500 MHz Dual Integrated DCL with Differential Drive/Receive, Level Setting DACs, and Per Pin PMU ADATE302-02 FEATURES GENERAL DESCRIPTION Driver 3-level driver with high-Z mode and built-in clamps Precision trimmed output resistance Low leakage mode (typically <10 nA) Voltage range: −2.0 V to +6.0 V 1.0 ns minimum pulse width, 1 V terminated Comparator Window and differential comparator >1 GHz input equivalent bandwidth Load ±12 mA maximum current capability Per pin PMU Force voltage range: −2.0 V to +6.0 V 5 current ranges: 25 mA, 2 mA, 200 μA, 20 μA, and 2 μA Levels 14-bit DAC for DCL levels Typically <±5 mV INL (calibrated) 16-bit DAC for PMU levels Typically <±1.5 mV INL (calibrated) linearity in FV mode HVOUT output buffer 0 V to 13.5 V output range Packages 84-ball, 9 mm × 9 mm, flip-chip BGA 100-lead TQFP_EP 1.7 W per channel with no load The ADATE302-02 is a complete, single-chip solution that performs the pin electronic functions of the driver, the comparator, and the active load (DCL), per pin PMU, and dc levels for ATE applications. The device also contains an HVOUT driver with a VHH buffer capable of generating up to 13.5 V. The driver features three active states: data high mode, data low mode, and term mode, as well as an inhibit state. The inhibit state, in conjunction with the integrated dynamic clamp, facilitates the implementation of a high speed active termination. The output voltage range is −2.0 V to +6.0 V to accommodate a wide variety of test devices. The ADATE302-02 can be used as either a dual single-ended drive/receive channel or a single differential drive/receive channel. Each channel of the ADATE302-02 features a high speed window comparator for functional testing as well as a per pin PMU with FV or FI and MV or MI functions. All necessary dc levels for DCL functions are generated by on-chip 14-bit DACs. The per pin PMU features an on-chip 16-bit DAC for high accuracy and contains integrated range resistors to minimize external component counts. The ADATE302-02 uses a serial bus to program all functional blocks and has an on-board temperature sensor for monitoring the device temperature. APPLICATIONS Automatic test equipment Semiconductor test systems Board test systems Instrumentation and characterization equipment Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved. ADATE302-02* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017 COMPARABLE PARTS DISCUSSIONS View a parametric search of comparable parts. View all ADATE302-02 EngineerZone Discussions. DOCUMENTATION SAMPLE AND BUY Data Sheet Visit the product page to see pricing options. • ADATE302-02: 500 MHz Dual Integrated DCL with Differential Drive/Receive, Level Setting DACs, and Per Pin PMU Data Sheet TECHNICAL SUPPORT DESIGN RESOURCES Submit a technical question or find your regional support number. • ADATE302-02 Material Declaration DOCUMENT FEEDBACK • PCN-PDN Information Submit feedback for this data sheet. • Quality And Reliability • Symbols and Footprints This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified. ADATE302-02 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ......................................................... 20 Applications ....................................................................................... 1 Thermal Resistance .................................................................... 20 General Description ......................................................................... 1 Explanation of Test Levels ......................................................... 20 Revision History ............................................................................... 2 ESD Caution................................................................................ 20 Functional Block Diagram .............................................................. 3 Pin Configuration and Function Descriptions........................... 21 Specifications..................................................................................... 4 Typical Performance Characteristics ........................................... 27 Total Function ............................................................................... 4 Serial Peripheral Interface Details ................................................ 39 Driver ............................................................................................. 5 Definition of SPI Word .............................................................. 40 Reflection Clamp .......................................................................... 7 Write Operation.......................................................................... 41 Normal Window Comparator .................................................... 7 Read Operation .......................................................................... 42 Differential Comparator .............................................................. 9 Reset Operation .......................................................................... 43 Active Load.................................................................................. 11 Register Map ................................................................................... 44 PMU ............................................................................................. 12 Details of Registers ......................................................................... 45 External Sense (PMUS_CHx)................................................... 16 User Information ............................................................................ 47 DUTGND Input ......................................................................... 17 Details of DACs vs. Levels ......................................................... 48 Serial Peripheral Interface ......................................................... 17 Recommended PMU Mode Switching Sequences ................ 50 HVOUT Driver ........................................................................... 17 Block Diagrams............................................................................... 53 Overvoltage Detector (OVD) ................................................... 18 Outline Dimensions ....................................................................... 57 16-Bit DAC Monitor Mux ......................................................... 19 Ordering Guide .......................................................................... 58 REVISION HISTORY 4/09—Rev. 0 to Rev. A Added 100-Lead TQFP_EP Package ........................... Throughout Added Figure 3, Renumbered Figures Sequentially................... 22 Added Table 17, Renumbered Tables Sequentially .................... 22 Updated Outline Dimensions ....................................................... 52 Changes to Ordering Guide .......................................................... 53 6/08—Revision 0: Initial Version Rev. A | Page 2 of 58 ADATE302-02 FUNCTIONAL BLOCK DIAGRAM CH1 PMU_FLAG 16-BIT DAC * DAC16_MON PMU MUX MUX * OVD MUX VCH CH1 OVD_CH0 VCL MEASOUT01 VCL SENSE VCH FORCE PMUS_CH0 VH VT VL ROUT (TRIMMED) DATA0P 100Ω DRV DUT0 DATA0N * RCV0P 100Ω WINDOW DIFF. C RCV0N OTHER CHANNEL DUT1 * COMP_VTT0 VHH 50Ω HVOUT COMP_QH0P C VOH C VOL COMP_QH0N COMP_QL0P COMP_QL0N * G IOL ADATE302-02 SDIN RST * SCLK SPI CS VCOM 14-BIT DAC IOH TEMPERATURE SENSOR * TEMPSENSE 07278-001 SDOUT *ONE PER DEVICE. Figure 1. Functional Block Diagram with One of Two Channels Shown Rev. A | Page 3 of 58 ADATE302-02 SPECIFICATIONS VDD = 10.0 V, VCC = 3.3 V, VSS = −5.75 V, VPLUS = 16.75 V, VCOMP_VTTx = 1.5 V, VREF = 5.0 V, VREF_GND = 0.0 V. All default test conditions are as defined in Table 38. All specified values are at TJ = 80°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are measured at TJ = 80°C ± 20°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section. TOTAL FUNCTION Table 1. Parameter TOTAL FUNCTION Output Leakage Current PE Disable, Range E Min Typ Max Unit Test Level −20.0 +6.0 +20.0 nA P nA CT +400 nA P +6.0 pF V S D PE Disable, Range A, B, C, D High-Z Mode Output Capacitance DUT Pin Range POWER SUPPLIES Total Supply Range, VPLUS to VSS VPLUS Supply, VPLUS Positive Supply, VDD Negative Supply, VSS Logic Supply, VCC Comparator Termination, VCOMP_VTTx VPLUS Supply Current, IPLUS VPLUS Supply Current, IPLUS Logic Supply Current, ICC Comparator Termination Current, ICOMP_VTTx Positive Supply Current, IDD Negative Supply Current, ISS Total Power Dissipation 7.5 −400 4 −2.0 −2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; VCH = 7.0 V, VCL = −2.5 V −2.0 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; VCH = 7.0 V, VCL = −2.5 V −2.0 V < VDUTx < +6.0 V; PMU disabled and PE enabled via SPI; RCVx pins active, VCH = 7.0 V, VCL = −2.5V VTERM mode operation 16.25 9.5 −6.0 3.1 1 −1.0 4.0 1.0 40.0 22.5 16.75 10.0 −5.75 3.3 1.5 +1.3 12.7 2.7 46 23.25 17.25 10.5 −5.5 3.5 3.3 +4.0 17.0 10.0 70.0 V V V V V V mA mA mA mA D D D D D D P P P P Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions 140.0 170.0 200.0 230.0 2.5 3.0 190 231 272 311 3.55 4.2 256.0 311.0 406.0 461.0 4.0 5.5 mA mA mA mA W W P P P P P P Load power down (IOH = IOL = 0 mA) Load active off (IOH = IOL = 12 mA) Load power down (IOH = IOL = 0 mA) Load active off (IOH = IOL = 12 mA) Load power down (IOH = IOL = 0 mA) Load active off (IOH = IOL = 12 mA) mV/K °C CT CT TEMPERATURE MONITORS Temperature Sensor Gain Temperature Sensor Accuracy Without Calibration over 25°C to 100°C VREF INPUT Reference Input Voltage Range for DACs (VREF Pin) Input Bias Current +15 Conditions/Comments 10 6 4.95 HVOUT disabled HVOUT enabled, RCVx pins active, no load, VHH = 12 V Quiescent (SPI is static) Temperature voltage available on Pin A1 at all times and on Pin K1 when selected (see Table 25 and Table 37) 5 5.05 V D Referenced to VREF_GND; not referenced to VDUTGND 0.08 100 μA P Tested with 5 V applied Rev. A | Page 4 of 58 ADATE302-02 DRIVER VH − VL ≥ 200 mV (to meet dc/ac specifications). Table 2. Parameter DC SPECIFICATIONS High-Speed Differential Logic Input Characteristics (DATAx, RCVx) Input Termination Resistance Input Voltage Differential Common-Mode Voltage Input Bias Current Pin Output Characteristics Output High Range, VH Output Low Range, VL Output Term Range, VT Functional Amplitude (VH − VL) Min Typ Max Unit Test Level 92 100 108 Ω P +4.0 1.0 3.5 +20.0 V V μA PF PF P +6.0 +5.9 +6.0 V V V V D D D D 0.2 0.85 −20.0 −1.9 −2.0 −2.0 0.0 8.0 DC Output Current Limit Source 75 100 120 mA P DC Output Current Limit Sink Output Resistance, ±50 mA −120 45.0 −100 48.5 −75 51.0 mA Ω P P −300 ±75 ±450 ±1 ±2.5 +300 +10 mV μV/°C mV mV P CT CT P 0.6 1 mV PF ±1.3 +7 mV P Conditions/Comments Push 6 mA into xP pins, force 1.3 V on xN pins; measure voltage from xP to xN, calculate resistance (V/I) Each pin tested at 2.85 