19-4402; Rev 1; 5/09 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer The MAX19996A single, high-linearity downconversion mixer provides 8.7dB conversion gain, +24.5dBm IIP3, and 9.8dB noise figure for 2000MHz to 3900MHz WCS, LTE, WiMAX™, and MMDS wireless infrastructure applications. With an ultra-wide LO frequency range of 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for low-side injection, refer to the MAX19996 data sheet. In addition to offering excellent linearity and noise performance, the MAX19996A also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19996A requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V, or 150mA at VCC = 3.3V. The MAX19996A is pin compatible with the MAX19996 2000MHz to 3000MHz mixer. The device is also pin similar with the MAX9984/MAX9986/MAX9986A 400MHz to 1000MHz mixers and the MAX9993/ MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX19996A is available in a compact 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range. Features o 2000MHz to 3900MHz RF Frequency Range o 2100MHz to 4000MHz LO Frequency Range o 50MHz to 500MHz IF Frequency Range o 8.7dB Conversion Gain o 9.8dB Noise Figure o +24.5dBm Typical Input IP3 o 11dBm Typical Input 1dB Compression Point o 67dBc Typical 2LO-2RF Spurious Rejection at PRF = -10dBm o Integrated LO Buffer o Integrated RF and LO Baluns for Single-Ended Inputs o Low -3dBm to +3dBm LO Drive o Pin Compatible with the MAX19996 2000MHz to 3000MHz Mixer o Pin Similar with the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers and the MAX9984/MAX9986/MAX9986A Series of 400MHz to 1000MHz Mixers o Single 5.0V or 3.3V Supply o External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode Applications 2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Ordering Information TEMP RANGE PIN-PACKAGE MAX19996AETP+ PART -40°C to +85°C 20 Thin QFN-EP* MAX19996AETP+T -40°C to +85°C 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. Wireless Local Loop Private Mobile Radios Military Systems WiMAX is a trademark of WiMAX Forum. Pin Configuration/Functional Diagram appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX19996A General Description MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND ...........................................................-0.3V to +5.5V IF+, IF-, LO to GND ....................................-0.3V to (VCC + 0.3V) RF, LO Input Power ........................................................+12dBm RF, LO Current (RF and LO is DC shorted to GND through a balun)...............................................................50mA Continuous Power Dissipation (Note 1) ...............................5.0W θJA (Notes 2, 3)..............................................................+38°C/W θJC (Notes 1, 3)................................................................13°C/W Operating Case Temperature Range (Note 4).........................................TC = -40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150°C. Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25°C, all parameters are production tested.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5.0 5.25 V 230 245 mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC signals. TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25°C, parameters are guaranteed by design and not production tested, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC 2 CONDITIONS MIN 3.0 Total supply current, VCC = 3.3V TYP MAX 3.3 3.6 150 _______________________________________________________________________________________ UNITS V mA SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer PARAMETER RF Frequency Range LO Frequency SYMBOL fRF fLO IF Frequency fIF LO Drive CONDITIONS MIN Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Note 5) 2000 TYP MAX UNITS 3000 MHz Typical Application Circuit with C1 = 1.5pF, see Table 1 for details (Note 5) 3000 3900 (Note 5) 2100 4000 Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) 100 500 Using Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5) 50 PLO MHz MHz -3 250 0 +3 dBm 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER SYMBOL fRF = 2300MHz to 2900MHz, TC = +25°C (Note 7) Small-Signal Conversion Gain Gain Variation vs. Frequency ∆GC Conversion Gain Temperature Coefficient TCCG Single Sideband Noise Figure NFSSB Noise Figure Temperature Coefficient Noise Figure Under Blocking CONDITIONS MIN TYP MAX UNITS 7.9 8.7 9.2 dB fRF = 2305MHz to 2360MHz 0.1 fRF = 2500MHz to 2570MHz 0.1 fRF = 2570MHz to 2620MHz 0.1 fRF = 2500MHz to 2690MHz 0.2 fRF = 2700MHz to 2900MHz 0.3 dB TC = -40°C to +85°C -0.012 No blockers present 9.8 12 fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C, no blockers present 9.8 10.5 TCNF fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40°C to +85°C 0.018 NFB +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2900MHz, fBLOCKER = 2400MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C (Note 8) 18 dB/°C dB dB/°C 22 dB _______________________________________________________________________________________ 3 MAX19996A RECOMMENDED AC OPERATING CONDITIONS MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL IP1dB IIP3 MIN TYP TC = +25°C (Note 9) CONDITIONS 9.5 11 fRF = 2600MHz TC = +25°C (Notes 7, 9) 10 11 22.5 24.5 dBm ±0.3 dB fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25°C (Note 7) fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C IIP3 Variation with TC PRF = -10dBm 60 67 PRF = -5dBm 55 62 MAX UNITS dBm dBc 2LO-2RF Spur Rejection 2x2 fSPUR = fLO - 150MHz 3LO-3RF Spur Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 17.5 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 19.5 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 Ω IF Output Return Loss RLIF RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values PRF = -10dBm 75 85 PRF = -5dBm 65 75 fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 fIF = 300MHz, L1 = L2 = 390nH 25 dB RF-to-IF Isolation PLO = +3dBm (Note 7) LO Leakage at RF Port PLO = +3dBm -28.6 2LO Leakage at RF Port PLO = +3dBm -29.7 dBm LO Leakage at IF Port PLO = +3dBm (Note 7) -28.4 dBm 4 27 dBc 30 _______________________________________________________________________________________ dB -22.8 dBm SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values are for TC = +25°C, VCC = 3.3V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain SYMBOL CONDITIONS MIN GC TYP MAX UNITS 8.3 dB 0.15 dB Gain Variation vs. Frequency ∆GC fRF = 2300MHz to 2900MHz, any 100MHz band Conversion Gain Temperature Coefficient TCCG TC = -40°C to +85°C -0.012 dB/°C Single Sideband Noise Figure NFSSB No blockers present 9.6 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40°C to +85°C 0.018 dB/°C Input 1dB Compression Point IP1dB (Note 9) 7.75 dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm 19.7 dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C ±0.5 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC PRF = -10dBm 64 PRF = -5dBm 59 PRF = -10dBm 74 PRF = -5dBm 64 2LO-2RF Spur Rejection 2x2 fSPUR = fLO - 150MHz 3LO-3RF Spur Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 17.5 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 19.5 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 200 Ω IF Output Return Loss RLIF RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 fIF = 300MHz, L1 = L2 = 390nH 25 dBc dBc dB RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 38 dB LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -30 dBm 2LO Leakage at RF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -31 dBm LO Leakage at IF Port fLO = 2600MHz to 3200MHz, PLO = +3dBm -34 dBm _______________________________________________________________________________________ 5 MAX19996A 3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, HIGH-SIDE LO INJECTION MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz, LOW-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources. PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, all parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER SYMBOL Small-Signal Conversion Gain GC Gain Variation vs. Frequency ∆GC Conversion Gain Temperature Coefficient TCCG CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25°C (Note 7) fRF = 2300MHz to 2900MHz, any 100MHz band UNITS 8.2 8.9 9.5 dB TC = -40°C to +85°C -0.012 dB/°C No blockers present 9.5 12.5 fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C, no blockers present 9.5 10.5 Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40°C to +85°C Input 1dB Compression Point IP1dB TC = +25°C (Note 9) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = +25°C (Note 7) 2RF-2LO Spur Rejection 2x2 fSPUR = fLO + 150MHz 3RF-3LO Spur Rejection 3x3 fSPUR = fLO + 100MHz RF Input Return Loss RLRF LO Input Return Loss RLLO IF Output Impedance ZIF dB/°C 9.5 10.7 dBm 22 24.05 dBm ±0.5 dB RLIF PRF = -10dBm 63 68 PRF = -5dBm 58 63 PRF = -10dBm 79 84 PRF = -5dBm 69 74 LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC’s IF outputs RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values dB 0.018 fRF = 2300MHz to 2900MHz, PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C IIP3 Variation with TC IF Output Return Loss MAX dB NFSSB IIP3 TYP 0.1 Single Sideband Noise Figure Third-Order Input Intercept Point MIN dBc 19 dB 18 dB 200 Ω fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 fIF = 300MHz, L1 = L2 = 390nH 25 dB RF-to-IF Isolation fRF = 2600MHz, PLO = +3dBm LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -28 -20 dBm 2LO Leakage at RF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -29 -19 dBm LO Leakage at IF Port fLO = 1800MHz to 2900MHz, PLO = +3dBm -24 6 29 dBc 36 _______________________________________________________________________________________ dB dBm SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency SYMBOL GC ∆GC Conversion Gain Temperature Coefficient TCCG Single Sideband Noise Figure NFSSB Noise Figure Temperature Coefficient CONDITIONS TC = +25°C (Note 7) MIN TYP MAX UNITS 7.5 8.0 8.5 dB fRF = 3450MHz to 3750MHz, any 100MHz band 0.15 fRF = 3450MHz to 3750MHz, any 200MHz band 0.3 dB TC = -40°C to +85°C -0.012 No blockers present 10.5 13.5 fRF = 3500MHz, fIF = 300MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C, no blockers present 10.5 11.6 TCNF fRF = 3100MHz to 3900MHz, single sideband, no blockers present, TC = -40°C to +85°C 0.018 Noise Figure Under Blocking NFB +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C (Note 8) 18.7 Input 1dB Compression Point IP1dB Third-Order Input Intercept Point IIP3 dB dB/°C 21 dB fRF = 3500MHz (Note 9) 10 12 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm (Note 7) 23 25 dBm ±0.3 dB fRF = 3100MHz to 3900MHz, fIF = 300MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C IIP3 Variation with TC dB/°C PRF = -10dBm 60 69 PRF = -5dBm 55 64 PRF = -10dBm 78 86 PRF = -5dBm 68 76 2RF-2LO Spur Rejection 2x2 fSPUR = fLO + 150MHz 3RF-3LO Spur Rejection 3x3 fSPUR = fLO + 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance LO Input Return Loss RLLO IF Output Impedance ZIF dBc dBc 20 dB RF and IF terminated into a matched impedance 16.5 dB Nominal differential impedance at the IC’s IF outputs 200 Ω _______________________________________________________________________________________ 7 MAX19996A 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, LOW-SIDE LO INJECTION (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6) PARAMETER IF Output Return Loss SYMBOL RLIF CONDITIONS RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values MIN TYP fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 fIF = 300MHz, L1 = L2 = 390nH 25 RF-to-IF Isolation fRF = 2600MHz PLO = +3dBm (Note 7) 23 LO Leakage at RF Port fLO = 2800MHz to 3600MHz PLO = +3dBm -31 2LO Leakage at RF Port PLO = +3dBm -27 LO Leakage at IF Port PLO = +3dBm (Note 7) MAX UNITS dB 27 -29.5 dB -20 dBm dBm -20 dBm +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency SYMBOL CONDITIONS MIN GC ∆GC TYP 7.6 fRF = 3450MHz to 3750MHz, any 100MHz band MAX UNITS dB 0.15 dB fRF = 3450MHz to 3750MHz, any 200MHz band 0.3 Conversion Gain Temperature Coefficient TCCG TC = -40°C to +85°C -0.012 dB/°C Single Sideband Noise Figure NFSSB No blockers present 10.9 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40°C to +85°C 0.018 dB/°C Input 1dB Compression Point IP1dB (Note 9) 12.4 dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm 24.7 dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C ±0.5 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 2LO-2RF Spur Rejection 8 2x2 fSPUR = fLO - 150MHz PRF = -10dBm 69 PRF = -5dBm 64 _______________________________________________________________________________________ dBc SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters are guaranteed by design and not production tested.) (Note 6) PARAMETER SYMBOL CONDITIONS MIN PRF = -10dBm 90 PRF = -5dBm 80 3LO-3RF Spur Rejection 3x3 fSPUR = fLO - 100MHz RF Input Return Loss RLRF LO on and IF terminated into a matched impedance LO Input Return Loss RLLO IF Output Impedance ZIF IF Output Return Loss RLIF TYP MAX UNITS dBc 22 dB RF and IF terminated into a matched impedance 16.3 dB Nominal differential impedance at the IC’s IF outputs 200 Ω RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit; see the Typical Operating Characteristics for performance vs. inductor values fIF = 450MHz, L1 = L2 = 120nH 25 fIF = 350MHz, L1 = L2 = 270nH 25 fIF = 300MHz, L1 = L2 = 390nH 25 dB RF-to-IF Isolation fRF = 3100MHz to 3700MHz, PLO = +3dBm 26.6 dB LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -38 dBm 2LO Leakage at RF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -13.5 dBm LO Leakage at IF Port fLO = 3400MHz to 4000MHz, PLO = +3dBm -27 dBm Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 7: 100% production tested for functional performance. Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50Ω source. _______________________________________________________________________________________ 9 MAX19996A +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz, HIGH-SIDE LO INJECTION (continued) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) 8 9 8 PLO = -3dBm, 0dBm, +3dBm 2800 3000 2000 2200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2600 2800 TC = +25°C 25 22 2600 2800 24 PLO = -3dBm, 0dBm, +3dBm 3000 25 VCC = 4.75V, 5.0V, 5.25V 22 2000 NOISE FIGURE vs. RF FREQUENCY 2200 2400 2600 2800 3000 2000 2200 TC = +25°C 11 NOISE FIGURE (dB) 10 9 PLO = -3dBm, 0dBm, +3dBm 8 2800 12 MAX19996A toc08 11 NOISE FIGURE (dB) 9 2600 3000 NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 10 2400 RF FREQUENCY (MHz) 12 MAX19996A toc07 11 8 24 RF FREQUENCY (MHz) TC = +85°C 3000 23 RF FREQUENCY (MHz) 12 2800 PRF = -5dBm/TONE 22 2400 2600 26 23 TC = -30°C 2400 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE INPUT IP3 (dBm) 24 2200 2200 RF FREQUENCY (MHz) 26 MAX19996A toc04 25 2000 MAX19996A toc03 2000 3000 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 23 2400 RF FREQUENCY (MHz) 26 TC = +85°C VCC = 4.75V, 5.0V, 5.25V MAX19996A toc09 2600 INPUT IP3 (dBm) 2400 MAX19996A toc05 2200 8 6 6 2000 9 7 7 TC = +85°C 6 INPUT IP3 (dBm) 10 CONVERSION GAIN (dB) 9 7 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) TC = +25°C 11 MAX19996A toc02 MAX19996A toc01 TC = -30°C 10 CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN vs. RF FREQUENCY 11 MAX19996A toc06 CONVERSION GAIN vs. RF FREQUENCY 11 NOISE FIGURE (dB) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 10 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = -30°C 7 2200 2400 2600 RF FREQUENCY (MHz) 10 7 7 2000 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) ______________________________________________________________________________________ 2800 3000 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 60 PLO = 0dBm 70 60 TC = -30°C, +25°C, +85°C 2800 3000 2000 2200 2600 2800 2000 3000 80 75 TC = -30°C, +25°C, +85°C 85 PRF = -5dBm 3LO-3RF RESPONSE (dBc) PRF = -5dBm 65 80 2200 2400 2600 2800 3000 2200 2400 2600 2800 9 RF FREQUENCY (MHz) 3000 2600 2800 3000 12 11 10 PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V 9 9 2800 2400 13 MAX19996A toc17 10 TC = +25°C 2600 2200 INPUT P1dB vs. RF FREQUENCY 11 TC = -30°C 2400 VCC = 4.75V, 5.0V, 5.25V 2000 3000 INPUT P1dB (dBm) INPUT P1dB (dBm) 11 2200 70 INPUT P1dB vs. RF FREQUENCY 12 2000 75 RF FREQUENCY (MHz) 13 MAX19996A toc16 TC = +85°C 3000 65 2000 INPUT P1dB vs. RF FREQUENCY 10 80 RF FREQUENCY (MHz) 12 2800 PRF = -5dBm PLO = -3dBm, 0dBm, +3dBm RF FREQUENCY (MHz) 13 2600 3LO-3RF RESPONSE vs. RF FREQUENCY 75 70 2400 85 65 2000 2200 RF FREQUENCY (MHz) 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc13 3LO-3RF RESPONSE vs. RF FREQUENCY 3LO-3RF RESPONSE (dBc) 2400 RF FREQUENCY (MHz) 85 70 60 MAX19996A toc18 2600 RF FREQUENCY (MHz) 3LO-3RF RESPONSE (dBc) 2400 70 VCC = 4.75V, 5.0V, 5.25V MAX19996A toc14 2200 80 50 50 2000 INPUT P1dB (dBm) PRF = -5dBm PLO = -3dBm 50 MAX19996A toc12 PLO = +3dBm 80 90 MAX19996A toc15 70 MAX19996A toc11 80 PRF = -5dBm 2LO-2RF RESPONSE (dBc) MAX19996A toc10 2LO-2RF RESPONSE (dBc) PRF = -5dBm 2LO-2RF RESPONSE vs. RF FREQUENCY 2LO-2RF RESPONSE vs. RF FREQUENCY 90 2LO-2RF RESPONSE (dBc) 2LO-2RF RESPONSE vs. RF FREQUENCY 90 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -30 TC = +25°C 2500 2700 2900 3100 3300 2300 2500 2700 2900 3100 2300 3300 2500 2700 2900 3100 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 30 TC = +85°C TC = -30°C 40 30 PLO = -3dBm, 0dBm, +3dBm 3300 MAX19996A toc24 50 60 RF-TO-IF ISOLATION (dBm) 40 MAX19996A toc23 TC = +25°C 60 RF-TO-IF ISOLATION (dBm) MAX19996A toc22 60 50 -30 -40 -40 2300 MAX19996A toc21 MAX19996A toc20 -30 VCC = 4.75V, 5.0V, 5.25V -20 TC = -30°C -40 RF-TO-IF ISOLATION (dBm) PLO = -3dBm, 0dBm, +3dBm -20 -10 LO LEAKAGE AT IF PORT (dBm) TC = +85°C -10 LO LEAKAGE AT IF PORT (dBm) -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc19 LO LEAKAGE AT IF PORT (dBm) -10 VCC = 5.0V, 5.25V 50 40 30 VCC = 4.75V 20 20 2200 2400 2600 2800 2400 2600 2800 3000 2200 2400 2600 2800 LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = +25°C, +85°C -25 -30 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 VCC = 5.25V -20 -25 -30 VCC = 4.75V, 5.0V -40 -40 -40 -15 -35 -35 3000 MAX19996A toc27 -15 -10 LO LEAKAGE AT RF PORT (dBm) MAX19996A toc25 TC = -30°C -10 MAX19996A toc26 RF FREQUENCY (MHz) -15 2300 2000 RF FREQUENCY (MHz) -35 12 2200 RF FREQUENCY (MHz) -10 -20 20 2000 3000 LO LEAKAGE AT RF PORT (dBm) 2000 LO LEAKAGE AT RF PORT (dBm) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 2300 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 2300 2520 2740 2960 LO FREQUENCY (MHz) ______________________________________________________________________________________ 3180 3400 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer -30 TC = +25°C -40 TC = +85°C -50 -30 -40 2520 2740 2960 3180 3400 2300 2520 2740 2960 VCC = 5.25V 3180 2300 3400 2520 2740 2960 3180 IF PORT RETURN LOSS vs. IF FREQUENCY LO PORT RETURN LOSS vs. LO FREQUENCY L1, L2 = 270nH 20 30 L1, L2 = 390nH PLO = +3dBm 40 40 2400 2600 2800 3000 10 20 PLO = 0dBm 30 PLO = -3dBm L1, L2 = 120nH 40 50 2200 50 140 230 320 410 1800 500 2350 2900 3450 IF FREQUENCY (MHz) LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) LO LEAKAGE AT IF PORT vs. LO FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 220 VCC = 4.75V 210 200 -30 L3 = 4.7nH -40 25 TEMPERATURE (°C) 55 85 L3 = 4.7nH 40 30 L3 = 0Ω 20 -50 -5 4000 MAX19996A toc36 L3 = 0Ω -20 50 RF-TO-IF ISOLATION (dB) 230 MAX19996A toc35 VCC = 5.0V 240 -10 LO LEAKAGE AT IF PORT (dBm) VCC = 5.25V MAX19996A toc34 RF FREQUENCY (MHz) 250 3400 MAX19996A toc33 10 0 LO PORT RETURN LOSS (dB) VCC = 4.75V, 5.0V, 5.25V fLO = 2900MHz IF PORT RETURN LOSS (dB) MAX19996A toc31 PLO = -3dBm, 0dBm, +3dBm 0 MAX19996A toc32 RF PORT RETURN LOSS vs. RF FREQUENCY L1, L2 = 470nH SUPPLY CURRENT (mA) -40 LO FREQUENCY (MHz) 20 -35 VCC = 5.0V LO FREQUENCY (MHz) 10 2000 -30 LO FREQUENCY (MHz) 0 30 VCC = 4.75V -20 -50 -50 2300 RF PORT RETURN LOSS (dB) PLO = -3dBm, 0dBm, +3dBm -20 -10 2LO LEAKAGE AT RF PORT (dBm) -20 MAX19996A toc29 TC = -30°C -10 2LO LEAKAGE AT RF PORT (dBm) MAX19996A toc28 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc30 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2300 2500 2700 2900 LO FREQUENCY (MHz) 3100 3300 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 13 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) CONVERSION GAIN vs. RF FREQUENCY 9 8 VCC = 3.3V 10 9 8 7 7 11 MAX19996A toc39 CONVERSION GAIN (dB) TC = +25°C 11 10 CONVERSION GAIN (dB) TC = -30°C 10 CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc38 VCC = 3.3V CONVERSION GAIN (dB) 11 MAX19996A toc37 CONVERSION GAIN vs. RF FREQUENCY PLO = -3dBm, 0dBm, +3dBm 9 8 7 VCC = 3.0V, 3.3V, 3.6V TC = +85°C 6 2400 2600 2800 2400 2600 6 3000 2800 2000 2600 2800 INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY 21 INPUT IP3 (dBm) PRF = -5dBm/TONE VCC = 3.3V 18 20 19 PRF = -5dBm/TONE PLO = -3dBm, 0dBm, +3dBm 2600 2800 3000 20 19 VCC = 3.0V, 3.3V, 3.6V 18 18 2400 2000 2200 2400 2600 2800 2000 3000 2200 2400 2600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) 11 10 9 8 10 9 PLO = -3dBm, 0dBm, +3dBm 8 TC = +25°C 2800 3000 2800 3000 12 MAX19996A toc45 VCC = 3.3V 11 NOISE FIGURE (dB) TC = +85°C 11 12 MAX19996A toc44 VCC = 3.3V MAX19996A toc43 12 3000 21 INPUT IP3 (dBm) PRF = -5dBm/TONE VCC = 3.3V TC = -30°C, +25°C 2200 2400 RF FREQUENCY (MHz) 20 2000 2200 RF FREQUENCY (MHz) TC = +85°C INPUT IP3 (dBm) 2200 RF FREQUENCY (MHz) 21 19 2000 3000 MAX19996A toc41 2200 MAX19996A toc40 2000 MAX19996A toc42 6 NOISE FIGURE (dB) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 10 9 VCC = 3.0V, 3.3V, 3.6V 8 TC = -30°C 7 2200 2400 2600 RF FREQUENCY (MHz) 14 7 7 2000 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer PLO = 0dBm 60 2200 2400 2600 2800 3000 50 2000 2200 2400 2600 2800 2000 3000 2200 2400 3LO-3RF RESPONSE vs. RF FREQUENCY 3LO-3RF RESPONSE vs. RF FREQUENCY 70 60 TC = -30°C, +25°C, +85°C PRF = -5dBm 2400 2600 2800 50 2000 3000 2200 2400 2600 2800 2000 3000 2200 2400 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY VCC = 3.3V INPUT P1dB (dBm) 9 8 7 8 7 VCC = 3.6V 9 7 VCC = 3.3V PLO = -3dBm, 0dBm, +3dBm 6 TC = -30°C 5 6 RF FREQUENCY (MHz) 2800 3000 VCC = 3.0V 5 5 2600 3000 8 TC = +25°C 2400 2800 10 INPUT P1dB (dBm) TC = +85°C 10 MAX19996A toc52 VCC = 3.3V 2200 2600 RF FREQUENCY (MHz) 10 9 60 VCC = 3.0V, 3.3V, 3.6V 50 2200 70 PLO = -3dBm, 0dBm, +3dBm 50 3000 80 3LO-3RF RESPONSE (dBc) PRF = -5dBm VCC = 3.3V 3LO-3RF RESPONSE (dBc) 60 80 MAX19996A toc50 3LO-3RF RESPONSE vs. RF FREQUENCY MAX19996A toc49 RF FREQUENCY (MHz) 70 2000 2800 RF FREQUENCY (MHz) PRF = -5dBm VCC = 3.3V 6 2600 RF FREQUENCY (MHz) 80 2000 60 VCC = 3.0V, 3.3V, 3.6V 50 2000 70 MAX19996A toc51 50 MAX19996A toc48 PRF = -5dBm PLO = -3dBm TC = -30°C, +25°C, +85°C 3LO-3RF RESPONSE (dBc) MAX19996A toc47 PLO = +3dBm 70 80 MAX19996A toc54 60 PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) 70 80 MAX19996A toc53 2LO-2RF RESPONSE (dBc) PRF = -5dBm VCC = 3.3V 2LO-2RF RESPONSE (dBc) 80 INPUT P1dB (dBm) 2LO-2RF RESPONSE vs. RF FREQUENCY 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc46 2LO-2RF RESPONSE vs. RF FREQUENCY 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -30 -40 TC = +25°C TC = -30°C 