43 I/O 78 I/O 113 I/O 9 I/O 44 I/O 79 I/O 114 I/O 10 I/O 45 QCLKD, I/O 80 I/O 115 I/O 11 I/O 46 I/O 81 I/O 116 I/O 12 I/O 47 WD, I/O 82 I/O 117 I/O 13 I/O 48 WD, I/O 83 I/O 118 VCCA 14 I/O 49 I/O 84 I/O 119 GND 15 QCLKC, I/O 50 I/O 85 VCCA 120 GND 16 I/O 51 I/O 86 I/O 121 GND 17 WD, I/O 52 VCCI 87 I/O 122 I/O 18 WD, I/O 53 I/O 88 VCCA 123 SDO, TDO, I/O 19 I/O 54 WD, I/O 89 VCCI 124 I/O 20 I/O 55 WD, I/O 90 VCCA 125 WD, I/O 21 WD, I/O 56 I/O 91 LP 126 WD, I/O 22 WD, I/O 57 SDI, I/O 92 TCK, I/O 127 I/O 23 I/O 58 I/O 93 I/O 128 VCCI 24 PRB, I/O 59 VCCA 94 GND 129 I/O 25 I/O 60 GND 95 I/O 130 I/O 26 CLKB, I/O 61 GND 96 I/O 131 I/O 27 I/O 62 I/O 97 I/O 132 WD, I/O 28 GND 63 I/O 98 I/O 133 WD, I/O 29 VCCA 64 I/O 99 I/O 134 I/O 30 VCCI 65 I/O 100 I/O 135 QCLKB, I/O 31 I/O 66 I/O 101 I/O 136 I/O 32 CLKA, I/O 67 I/O 102 I/O 137 I/O 33 I/O 68 I/O 103 I/O 138 I/O 34 PRA, I/O 69 I/O 104 I/O 139 I/O 35 I/O 70 I/O 105 I/O 140 I/O 2 -1 8 v6.0 40MX and 42MX FPGA Families 240-Pin PQFP 240-Pin PQFP 240-Pin PQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 141 I/O 176 I/O 211 I/O 142 WD, I/O 177 I/O 212 I/O 143 WD, I/O 178 TDI, I/O 213 I/O 144 I/O 179 TMS, I/O 214 I/O 145 I/O 180 GND 215 I/O 146 I/O 181 VCCA 216 I/O 147 I/O 182 GND 217 I/O 148 I/O 183 I/O 218 I/O 149 I/O 184 I/O 219 VCCA 150 VCCI 185 I/O 220 I/O 151 VCCA 186 I/O 221 I/O 152 GND 187 I/O 222 I/O 153 I/O 188 I/O 223 I/O 154 I/O 189 I/O 224 I/O 155 I/O 190 I/O 225 I/O 156 I/O 191 I/O 226 I/O 157 I/O 192 VCCI 227 VCCI 158 I/O 193 I/O 228 I/O 159 WD, I/O 194 I/O 229 I/O 160 WD, I/O 195 I/O 230 I/O 161 I/O 196 I/O 231 I/O 162 I/O 197 I/O 232 I/O 163 WD, I/O 198 I/O 233 I/O 164 WD, I/O 199 I/O 234 I/O 165 I/O 200 I/O 235 I/O 166 QCLKA, I/O 201 I/O 236 I/O 167 I/O 202 I/O 237 GND 168 I/O 203 I/O 238 MODE 169 I/O 204 I/O 239 VCCA 170 I/O 205 I/O 240 GND 171 I/O 206 VCCA 172 VCCI 207 I/O 173 I/O 208 I/O 174 WD, I/O 209 VCCA 175 WD, I/O 210 VCCI v6.0 2-19 40MX and 42MX FPGA Families 80-Pin VQFP 80 1 80-Pin VQFP Figure 2-8 • 80-Pin VQFP 2 -2 0 v6.0 40MX and 42MX FPGA Families 80-Pin VQFP 80-Pin VQFP 80-Pin VQFP Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function Pin Number A40MX02 Function A40MX04 Function 1 I/O I/O 28 I/O I/O 55 NC I/O 2 NC I/O 29 I/O I/O 56 NC I/O 3 NC I/O 30 I/O I/O 57 SDI, I/O SDI, I/O 4 NC I/O 31 I/O I/O 58 DCLK, I/O DCLK, I/O 5 I/O I/O 32 I/O I/O 59 PRA, I/O PRA, I/O 6 I/O I/O 33 VCC VCC 60 NC NC 7 GND GND 34 I/O I/O 61 PRB, I/O PRB, I/O 8 I/O I/O 35 I/O I/O 62 I/O I/O 9 I/O I/O 36 I/O I/O 63 I/O I/O 10 I/O I/O 37 I/O I/O 64 I/O I/O 11 I/O I/O 38 I/O I/O 