V and 0.35 V, while other high speed pin left open VH, VL, VT Crosstalk ±2 mV CT Overall Voltage Accuracy ±10 mV CT VH, VL, VT DC PSRR AC SPECIFICATIONS Rise/Fall Times 0.2 V Programmed Swing 1.0 V Programmed Swing 1.8 V Programmed Swing 2.0 V Programmed Swing 3.0 V Programmed Swing 3.0 V Programmed Swing 5.0 V Programmed Swing Rise to Fall Matching ±15 mV/V CT Amplitude can be programmed to VH = VL, accuracy specifications apply when VH − VL ≥ 200 mV Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure current Driver low, VL = −2.0 V, short DUTx pin to 6.0 V, measure current Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA; sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUTx/ΔIDUTx VH tests done with VL = −2.5 V and VT = −2.5 V; VL tests done with VH = 7.5 V and VT = 7.5 V; VT tests done with VL = −2.5 V and VH = 7.5 V; unless otherwise specified Error measured at calibration points of 0 V and 5 V Measured at calibration points After two-point gain/offset calibration After two-point gain/offset calibration; measured over driver output ranges After two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V Over ±0.1 V range; measured at end points of VH, VL, and VT functional range VL = −2.0 V: VH = −1.9 V → 6.0 V, VT = −2.0 V → 6.0 V; VH = 6.0 V: VL = −2.0 V → 5.9 V, VT = −2.0 V → 6.0 V; VT = 1.5 V: VL = −2.0 V → 5.9 V, VH = −1.9 V → 6.0 V; dc crosstalk on VL, VH, VT output level when other driver DACs are varied Sum of INL, crosstalk, DUTGND, and tempco over ±5°C, after gain/offset calibration Measured at calibration points 683 521 524 531 589 811 1105 6 ps ps ps ps ps ps ps ps CB CB P/CB CB CB CB CB CB Toggle DATAx pins VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80% VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 1.8 V, VL = 0.0 V, terminated; 20% to 80% VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90% VH = 5.0 V, VL = 0.0 V, unterminated; 10% to 90% VH = 1.0 V, VL = 0.0 V, terminated; rise to fall within one channel ABSOLUTE ACCURACY VH, VL, VT Uncalibrated Accuracy VH, VL, VT Offset Tempco VH, VL, VT DNL VH, VL, VT INL −10 VH, VL, VT Resolution DUTGND Voltage Accuracy −7 430 630 Rev. A | Page 5 of 58 ADATE302-02 Parameter Minimum Pulse Width 2.0 V Programmed Swing Maximum Toggle Rate Dynamic Performance, Drive (VH to VL and VL to VH) Propagation Delay Time Propagation Delay Tempco Delay Matching Edge to Edge Channel to Channel Delay Change vs. Duty Cycle Overshoot and Undershoot Settling Time (VH to VL) To Within 3% of Final Value To Within 1% of Final Value Dynamic Performance, VTERM (VH or VL to VT and VT to VH or VL) Propagation Delay Time Delay Matching, Edge to Edge Propagation Delay Tempco Transition Time, Active to VT, VT to Active Dynamic Performance, Inhibit (VH or VL to/from Inhibit) Propagation Delay Time Active to Inhibit Inhibit to Active Transition Time Active to Inhibit Inhibit to Active I/O Spike Min Unit Test Level 1.2 1.2 ns ns CB CB 1.0 ns CB 500 MHz CB 2.1 4.5 ns ps/°C CB CT 41 ±15 ±30 48 ps ps ps mV CB CB CB CB 1.2 14 ns ns CB CB 2.7 59 5.5 0.614 ns ps ps/°C ns CB CB CT CB Typ Max Conditions/Comments Toggle DATAx pins VH = 2.0 V, VL = 0.0 V, terminated; timing error ±27 ps VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 2.0 V, VL = 0.0 V, terminated; less than 20% amplitude degradation VH = 2.0 V, VH = 0.0 V, terminated, 18% amplitude degradation Toggle DATAx pins VH = 2.0 V, VL = 0.0 V, terminated VH = 1.8 V, VL = 0.0 V, terminated VH = 2.0 V, VL = 0.0 V, terminated Rising vs. falling Rising vs. rising, falling vs. falling VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz VH = 3.0 V, VL = 0.0 V, terminated Toggle DATAx pins VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated Toggle RCVx pins VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80% Toggle RCVx pins VH = +1.0 V, VL = −1.0 V, terminated 2.7 3.7 ns ns CB CB 1.3 0.4 157 ns ns mV CB CB CB VH = +1.0 V, VL = −1.0 V, terminated; 20% to 80% Rev. A | Page 6 of 58 VH = 0.0 V, VL = 0.0 V, terminated ADATE302-02 REFLECTION CLAMP Clamp accuracy specifications apply when VCH > VCL. Table 3. Min Typ Max Unit Test Level −1.0 −200 ±45 +6.0 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT Parameter VCH Range Uncalibrated Accuracy INL Tempco VCL Range Uncalibrated Accuracy −40 ±2 +40 −0.5 ±70 +5.0 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT mA mA mV P P P INL Tempco DC CLAMP CURRENT LIMIT VCH VCL DUTGND VOLTAGE ACCURACY −2 −200 −40 ±2 +40 0.6 −120 60 −7 −83 86 ±1 −60 120 +7 Conditions/Comments Driver high-Z, sinking 1 mA; VCH error measured at calibration points of 0 V and 5 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; measured over VCH range of −1 V to +6 V Measured at calibration points Driver high-Z, sourcing 1 mA; VCL error measured at calibration points of 0 V and 5 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; measured over VCL range of −2 V to +5 V Measured at calibration points Driver high-Z, VCH = 0 V, VCL = −2.0 V, VDUTx = 5 V Driver high-Z, VCH = 6.0 V, VCL = 5.0 V, VDUTx = 0.0 V Over ±0.1 V range; measured at the end points of VCH and VCL functional range NORMAL WINDOW COMPARATOR VOH tests done with VOL = −2.0 V, VOL tests done with VOH = 6.0 V, unless otherwise specified. Table 4. Parameter DC SPECIFICATIONS Input Voltage Range Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated Comparator Threshold Resolution Comparator Threshold DNL Comparator Threshold INL Comparator Input Offset Voltage Tempco Min −2.0 ±0.1 −150 −7 Typ Max Unit Test Level Conditions/Comments ±30 +6.0 ±8.0 +150 V V mV D D P Offset measured at calibration points of 0 V and 5 V 0.61 1 mV PF ±1 ±1.2 +7 mV mV CT P μV/°C CT ±200 Rev. A | Page 7 of 58 After two-point gain/offset calibration; range/ number of DAC bits as measured at calibration points of 0 V and 5 V After two-point gain/offset calibration After two-point gain/offset calibration; measured over VOH, VOL range of −2.0 V to +6.0 V Measured at calibration points ADATE302-02 Parameter DUTGND Voltage Accuracy Min −7 Typ ±0.5 Max +7 Unit mV Test Level P Comparator Uncertainty Range 5.3 mV CB DC Hysteresis DC PSRR Digital Output Characteristics Internal Pull-Up Resistance to Comparator, COMP_VTTx Pin 0.5 ±5 mV mV/V CB CT VCOMP_VTTx Range Common-Mode Voltage 46 50 54 Ω P 1 1.5 VCOMP_VTTx − 0.3 3.3 V V D CT Measured with 100 Ω differential termination VCOMP_VTTx V P Measured with no external termination 550 mV mV ps CT P CB Measured with 100 Ω differential termination Measured with no external termination Measured with each comparator leg terminated 50 Ω to GND Input transition time = 600 ps, 10% to 90%; measured with each comparator leg terminated 50 Ω to GND; unless otherwise specified VDUTx = 0 V to 1.0 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V VDUTx = 0 V to 0.9 V swing, driver VTERM mode, VT = 0.0 V; VOL = VOH = 0.45 V VDUTx = 0 V to 1.0 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V VCOMP_VTTx − 0.5 Differential Voltage 450 Rise/Fall Time, 20% to 80% Conditions/Comments Over ±0.1 V range; measured at end points of VOH and VOL functional range VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Measured at calibration points 250 500 222 AC SPECIFICATIONS Propagation Delay, Input to Output 1.4 ns CB Propagation Delay Tempco 4 ps/°C CT High Transition to Low Transition High to Low Comparator Propagation Delay Change with Respect to Slew Rate, 600 ps and 1 ns (10% to 90%) 39 ±30 ps ps CB CB 19 ps CB Overdrive, 250 mV and 1.0 V 65 ps CB Pulse Width, 1 ns, 5 ns, 10 ns, and 15 ns 27 ps CB Duty Cycle, 5% to 95% 11.8 ps CB Propagation Delay Matching Rev. A | Page 8 of 58 Pull 1 mA and 10 mA from Logic 1 leg and measure ΔV to calculate resistance; measured ΔV/9 mA; done for both comparator logic states VDUTx = 0 V to 0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.25 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.0 V: VDUTx = 0 V to 1.25 V swing; driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.25 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V; input transition time = 400 ps (10%/90%) VDUTx = 0 V to 1.0 V swing @ 32.0 MHz, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V; input transition time = 400 ps (10%/90%) VDUTx = 0 V to 1.0 V swing @ 1.0 MHz, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V; input transition time = 400 ps (10%/90%) ADATE302-02 Parameter Minimum Pulse Width Min Typ 1 Max Unit ns Test Level CB Input Equivalent Bandwidth, Terminated 1000 MHz CB ERT High-Z Mode, 3 V, 20% to 80% 0.9 ns CB Conditions/Comments VDUTx = 0 V to 1.0 V swing, driver VTERM mode, VT = 0.0 V; less than 10% amplitude degradation measured by shmoo; input transition time = 400 ps (10%/90%) VDUTx = 0 V to 1.0 V swing, driver VTERM mode, VT = 0.0 V; as measured by shmoo; input transition time = 400 ps (10%/90%) VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured by shmoo DIFFERENTIAL COMPARATOR VOH tests done with VOL = −1.1 V, VOL tests done with VOH = 1.1 V, unless otherwise specified. Table 5. Parameter DC SPECIFICATIONS Input Voltage Range Operational Differential Voltage Range Maximum Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated VOH, VOL Resolution Min Unit Test Level +4.5 ±1.1 V V D D ±25 ±8 +150 V mV D P 0.61 1 mV PF mV CT mV P μV/°C mV CT CB mV mV/V CB P −1.5 ±0.05 −150 VOH, VOL DNL VOH, VOL INL Max Typ ±1 −7 ±1.0 +7 VOH, VOL Offset Voltage Tempco Comparator Uncertainty Range ±200 18 DC Hysteresis CMRR 0.5 DC PSRR AC SPECIFICATIONS ±15 mV/V CT Propagation Delay, Input to Output 1.4 ns CB Propagation Delay Tempco 4 ps/°C CT 27 ±32 ps ps CB CB 1 Propagation Delay Matching High Transition to Low Transition High to Low Comparator Propagation Delay Change with Respect to Conditions/Comments Offset measured at differential calibration points of +1 V and −1 V, with common mode = 0 V After two-point gain/offset calibration; range/number of DAC bits as measured at differential calibration points of +1 V and −1 V, with common mode = 0 V After two-point gain/offset calibration; common mode = 0V After two-point gain/offset calibration; measured over VOH, VOL range of −1.1 V to +1.1 V, common mode = 0 V Measured at calibration points VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Offset measured at common-mode voltage points of −1.5 V and +4.5 V, with differential voltage = 0 V Measured at calibration points Input transition time = 600 ps, 10% to 90%, measured with each comparator leg terminated 50 Ω to GND VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; VOL = VOH = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, Rev. A | Page 9 of 58 ADATE302-02 Parameter Min Typ Max Unit Test Level Slew Rate, 400 ps and 1 ns (10% to 90%) 25 ps CB Overdrive, 250 mV and 750 mV 79 ps CB Pulse Width, 1 ns, 5 ns, 10 ns, and 15 ns 56 ps CB Duty Cycle, 5% to 95% 16 ps CB Minimum