PD - 97437A IRF9310PbF HEXFET® Power MOSFET VDS RDS(on) max (@VGS = 10V) ID -30 V 6 ' 4.6 mΩ 6 ' 6 ' * ' -20 (@TA = 25°C) A SO-8 Applications • Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits Resulting Benefits Features Low RDSon (≤ 4.6mΩ) Industry-Standard SO8 Package RoHS Compliant Containing no Lead, no Bromide and no Halogen Orderable part number Package Type IRF9310PbF IRF9310TRPbF SO8 SO8 Lower Conduction Losses results in Multi-Vendor Compatibility ⇒ Environmentally Friendlier Standard Pack Form Quantity Tube/Bulk 95 4000 Tape and Reel Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage -30 VGS ± 20 ID @ TA = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS @ 10V -16 IDM Pulsed Drain Current -160 PD @TA = 25°C Power Dissipation PD @TA = 70°C Power Dissipation f f c 2.5 1.6 Linear Derating Factor 0.02 Operating Junction and -55 to + 150 TSTG Storage Temperature Range www.irf.com V -20 TJ Notes through Units A W W/°C °C are on page 2 1 03/19/2010 IRF9310PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage -30 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– ––– 0.020 3.9 ––– 4.6 5.8 -1.8 6.8 -2.4 Static Drain-to-Source On-Resistance Conditions Min. Typ. Max. Units BVDSS V VGS = 0V, ID = -250µA V/°C Reference to 25°C, ID = -1mA VGS = -10V, ID = -20A mΩ VGS = -4.5V, ID = -16A e e VGS(th) Gate Threshold Voltage ––– -1.3 ∆VGS(th) IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -5.8 ––– ––– ––– V VDS = VGS, ID = -100µA ––– mV/°C VDS = -24V, VGS = 0V -1.0 µA VDS = -24V, VGS = 0V, TJ = 125°C -150 IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– -100 100 nA gfs Qg Forward Transconductance Total Gate Charge 39 ––– ––– 58 ––– ––– S nC Qg Qgs Gate-to-Source Charge ––– ––– 110 17 165 ––– nC ––– ––– 28 2.8 ––– ––– Turn-On Delay Time Rise Time ––– ––– 25 47 ––– ––– td(off) tf Turn-Off Delay Time Fall Time ––– ––– 65 70 ––– ––– Ciss Input Capacitance ––– 5250 ––– Coss Crss Output Capacitance Reverse Transfer Capacitance ––– ––– 1300 880 ––– ––– Qgd RG td(on) tr h Total Gate Charge h h Gate-to-Drain Charge h Gate Resistance h VGS = -20V VGS = 20V VDS = -10V, ID = -16A VDS = -15V, VGS = -4.5V, ID = - 16A VGS = -10V VDS = -15V ID = -16A Ω ns VDD = -15V, VGS = -4.5V ID = -1.0A e RG = 1.8Ω See Figs. 20a &20b VGS = 0V pF VDS = -15V ƒ = 1.0MHz Avalanche Characteristics Parameter EAS IAR Single Pulse Avalanche Energy Avalanche Current Diode Characteristics c d Parameter Typ. Max. Units ––– ––– 630 -16 mJ A Conditions Min. Typ. Max. Units IS Continuous Source Current ISM (Body Diode) Pulsed Source Current ––– ––– -2.5 ––– ––– -160 ––– ––– -1.2 MOSFET symbol A c (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time ––– 71 Qrr Reverse Recovery Charge ––– 12 showing the integral reverse Parameter Junction-to-Drain Lead Junction-to-Ambient f g G p-n junction diode. e V TJ = 25°C, IS = -2.5A, VGS = 0V 107 ns TJ = 25°C, IF = -2.5A, VDD = -24V 18 nC di/dt = 100A/µs Thermal Resistance RθJL RθJA D S e Typ. Max. Units ––– ––– 20 50 °C/W Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 4.9mH, RG = 25Ω, IAS = -16A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ of approximately 90°C. For DESIGN AID ONLY, not subject to production testing. 2 www.irf.com IRF9310PbF 1000 1000 TOP 100 BOTTOM 10 VGS -10V -4.5V -3.5V -3.1V -2.9V -2.7V -2.5V -2.3V ≤60µs PULSE WIDTH Tj = 150°C -ID, Drain-to-Source Current (A) -ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH Tj = 25°C 100 1 0.1 BOTTOM -2.3V 0.01 1 0.1 1 10 100 0.1 -V DS, Drain-to-Source Voltage (V) 1 10 100 -V DS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 1.6 RDS(on) , Drain-to-Source On Resistance (Normalized) -I D, Drain-to-Source Current (Α) VGS -10V -4.5V -3.5V -3.1V -2.9V -2.7V -2.5V -2.3V 10 -2.3V 100 T J = 150°C 10 T J = 25°C VDS = -10V ≤60µs PULSE WIDTH 1.0 ID = -20A VGS = -10V 1.4 1.2 1.0 0.8 0.6 1 2 3 4 5 -60 -40 -20 0 Fig 3. Typical Transfer Characteristics 100000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd -VGS, Gate-to-Source Voltage (V) ID= -16A C oss = C ds + C gd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) -V GS, Gate-to-Source Voltage (V) C, Capacitance(pF) TOP 100 12.0 VDS= -24V VDS= -15V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 -VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 25 50 75 100 125 150 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF9310PbF 1000 -I D, Drain-to-Source Current (A) -I SD, Reverse Drain Current (A) 1000.00 100.