65 I/O I/O 12 I/O I/O 39 I/O I/O 66 I/O I/O 13 VCC VCC 40 I/O I/O 67 I/O I/O 14 I/O I/O 41 NC I/O 68 GND GND 15 I/O I/O 42 NC I/O 69 I/O I/O 16 I/O I/O 43 NC I/O 70 I/O I/O 17 NC I/O 44 I/O I/O 71 I/O I/O 18 NC I/O 45 I/O I/O 72 I/O I/O 19 NC I/O 46 I/O I/O 73 I/O I/O 20 VCC VCC 47 GND GND 74 VCC VCC 21 I/O I/O 48 I/O I/O 75 I/O I/O 22 I/O I/O 49 I/O I/O 76 I/O I/O 23 I/O I/O 50 CLK, I/O CLK, I/O 77 I/O I/O 24 I/O I/O 51 I/O I/O 78 I/O I/O 25 I/O I/O 52 MODE MODE 79 I/O I/O 26 I/O I/O 53 VCC VCC 80 I/O I/O 27 GND GND 54 NC I/O v6.0 2-21 40MX and 42MX FPGA Families 100-Pin VQFP Package 100 1 100-Pin VQFP Figure 2-9 • 100-Pin VQFP Package (Top View) 2 -2 2 v6.0 40MX and 42MX FPGA Families 100-Pin VQFP Package 100-Pin VQFP Package 100-Pin VQFP Package Pin Number A42MX09 Function A42MX16 Function Pin Number A42MX09 Function A42MX16 Function Pin Number A42MX09 Function A42MX16 Function 1 I/O I/O 36 I/O I/O 71 I/O I/O 2 MODE MODE 37 I/O I/O 72 I/O I/O 3 I/O I/O 38 VCCA VCCA 73 I/O I/O 4 I/O I/O 39 I/O I/O 74 I/O I/O 5 I/O I/O 40 I/O I/O 75 I/O I/O 6 I/O I/O 41 I/O I/O 76 I/O I/O 7 GND GND 42 I/O I/O 77 SDI, I/O SDI, I/O 8 I/O I/O 43 I/O I/O 78 I/O I/O 9 I/O I/O 44 GND GND 79 I/O I/O 10 I/O I/O 45 I/O I/O 80 I/O I/O 11 I/O I/O 46 I/O I/O 81 I/O I/O 12 I/O I/O 47 I/O I/O 82 GND GND 13 I/O I/O 48 I/O I/O 83 I/O I/O 14 VCCA NC 49 I/O I/O 84 I/O I/O 15 VCCI VCCI 50 SDO, I/O SDO, I/O 85 PRA, I/O PRA, I/O 16 I/O I/O 51 I/O I/O 86 I/O I/O 17 I/O I/O 52 I/O I/O 87 CLKA, I/O CLKA, I/O 18 I/O I/O 53 I/O I/O 88 VCCA VCCA 19 I/O I/O 54 I/O I/O 89 I/O I/O 20 GND GND 55 GND GND 90 CLKB, I/O CLKB, I/O 21 I/O I/O 56 I/O I/O 91 I/O I/O 22 I/O I/O 57 I/O I/O 92 PRB, I/O PRB, I/O 23 I/O I/O 58 I/O I/O 93 I/O I/O 24 I/O I/O 59 I/O I/O 94 GND GND 25 I/O I/O 60 I/O I/O 95 I/O I/O 26 I/O I/O 61 I/O I/O 96 I/O I/O 27 I/O I/O 62 LP LP 97 I/O I/O 28 I/O I/O 63 VCCA VCCA 98 I/O I/O 29 I/O I/O 64 VCCI VCCI 99 I/O I/O 30 I/O I/O 65 VCCA VCCA 100 DCLK, I/O DCLK, I/O 31 I/O I/O 66 I/O I/O 32 GND GND 67 I/O I/O 33 I/O I/O 68 I/O I/O 34 I/O I/O 69 I/O I/O 35 I/O I/O 70 GND GND v6.0 2-23 40MX and 42MX FPGA Families 176-Pin TQFP Package 176 1 176-Pin TQFP Figure 2-10 • 176-Pin TQFP Package (Top View) 2 -2 4 v6.0 40MX and 42MX FPGA Families 176-Pin TQFP 176-Pin TQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 1 GND GND GND 36 I/O I/O I/O 2 MODE MODE MODE 37 NC I/O I/O 3 I/O I/O I/O 38 NC NC I/O 4 I/O I/O I/O 39 I/O I/O I/O 5 I/O I/O I/O 40 I/O I/O I/O 6 I/O I/O I/O 41 I/O I/O I/O 7 I/O I/O I/O 42 I/O I/O I/O 8 NC NC I/O 43 I/O I/O I/O 9 I/O I/O I/O 44 I/O I/O I/O 