Pulse Width 1 ns CB Input Equivalent Bandwidth, Terminated 500 MHz CB Rev. A | Page 10 of 58 Conditions/Comments VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for 750 mV: VDUT1 = 0 V to 1.0 V swing, driver VTERM mode, VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel with comparator threshold = 0.25 V VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 22% amplitude degradation measured by shmoo; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V ADATE302-02 ACTIVE LOAD See Table 30 for load control information. Table 6. Parameter DC SPECIFICATIONS Input Characteristics VCOM Voltage Range VDUTx Range VCOM Accuracy, Uncalibrated Min −1.75 −2.0 −200 VCOM Resolution Typ Max Unit Test Level ±25 +5.75 +6.0 +200 V V mV D D P 0.61 1 mV PF VCOM DNL VCOM INL −7 ±1 ±2 +7 mV mV CT P DUTGND Voltage Accuracy −7 ±1 +7 mV P 12 −600.0 ±100 +600.0 mA μA D P −12 ±1 +12 % P Resolution 1.5 2 μA PF DNL ±3.0 μA CT +70 μA P 0.25 V P Output Characteristics IOL Maximum Source Current Uncalibrated Offset Uncalibrated Gain INL −70 ±20 90% Commutation Voltage IOH Maximum Sink Current Uncalibrated Offset 12 −600.0 ±100 +600.0 mA μA D P −12 ±1 +12 % P Resolution 1.5 2 μA PF DNL ±3.0 μA CT +70 μA P 0.25 V P μA/°C CT Uncalibrated Gain INL −70 ±20 90% Commutation Voltage Output Current Tempco ±1.5 Rev. A | Page 11 of 58 Conditions/Comments Load active on, RCVx pins active, unless otherwise noted IOH = IOL = 6 mA, VCOM error measured at calibration points of 0 V and 5 V IOH = IOL = 6 mA, after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V IOH = IOL = 6 mA, after two-point gain/offset calibration IOH = IOL = 6 mA, after two-point gain/offset calibration; measured over VCOM range of −1.75 V to +5.75 V Over ±0.1 V range; measured at end points of VCOM functional range IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated from calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after twopoint gain/offset calibration IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after twopoint gain/offset calibration; measured over IOL range of 0 mA to 12 mA IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at VDUTx = −1.0 V, measure IOL current at VDUTx = 1.75 V, ensure >90% of reference current IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated from calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point gain/offset calibration IOL = 0 mA, VCOM = 1.5V, VDUTx = 3.0 V, after two-point gain/offset calibration; measured over IOH range of 0 mA to 12 mA IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOH reference at VDUTx = 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure >90% of reference current Measured at calibration points ADATE302-02 Unit Test Level 4.1 ns CB Propagation Delay, Load Active Off to Load Active On; 50%, 90% 11 ns CB Propagation Delay Matching 6.9 ns CB Load Spike 156 mV CB Settling Time to 90% 1.6 ns CB Parameter AC SPECIFICATIONS Dynamic Performance Propagation Delay, Load Active On to Load Active Off; 50%, 90% Min Typ Max Conditions/Comments Load active on, unless otherwise noted Toggle RCVx pins, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCVx pins, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCVx pins, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; active on vs. active off, repeat for drive low and high Toggle RCVx pins, DUTx terminated 50 Ω to GND, IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; repeat for drive low and high Toggle RCVx pins, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM= −1.25 V for IOH; measured at 90% of final value PMU FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing. Table 7. Parameter FORCE VOLTAGE (FV) Current Range A Current Range B Current Range C Current Range D Current Range E Force Input Voltage Range at Output For All Ranges Force Voltage Uncalibrated Accuracy for Range C Force Voltage Uncalibrated Accuracy for All Ranges Force Voltage Offset Tempco for All Ranges Force Voltage Gain Tempco for All Ranges Forced Voltage INL Min Max Unit Test Level +6.0 mA mA μA μA μA V D D D D D D +100 mV P ±25 mV CT ±25 μV/°C CT PMU enabled, FV, PE disabled, error measured at calibration points of 0 V and 5 V PMU enabled, FV, PE disabled, error measured at calibration points of 0 V and 5 V; repeat for each PMU current range Measured at calibration points for each PMU current range ±75 ppm/°C CT Measured at calibration points for each PMU current range mV P PMU enabled, FV, Range C, PE disabled, after two-point gain/ offset calibration; measured over output range of −2.0 V to +6.0 V PMU enabled, FV, PE disabled, force −2.0 V, measure voltage while PMU sinking zero- and full-scale current; measure ΔV; force 6.0 V, measure voltage while PMU sourcing zero- and fullscale current; measure ΔV; repeat for each PMU current range mV mV CT CT Typ ±25 ±2 ±200 ±20 ±2 −2.0 −100 −7 ±25 ±2 +7 Force Voltage Compliance vs. Current Load Range A Range B to Range E ±4 ±1 Rev. A | Page 12 of 58 Conditions/Comments ADATE302-02 Parameter Current Limit, Source and Sink Range A Range B to Range E DUTGND Voltage Accuracy Min Typ Max Unit Test Level 108 135 180 % FS P 120 140 180 % FS P −7 ±1 +7 mV P +6.0 V D μA CT μA P MEASURE CURRENT (MI) Measure Current, Pin DUTx Voltage Range for All Ranges Measure Current Uncalibrated Accuracy Range A Range B −2.0 ±650 −400 ±20 +400 Conditions/Comments PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS = 25 mA, 108% FS = 27 mA, 180% FS = 45 mA PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each PMU current range; example: Range B FS = 2 mA, 120% FS = 2.4 mA, 180% FS = 3.6 mA Over ±0.1 V range; measured at end points of FV functional range VDUTx externally forced to 0.0 V, unless otherwise specified; ideal MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) + 2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5 PMU enabled, FIMI, PE disabled, error at calibration points of −20 mA and 20 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of −1.6 mA and 1.6 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) Range C ± 2.00 μA CT Range D ±0.20 μA CT Range E ±0.02 μA CT ±2.5 ±125 ±20 ±4 μA/°C nA/°C nA/°C nA/°C CT CT CT CT Measured at calibration points Measured at calibration points Measured at calibration points Measured at calibration points −3.5 % CT % P ±2 % CT PMU enabled, FIMI, PE disabled, gain error from calibration points of ±80% FS PMU enabled, FIMI, PE disabled, gain error from calibration points of ±1.6 mA PMU enabled, FIMI, PE disabled, gain error from calibration points of ±80% FS Measured at calibration points ±300 ±50 ppm/°C ppm/°C CT CT ±0.05 % FSR CT % FSR P % FSR CT % FSR/V P mV CT Measure Current Offset Tempco Range A Range B Range C Range D and Range E Measure Current Gain Error, Nominal Gain = 1 Range A Range B −20 Range C to Range E Measure Current Gain Tempco Range A Range B to Range E Measure Current INL Range A Range B −0.02 Range B to Range E FVMI DUT Pin Voltage Rejection DUTGND Voltage Accuracy ±2 ±0.005 +20 0.02 ±0.005 −0.01 0.01 ±2.5 Rev. A | Page 13 of 58 PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration, measured over FSR output of −25 mA to +25 mA PMU enabled, FIMI, PE disabled, after two-point gain/ offset calibration measured over FSR output of −2 mA to +2 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FVMI, PE disabled, force −1 V and +5 V into load of 1 mA; measure ΔI reported at MEASOUT01 Over ±0.1 V range; measured at end points of MI functional range ADATE302-02 Parameter FORCE CURRENT (FI) Force Current, DUTx Pin Voltage Range for All Ranges Force Current Uncalibrated Accuracy Range A Min Typ −2.0 Max Unit Test Level +6.0 V D −5.0 ±0.5 +5.0 mA P Range B −400 ±40 +400 μA P Range C −40 ±4 +40 μA P Range D −4 ±0.4 +4 μA P Range E −400 ±75 +400 nA P −20 ±1 ±80 ±4 ±4 +20 μA/°C nA/°C nA/°C % CT CT CT P ppm/°C ppm/°C CT CT Force Current Offset Tempco Range A Range B Range C to Range E Forced Current Gain Error, Nominal Gain = 1 Forced Current Gain Tempco Range A Range B to Range E Force Current INL Range A −500 ±75 −0.3 ±0.05 +0.3 % FSR P -0.2 ±0.015 0.2 % FSR P −0.6 −1.0 ±0.06 +±0.1 +0.6 +1.0 % FSR % FSR P P −2.0 −25 ±2.0 +6.0 +25 V mV D P −2 ±10 ±0.01 +2 μV/°C % CT P Measure Voltage Gain Tempco Measure Voltage INL −7 25 ±1 +7 ppm/°C mV CT P Rejection of Measure V vs. IDUTx −1.5 ±0.1 +1.5 mV P Range B to Range E Force Current Compliance vs. Voltage Load Range A to Range D Range E MEASURE VOLTAGE Measure Voltage Range Measure Voltage Uncalibrated Accuracy Measure Voltage Offset Tempco Measure Voltage Gain Error Rev. A | Page 14 of 58 Conditions/Comments VDUTx externally forced to 0.0 V, unless otherwise specified Ideal force current transfer function: IFORCE = (PMUDAC − 2.5) × (FSR/5) PMU enabled, FIMI, PE disabled, error at calibration points of −20 mA and +20 mA PMU enabled, FIMI, PE disabled, error at calibration points of −1.6 mA and +1.6 mA PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS Measured at calibration points Measured at calibration points Measured at calibration points PMU enabled, FIMI, PE disabled, gain error from calibration points of ±80% FS Measured at calibration points PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output of −25 mA to +25 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FIMV, PE disabled; force positive full-scale current driving −2.0 V and +6.0 V, measure ΔI @ DUTx pin; force negative full-scale current driving −2.0 V and +6.0 V, measure ΔI @ DUTx pin PMU enabled, FVMV, Range B, PE disabled, error at calibration points of 0 V and 5 V, error = (VMEASOUT01 − VDUTx) Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, gain error from calibration points of 0 V and 5 V Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, after two-point gain/offset calibration; measured over output range of −2.0 V to +6.0 V PMU enabled, FVMV, Range D, PE disabled, force 0 V into load of −10 μA and +10 μA; measure ΔV reported at MEASOUT01 ADATE302-02 Typ Max Unit Test Level 25 +6.0 4 200 V mA Ω D D P −1 +1 μA P −25 +25 mA P −2.0 0.0 −300 +50 +4.0 6.0 +300 V V mV D D P Negative Clamp Voltage Droop −300 −50 +300 mV P Uncalibrated Accuracy −250 ±100 +250 mV P INL −70 ±5 +70 mV P ±1 mV CT 15 μs S 20 μs S 124 μs S 1015 μs S 3455 μs S Parameter MEASOUT01 DC CHARACTERISTICS MEASOUT01 Voltage Range DC Output Current MEASOUT01 Pin Output Impedance Output Leakage Current When Tristated Output Short-Circuit Current VOLTAGE CLAMPS Low Clamp Range (VCL) High Clamp Range (VCH) Positive Clamp Voltage Droop DUTGND Voltage Accuracy Min −2.0 SETTLING/SWITCHING TIMES Voltage Force Settling Time to 0.1% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF and 2000 pF Load Range E, 200 pF and 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Conditions/Comments PMU enabled, FVMV, PE disabled; source resistance: PMU force 