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 T J = 150°C 10.00 T J = 25°C 1.00 1msec 10 1 T A = 25°C 0.10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.1 -VSD, Source-to-Drain Voltage (V) 1 10 100 -VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 2.5 -V GS(th), Gate threshold Voltage (V) 20 15 -I D, Drain Current (A) 10msec Tj = 150°C Single Pulse VGS = 0V 10 5 2.0 ID = -100µA 1.5 1.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T A , Ambient Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Ambient Temperature Thermal Response ( Z thJA ) °C/W 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 10 1 0.1 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com IRF9310PbF RDS(on), Drain-to -Source On Resistance ( mΩ) RDS(on) , Drain-to -Source On Resistance (mΩ) 12 ID = -20A 10 8 TJ = 125°C 6 4 TJ = 25°C 2 2 4 6 8 10 12 14 16 18 14 12 10 VGS = -4.5V 8 6 VGS = -10V 4 2 20 0 20 40 80 Fig 13. Typical On-Resistance vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage 1000 2700 ID TOP -1.8A -2.7A BOTTOM -16A 2100 800 Single Pulse Power (W) 2400 1800 1500 1200 900 600 600 400 200 300 0 1E-5 0 25 50 75 100 125 150 1E-4 Starting T J , Junction Temperature (°C) D.U.T * 1E-2 Driver Gate Drive + - D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode www.irf.com VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% Reverse Polarity of D.U.T for P-Channel P.W. Period * • • • • 1E+0 VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. 1E-1 Fig 16. Typical Power vs. Time + RG 1E-3 Time (sec) Fig 14. Maximum Avalanche Energy vs. Drain Current * 100 120 140 160 -I D, Drain Current (A) -V GS, Gate -to -Source Voltage (V) EAS , Single Pulse Avalanche Energy (mJ) 60 ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs 5 IRF9310PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) SS Qgodr Fig 18a. Gate Charge Test Circuit I AS D.U.T RG IAS -V GS -20V tp Qgs2 Qgs1 Fig 18b. Gate Charge Waveform L VDS Qgd VDD A DRIVER 0.01Ω tp V(BR)DSS 15V Fig 19b. Unclamped Inductive Waveforms Fig 19a. Unclamped Inductive Test Circuit VDS RD td(on) VGS RG t d(off) tf VGS D.U.T. 10% + V DD -VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 20a. Switching Time Test Circuit 6 tr 90% VDS Fig 20b. Switching Time Waveforms www.irf.com IRF9310PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' ,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \ ',0 % $ + >@ ( $ ; H H ;E >@ $ .[ & \ >@ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& ;/ ;F & $ % )22735,17 127(6 ',0(16,21,1* 72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5) 026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'( <:: 3 ',6*1$7(6/($')5(( 352'8&7 237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 7 IRF9310PbF SO-8 Tape and Reel (Dimensions are shown in milimeters (inches)) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. † Qualification Information Consumer †† Qualification level Moisture Sensitivity Level (per JEDEC JESD47F††† guidelines) MSL1 SO-8 (per JEDEC J-STD-020D†††) Yes RoHS Compliant Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Revision History Date 3/18/2010 Comment Figure 16, Power vs. Time curve is modified and updated. All other parameters remain unchanged. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/2010 8 www.irf.com