2500 2700 2900 3100 -40 PLO = -3dBm, 0dBm, +3dBm 2500 2700 2900 3300 3100 2300 2700 2900 3100 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 20 50 PLO = -3dBm, 0dBm, +3dBm 40 30 60 2400 2600 2800 3000 VCC = 3.0V, 3.3V, 3.6V 40 30 20 20 2200 50 2000 2200 2400 2600 2000 3000 2800 2200 2400 2600 2800 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -30°C, +25°C, +85°C -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 -50 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 -20 3000 MAX19996A toc63 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -30 -20 LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V MAX19996A toc62 RF FREQUENCY (MHz) MAX19996A toc61 RF FREQUENCY (MHz) -20 3300 MAX19996A toc60 VCC = 3.3V RF-TO-IF ISOLATION (dB) MAX19996A toc58 30 60 MAX19996A toc59 RF-TO-IF ISOLATION vs. RF FREQUENCY 40 2300 2500 LO FREQUENCY (MHz) TC = -30°C, +25°C, +85°C -40 -40 LO FREQUENCY (MHz) VCC = 3.3V 2000 -30 LO FREQUENCY (MHz) 60 50 MAX19996A toc57 VCC = 3.0V, 3.3V, 3.6V -50 2300 3300 RF-TO-IF ISOLATION (dB) 2300 RF-TO-IF ISOLATION (dB) -30 -20 -50 -50 16 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) TC = +85°C -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc56 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT (dBm) -20 MAX19996A toc55 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer -30 VCC = 3.0V, 3.3V, 3.6V -40 -50 2300 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 2300 2520 2740 2960 LO FREQUENCY (MHz) ______________________________________________________________________________________ 3180 3400 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 -40 -50 2740 2960 3180 2300 2740 2960 3180 3400 2520 2740 2960 20 10 VCC = 3.0V, 3.3V, 3.6V 20 30 0 40 PLO = -3dBm, 0dBm, +3dBm 2400 2600 2800 3000 PLO = 0dBm 10 20 PLO = -3dBm 30 40 50 2200 VCC = 3.3V PLO = +3dBm LO PORT RETURN LOSS (dB) 15 IF PORT RETURN LOSS (dB) 10 fLO = 2900MHz MAX19996A toc68 LO PORT RETURN LOSS vs. LO FREQUENCY 0 50 140 230 320 410 1800 500 2350 2900 3450 IF FREQUENCY (MHz) LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) LO LEAKAGE AT IF PORT vs. LO FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 150 140 VCC = 3.3V L3 = 0Ω -20 -30 -40 TEMPERATURE (°C) 40 30 L3 = 0Ω 20 -50 130 25 VCC = 3.3V L3 = 4.7nH L3 = 4.7nH VCC = 3.0V -5 4000 50 RF-TO-IF ISOLATION (dB) VCC = 3.3V 160 -10 LO LEAKAGE AT IF PORT (dBm) VCC = 3.6V MAX19996A toc70 RF FREQUENCY (MHz) 170 3400 3180 IF PORT RETURN LOSS vs. IF FREQUENCY 5 -35 MAX19996A toc66 2300 RF PORT RETURN LOSS vs. RF FREQUENCY 30 SUPPLY CURRENT (mA) 2520 LO FREQUENCY (MHz) MAX19996A toc67 RF PORT RETURN LOSS (dB) 3400 -50 LO FREQUENCY (MHz) VCC = 3.3V 2000 -40 LO FREQUENCY (MHz) 0 25 -30 VCC = 3.6V -50 2520 VCC = 3.3V VCC = 3.0V PLO = -3dBm, 0dBm, +3dBm TC = +85°C 2300 -20 MAX19996A toc69 TC = +25°C -40 -20 -10 MAX19996A toc72 -30 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) TC = -30°C -10 MAX19996A toc65 -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX19996A toc71 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -10 MAX19996A toc64 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 55 85 2300 2500 2700 2900 LO FREQUENCY (MHz) 3100 3300 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 17 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) 9 8 7 TC = +85°C 8 PLO = -3dBm, 0dBm, +3dBm 2400 2600 2800 3000 2200 2400 2600 2800 2000 3000 INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE 24 23 3000 PRF = -5dBm/TONE 25 INPUT IP3 (dBm) INPUT IP3 (dBm) 25 2800 26 MAX19996A toc77 26 23 24 23 PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V TC = -30°C TC = +25°C 22 22 22 2400 2600 2800 3000 2000 2200 2400 2600 2800 2000 3000 2200 2400 2600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 10 9 8 10 9 PLO = -3dBm, 0dBm, +3dBm 8 TC = -30°C 2800 3000 11 10 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = +25°C 7 7 7 2400 3000 MAX19996A toc81 11 NOISE FIGURE (dB) 11 2800 12 NOISE FIGURE (dB) TC = +85°C MAX19996A toc80 12 MAX19996A toc79 12 2200 2600 INPUT IP3 vs. RF FREQUENCY 24 2000 2400 RF FREQUENCY (MHz) TC = +85°C 2200 2200 RF FREQUENCY (MHz) PRF = -5dBm/TONE 2000 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 26 25 8 6 2000 MAX19996A toc76 2200 9 7 6 2000 INPUT IP3 (dBm) 9 7 6 2600 RF FREQUENCY (MHz) 18 10 MAX19996A toc78 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) TC = +25°C 11 MAX19996A toc74 TC = -30°C CONVERSION GAIN (dB) 11 MAX19996A toc73 11 10 CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN vs. RF FREQUENCY MAX19996A toc75 CONVERSION GAIN vs. RF FREQUENCY NOISE FIGURE (dB) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer PLO = +3dBm