6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force −2.0 V and load with 0 mA and −4 mA; resistance = ΔV/ΔI at MEASOUT01 pin Tested at −2.0 V and +6.0 V PMU enabled, FVMV, PE disabled; source: PMU force 6.0 V, short MEASOUT01 to −2.0 V; sink: PMU force −2.0 V, short MEASOUT01 to 6.0 V PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V, VCL = −1 V, PMU force 1 mA and 25 mA into open; ΔV seen at DUTx pin PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V, VCL = −1 V, PMU force −1 mA and −25 mA into open; ΔV seen at DUTx pin PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled, PMU force ±1 mA into open; VCH errors at calibration points of 0 V and 5 V; VCL errors at the calibration points of 0 V and 4 V PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled, PMU force ±1 mA into open; after two-point gain/offset calibration; measured over PMU clamp range Over ±0.1 V range; measured at end points of PMU clamp functional range SCAP = 330 pF, FFCAP = 220 pF PMU enabled, FV, PE disabled, program PMUDAC steps of 500 mV and 5.0 V; simulation of worst case, 2000 pF load, PMUDAC step of 5.0 V PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 500 mV 8.0 μs CB 8.0 μs CB 8.0 μs CB 8.1 585 8.1 590 μs μs μs μs CB CB CB CB Rev. A | Page 15 of 58 ADATE302-02 Parameter Voltage Force Settling Time to 1.0% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF Load Range B, 2000 pF Load Range C, 200 pF Load Range C, 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Current Force Settling Time to 0.1% of Final Value Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ Current Force Settling Time to 1.0% of Final Value Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ INTERACTION AND CROSSTALK Measure Voltage Channel-toChannel Crosstalk Min Measure Current Channel-toChannel Crosstalk Unit Test Level 4.2 μs CB 4.4 7.6 6.3 8.1 130 280 390 605 μs μs μs μs μs μs μs μs CB CB CB CB CB CB CB CB Typ Max Conditions/Comments PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 5.0 V PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current 8.2 μs S 9.4 μs S 30 μs S 281 μs S 2668 μs S PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current 3.3 μs CB 4.4 μs CB 8 μs CB 205 μs CB 505 μs CB ±0.125 % FSR CT ±0.01 % FSR CT PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into 0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA into 0 V load; report ΔV of MEASOUT01 pin under test; 0.125% × 8.0 V = 10 mV PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into 0 mA current load; other channel: Range E, forcing a step of 0 V to 5 V into 0 mA current load; report ΔV of MEASOUT01 pin under test; 0.01% × 5.0 V = 0.5 mV EXTERNAL SENSE (PMUS_CHx) Table 8. Parameter Min Voltage Range Input Leakage Current −2.0 −20 Typ Max Unit +6.0 +20 V nA Rev. A | Page 16 of 58 Test Level D P Conditions/Comments Tested at −2.0 V and +6.0 V ADATE302-02 DUTGND INPUT Table 9. Parameter Input Voltage Range, Referenced to GND Input Bias Current Min −0.1 Typ Max +0.1 100 1 Unit V μA Test Level D P Conditions/Comments Tested at −100 mV and +100 mV SERIAL PERIPHERAL INTERFACE Table 10. Parameter Serial Input Logic High Serial Input Logic Low Input Bias Current SCLK Clock Rate SCLK Pulse Width SCLK Crosstalk on DUTx Pin Serial Output Logic High Serial Output Logic Low Update Time Min 1.8 0 −10 Typ +1 50 9 8 VCC − 0.4 0 Max VCC 0.7 +10 Test Level PF PF P PF CT CB PF PF D Unit V V μA MHz ns mV V V μs VCC 0.8 10 Conditions/Comments Tested at 0.0 V and 3.3 V PE disabled, PMU FV enabled and forcing 0 V Sourcing 2 mA Sinking 2 mA Maximum delay time required for the part to enter a stable state after a serial bus command is loaded HVOUT DRIVER Table 11. Parameter VHH BUFFER Voltage Range Min Output High 13.5 Max Unit Test Level VPLUS − 3.25 V D V P 5.9 V P ±100 +500 mV P 1 1.21 1.5 mV/°C mV CT PF ±15 +30 mV P mV CT 10 Ω P Typ 5.9 Output Low Accuracy Uncalibrated −500 Offset Tempco Resolution INL −30 DUTGND Voltage Accuracy ±1 Output Resistance 1 DC Output Current Limit Source 60 100 mA P DC Output Current Limit Sink −100 −60 mA P ns CB Rise Time (From VL or VH to VHH) 175 Rev. A | Page 17 of 58 Conditions/Comments VHH = (VT + 1 V) × 2 + DUTGND VPLUS = 16.75 V nominal; in this condition, VHVOUT maximum = 13.5 V VHH mode enabled, RCVx pins active, VHH level = full scale, sourcing 15 mA VHH mode enabled, RCVx pins active, VHH level = zero scale, sinking 15 mA VHH mode enabled, RCVx pins active, VHVOUT error measured at calibration points of 7 V and 12 V Measured at calibration points VHH mode enabled, RCVx pins active, after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 7 V and 12 V VHH mode enabled, RCVx pins active, after two-point gain/ offset calibration; measured over VHH range of 5.9 V to 13.5 V Over ±0.1 V range; measured at end points of VHH functional range VHH mode enabled, RCVx pins active, source: VHH = 10.0 V, IHVOUT = 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and −15 mA; ΔV/ΔI VHH mode enabled, RCVx pins active, VHH = 10.0 V, short HVOUT pin to 5.9 V, measure current VHH mode enabled, RCVx pins active, VHH = 6.5 V, short HVOUT pin to 14.1 V, measure current VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low ADATE302-02 Parameter Fall Time (From VHH to VL or VH) Preshoot, Overshoot, and Undershoot VL/VH BUFFER Voltage Range Accuracy Uncalibrated Min Max ±100 −0.1 −500 Offset Tempco Resolution INL Typ 23 −20 DUTGND Voltage Accuracy Unit ns Test Level CB mV CB ±100 +6.0 +500 V mV D P 1 0.61 0.75 mV/°C mV CT PF ±4 +20 mV P mV CT 50 Ω P ±2 Output Resistance 46 48 DC Output Current Limit Source 60 100 mA P DC Output Current Limit Sink −100 −60 mA P Rise Time (VL to VH) 10.0 ns CB Fall Time (VH to VL) 11.3 ns CB Preshoot, Overshoot, and Undershoot ±54 mV CB Conditions/Comments VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL = VH = 3.0 V; for DATAx high and DATAx low VHH mode enabled, RCVx pins inactive, error measured at calibration points of 0 V and 5 V Measured at calibration points VHH mode enabled, RCVx pins inactive, after two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V VHH mode enabled, RCVx pins inactive, after two-point gain/offset calibration; measured over range of −0.1 V to +6.0 V Over ±0.1 V range; measured at end points of VH and VL, functional range VHH mode enabled, RCVx pins inactive, source: VH = 3.0 V, IHVOUT = 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA and −50 mA; ΔV/ΔI VHH mode enabled, RCVx pins inactive, VH = 6.0 V, short HVOUT pin to −0.1 V, DATAx high, measure current VHH mode enabled, RCVx pins inactive, VL = −0.1 V, short HVOUT pin to 6.0 V, DATAx low, measure current VHH mode enabled, RCVx pins inactive, VL = 0.0 V, VH = 3.0 V, toggle DATAx pins; 20% to 80% VHH mode enabled, RCVx pins inactive, VL = 0.0 V, VH = 3.0 V, toggle DATAx pins; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATAx pins OVERVOLTAGE DETECTOR (OVD) Table 12. Parameter DC CHARACTERISTICS Programmable Voltage Range Accuracy Uncalibrated Hysteresis LOGIC OUTPUT CHARACTERISTICS Off State Leakage Min Typ −3.0 −200 Max Unit Test Level +7.0 +200 V mV D P mV CB 112 10 1000 nA P Maximum On Voltage @100 μA 0.2 0.7 V P Propagation Delay 1.8 μs CB Rev. A | Page 18 of 58 Conditions/Comments OVD offset errors measured at programmed levels of 7.0 V and −3.0 V Disable OVD alarm, apply 3.3 V to OVD_CHx pin, measure leakage current Activate alarm, force 100 μA into OVD_CHx, measure active alarm voltage For OVD high: DUTx = 0 V to 6 V swing, OVD_CHx high = 3.0 V, OVD_CHx low = −3.0 V; for OVD_CHx low: DUTx = 0 V to 6 V swing, OVD_CHx high = 7.0 V, OVD_CHx low = 3.0 V ADATE302-02 16-BIT DAC MONITOR MUX Table 13. Parameter DC CHARACTERISTICS Programmable Voltage Range Output Resistance Min Typ −2.5 16 Max Unit Test Level Conditions/Comments +7.5 V kΩ D CT PMUDAC = 0.0 V, FV, I = 0 μA, 200 μA; ΔV/ΔI Rev. A | Page 19 of 58 ADATE302-02 ABSOLUTE MAXIMUM RATINGS Table 14. Parameter Supply Voltages Positive Supply Voltage (VDD to GND) Positive VCC Supply Voltage (VCC to GND) Negative Supply Voltage (VSS to GND) Supply Voltage Difference (VDD to VSS) Reference Ground (DUTGND to GND) AGND to DGND VPLUS Supply Voltage (VPLUS to GND) Input Voltages Input Common-Mode Voltage Short-Circuit Voltage 1 High Speed Input Voltage 2 High Speed Differential Input Voltage 3 VREF DUTx I/O Pin Current DCL Maximum Short-Circuit Current 4 Temperature Operating Temperature, Junction Storage Temperature Range 1 Rating −0.5 V to +11.0 V −0.5 V to +4.0 V −6.25 V to +0.5 V −1.0 V to +16.5 V −0.5 V to +0.5 V −0.5 V to +0.5 V −0.5 V to +17.5 V VSS to VDD −3.0 V to +8.0 V 0 to VCC 0 to VCC −0.5 V to +5.5 V ±140 mA 125°C −65°C to +150°C RL = 0 Ω, VDUTx continuous short-circuit condition (VH, VL, VT, high-Z, VCOM, clamp modes). 2 DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω. 3 DATAxP to DATAxN, RCVxP, RCVxN. 4 RL = 0 Ω, VDUTx = −3 V to +8 V; DCL current limit. Continuous short-circuit condition. ADATE302-02 must current limit and survive continuous short circuit. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE Table 15. Thermal Resistance Package Type 84-Ball CSP_BGA θJA 31.1 θJC 0.51 Unit °C/W EXPLANATION OF TEST LEVELS D Definition S Design verification simulation P 100% production tested PF Functionally checked during production test CT Characterized on tester CB Characterized on bench ESD CAUTION Rev. A | Page 20 of 58 ADATE302-02 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 10 9 8 7 6 5 4 3 2 1 A HVOUT PMUS_CH0 VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) PMUS_CH1 TEMPSENSE B VPLUS SCAP0 VSS AGND VDD VDD AGND VSS SCAP1 VDD/VDD_ TMPSNS C FFCAP_0B AGND DATA0N VSS VDD VDD VSS DATA1N AGND FFCAP_1B D OVD_CH0 VDD DATA0P DATA1P VDD OVD_CH1 E FFCAP_0A VSS RCV0N RCV1N VSS FFCAP_1A F AGND AGND RCV0P RCV1P AGND AGND COMP_QL0P COMP_QL0N COMP_VTT0 H COMP_QH0P COMP_QH0N COMP_VTT1 COMP_QL1N COMP_QL1P AGND VSS VDD VDD VSS AGND COMP_QH1N COMP_QH1P J AGND AGND AGND RST SDIN DGND DAC16_MON AGND AGND AGND K VREF_GND VREF AGND VCC SCLK SDOUT CS AGND DUTGND MEASOUT01/ TEMPSENSE Figure 2. 