10 NC I/O I/O 45 GND GND GND 11 NC I/O I/O 46 I/O I/O TMS, I/O 12 I/O I/O I/O 47 I/O I/O TDI, I/O 13 NC VCCA VCCA 48 I/O I/O I/O 14 I/O I/O I/O 49 I/O I/O WD, I/O 15 I/O I/O I/O 50 I/O I/O WD, I/O 16 I/O I/O I/O 51 I/O I/O I/O 17 I/O I/O I/O 52 NC VCCI VCCI 18 GND GND GND 53 I/O I/O I/O 19 NC I/O I/O 54 NC I/O I/O 20 NC I/O I/O 55 NC I/O WD, I/O 21 I/O I/O I/O 56 I/O I/O WD, I/O 22 NC I/O I/O 57 NC NC I/O 23 GND GND GND 58 I/O I/O I/O 24 NC VCCI VCCI 59 I/O I/O WD, I/O 25 VCCA VCCA VCCA 60 I/O I/O WD, I/O 26 NC I/O I/O 61 NC I/O I/O 27 NC I/O I/O 62 I/O I/O I/O 28 VCCI VCCA VCCA 63 I/O I/O I/O 29 NC I/O I/O 64 NC I/O I/O 30 I/O I/O I/O 65 I/O I/O I/O 31 I/O I/O I/O 66 NC I/O I/O 32 I/O I/O I/O 67 GND GND GND 33 NC NC I/O 68 VCCA VCCA VCCA 34 I/O I/O I/O 69 I/O I/O WD, I/O 35 I/O I/O I/O 70 I/O I/O WD, I/O v6.0 2-25 40MX and 42MX FPGA Families 176-Pin TQFP 176-Pin TQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 71 I/O I/O I/O 106 GND GND GND 72 I/O I/O I/O 107 NC I/O I/O 73 I/O I/O I/O 108 NC I/O TCK, I/O 74 NC I/O I/O 109 LP LP LP 75 I/O I/O I/O 110 VCCA VCCA VCCA 76 I/O I/O I/O 111 GND GND GND 77 NC NC WD, I/O 112 VCCI VCCI VCCI 78 NC I/O WD, I/O 113 VCCA VCCA VCCA 79 I/O I/O I/O 114 NC I/O I/O 80 NC I/O I/O 115 NC I/O I/O 81 I/O I/O I/O 116 NC VCCA VCCA 82 NC VCCI VCCI 117 I/O I/O I/O 83 I/O I/O I/O 118 I/O I/O I/O 84 I/O I/O WD, I/O 119 I/O I/O I/O 85 I/O I/O WD, I/O 120 I/O I/O I/O 86 NC I/O I/O 121 NC NC I/O 87 SDO, I/O SDO, I/O SDO, TDO, I/O 122 I/O I/O I/O 88 I/O I/O I/O 123 I/O I/O I/O 89 GND GND GND 124 NC I/O I/O 90 I/O I/O I/O 125 NC I/O I/O 91 I/O I/O I/O 126 NC NC I/O 92 I/O I/O I/O 127 I/O I/O I/O 93 I/O I/O I/O 128 I/O I/O I/O 94 I/O I/O I/O 129 I/O I/O I/O 95 I/O I/O I/O 130 I/O I/O I/O 96 NC I/O I/O 131 I/O I/O I/O 97 NC I/O I/O 132 I/O I/O I/O 98 I/O I/O I/O 133 GND GND GND 99 I/O I/O I/O 134 I/O I/O I/O 100 I/O I/O I/O 135 SDI, I/O SDI, I/O SDI, I/O 101 NC NC I/O 136 NC I/O I/O 102 I/O I/O I/O 137 I/O I/O WD, I/O 103 NC I/O I/O 138 I/O I/O WD, I/O 104 I/O I/O I/O 139 I/O I/O I/O 105 I/O I/O I/O 140 NC VCCI VCCI 2 -2 6 v6.0 40MX and 42MX FPGA Families 176-Pin TQFP 176-Pin TQFP Pin Number A42MX09 Function A42MX16 Function A42MX24 Function Pin Number A42MX09 Function A42MX16 Function A42MX24 Function 141 I/O I/O I/O 159 I/O I/O I/O 142 I/O I/O I/O 160 PRB, I/O PRB, I/O PRB, I/O 143 NC I/O I/O 161 NC I/O WD, I/O 144 NC I/O WD, I/O 162 I/O I/O WD, I/O 145 NC NC WD, I/O 163 I/O I/O I/O 146 I/O I/O I/O 164 I/O I/O I/O 147 NC I/O I/O 165 NC NC WD, I/O 148 I/O I/O I/O 166 NC I/O WD, I/O 149 I/O I/O I/O 167 I/O