PLO = 0dBm 70 60 TC = -30°C, +25°C, +85°C 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 2000 3000 2200 2400 2600 2800 3RF-3LO RESPONSE vs. RF FREQUENCY 3RF-3LO RESPONSE vs. RF FREQUENCY 3RF-3LO RESPONSE vs. RF FREQUENCY 70 PRF = -5dBm 80 75 70 PRF = -5dBm 65 2600 2800 3000 2000 2200 2400 2600 2800 2000 3000 2200 2400 2600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB (dBm) 11 10 11 RF FREQUENCY (MHz) 3000 VCC = 4.75V 9 9 2800 3000 MAX19996A toc90 VCC = 5.0V TC = -30°C 2600 2800 11 PLO = -3dBm, 0dBm, +3dBm 9 2400 VCC = 5.25V 10 10 TC = +25°C 3000 12 INPUT P1dB (dBm) 12 2800 13 MAX19996A toc89 MAX19996A toc88 13 TC = +85°C 2200 VCC = 4.75V, 5.0V, 5.25V 70 RF FREQUENCY (MHz) 13 12 75 65 65 2400 80 PLO = -3dBm, 0dBm, +3dBm TC = -30°C, +25°C, +85°C 2200 3000 85 3RF-3LO RESPONSE (dBc) 75 85 3RF-3LO RESPONSE (dBc) MAX19996A toc85 RF FREQUENCY (MHz) 80 MAX19996A toc84 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) PRF = -5dBm 2000 60 RF FREQUENCY (MHz) 85 2000 70 50 50 2000 80 PLO = -3dBm 50 3RF-3LO RESPONSE (dBc) PRF = -5dBm MAX19996A toc87 60 80 90 2RF-2LO RESPONSE (dBc) 70 PRF = -5dBm MAX19996A toc83 80 90 MAX19996A toc86 2RF-2LO RESPONSE (dBc) PRF = -5dBm 2RF-2LO RESPONSE (dBc) 90 INPUT P1dB (dBm) 2RF-2LO RESPONSE vs. RF FREQUENCY 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc82 2RF-2LO RESPONSE vs. RF FREQUENCY 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) ______________________________________________________________________________________ 19 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) -30 PLO = -3dBm, 0dBm, +3dBm -20 -30 -10 MAX19996A toc93 MAX19996A toc92 TC = -30°C -20 -10 LO LEAKAGE AT IF PORT (dBm) MAX19996A toc91 -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY VCC = 4.75V, 5.0V, 5.25V -20 -30 TC = +25°C TC = +85°C -40 1900 2100 2300 2500 1700 2100 2300 2500 1700 2700 2300 2500 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY TC = -30°C 30 PLO = -3dBm, 0dBm, +3dBm 40 30 2400 2600 2800 3000 50 VCC = 4.75V, 5.0V, 5.25V 40 30 20 20 2200 2000 2200 2400 2600 2800 2000 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 -30 -35 PLO = -3dBm, 0dBm, +3dBm -20 -25 -30 2240 2460 LO FREQUENCY (MHz) 2680 2900 -20 -25 -30 -40 -40 2020 VCC = 4.75V, 5.0V, 5.25V -35 -35 -40 -15 3000 MAX19996A toc99 -15 -10 LO LEAKAGE AT RF PORT (dBm) -20 MAX19996A toc98 TC = -30°C, +25°C, +85°C -10 LO LEAKAGE AT RF PORT (dBm) MAX19996A toc97 -10 2700 MAX19996A toc96 MAX19996A toc95 50 60 RF-TO-IF ISOLATION (dB) 40 60 RF-TO-IF ISOLATION (dB) TC = +25°C, +85°C 1800 2100 RF-TO-IF ISOLATION vs. RF FREQUENCY 50 2000 1900 LO FREQUENCY (MHz) 20 20 1900 LO FREQUENCY (MHz) MAX19996A toc94 RF-TO-IF ISOLATION (dB) 2700 LO FREQUENCY (MHz) 60 -15 -40 -40 1700 LO LEAKAGE AT RF PORT (dBm) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 1800 2020 2240 2460 LO FREQUENCY (MHz) 2680 2900 1800 2020 2240 2460 LO FREQUENCY (MHz) ______________________________________________________________________________________ 2680 2900 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer -30 TC = +85°C TC = +25°C PLO = -3dBm, 0dBm, +3dBm -20 -30 -40 -10 MAX19996A toc102 MAX19996A toc101 TC = -30°C -20 -10 2LO LEAKAGE AT RF PORT (dBm) MAX19996A toc100 2LO LEAKAGE AT RF PORT (dBm) -10 -40 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 VCC = 4.75V -30 -40 VCC = 5.0V VCC = 5.25V -50 2020 2240 2460 2680 2900 1800 2020 2240 2460 2680 1800 2900 2460 2680 RF PORT RETURN LOSS vs. RF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY LO PORT RETURN LOSS vs. LO FREQUENCY L1, L2 = 270nH 20 30 L1, L2 = 390nH L1, L2 = 470nH 40 40 PLO = +3dBm 10 20 PLO = 0dBm 30 PLO = -3dBm 40 50 2200 2400 2600 2800 3000 50 140 230 320 410 1800 500 2350 2900 3450 IF FREQUENCY (MHz) LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) LO LEAKAGE AT IF PORT vs. LO FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 220 VCC = 4.75V 210 -20 -30 4000 MAX19996A toc108 L3 = 0Ω -10 60 RF-TO-IF ISOLATION (dB) 230 MAX19996A toc107 VCC = 5.0V 0 LO LEAKAGE AT IF PORT (dBm) VCC = 5.25V 240 MAX19996A toc106 RF FREQUENCY (MHz) 250 2900 MAX19996A toc105 10 0 LO PORT RETURN LOSS (dB) PLO = -3dBm, 0dBm, +3dBm 30 VCC = 4.75V, 5.0V, 5.25V fLO = 2300MHz IF PORT RETURN LOSS (dB) MAX19996A toc103 20 0 MAX19996A toc104 LO FREQUENCY (MHz) L1, L2 = 120nH SUPPLY CURRENT (mA) 2240 LO FREQUENCY (MHz) 10 2000 2020 LO FREQUENCY (MHz) 0 RF PORT RETURN LOSS (dB) -50 -50 1800 50 L3 = 4.7nH 40 30 L3 = 4.7nH L3 = 0Ω 200 20 -40 -35 -5 25 TEMPERATURE (°C) 55 85 1700 1900 2100 2300 LO FREQUENCY (MHz) 2500 2700 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 21 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) 8 7 9 