84-Ball BGA Pin Configuration, Bottom Side (BGA Balls Are Visible) Table 16. Pin Function Descriptions BGA Designator A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 Mnemonic TEMPSENSE PMUS_CH1 VSSO_1 (Drive) DUT1 VDDO_1 (Drive) VDDO_0 (Drive) DUT0 VSSO_0 (Drive) PMUS_CH0 HVOUT VDD/VDD_TMPSNS SCAP1 Description Temperature Sense Output PMU External Sense Path Channel 1 Driver Output Supply −5.75 V Channel 1 Device Under Test Channel 1 Driver Output Supply +10.0 V Channel 1 Driver Output Supply +10.0 V Channel 0 Device Under Test Channel 0 Driver Output Supply −5.75 V Channel 0 PMU External Sense Path Channel 0 High Voltage Driver Output Temperature Sense Supply +10.0 V PMU Stability Capacitor Connection Channel 1 (330 pF) Rev. A | Page 21 of 58 07278-002 G ADATE302-02 BGA Designator B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 D1 D2 D3 D8 D9 D10 E1 E2 E3 E8 E9 E10 F1 F2 F3 F8 F9 F10 G1 G2 G3 G8 G9 G10 H1 H2 H3 H4 H5 H6 H7 H8 Mnemonic VSS AGND VDD VDD AGND VSS SCAP0 VPLUS FFCAP_1B AGND DATA1N VSS VDD VDD VSS DATA0N AGND FFCAP_0B OVD_CH1 VDD DATA1P DATA0P VDD OVD_CH0 FFCAP_1A VSS RCV1N RCV0N VSS FFCAP_0A AGND AGND RCV1P RCV0P AGND AGND COMP_QL1P COMP_QL1N COMP_VTT1 COMP_VTT0 COMP_QL0N COMP_QL0P COMP_QH1P COMP_QH1N AGND VSS VDD VDD VSS AGND Description Supply −5.75 V Analog Ground Supply +10.0 V Supply +10.0 V Analog Ground Supply −5.75 V PMU Stability Capacitor Connection Channel 0 (330 pF) Supply +16.75 V PMU Feedforward Capacitor Connection B Channel 1 (220 pF) Analog Ground Driver Data Input (Negative) Channel 1 Supply −5.75 V Supply +10.0 V Supply +10.0 V Supply −5.75 V Driver Data Input (Negative) Channel 0 Analog Ground PMU Feedforward Capacitor Connection B Channel 0 (220 pF) Overvoltage Detection Flag Output Channel 1 Supply +10.0 V Driver Data Input (Positive) Channel 1 Driver Data Input (Positive) Channel 0 Supply +10.0 V Overvoltage Detection Flag Output Channel 0 PMU Feedforward Capacitor Connection A Channel 1 (220 pF) Supply −5.75 V Receive Data Input (Negative) Channel 1 Receive Data Input (Negative) Channel 0 Supply −5.75 V PMU Feedforward Capacitor Connection A Channel 0 (220 pF) Analog Ground Analog Ground Receive Data Input (Positive) Channel 1 Receive Data Input (Positive) Channel 0 Analog Ground Analog Ground Low-Side Comparator Output (Positive) Channel 1 Low-Side Comparator Output (Negative) Channel 1 Comparator Supply Termination Channel 1 Comparator Supply Termination Channel 0 Low-Side Comparator Output (Negative) Channel 0 Low-Side Comparator Output (Positive) Channel 0 High-Side Comparator Output (Positive) Channel 1 High-Side Comparator Output (Negative) Channel 1 Analog Ground Supply −5.75 V Supply +10.0 V Supply +10.0 V Supply −5.75 V Analog Ground Rev. A | Page 22 of 58 ADATE302-02 BGA Designator H9 H10 J1 J2 J3 J4 J5 J6 J7 Mnemonic COMP_QH0N COMP_QH0P AGND AGND AGND DAC16_MON DGND SDIN RST Description High-Side Comparator Output (Negative) Channel 0 High-Side Comparator Output (Positive) Channel 0 Analog Ground Analog Ground Analog Ground 16-Bit DAC Monitor Mux Output Digital Ground Serial Peripheral Interface (SPI) Data In Serial Peripheral Interface (SPI) Reset J8 J9 J10 K1 AGND AGND AGND MEASOUT01/TEMPSENSE K2 K3 K4 DUTGND AGND CS Analog Ground Analog Ground Analog Ground Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1, Temperature Sense and Temperature Sense GND Reference DUT Ground Reference Analog Ground Serial Peripheral Interface (SPI) Chip Select K5 K6 K7 K8 K9 K10 SDOUT SCLK VCC AGND VREF VREF_GND Serial Peripheral Interface (SPI) Data Out Serial Peripheral Interface (SPI) Clock Supply +3.3 V Analog Ground +5 V DAC Reference Voltage DAC Ground Reference Rev. A | Page 23 of 58 NC NC PMUS_CH0 VSS VDD VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) AGND AGND VSS VDD AGND VDD VSS AGND AGND VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) VDD VSS PMUS_CH1 NC NC ADATE302-02 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 NC 74 NC 3 73 HVOUT VDD/VDD_TMPSNS 4 72 VPLUS SCAP1 5 71 SCAP0 FFCAP_1B 6 70 FFCAP_0B VDD 7 69 VDD OVD_CH1 8 68 OVD_CH0 DATA1N 9 67 DATA0N DATA1P 10 66 DATA0P FFCAP_1A 11 65 FFCAP_0A 64 VSS NC 1 NC 2 TEMPSENSE PIN 1 ADATE302-02 VSS 12 TOP VIEW (Not to Scale) RCV1N 13 63 RCV0N 62 RCV0P AGND 15 61 AGND COMP_QL1P 16 60 COMP_QL0P COMP_QL1N 17 59 COMP_QL0N RCV1P 14 COMP_VTT1 18 58 COMP_VTT0 COMP_QH1P 19 57 COMP_QH0P COMP_QH1N 20 56 COMP_QH0N AGND 21 55 AGND AGND 22 54 AGND AGND 23 53 AGND NC 24 52 NC NC 25 51 NC NC NC VREF_GND VREF AGND AGND AGND RST VSS VCC VDD SDIN SCLK SDOUT DGND VDD VSS DAC16_MON CS AGND AGND DUTGND MEASOUT01/TEMP SENSE NC NC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 07278-002 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD IS CONNEC TED TO VSS. Figure 3. 100-Lead TQFP_EP Pin Configuration Table 17. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 Mnemonic NC NC TEMPSENSE VDD/VDD_TMPSNS SCAP1 FFCAP_1B VDD OVD_CH1 DATA1N DATA1P FFCAP_1A VSS Description No Connect. No physical connection to die. No Connect. No physical connection to die. Temperature Sense Output. Temperature Sense Supply +10.0 V. PMU Stability Capacitor Connection Channel 1 (330 pF). PMU Feed Forward Capacitor Connection B Channel 1 (220 pF). Supply +10.0 V. Overvoltage Detection Flag Output Channel 1. Driver Data Input (Negative) Channel 1. Driver Data Input (Positive) Channel 1. PMU Feedforward Capacitor Connection A Channel 1 (220 pF). Supply −5.75 V. Rev. A | Page 24 of 58 ADATE302-02 Pin No. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Mnemonic RCV1N RCV1P AGND COMP_QL1P COMP_QL1N COMP_VTT1 COMP_QH1P COMP_QH1N AGND AGND AGND NC NC NC NC MEASOUT01/TEMP SENSE 29 30 31 32 DUTGND AGND AGND CS Description Receive Data Input (Negative) Channel 1. Receive Data Input (Positive) Channel 1. Analog Ground. Low-Side Comparator Output (Positive) Channel 1. Low-Side Comparator Output (Negative) Channel 1. Comparator Supply Channel 1. High-Side Comparator Output (Positive) Channel 1. High-Side Comparator Output (Negative) Channel 1. Analog Ground. Analog Ground. Analog Ground. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1, and the temperature sense and temperature sense GND reference. Device Under Test Ground Reference. Analog Ground. Analog Ground. Serial Peripheral Interface (SPI®) Chip Select. 33 34 35 36 37 38 39 40 41 42 43 DAC16_MON VSS VDD DGND SDOUT SCLK SDIN VDD VCC VSS RST 16-Bit DAC Monitor Mux Output. Supply −5.75 V. Supply +10.0 V. Digital Ground. Serial Programmable Interface (SPI) Data Output. Serial Programmable Interface (SPI) Clock. Serial Programmable Interface (SPI) Data Input. Supply +10.0 V. Supply +3.3 V. Supply −5.75 V. Serial Peripheral Interface (SPI) Reset. 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 AGND AGND AGND VREF VREF_GND NC NC NC NC AGND AGND AGND Comp_QH0N Comp_QH0P Comp_VTT0 Comp_QL0N Comp_QL0P Analog Ground. Analog Ground. Analog Ground. +5 V DAC Reference Voltage. DAC Ground Reference. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Analog Ground. Analog Ground. Analog Ground. High-Side Comparator Output (Negative) Channel 0. High-Side Comparator Output (Positive) Channel 0. Comparator Supply Channel 0. Low-Side Comparator Output (Negative) Channel 0. Low-Side Comparator Output (Positive) Channel 0. Rev. A | Page 25 of 58 ADATE302-02 Pin No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 EP Mnemonic AGND RCV0P RCV0N VSS FFCAP_0A DATA0P DATA0N OVD_CH0 VDD FFCAP_0B SCAP0 VPLUS HVOUT NC NC NC NC PMUS_CH0 VSS VDD VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) AGND AGND VSS VDD AGND VDD VSS AGND AGND VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) VDD VSS PMUS_CH1 NC NC Description Analog Ground. Receive Data Input (Positive) Channel 0. Receive Data Input (Negative) Channel 0. Supply −5.75 V. PMU Feedforward Capacitor Connection A Channel 0 (220 pF). Driver Data Input (Positive) Channel 0. Driver Data Input (Negative) Channel 0. Overvoltage Detection Flag Output Channel 0. Supply +10.0 V. PMU Feedforward Capacitor Connection B Channel 0 (220 pF). PMU Stability Capacitor Connection Channel 0 (330 pF). Supply +16.75 V. High Voltage Driver Output. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. PMU External Sense Path Channel 0. Supply −5.75 V. Supply +10.0 V. Driver Output Supply −5.75 V Channel 0. Device Under Test Channel 0. Driver Output Supply +10.0 V Channel 0. Analog Ground. Analog Ground. Supply −5.75 V. Supply +10.0 V. Analog Ground. Supply +10.0 V. Supply −5.75 V. Analog Ground. Analog Ground. Driver Output Supply +10.0 V Channel 1. Device Under Test Channel 1. Driver Output Supply −5.75 V Channel 1. Supply +10.0 V. Supply −5.75 V. PMU External Sense Path Channel 1. No Connect. No physical connection to die. No Connect. No physical connection to die. Exposed Pad. The exposed pad is connected to VSS. Rev. A | Page 26 of 58 ADATE302-02 TYPICAL PERFORMANCE CHARACTERISTICS 0.30 1.8 0.5V 1.6 0.25 1.4 1.2 VOLTAGE (V) VOLTAGE (V) 0.20 0.15 0.2V 0.10 1.0 0.8 0.6 0.4 0.2 0.05 2 4 6 8 10 12 14 16 18 TIME (ns) Figure 4. Driver Small Signal Response; VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination 1.4 1.4 1.2 1.2 1.0 1.0 VOLTAGE (V) 1.6 0.8 0.6 0.2 0.2 0 0 4 6 8 10 12 14 16 18 TIME (ns) Figure 5. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination –0.2 10 12 14 16 18 0 1 2 3 4 5 6 7 8 9 10 Figure 8. 300 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 1.6 5 1.4 1.2 VOLTAGE (V) 4 3 2 1 1.0 0.8 0.6 0.4 0 0.2 2 4 6 8 10 TIME (ns) 12 14 16 18 0 07278-078 0 Figure 6. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0.0 V; 500 Ω Termination 0 1 2 3 4 5 TIME (ns) 6 7 8 9 07278-083 VOLTAGE (V) 8 TIME (ns) 6 –1 6 0.6 0.4 2 4 0.8 0.4 0 2 Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 1.6 –0.2 0 TIME (ns) 07278-079 VOLTAGE (V) –0.2 07278-084 0 07278-080 0 07278-085 0 Figure 9. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination Rev. A | Page 27 of 58 ADATE302-02 1.6 1.2 1.4 1.0 0.8 1.0 VOLTAGE (V) 0.8 0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 TIME (ns) –0.2 1.6 0.9 1.4 0.8 1.2 0.7 6 8 10 12 14 16 18 20 20 1.0 VOLTAGE (V) VOLTAGE (V) 4 Figure 13. Driver Active (VH/VL) to/from VTERM Transition; VH = 2.0 V; VT = 1.0 V; VL = 0.0 V 1.0 0.6 0.5 0.4 0.8 0.6 0.4 0.3 0.2 0.2 0 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 –0.2 07278-082 0 TIME (ns) 0.5 0 TRAILING EDGE ERROR (ps) 10 0.3 0.2 2 4 6 8 10 12 14 16 18 Figure 14. Driver Active (VH/VL) to/from VTERM Transition; VH = 3.0 V; VT = 1.5 V; VL = 0.0 V 0.6 0.4 0 TIME (ns) Figure 11. 600 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V; VL = 0.0 V; 50 Ω Termination NEGATIVE PULSE –10 –20 POSITIVE PULSE –30 –40 0 2 4 6 8 10 12 14 16 18 TIME (ns) 07278-075 0.1 0 2 TIME (ns) Figure 10. 