I/O I/O 150 I/O I/O WD, I/O 168 NC I/O I/O 151 NC I/O WD, I/O 169 I/O I/O I/O 152 PRA, I/O PRA, I/O PRA, I/O 170 NC VCCI VCCI 153 I/O I/O I/O 171 I/O I/O WD, I/O 154 CLKA, I/O CLKA, I/O CLKA, I/O 172 I/O I/O WD, I/O 155 VCCA VCCA VCCA 173 NC I/O I/O 156 GND GND GND 174 I/O I/O I/O 157 I/O I/O I/O 175 DCLK, I/O DCLK, I/O DCLK, I/O 158 CLKB, I/O CLKB, I/O CLKB, I/O 176 I/O I/O I/O v6.0 2-27 40MX and 42MX FPGA Families 208-Pin CQFP ) 208207206205204203202201200 164163162161160159158157 Pin #1 Index 1 2 3 4 5 6 7 8 156 155 154 153 152 151 150 149 A42MX36 208-Pin CQFP 44 45 46 47 48 49 50 51 52 113 112 111 110 109 108 107 106 105 53 54 55 56 57 58 59 60 61 97 98 99 100101102103104 Figure 2-11 • 208-Pin CQFP (Top View) 2 -2 8 v6.0 40MX and 42MX FPGA Families 208-Pin CQFP 208-Pin CQFP 208-Pin CQFP 208-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 GND 36 I/O 71 WD, I/O 106 VCCA 2 VCCA 37 I/O 72 I/O 107 I/O 3 MODE 38 I/O 73 I/O 108 I/O 4 I/O 39 I/O 74 I/O 109 I/O 5 I/O 40 I/O 75 I/O 110 I/O 6 I/O 41 I/O 76 I/O 111 I/O 7 I/O 42 I/O 77 I/O 112 I/O 8 I/O 43 I/O 78 GND 113 I/O 9 I/O 44 I/O 79 VCCA 114 I/O 10 I/O 45 I/O 80 VCCI 115 I/O 11 I/O 46 I/O 81 I/O 116 I/O 12 I/O 47 I/O 82 I/O 117 I/O 13 I/O 48 I/O 83 I/O 118 I/O 14 I/O 49 I/O 84 I/O 119 I/O 15 I/O 50 I/O 85 WD, I/O 120 I/O 16 I/O 51 I/O 86 WD, I/O 121 I/O 17 VCCA 52 GND 87 I/O 122 I/O 18 I/O 53 GND 88 I/O 123 I/O 19 I/O 54 TMS, I/O 89 I/O 124 I/O 20 I/O 55 TDI, I/O 90 I/O 125 I/O 21 I/O 56 I/O 91 QCLKB, I/O 126 GND 22 GND 57 WD, I/O 92 I/O 127 I/O 23 I/O 58 WD, I/O 93 WD, I/O 128 TCK, I/O 24 I/O 59 I/O 94 WD, I/O 129 LP 25 I/O 60 VCCI 95 I/O 130 VCCA 26 I/O 61 I/O 96 I/O 131 GND 27 GND 62 I/O 97 I/O 132 VCCI 28 VCCI 63 I/O 98 VCCI 133 VCCA 29 VCCA 64 I/O 99 I/O 134 I/O 30 I/O 65 QCLKA, I/O 100 WD, I/O 135 I/O 31 I/O 66 WD, I/O 101 WD, I/O 136 VCCA 32 VCCA 67 WD, I/O 102 I/O 137 I/O 33 I/O 68 I/O 103 TDO, I/O 138 I/O 34 I/O 69 I/O 104 I/O 139 I/O 35 I/O 70 WD, I/O 105 GND 140 I/O v6.0 2-29 40MX and 42MX FPGA Families 208-Pin CQFP 208-Pin CQFP 208-Pin CQFP 208-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 141 I/O 158 I/O 175 I/O 192 I/O 142 I/O 159 SDI, I/O 176 WD, I/O 193 I/O 143 I/O 160 I/O 177 WD, I/O 194 WD, I/O 144 I/O 161 WD, I/O 178 PRA, I/O 195 WD, I/O 145 I/O 162 WD, I/O 179 I/O 196 QCLKC, I/O 146 I/O 163 I/O 180 CLKA, I/O 197 I/O 147 I/O 164 VCCI 181 I/O 198 I/O 148 I/O 165 I/O 182 VCCI 199 I/O 149 I/O 166 I/O 183 VCCA 200 I/O 150 GND 167 I/O 184 GND 201 I/O 151 I/O 168 WD, I/O 185 I/O 202 VCCI 152 I/O 169 WD, I/O 186 CLKB, I/O 203 WD, I/O 153 I/O 170 I/O 187 I/O 204 WD, I/O 154 I/O 171 QCLKD, I/O 188 PRB, I/O 205 I/O 155 I/O 172 I/O 189 I/O 206 I/O 156 I/O 173 I/O 190 WD, I/O 207 DCLK, I/O 157 GND 174 I/O 191 WD, I/O 208 I/O 2 -3 0 v6.0 40MX and 42MX FPGA Families 256-Pin CQFP 256255254253252251250249248 200199198197196195194193 Pin #1 Index 1 2 3 4 5 6 7 8 192 191 190 189 188 187 186 185 A42MX36 256-Pin CQFP 56 57 58 59 60 61 62 63 64 137 136 135 134 133 132 131 130 129 65 66 67 68 69 70 71 72 73 121122123124125126127128 Figure 2-12 • 256-Pin CQFP (Top View) v6.0 2-31 40MX and 42MX FPGA Families 256-Pin CQFP 256-Pin CQFP 256-Pin CQFP 256-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 1 NC 36 GND 71 I/O 106 WD, I/O 2 GND 37 I/O 72 VCCI 107 I/O 3 I/O 38 I/O 73 I/O 108 I/O 4 I/O 39 I/O 74 I/O 109 WD, I/O 5 I/O 40 I/O 75 I/O 110 WD, I/O 6 I/O 41 I/O 76 WD, I/O 111 I/O 7 I/O 42 I/O 77 GND 112 QCLKA, I/O 8 I/O 43 I/O 78 WD, I/O 113 I/O 9 I/O 44 I/O 79 I/O 114 GND 10 GND 45 I/O 80 QCLKB, I/O 115 I/O 11 I/O 46 I/O 81 I/O 116 I/O 12 I/O 47 I/O 82 I/O 117 I/O 13 I/O 48 GND 83 I/O 118 I/O 14 I/O 49 I/O 84 I/O 119 VCCI 15 I/O 50 I/O 85 I/O 120 I/O 16 I/O 51 I/O 86 I/O 121 WD, I/O 17 I/O 52 I/O 87 WD, I/O 122 WD, I/O 18 I/O 53 I/O 88 WD, I/O 123 I/O 19 I/O 54 I/O 89 I/O 124 I/O 20 I/O 55 I/O 90 I/O 125 I/O 21 I/O 56 I/O 91 I/O 126 I/O 22 I/O 57 I/O 92 I/O 127 GND 23 I/O 58 I/O 93 I/O 128 NC 24 I/O 59 I/O 94 I/O 129 NC 25 I/O 60 VCCA 95 VCCI 130 NC 26 VCCA 61 GND 96 VCCA 131 GND 27 I/O 62 GND 97 GND 132 I/O 28 I/O 63 NC 98 GND 133 I/O 29 VCCA 64 NC 99 I/O 134 I/O 30 VCCI 65 NC 100 I/O 135 I/O 31 GND 66 I/O 101 I/O 136 I/O 32 VCCA 67 SDO, TDO, I/O 102 I/O 137 I/O 33 LP 68 I/O 103 I/O 138 I/O 34 TCK, I/O 69 WD, I/O 104 I/O 139 GND 35 I/O 70 WD, I/O 105 WD, I/O 140 I/O 2 -3 2 v6.0 40MX and 42MX FPGA Families 256-Pin CQFP 256-Pin CQFP 256-Pin CQFP 256-Pin CQFP Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function 141 I/O 176 I/O 211 WD, I/O 246 I/O 142 I/O 177 I/O 212 WD, I/O 247 I/O 143 I/O 178 I/O 213 I/O 248 VCCI 144 I/O 179 I/O 214 I/O 249 I/O 145 I/O 180 GND 215 WD, I/O 250 WD, I/O 146 I/O 181 I/O 216 WD, I/O 251 WD, I/O 147 I/O 182 I/O 217 I/O 252 I/O 148 I/O 183 I/O 218 PRB, I/O 253 SDI, I/O 149 I/O 184 I/O 219 I/O 254 I/O 150 I/O 185 I/O 220 CLKB, I/O 255 GND 151 I/O 186 I/O 221 I/O 256 NC 152 I/O 187 I/O 222 GND 153 I/O 188 MODE 223 GND 154 I/O 189 VCCA 224 VCCA 155 VCCA 190 GND 225 VCCI 156 I/O 191 NC 226 I/O 157 I/O 192 NC 227 CLKA, I/O 158 VCCA 193 NC 228 I/O 159 VCCI 194 I/O 229 PRA, I/O 160 GND 195 DCLK, I/O 230 I/O 161 I/O 196 I/O 231 I/O 162 I/O 197 I/O 232 WD, I/O 163 