500 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 0 0 07278-076 0.5 07278-081 0 07278-077 0 0.2 VOLTAGE (V) 0.4 0.2 0.4 0 0.6 –50 1 10 PULSE WIDTH (ns) Figure 15. Driver Minimum Pulse Width; VH = 0.2 V; VL = 0.0 V Figure 12. Driver Active (VH/VL) to/from VTERM Transition; VH = 1.0 V; VT = 0.5 V; VL = 0.0 V Rev. A | Page 28 of 58 07278-063 VOLTAGE (V) 1.2 ADATE302-02 10 10 –10 POSITIVE PULSE –20 –30 –40 –10 POSITIVE PULSE –20 –30 1 10 PULSE WIDTH (ns) –50 1 10 PULSE WIDTH (ns) Figure 16. Driver Minimum Pulse Width; VH = 0.5 V; VL = 0.0 V 07278-067 –40 07278-064 –50 NEGATIVE PULSE 0 NEGATIVE PULSE TRAILING EDGE ERROR (ps) TRAILING EDGE ERROR (ps) 0 Figure 19. Driver Minimum Pulse Width; VH = 3.0 V; VL = 0.0 V 10 1.5 0.5 0 LINEARITY ERROR (mV) TRAILING EDGE ERROR (ps) 1.0 NEGATIVE PULSE –10 POSITIVE PULSE –20 0 –0.5 –1.0 –1.5 –2.0 10 PULSE WIDTH (ns) –3.0 –2 –1 0 1 2 3 4 5 6 07278-020 1 07278-065 –30 5 6 07278-021 –2.5 DRIVER OUTPUT VOLTAGE (V) Figure 17. Driver Minimum Pulse Width; VH = 1.0 V; VL = 0.0 V Figure 20. Driver VH Linearity Error 2.0 10 1.0 LINEARITY ERROR (mV) 0 NEGATIVE PULSE –10 POSITIVE PULSE –20 0.5 0 –0.5 –1.0 –1.5 –2.0 –30 1 10 PULSE WIDTH (ns) 07278-066 TRAILING EDGE ERROR (ps) 1.5 Figure 18. Driver Minimum Pulse Width; VH = 2.0 V; VL = 0.0 V –2.5 –2 –1 0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V) Figure 21. Driver VL Linearity Error Rev. A | Page 29 of 58 ADATE302-02 2.0 0.2 1.5 0 INTERACTION ERROR (mV) 0.5 0 –0.5 –1.0 –1.5 –2.0 –0.4 –0.6 –0.8 –1.0 1 2 3 4 5 6 DRIVER OUTPUT VOLTAGE (V) –1.4 –2 DRIVER OUTPUT RESISTANCE (Ω) INTERACTION ERROR (mV) 2 3 4 5 6 60 6 53 1.2 1.0 0.8 0.6 0.4 0.2 –1 0 1 2 3 4 5 6 PROGRAMMED VL DAC LEVEL (V) 52 51 50 49 48 47 –60 07278-023 0 –40 –20 0 20 40 DRIVER OUTPUT CURRENT (mA) Figure 23. Driver Interaction Error; VH = 6.0 V; VL Swept from −2.0 V to +5.9 V Figure 26. Driver Output Resistance vs. Output Current 0.6 120 DRIVER OUTPUT CURRENT (mA) 0.5 0.4 0.3 0.2 0.1 0 –1 0 1 2 3 4 PROGRAMMED VH DAC LEVEL (V) 5 6 07278-024 INTERACTION ERROR (mV) 1 Figure 25. Driver Interaction Error; VL = −2.0 V; VH Swept from −1.9 V to +6.0 V 1.4 –0.1 –2 0 PROGRAMMED VH DAC LEVEL (V) Figure 22. Driver VT Linearity Error –0.2 –2 –1 07278-025 0 07278-022 –1 07278-026 –1.2 –2.5 –3.0 –2 –0.2 07278-027 LINEARITY ERROR (mV) 1.0 Figure 24. Driver Interaction Error; VT = 1.5 V; VH Swept from −1.9 V to +6.0 V 100 80 60 40 20 0 –2 –1 0 1 2 3 4 5 VDUTx (V) Figure 27. Driver Output Current Limit; Driver Programmed to −2.0 V; VDUTx Swept from −2.0 V to +6.0 V Rev. A | Page 30 of 58 0 6 –10 4 –20 2 LINEARITY ERROR (mV) –30 –40 –50 –60 –70 0 –2 –4 –6 –8 –80 0 1 2 3 4 5 6 VDUTx (V) –12 7 6 14 80 HVOUT DRIVER CURRENT (mA) 90 VOLTAGE (V) 12 10 8 6 4 2 11 12 13 14 6 15 70 60 50 40 30 20 10 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 –1 07278-086 0 4.5 TIME (µs) 0 1 2 3 4 5 VHVOUT (V) Figure 32. HVOUT VH Current Limit; VH = −0.1 V; VHVOUT Swept from −0.1 V to +6.0 V Figure 29. HVOUT VHH Response; VHH = 13.5 V 100 3 80 HVOUT DRIVER CURRENT (mA) 2 1 0 –1 –2 –3 60 40 20 0 –20 –40 –60 –80 0 1 2 3 4 VL PROGRAMMED VOLTAGE (V) 5 6 07278-037 LINEARITY ERROR (mV) 10 Figure 31. HVOUT VHH Linearity Error 16 –4 9 VHH PROGRAMMED VOLTAGE (V) Figure 28. Driver Output Current Limit; Driver Programmed to 6.0 V; VDUTx Swept from −2.0 V to +6.0 V 0 8 07278-038 –1 07278-028 –100 –2 07278-040 –10 –90 07278-041 DRIVER OUTPUT CURRENT (mA) ADATE302-02 5 6 7 8 9 10 11 12 13 VHVOUT (V) Figure 33. HVOUT VHH Current Limit; VHH = 10.0 V; VHVOUT Swept from 5.9 V to 14.1 V Figure 30. HVOUT VL Linearity Error Rev. A | Page 31 of 58 14 ADATE302-02 30 PROPAGATION DELAY VARIATION (ps) 1.0 0.9 0.8 0.6 SHMOO INPUT EDGE 0.5 0.4 0.3 0.2 0.1 0 1.2 2.4 3.6 4.8 6.0 TIME (ns) INPUT RISING EDGE 15 INPUT FALLING EDGE 10 5 0 0.8 1.0 Figure 37.Comparator Slew Rate Dispersion 1.1 0.8 COMP_QH0P 1.0 INPUT EDGE 0.7 0.9 SHMOO 0.8 0.6 VOLTAGE (V) 0.7 0.6 0.5 0.4 0.3 0.2 COMP_QH0N 0.5 0.4 0.3 0.2 0.1 19.30 TIME (ns) 07278-088 17.90 16.60 15.20 13.80 12.40 TIME (ns) 0 9.66 6.0 11.00 4.8 8.28 3.6 6.90 2.4 0 1.2 07278-090 0 5.52 0.1 0 4.14 VOLTAGE (V) 0.6 INPUT SLEW RATE [10%/90%] (ns) Figure 34. Comparator Shmoo; 1.0 V Swing; 200 ps (10%/90%) –0.1 0.4 2.76 –0.1 07278-089 0 20 1.38 VOLTAGE (V) 0.7 INPUT VOLTAGE SWING = 1V COMPARATOR THRESHOLD = 0.5V 25 07278-087 1.1 Figure 38. Comparator Output Waveform; COMP_QH0P, COMP_QH0N Figure 35. Comparator Shmoo; 1.0 V Swing; 200 ps (10%/90%) 0.4 10 0 LINEARITY ERROR (mV) 0 POSITIVE PULSE –10 NEGATIVE PULSE –20 –0.2 –0.4 –0.6 –0.8 –1.0 –1.2 1 10 PULSE WIDTH (ns) –1.6 –2 –1 0 1 2 3 4 PROGRAM THRESHOLD VOLTAGE (V) Figure 39. Comparator Threshold Linearity Figure 36. Comparator Minimum Pulse Width Input; 1.0 V Swing; 200 ps (10%/90%) Rev. A | Page 32 of 58 5 6 07278-029 –1.4 –30 07278-091 TRAILING EDGE ERROR (ps) 0.2 ADATE302-02 8 6 LINEARITY ERROR (µA) 0 –0.2 –0.4 –0.6 –0.8 4 2 0 –2 –1.0 –2 –1 0 1 2 3 4 5 INPUT COMMON-MODE VOLTAGE (V) –6 10 12 0.6 0.4 LINEARITY ERROR (mV) –3 –6 –9 0.2 0 –0.2 –0.4 –0.6 –0.8 10 20 30 50 40 TIME (ns) –1.2 –2 07278-092 0 10 5.0 5 4.5 IDUTx (nA) 5.5 0 –10 3.0 2 3 4 5 VDUTx (V) 6 07278-031 3.5 1 2 3 4 5 6 5 6 4.0 –5 0 1 Figure 44. Active Load VCOM Linearity 15 –1 0 VCOM VOLTAGE (V) Figure 41. Active Load Response –15 –2 –1 07278-033 –1.0 FULL LOAD CURRENTTO/FROM DRIVER ACTIVE LOW (VL) 07278-034 LOAD CURRENT (mA) 8 0.8 DRIVER ACTIVE LOW (VL) TO/FROM FULL LOAD CURRENT –12 LOAD CURRENT (mA) 6 Figure 43. Active Load Current Linearity 0 –15 4 ACTIVE LOAD CURRENT (mA) Figure 40. Differential Comparator CMRR 3 2 0 07278-032 –4 07278-030 DIFFERENTIAL COMPARATOR OFFSET (mV) 0.2 Figure 42. Active Load Commutation Response; VCOM = 2.0 V; IOH = IOL = 12 mA 2.5 –2 –1 0 1 2 3 4 VDUTx (V) Figure 45. DUTx Pin Leakage Current in Low Leakage Mode Rev. A | Page 33 of 58 ADATE302-02 6 30 20 4 LINEARITY ERROR (µA) 10 IDUTx (nA) 2 0 –2 0 –10 –20 –30 –40 –50 –4 1 2 3 4 5 6 VDUTx (V) –70 –30 –20 –10 0 10 20 30 07278-043 0 07278-035 –1 2.0 07278-044 –60 –6 –2 PMU OUTPUT CURRENT (mA) Figure 49. PMU Force Current Range A Linearity Figure 46. DUTx Pin Leakage Current in High-Z Mode 0.5 0.5 0.4 0.4 LINEARITY ERROR (µA) ERROR VOLTAGE (mV) 0.3 0.3 0.2 0.1 0 –0.1 0.1 0 –0.1 –0.2 –0.3 –0.2 –0.4 –0.15 –0.10 –0.05 0 0.05 0.10 0.15 0.20 DUTGND VOLTAGE (mV) –0.5 –2.0 07278-039 –0.3 –0.20 0.2 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 PMU OUTPUT CURRENT (mA) Figure 47. DUTGND Voltage Effects Figure 50. PMU Force Current Range B Linearity 0.04 0.4 0.03 0.2 –0.4 –0.6 0.01 0 –0.01 –0.02 –0.8 –0.03 –1.0 –0.04 –1.2 –3 –2 –1 0 1 2 3 4 5 PMU OUTPUT VOLTAGE (V) 6 7 –0.05 –0.20 –0.15 –0.10 –0.05 0 0.05 0.10 0.15 PMU OUTPUT CURRENT (mA) Figure 51. PMU Force Current Range C Linearity Figure 48. PMU Force Voltage Linearity Rev. A | Page 34 of 58 0.20 07278-045 LINEARITY ERROR (µA) –0.2 07278-042 LINEARITY ERROR (mV) 0.02 0 ADATE302-02 0.004 0.5 0.003 0.4 0.3 PMU VOLTAGE ERROR (mV) 0.001 0 –0.001 –0.002 –0.003 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.004 –0.5 0 0.005 0.010 0.015 0.020 –0.6 –2.0 07278-046 –0.005 –0.020 –0.015 –0.010 –0.005 PMU OUTPUT CURRENT (mA) Figure 52. PMU Force Current Range D Linearity –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 IDUTx (mA) Figure 55. PMU Force Voltage Range B Output Voltage Error at −2.0 V vs. Output Current 0.0004 4 3 PMU VOLTAGE ERROR (mV) 0.0002 LINEARITY ERROR (µA) 0.2 07278-049 LINEARITY ERROR (µA) 0.002 0 –0.0002 –0.0004 –0.0006 2 1 0 –1 –2 –0.0020 –0.0015 –0.0010 –0.0005 0 0.0005 0.0010 0.0015 0.0020 PMU OUTPUT CURRENT (mA) –4 –25 07278-047 –0.0008 Figure 53. PMU Force Current Range E Linearity –10 –5 0 5 10 15 20 25 Figure 56. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs. Output Current 4 3 PMU VOLTAGE ERROR (mV) 0.4 0.2 0 –0.2 –0.4 2 1 0 –1 –2 –3 –1.0 –0.5 0 IDUTx (mA) 0.5 1.0 1.5 2.0 –4 –25 07278-048 –1.5 Figure 54. PMU Force Voltage Range B Output Voltage Error at 6.0 V vs. Output Current –20 –15 –10 –5 0 IDUTx (mA) 5 10 15 20 25 07278-051 PMU VOLTAGE ERROR (mV) –15 IDUTx (mA) 0.6 –0.6 –2.0 –20 07278-050 –3 Figure 57. PMU Force Voltage Range A Output Voltage Error at −2.0 V vs. Output Current Rev. A | Page 35 of 58 ADATE302-02 2 1.0 0.8 PMU CURRENT ERROR (µA) –2 –4 –6 –8 0 1 2 3 4 5 6 Figure 58. PMU Force Current Range A Output Current Error at −25 mA vs. Output Voltage 0 1 2 3 4 5 6 Figure 61. PMU Force Current Range B Output Current Error at 2 mA vs. Output Voltage; Output Voltage Is Pulled Externally 0.004 PMU CURRENT ERROR (µA) 0.003 –10 –20 –30 –40 0.002 0.001 0 0 1 2 3 4 5 6 VDUTx (V) –0.002 –2 07278-053 –1 Figure 59. PMU Force Current Range A Output Current Error at 25 mA vs. Output Voltage; Output Voltage Is Pulled Externally 0.0030 PMU CURRENT ERROR (µA) 0.8 0.2 0 –0.2 1 2 3 4 5 6 Figure 62. PMU Force Current Range E Output Current Error at −2 μA vs. Output Voltage; Output Voltage Is Pulled Externally 0.0035 0.4 0 VDUTx (V) 1.0 0.6 –1 07278-056 –0.001 –50 –0.4 0.0025 0.0020 0.0015 0.0010 0.0005 0 –0.0005 –1 0 1 2 VDUTx (V) 3 4 5 6 –0.0010 07278-054 –0.6 –2 –1 VDUTx (V) 0 PMU CURRENT ERROR (µA) 0 –0.4 –2 10 PMU CURRENT ERROR (µA) 0.2 07278-055 –1 VDUTx (V) –60 –2 0.4 –0.2 07278-052 –10 –2 0.6 Figure 60. PMU Force Current Range B Output Current Error at −2 mA vs. Output Voltage; Output Voltage Is Pulled Externally –2 –1 0 1 2 VDUTx (V) 3 4 5 6 07278-057 PMU CURRENT ERROR (µA) 0 Figure 63. PMU Force Current Range E Output Current Error at 2 μA vs. Output Voltage; Output Voltage Is Pulled Externally Rev. A | Page 36 of 58 ADATE302-02 40 0.20 30 0.15 LINEARITY ERROR (µA) 10 0 –10 –20 0.10 0.05 0 –1 0 1 2 3 4 5 6 VDUTx (V) –0.10 –2.0 07278-058 –40 –2 –1.0 –0.5 0 0.5 1.0 1.5 2.0 5 IDUTx (mA) Figure 64. PMU Range A Internal Current Limit, Programmed to Force 2.5 V; VDUTx Swept from −2.0 V to +6.0 V Figure 67. PMU Range B Measure Current Linearity 0.003 0.7 0.6 PMU VOLTAGE ERROR (mV) 0.002 PMU CURRENT (mA) –1.5 07278-061 –0.05 –30 07278-062 PMU CURRENT (mA) 20 0.001 0 –0.001 –0.002 0.5 0.4 0.3 0.2 0.1 –1 0 1 2 3 4 5 6 VDUTx (V) 0 –2 07278-059 –0.003 –2 Figure 65. PMU Range E Internal Current Limit, Programmed to Force 2.5 V; VDUTx Swept from −2.0 V to +6.0 V –1 0 1 2 3 4 VDUTx (V) Figure 68. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI; Error of MI vs. External 1 mA 0.05 0.04 100mV/DIV 0.02 0.01 0 –0.01 07278-068 –0.02 –0.03 –0.04 –2 –1 0 1 2 3 4 5 VDUTx (V) 6 07278-060 LINEARITY ERROR (mV) 0.03 1ns/DIV Figure 69. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V; VL = 0.0 V Figure 66. PMU Range B Measure Voltage Linearity Rev. A | Page 37 of 58 07278-072 07278-069 100mV/DIV 199.5mV/DIV ADATE302-02 200ps/DIV Figure 73. Eye Diagram, 800 Mbps, PRBS31; VH = 2.0 V; VL= 0.0 V 07278-070 07278-073 100mV/DIV 199.5mV/DIV 500ps/DIV Figure 70. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V; VL = 0.0 V 200ps/DIV Figure 71. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V; VL = 0.0 V Figure 74. Eye Diagram, 1000 Mbps, PRBS31; VH = 1.0 V; VL = 0.0 V 07278-071 07278-074 100mV/DIV 199.5mV/DIV 500ps/DIV 200ps/DIV 200ps/DIV Figure 72. Eye Diagram, 800 Mbps, PRBS31; VH = 1.0 V; VL = 0.0 V Figure 75. Eye Diagram, 1000 Mbps, PRBS31; VH = 2.0 V; VL = 0.0 V Rev. A | Page 38 of 58 ADATE302-02 SERIAL PERIPHERAL INTERFACE DETAILS tCH SCLK tCL tCSSA tCSHA tCSHD tCSSD CS tCSW tDH tDS DATA[15] DATA[14] DO_15LAST SDOUT DO_14 LAST CH[1] R/W DO_13LAST DO_12 LAST ADDR[1] DO_2LAST ADDR[0] DO_1LAST 07278-003 SDIN DO_0LAST tDO Figure 76. SPI Timing Diagram Table 18. Serial Peripheral Interface Timing Requirements Symbol tCH tCL tCSHA Parameter SCLK minimum high SCLK minimum low CS assert hold Min 9.0 9.0 3.0 tCSSA CS assert setup 3.0 ns tCSHD CS deassert hold 3.0 ns tCSSD CS deassert setup 3.0 ns tDH tDS tDO tCSW SDIN hold SDIN setup SDOUT Data Out CS minimum between assertions 1 3.0 3.0 ns ns ns SCLK cycles tCSTP 1 Max 15.0 2 Unit ns ns ns CS minimum directly after a read request 3 SCLK cycles Minimum delay after CS is deasserted before SCLK can be stopped (not shown in Figure 76); this allows any internal operations to complete 16 SCLK cycles Extra cycle is needed after read request to prime read data into SPI shift register. Rev. A | Page 39 of 58 ADATE302-02 DEFINITION OF SPI WORD The SPI can take variable length words, depending on the operation. At most, the word is 24 bits longs: 16 bits of data, two channel selects, one R/W selector, and a 5-bit address. Depending on the operation, the data can be smaller (or nonexistent in the case of a read operation). Example 1 DATA[15:0] CH[1:0] R/W 07278-004 Write 16 bits of data to a register or DAC; unused MSBs are ignored. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are applied to the 14-bit DAC. ADDR[4:0] Figure 77. Example 2 DATA[13:0] CH[1:0] R/W ADDR[4:0] 07278-005 Write 14 bits of data to the DAC. Figure 78. Example 3a DATA[1:0] CH[1:0] R/W 07278-006 Write two bits of data to the 2-bit register. ADDR[4:0] Figure 79. Example 3b DATA[15:0] CH[1:0] R/W ADDR[4:0] 07278-007 Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored, while Bit 1 through Bit 0 are applied to the register. Figure 80. Example 4 DATA[15:0] CH[1:0] R/W = 0 ADDR[4:0] CH[1:0] R/W ADDR[4:0] 07278-008 Read request and follow with a 2nd instruction (could be NOP) to clock out the data. Figure 81. Table 19. Channel Selection Table 20. R/W Definition Channel 1 0 Channel 0 0 R/W 0 0 1 1 1 0 1 Channel Selected NOP (no channel selected, no register changes) Channel 0 selected Channel 1 selected Channel 0 and Channel 1 selected 1 Rev. A | Page 40 of 58 Description Current register specified by address is shifted out of SDOUT on next shift operation Current data is written to register specified by address and channel select ADATE302-02 WRITE OPERATION CS INPUT SCLK INPUT SDIN INPUT DATA[2] DATA[1] DATA[0] DATA[15] DATA[14] DATA[13] 0 1 2 13 14 15 CH[1] CH[0] R/W 16 17 18 SDOUT OUTPUT ADDR[4] 19 ADDR[3] 20 ADDR[2] 21 ADDR[1] 22 X ADDR[0] 23 24 25 07278-009 X R/W = 1 Figure 82. 16-Bit SPI Write CS INPUT SCLK INPUT DATA[1] DATA[0] 0 SDOUT OUTPUT 1 CH[1] CH[0] R/W 2 3 4 ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 5 6 7 8 X 9 10 11 X 07278-010 SDIN INPUT R/W = 1 Figure 83. 2-Bit SPI Write Rev. A | Page 41 of 58 ADATE302-02 previous specified data. The NOP address can be used for this read if there is no need to write/read another register. It is strongly recommended that the NOP address be used for all reads for clarity of operations. READ OPERATION The read operation is a two-stage operation. First, a word is shifted in, specifying which register to read. CS is deasserted for three clock cycles, and then a second word is shifted in to get the readback data. This second word can be either another operation or an NOP address. If another operation is shifted in, it needs to shift in at least eight bits of data to read back the Any register read that is less than 16 bits has zeros filled in the top bits to make it a 16-bit word. CS INPUT SCLK INPUT SDIN INPUT READ INSTRUCTION SDOUT OUTPUT X NOP READ DATA X 07278-011 X X Figure 84. SPI Read Overview CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE 0 1 2 13 14 CH[1] CH[0] R/W 16 17 18 15 SDOUT OUTPUT X ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 19 20 21 22 23 24 25 07278-012 X Figure 85. SPI Read—Details of Read Request CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE SDOUT OUTPUT RDATA[15] 1 2 RDATA[14] 13 RDATA[2] CH[1] 14 15 16 RDATA[1] RDATA[0] CH[0] 17 ADDR[4:0] = 0x00 (NOP) R/W = 1 18 19 20 21 22 X 23 24 25 X 07278-013 0 RDATA IS THE REGISTER VALUE BEING READ. Figure 86. SPI Read—Details of Read Out Rev. A | Page 42 of 58 ADATE302-02 RESET OPERATION The ADATE302-02 contains an asynchronous reset feature. The ADATE302-02 can be reset to the default values shown in Table 21 by utilizing the RST pin. To initiate the reset operation, deassert the RST pin for a minimum of 100 ns and deassert the CS pin for a minimum of two SCLK cycles. 100ns MINIMUM RST SCLK MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION. Figure 87. Reset Operation Rev. A | Page 43 of 58 07278-093 CS ADATE302-02 REGISTER MAP The ADDR[4:0] bits determine the destination register of the data being written to the ADATE302-02. Table 21. Register Selection Data[15:0] N/A Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[13:0] Data[15:0] Data[2:0] Data[2:0] Data[9:0] Data[2:0] Data[0] Data[1:0] Data[1:0] Data[2:0] N/A CH[1:0] N/A CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1] CH[0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] N/A R/W N/A R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R N/A ADDR[4:0] 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 to 0x1F Register Selected NOP VH DAC level VL DAC level VT/VCOM DAC level VOL DAC level VOH DAC level VCH DAC level VCL DAC level V(IOH ) DAC level V(IOL ) DAC level OVD high level OVD low level PMUDAC level PE/PMU enable Channel state PMU state PMU measure enable Differential comparator enable 16-bit DAC monitor OVD_CHx alarm mask OVD_CHx alarm state Reserved Rev. A | Page 44 of 58 Reset State N/A 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 16384d 000b 000b 0d 000b 0b 00b 01b N/A N/A ADATE302-02 DETAILS OF REGISTERS Table 22. PE/PMU Enable (ADDR[4:0] = 0x0C) Bit Data[2] Name PMU enable Data[1] Force VT Data[0] PE disable Description 0 = disable PMU force output and clamps, place PMU in MV mode 1 = enable PMU force output When set to 0, the PMU State bits are ignored, except for PMU Sense Path (Data[7]). 0 = normal driver operation 1 = force driver to VT See Table 30 for complete functionality of this bit. 0 = enable driver functions 1 = disable driver (low leakage) See Table 30 for complete functionality of this bit. Table 23. Channel State (ADDR[4:0] = 0x0D) Bit Data[2] Name HVOUT mode select Data[1] Load enable Data[0] Driver high-Z/VT Description 0 = HVOUT driver in low impedance 1 = enable HVOUT driver This bit affects Channel 0 only. Ensure that Channel 0 bit in SPI write is active. Channel 1 bit in SPI write is don’t care. 0 = disable load 1 = enable load See Table 30 for complete functionality of this bit. 0 = enable driver high-Z function 1 = enable driver VTERM function See Table 30 for complete functionality of this bit. Table 24. PMU State (ADDR[4:0] = 0x0E) 1, 2 Bit Data[9:8] Name PMU input selection Data[7] PMU sense path Data[6] Data[5] Reserved PMU clamp enable Data[4] PMU measure V/I Data[3] PMU force V/I Data[2:0] PMU range Description 00 = VDUTGND (calibrated for 0.0 V voltage reference) 01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference) 1X = PMUDAC 0 = internal sense 1 = external sense 0 = disable clamps 1 = enable clamps 0 = measure voltage mode 1 = measure current mode 0 = force voltage mode 1 = force current mode 0XX = Range E (2 μA) 100 = Range D (20 μA) 101 = Range C (200 μA) 110 = Range B (2 mA) 111 = Range A (25 mA) 1 Note that when the ADDR[4:0] = 0x0C PMU enable bit (Data[2]) = 0, the PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode. Data[9:8] and Data[6:0] of the PMU state register are ignored, and only Data[7], the PMU sense path bit, is valid. 2 X = don’t care. Rev. A | Page 45 of 58 ADATE302-02 Table 25. PMU Measure Enable (ADDR[4:0] = 0x0F) 1 Bit Data[2:1] Name MEASOUT01 select Data[0] MEASOUT01 output enable 1 Description 00 = PMU MEASOUT Channel 0 01 = PMU MEASOUT Channel 1 10 = Temp sensor ground reference 11 = Temp sensor 0 = MEASOUT01 is tristated 1 = MEASOUT01 is enabled This register is written to or read from if either of the CH[1:0] bits is 1. Table 26. Differential Comparator Enable (ADDR[4:0] = 0x10) 1 Bit Data[0] 1 Name Differential comparator enable Description 0 = differential comparator is disabled, Channel 0 normal window comparator (NWC) outputs are on Channel 0 1 = differential comparator is enabled, the differential comparator outputs are on Channel 0 This register is written to or read from if either of the CH[1:0] bits is 1. Table 27. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11) 1 Bit Data[1] Name 16-bit DAC mux enable Data[0] 16-bit DAC mux select 1 Description 0 = 16-bit DAC mux is tristated 1 = 16-bit DAC mux is enabled 0 = 16-bit DAC Channel 0 1 = 16-bit DAC Channel 1 This register is written to or read from if either of the CH[1:0] bits is 1. Table 28. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12) Bit Data[1] Name PMU mask Data[0] OVD mask Description 0 = disable PMU alarm flag 1 = enable PMU alarm flag 0 = disable OVD alarm flag 1 = enable OVD alarm flag Table 29. OVD_CHx Alarm State (ADDR[4:0] = 0x13) 1 Bit Data[2] Name PMU clamp flag Data[1] OVD high flag Data[0] OVD low flag 1 Description 0 = PMU not clamped 1 = PMU clamped 0 = DUT voltage < OVD high voltage 1 = DUT voltage > OVD high voltage 0 = DUT voltage > OVD low voltage 1 = DUT voltage < OVD low voltage This register is a read-only register. Rev. A | Page 46 of 58 ADATE302-02 USER INFORMATION Table 30. Driver and Load Truth Table 1 Registers Signals PE Disable Data[0] ADDR[4:0] = 0x0C 1 Force VT Data[1] ADDR[4:0] = 0x0C X Load Enable Data[1] ADDR[4:0] = 0x0D X Driver High-Z/VT Data[0] ADDR[4:0] = 0x0D X DATAx X RCVx X 0 0 0 1 0 0 X 0 0 X 0 0 X 0 0 X 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 Driver State High-Z without clamps VT VL High-Z with clamps VH High-Z with clamps VL VT VH VT VL High-Z with clamps VH High-Z with clamps VL High-Z with clamps VH High-Z with clamps Load State Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Power-down Active off Active on Active off Active on Active on Active on Active on Active on X = don’t care. Table 31. HVOUT Truth Table 1 HVOUT Mode Select Data[2] ADDR[4:0] = 0x0D 1 1 1 0 1 Channel 0 RCV 1 0 0 X Channel 0 Data X 0 1 X HVOUT Driver Output VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC) VL (Channel 0 VL DAC) VH (Channel 0 VH DAC) Disabled (HVOUT pin set to 0 V low impedance) X = don’t care. Table 32. Comparator Truth Table Differential Comparator Enable Data[0] ADDR[4:0] = 0x10 0 1 COMP_QH0 Normal window mode Logic high: VOH0 < VDUT0 Logic low: VOH0 > VDUT0 Differential comparator mode Logic high: VOH0 < VDUT0 − VDUT1 Logic low: VOH0 > VDUT0 − VDUT1 COMP_QL0 Normal window mode Logic high: VOL0 < VDUT0 Logic low: VOL0 > VDUT0 Differential comparator mode Logic high: VOL0 < VDUT0 − VDUT1 Logic low: VOL0 > VDUT0 − VDUT1 Rev. A | Page 47 of 58 COMP_QH1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 COMP_QL1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 ADATE302-02 DETAILS OF DACs vs. LEVELS There are ten 14-bit DACs per channel. These DACs provide levels for the driver, comparator, load