I/O 198 I/O 233 WD, I/O 164 I/O 199 WD, I/O 234 I/O 165 GND 200 WD, I/O 235 I/O 166 I/O 201 VCCI 236 I/O 167 I/O 202 I/O 237 I/O 168 I/O 203 I/O 238 I/O 169 I/O 204 I/O 239 I/O 170 VCCA 205 I/O 240 QCLKD, I/O 171 I/O 206 GND 241 I/O 172 I/O 207 I/O 242 WD, I/O 173 I/O 208 I/O 243 GND 174 I/O 209 QCLKC, I/O 244 WD, I/O 175 I/O 210 I/O 245 I/O v6.0 2-33 40MX and 42MX FPGA Families 272-Pin BGA Package 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A B C D E F G 272-Pin PBGA H J K L M N P R T U V W Y Figure 2-13 • 272-Pin BGA Package (Top View) 2 -3 4 v6.0 40MX and 42MX FPGA Families 272-Pin PBGA 272-Pin PBGA 272-Pin PBGA 272-Pin PBGA Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function A1 GND B16 I/O D11 I/O H2 I/O A2 GND B17 WD, I/O D12 VCCI H3 I/O A3 I/O B18 I/O D13 I/O H4 VCCA A4 WD, I/O B19 GND D14 VCCI H17 I/O A5 I/O B20 GND D15 I/O H18 I/O A6 I/O C1 I/O D16 VCCA H19 I/O A7 WD, I/O C2 MODE D17 GND H20 I/O A8 WD, I/O C3 GND D18 I/O J1 I/O A9 I/O C4 I/O D19 I/O J2 I/O A10 I/O C5 WD, I/O D20 I/O J3 I/O A11 CLKA C6 I/O E1 I/O J4 VCCI A12 I/O C7 QCLKC, I/O E2 I/O J9 GND A13 I/O C8 I/O E3 I/O J10 GND A14 I/O C9 I/O E4 VCCA J11 GND A15 I/O C10 CLKB E17 VCCI J12 GND A16 WD, I/O C11 PRA, I/O E18 I/O J17 VCCA A17 I/O C12 WD, I/O E19 I/O J18 I/O A18 I/O C13 I/O E20 I/O J19 I/O A19 GND C14 QCLKD, I/O F1 I/O J20 I/O A20 GND C15 I/O F2 I/O K1 I/O B1 GND C16 WD, I/O F3 I/O K2 I/O B2 GND C17 SDI, I/O F4 VCCI K3 I/O B3 DCLK, I/O C18 I/O F17 I/O K4 VCCI B4 I/O C19 I/O F18 I/O K9 GND B5 I/O C20 I/O F19 I/O K10 GND B6 I/O D1 I/O F20 I/O K11 GND B7 WD, I/O D2 I/O G1 I/O K12 GND B8 I/O D3 I/O G2 I/O K17 I/O B9 PRB, I/O D4 I/O G3 I/O K18 VCCA B10 I/O D5 VCCI G4 VCCI K19 VCCA B11 I/O D6 I/O G17 VCCI K20 LP B12 WD, I/O D7 I/O G18 I/O L1 I/O B13 I/O D8 VCCA G19 I/O L2 I/O B14 I/O D9 WD, I/O G20 I/O L3 VCCA B15 WD, I/O D10 VCCI H1 I/O L4 VCCA v6.0 2-35 40MX and 42MX FPGA Families 272-Pin PBGA 272-Pin PBGA 272-Pin PBGA 272-Pin PBGA Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function Pin Number A42MX36 Function L9 GND P20 I/O U19 I/O W13 WD, I/O L10 GND R1 I/O U20 I/O W14 I/O L11 GND R2 I/O V1 I/O W15 I/O L12 GND R3 I/O V2 I/O W16 WD, I/O L17 VCCI R4 VCCI V3 GND W17 I/O L18 I/O R17 VCCI V4 GND W18 WD, I/O L19 I/O R18 I/O V5 I/O W19 GND L20 TCK, I/O R19 I/O V6 I/O W20 GND M1 I/O R20 I/O V7 I/O Y1 GND M2 I/O T1 I/O V8 WD, I/O Y2 GND M3 I/O T2 I/O V9 I/O Y3 I/O M4 VCCI T3 I/O V10 I/O Y4 TDI, I/O M9 GND T4 I/O V11 I/O Y5 WD, I/O M10 GND T17 VCCA V12 I/O Y6 I/O M11 GND T18 I/O V13 WD, I/O Y7 QCLKA, I/O M12 GND T19 I/O V14 I/O Y8 I/O M17 I/O T20 I/O V15 WD, I/O Y9 I/O M18 I/O U1 I/O V16 I/O Y10 I/O M19 I/O U2 I/O V17 I/O Y11 I/O M20 I/O U3 I/O V18 Y12 I/O N1 I/O U4 I/O SDO, TDO, I/O Y13 I/O V19 I/O Y14 I/O V20 I/O Y15 I/O W1 GND Y16 I/O W2 GND Y17 I/O W3 I/O Y18 WD, I/O W4 TMS, I/O Y19 GND W5 I/O Y20 GND W6 I/O W7 I/O W8 WD, I/O W9 WD, I/O W10 I/O W11 I/O W12 I/O N2 N3 N4 N17 N18 N19 N20 2 -3 6 I/O I/O VCCI VCCI I/O I/O I/O U5 U6 U7 U8 U9 U10 U11 VCCI WD, I/O I/O I/O WD, I/O VCCA VCCI P1 I/O U12 I/O P2 I/O U13 I/O P3 I/O U14 QCLKB, I/O P4 VCCA U15 I/O P17 I/O U16 VCCI P18 I/O U17 I/O P19 I/O U18 GND v6.0 FPGA Families 40MX and 42MX Datasheet Information List of Changes The following table lists critical changes that were made in the current version of the document. Previous version v5.1 Changes in current version (v 6. 0 ) Page The "Ease of Integration" section was updated. 1-i The "Temperature Grade Offerings" section is new. 1-iii The "Speed Grade Offerings" section is new. 1-iii The "General Description" section was updated. 1-1 The "MultiPlex I/O Modules" section was updated. 1-6 The "User Security" section was updated. 1-6 Table 1 • Voltage Support of MX Devices was updated. 1-7 The "Power Dissipation" section was updated. 1-8 The "Static Power Component" section was updated. 1-8 The "Equivalent Capacitance" section was updated. 1-8 Figure 1-13 • Silicon Explorer II Setup with 42MX was updated. 1-10 Table 4 • Supported BST Public Instructions was updated. 1-11 Figure 1-14 • 42MX IEEE 1149.1 Boundary Scan Circuitry was updated. 1-11 Table 5 • Boundary Scan Pin Configuration and Functionality was updated. 1-12 The "Development Tool Support" section was updated. 1-13 The Table 7 • Absolute Maximum Ratings for 42MX Devices* and the Table 6 • Absolute 1-14 Maximum Ratings for 40MX Devices* were updated. The Table 9 • 5V TTL Electrical Specifications was updated. 1-15 The Table 13 • 3.3V LVTTL Electrical Specifications was updated. 1-17 In the "Mixed 5.0V/3.3V Electrical Specifications" section, Table 14 • Absolute Maximum 1-18 Ratings*, Table 15 • Recommended Operating Conditions, and Table 16 • Mixed 5.0V/3.3V Electrical Specificationswere updated. The Table 17 • DC Specification (5.0V PCI Signaling)1 was updated. 1 The Table 19 • DC Specification (3.3V PCI Signaling) was updated. 1-19 1-20 The <zBlue>Junction Temperature (TJ) section, "Package Thermal Characteristics" section, and the 1-22 tables were updated. Figure 1-17 • 40MX Timing Model* was updated. 1-23 Figure 1-19 • 42MX Timing Model (Logic Functions Using Quadrant Clocks) 1-24 The Figure 1-20 • 42MX Timing Model (SRAM Functions) was updated. 