currents, VHH buffer, OVD, and clamp levels. There are three versions of output levels: • • • There is one 16-bit DAC per channel. This DAC provides the levels for the PMU. The output level is: • −2.5 V to +7.5 V; tracks DUTGND. Controls PMU levels. −2.5 V to +7.5 V; tracks DUTGND. Controls VH, VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels. −3.0 V to +7.0 V; tracks DUTGND. Controls OVD levels. −2.5 V to +7.5 V; does not track DUTGND. Controls IOH and IOL levels. Table 33. Level Transfer Functions DAC Transfer Function VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF − VREF_GND) + 2.0 + VDUTGND Code = [VOUT − VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.6 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.6 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND)] × (0.012/5.0) Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.050/5.0) Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.004/5.0) Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.0004/5.0) Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.00004/5.0) Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.000004/5.0) Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] 1 Programmable Range 1 (All 0s to All 1s) −2.5 V to +7.5 V −3.0 V to +17.0 V VHH −3.0 V to +7.0 V OVD −6 mA to +18 mA IOH, IOL −2.5 V to +7.5 V PMUDAC −50 mA to +50 mA PMUDAC (PMU FI Range A) −4 mA to +4 mA PMUDAC (PMU FI Range B) −400 μA to +400 μA PMUDAC (PMU FI Range C) −40 μA to +40 μA PMUDAC (PMU FI Range D) −4 μA to +4 μA PMUDAC (PMU FI Range E) Programmable range includes margin outside of specified part performance, allowing for offset/gain calibration. Table 34. Load Transfer Functions Load Level IOL IOH 1 Transfer Function 1 V(IOL)/5 V × 12 mA V(IOH)/5 V × 12 mA V(IOH), V(IOL) DAC levels are not referenced to DUTGND. Table 35. PMU Transfer Functions PMU Mode Force Voltage Measure Voltage Force Current Measure Current 1 Transfer Function VOUT = PMUDAC VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense) IOUT = [PMUDAC − (VREF/2)]/(R 1 × 5) VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1) R = 20 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E. Rev. A | Page 48 of 58 Levels VH, VL, VT/VCOM, VOL, VOH, VCH, VCL ADATE302-02 Table 36. PMU User Required Capacitors Capacitor 220 pF 220 pF 330 pF 330 pF Location Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A) Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A) Between GND and Pin B9 (SCAP0) Between GND and Pin B2 (SCAP1) Table 37. Temperature Sensor Temperature 0K 300 K xK Output 0V 3V (x K) × 10 mV/K Table 38. Default Test Conditions Name VH DAC Level VL DAC Level VT/VCOM DAC Level VOL DAC Level VOH DAC Level VCH DAC Level VCL DAC Level IOH DAC Level IOL DAC Level OVD Low DAC Level OVD High DAC Level PMUDAC DAC Level PE/PMU Enable Channel State PMU State PMU Measure Enable Differential Comparator Enable 16-Bit DAC Monitor OVD_CHx Alarm Mask Data Input Receive Input DUTx Pin Comparator Output Default Test Condition 2.0 V 0.0 V 1.0 V −2.0 V 6.0 V 7.5 V −2.5 V 0.0 A 0.0 A −2.5 V 6.5 V 0.0 V 0x0000: PMU disabled, not force VT, PE enabled 0x0000: HVOUT mode disabled, load disabled, VTERM inactive 0x0000: input of DUTGND, internal sense, clamps disabled, FVMV, Range E 0x0000: MEASOUT01 pin tristated 0x0000: normal window comparator mode 0x0000: DAC16_MON tristated 0x0000: disable alarm functions Logic low Logic low Unterminated Unterminated Rev. A | Page 49 of 58 ADATE302-02 RECOMMENDED PMU MODE SWITCHING SEQUENCES To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the following transitions: • • • PMU disable to PMU enable PMU force voltage mode to PMU force current mode PMU force current mode to PMU force voltage mode. PMU Disable to PMU Enable Step 1: See Table 39 for state of registers in PMU disabled mode. Table 39. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bit Data[2] Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Setting 0 XX X X X X X XXX Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 40). Table 40. Register PMU State Register, ADDR[4:0] = 0x0E Bit Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Setting 1X or 00 X X X X 0 Comments Set desired input selection Data[2:0] XXX This bit must be set to force voltage mode to reduce aberrations Set desired range Setting 1 Comments PMU is now enabled in force voltage mode Step 3: Write to Register ADDR[4:0] = 0x0C (see Table 41). Table 41. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C Bit Data[2] Rev. A | Page 50 of 58 ADATE302-02 PMU Force Voltage Mode to PMU Force Current Mode Step 1: See Table 42 for state of registers in force voltage mode. Table 42. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bit Data[2] Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Setting 1 XX X X X X 0 XXX Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 43). Table 43. Register PMU State Register, ADDR[4:0] = 0x0E Bit Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Setting 01 X X X X 1 0XX Comments Set 2.5 V + VDUTGND input selection Set to force current mode 2 μA range has the minimum offset current Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 44). Table 44. Register PMUDAC Level, ADDR[4:0] = 0x0B Bit Data[15:0] Setting X Comments Update the PMUDAC level register to the desired value Setting 1X X X X X 1 XXX Comments PMUDAC input selection Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 45). Table 45. Register PMU State Register, ADDR[4:0] = 0x0E Bit Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Rev. A | Page 51 of 58 Set to force current mode Set to the desired current range ADATE302-02 Transition from PMU Force Current Mode to PMU Force Voltage Mode Step 1: See Table 46 for state of registers in force current mode. Table 46. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits Data[2] Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Setting 1 XX X X X X 1 XXX Step 2: Write to Register ADDR[4:0] = 0x0E (see Table 47). Table 47. Register PMU State Register, ADDR[4:0] = 0x0E Bits Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Setting 00 X X X X 0 XXX Comments Set DUTGND input selection Setting X Comments Update the PMUDAC level register to the desired value Setting 1X X X X X 0 XXX Comments PMUDAC input selection Set to force voltage mode Set to the desired current range Step 3: Write to Register ADDR[4:0] = 0x0B (see Table 48). Table 48. Register PMUDAC Level, ADDR[4:0] = 0x0B Bits Data[15:0] Step 4: Write to Register ADDR[4:0] = 0x0E (see Table 49). Table 49. Register PMU State Register, ADDR[4:0] = 0x0E Bits Data[9:8] Data[7] Data[6] Data[5] Data[4] Data[3] Data[2:0] Rev. A | Page 52 of 58 Force voltage mode ADATE302-02 BLOCK DIAGRAMS VCL VCH PE DISABLE DATA[0] (ADDR[4:0] = 0x0C) FORCES SWITCH OPEN WHEN 1 VH ROUT = 48Ω (TRIMMED) DRIVER VL DUT DATA VT DRIVER HIGH-Z/VT DATA[0] (ADDR[4:0] = 0x0D) VT BUFFER WHEN 1 HIGH-Z BUFFER WHEN 0 V(IOH) RCV VCOM FORCE VT DATA[1] (ADDR[4:0] = 0x0C) OVERRIDES THE RCV PIN AND FORCES VTERM MODE ON THE DRIVER AND LOAD POWER-DOWN MODE LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D) FORCES SWITCHES OPEN AND POWERS DOWN LOAD WHEN 0 Figure 88. Driver and Load Block Diagram ~1Ω VHH = (VT + 1V) × 2 + DUTGND HVOUT VH VL DATA 48Ω HV MODE SELECT DATA[2] (ADDR [4:0] = 0x0D) DISABLES HV DRIVER AND FORCES 0V ON HVOUT WHEN 0 Figure 89. HVOUT Driver Output Stage Rev. A | Page 53 of 58 07278-015 RCV (SHOWN IN RCV = 0 STATE) 07278-014 V(IOL) ADATE302-02 DUT0 VOL0 VOH0 DUT1 – VOH NWC + 2:1 COMP_QH0 MUX + VOL NWC – DIFFERENTIAL COMPARATOR ENABLE DATA[0] (ADDR[4:0] = 0x10) – VOH DMC + 2:1 COMP_QL0 MUX DU T0 – DUT0– DU T1 DUT1 DIFFERENTIAL BUFFER VOL0 + VOL DMC – 07278-016 VOH0 NOTES 1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0. Figure 90. Comparator Block Diagram COMP_VTT COMP_QP 50Ω 50Ω 10mA 07278-017 COMP_QN Figure 91. Comparator Output Scheme Rev. A | Page 54 of 58 ADATE302-02 PMU MEASURE V/I DATA[4] (ADDR[4:0] = 0x0E) PMU SENSE PATH DATA[7] (ADDR[4:0] = 0x0E) EXTERNAL DUT SENSE PIN MEASURE V MEASURE I MEASOUT01 SELECT DATA[2:1] (ADDR[4:0] = 0x0F) MUX MUX PMU FORCE V/I DATA[3] (ADDR[4:0] = 0x0E) MEASURE OUT CH[1] PMU V/I TEMP SENSE GND REF TEMP SENSE IN-AMP G = 5 10kΩ REF MUX 2.5 + DUTGND MUX MEASOUT01 OUTPUT ENABLE DATA[0] (ADDR[4:0] = 0x0F) ONE PER DEVICE 225kΩ 2µA PMU INPUT SELECTION DATA[9:8] (ADDR[4:0] = 0x0E) 20µA 22.5kΩ 200µA 2.25kΩ 250Ω DUT 20Ω 2mA MV VIN 2.5V + DUTGND DUTGND FFCAP_A MUX PMU CLAMP ENABLE DATA[5] (ADDR[4:0] = 0x0E) 330pF SCAP (EXTERNAL) 25mA BUFFER FFCAP_B CRA = 220pF VCH VCL 25mA NOTES 1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL SWITCHES OPEN AND PMU POWERS DOWN. 2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY. 3. 25mA RANGE HAS ITS OWN OUTPUT BUFFER. 4. 25mA BUFFER WILL BE TRISTATED WHEN NOT IN USE. Figure 92. PMU Block Diagram Rev. A | Page 55 of 58 07278-018 MEASURE V (AT OUTPUT OF SENSE MUX) ADATE302-02 (ADDR[4:0] = 0x12) DATA[0] OVD MASK ENABLES OVD FLAGS TO ALARM OVD_CHx PIN 6.5V 1 OVD HIGH LEVEL DAC (ADDR[4:0] = 0x0A, CH[1]) OVD_CHx SHORT CIRCUIT CURRENT = 100µA DUT ADATE302-02 –2.5V 1 OVD LOW LEVEL DAC (ADDR[4:0] = 0x0A, CH[0]) PMU V/I CLAMP FLAG (ADDR[4:0] = 0x12) DATA[1] PMU MASK ENABLES PMU V/I FLAG TO ALARM OVD_CHx PIN 1THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.) 2THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG. Figure 93. OVD Block Diagram Rev. A | Page 56 of 58 07278-019 (ADDR[4:0] = 0x13) 2 DATA[2] DATA[1] DATA[0] ADATE302-02 OUTLINE DIMENSIONS 9.10 9.00 SQ 8.90 A1 BALL CORNER A1 BALL CORNER 10 9 8 7 6 5 4 3 2 1 A B C 6.731 REF SQ 7.20 BSC SQ D E 0.80 BSC F G H J K TOP VIEW BOTTOM VIEW 0.90 REF 0.305 REF DETAIL A *1.20 1.09 1.00 0.83 0.76 0.69 DETAIL A 0.36 REF 0.38 0.33 0.28 0.53 0.48 0.43 BALL DIAMETER SEATING PLANE COPLANARITY 0.12 091108-A *COMPLIANT TO JEDEC STANDARDS MO-219 WITH EXCEPTION TO PACKAGE HEIGHT. Figure 94. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-84-2) Dimensions shown in millimeters 0.75 0.60 0.45 16.00 BSC SQ 1.20 MAX 14.00 BSC SQ 76 100 1 75 PIN 1 8.00 BSC SQ EXPOSED PAD 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 0.08 MAX COPLANARITY TOP VIEW (PINS DOWN) 25 26 VIEW A 51 50 0.50 BSC LEAD PITCH 0.27 0.22 0.17 VIEW A FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU Figure 95. 100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP] (SV-100-7) Dimensions shown in millimeters Rev. A | Page 57 of 58 072408-A 0° MIN 1.05 1.00 0.95 ADATE302-02 ORDERING GUIDE Model ADATE302-02BBCZ 1 ADATE302-02BSVZ1 1 Temperature Range −40°C to +85°C −40°C to +85°C Package Description 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA] 100-Lead Thin Quad Flatpack, Exposed Pad [TQFP_EP] Z = RoHS Compliant Part. ©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07278-0-4/09(A) Rev. A | Page 58 of 58 Package Option BC-84-2 SV-100-7