1-24 The Figure 1-27 • Output Buffer Latches was updated. 1-27 The Table 22 • 42MX Temperature and Voltage Derating Factors is new. 1-31 The Table 23 • 40MX Temperature and Voltage Derating Factors is new. 1-32 The "Pin Descriptions" section was updated. 1-77 In the 100-Pin PQFP table, the following pins changed: Pin 64 (42MX09 and 42MX16) has changed to LP 2-7 v6.0 3-1 FPGA Families 40MX and 42MX Previous version 5.1 v5.0 v4.0.1 Changes in current version (v 6. 0 ) Page In the 160-Pin PQFP table, the following pins changed: Pin 61 (42MX09, 42MX16, and 42MX64) has changed to LP 2-10 In the 208-Pin PQFP table, the following pins changed: Pin 129 (42MX09, 42MX16, and 42MX64) has changed to LP Pin 198 (42MX09) has changed to I/O 2-14 The n the 240-Pin PQFP table, the following pins changed: Pin 91 (42MX36) has changed to LP 2-18 In the 100-Pin VQFP Package table, the following pins changed: Pin 62 (42MX09 and 42MX16) has changed to LP 2-23 In the 176-Pin TQFP table, the following pins changed: Pin 109 (42MX09 and 42MX16) has changed to LP 2-25 In the 272-Pin PBGA table, the following pins changed: Pin K20 (42MX36) has changed to LP 2-35 The "Low Power Mode" section was updated. 1-7 Footnote 8 in the Table 9 • 5V TTL Electrical Specifications was updated. 1-15 Footnote 8 in the Table 13 • 3.3V LVTTL Electrical Specifications was updated. 1-17 Because the changes in this data sheet are extensive and technical in nature, this should be viewed ALL as a new document. Please read it as you would a data sheet that is published for the first time. Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated from the data sheet. The mechanical drawings are now contained in a separate document, “Package Characteristics and Mechanical Drawings,” available on the Actel web site. Datasheet Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information. Advanced This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. Unmarked (production) This datasheet version contains information that is considered to be final. Datasheet Supplement The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families. 3 -2 v6.0 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. http://www.actel.com Actel Corporation Actel Europe Ltd. Actel Japan Actel Hong Kong 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0)1276.401450 Fax +44 (0)1276.401490 EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 39th Floor, One Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852.227.35712 Fax +852.227.35999 5172136-8/01.04