8 7 10 MAX19996A toc111 TC = +25°C 9 10 MAX19996A toc110 TC = -30°C CONVERSION GAIN (dB) MAX19996A toc109 10 CONVERSION GAIN (dB) CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN (dB) CONVERSION GAIN vs. RF FREQUENCY 9 8 7 PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V TC = +85°C 3300 3600 3900 3000 3900 INPUT IP3 vs. RF FREQUENCY PRF = -5dBm/TONE PRF = -5dBm/TONE 26 INPUT IP3 (dBm) INPUT IP3 (dBm) 26 25 VCC = 4.75V, 5.0V, 5.25V PLO = -3dBm, 0dBm, +3dBm 23 23 3300 3600 25 24 24 23 3900 3000 3300 3600 3000 3900 3300 3600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 11 10 9 11 10 TC = -30°C RF FREQUENCY (MHz) 10 VCC = 4.75V, 5.0V, 5.25V 8 8 3600 11 PLO = -3dBm, 0dBm, +3dBm 8 3300 12 9 9 TC = +25°C 3900 3900 MAX19996A toc117 12 NOISE FIGURE (dB) 12 13 NOISE FIGURE (dB) TC = +85°C MAX19996A toc116 13 MAX19996A toc115 13 3900 27 MAX19996A toc113 MAX19996A toc112 27 TC = +25°C 3000 3600 INPUT IP3 vs. RF FREQUENCY 25 3000 3300 INPUT IP3 vs. RF FREQUENCY TC = -30°C 22 3600 RF FREQUENCY (MHz) TC = +85°C 24 3300 RF FREQUENCY (MHz) PRF = -5dBm/TONE 26 3000 RF FREQUENCY (MHz) 27 INPUT IP3 (dBm) 6 6 3000 MAX19996A toc114 6 NOISE FIGURE (dB) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 3000 3300 3600 RF FREQUENCY (MHz) 3900 3000 3300 3600 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3900 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 70 PLO = -0dBm 60 TC = -30°C, +25°C, +85°C 3300 3600 3300 3600 3000 3900 3RF-3LO RESPONSE vs. RF FREQUENCY 3RF-3LO RESPONSE vs. RF FREQUENCY 3RF-3LO RESPONSE vs. RF FREQUENCY PRF = -5dBm TC = -30°C, +25°C, +85°C 80 75 70 PRF = -5dBm 3600 75 70 VCC = 4.75V, 5.0V, 5.25V 65 65 3300 80 PLO = -3dBm, 0dBm, +3dBm 65 3900 3000 3300 3600 3000 3900 3300 3600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY 12 11 12 11 TC = +25°C 9 RF FREQUENCY (MHz) 11 VCC = 4.75V 3900 VCC = 5.0V 9 9 3600 12 10 10 3300 VCC = 5.25V 13 PLO = -3dBm, 0dBm, +3dBm TC = -30°C 3900 MAX19996A toc126 13 INPUT P1dB (dBm) 13 14 INPUT P1dB (dBm) TC = +85°C MAX19996A toc125 14 MAX19996A toc124 14 3900 85 3RF-3LO RESPONSE (dBc) 85 3RF-3LO RESPONSE (dBc) MAX19996A toc121 RF FREQUENCY (MHz) 75 3000 3600 RF FREQUENCY (MHz) 80 10 3300 RF FREQUENCY (MHz) PRF = -5dBm 3000 60 50 3000 3900 85 70 70 VCC = 4.75V, 5.0V, 5.25V 50 3000 MAX19996A toc120 PRF = -5dBm PLO = -3dBm 50 3RF-3LO RESPONSE (dBc) MAX19996A toc119 PLO = +3dBm 80 MAX19996A toc123 60 PRF = -5dBm 2RF-2LO RESPONSE (dBc) 70 80 MAX19996A toc122 2RF-2LO RESPONSE (dBc) PRF = -5dBm 2RF-2LO RESPONSE (dBc) 80 INPUT P1dB (dBm) 2RF-2LO RESPONSE vs. RF FREQUENCY 2RF-2LO RESPONSE vs. RF FREQUENCY MAX19996A toc118 2RF-2LO RESPONSE vs. RF FREQUENCY 3000 3300 3600 RF FREQUENCY (MHz) 3900 3000 3300 3600 3900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 23 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) -20 TC = +85°C -30 3000 3300 3600 MAX19996A toc129 MAX19996A toc128 2700 3000 3300 2700 3600 3000 3300 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 15 PLO = -3dBm, 0dBm, +3dBm 35 25 45 RF-TO-IF ISOLATION (dB) 25 RF-TO-IF ISOLATION (dB) MAX19996A toc130 35 45 MAX19996A toc131 LO FREQUENCY (MHz) TC = -30°C, +25°C, +85°C 3300 3600 3900 VCC = 4.75V, 5.0V, 5.25V 35 25 3000 3300 3600 3000 3900 3300 3600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY -35 -45 -25 -35 3200 3500 LO FREQUENCY (MHz) 3800 VCC = 4.75V, 5.0V, 5.25V -25 -35 -45 -45 2900 3900 MAX19996A toc135 PLO = -3dBm, 0dBm, +3dBm -15 LO LEAKAGE AT RF PORT (dBm) -25 LO LEAKAGE AT RF PORT (dBm) MAX19996A toc133 TC = -30°C, +25°C, +85°C -15 MAX19996A toc134 RF FREQUENCY (MHz) -15 3600 15 15 2600 -30 LO FREQUENCY (MHz) 45 3000 VCC = 4.75V, 5.0V, 5.25V -40 -40 2700 RF-TO-IF ISOLATION (dB) -30 -20 TC = +25°C -40 24 PLO = -3dBm, 0dBm, +3dBm -20 -10 MAX19996A toc132 TC = -30°C -10 LO LEAKAGE AT IF PORT (dBm) MAX19996A toc127 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 2600 2900 3200 3500 LO FREQUENCY (MHz) 3800 2600 2900 3200 3500 LO FREQUENCY (MHz) ______________________________________________________________________________________ 3800 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer -30 -40 -50 -20 -30 -40 2900 3200 3500 3800 VCC = 4.75V, 5.0V, 5.25V -20 -30 -40 -50 -50 2600 2900 3200 3500 2600 3800 2900 3200 3500 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY LO PORT RETURN LOSS vs. LO FREQUENCY 10 15 20 VCC = 4.75V, 5.0V, 5.25V fLO = 3200MHz 10 L1, L2 = 270nH 20 30 L1, L2 = 390nH 40 25 L1, L2 = 470nH 0 3800 MAX19996A toc141 5 0 LO PORT RETURN LOSS (dB) MAX19996A toc139 0 MAX19996A toc140 LO FREQUENCY (MHz) IF PORT RETURN LOSS (dB) 2600 RF PORT RETURN LOSS (dB) PLO = -3dBm, 0dBm, +3dBm -10 MAX19996A toc138 -20 MAX19996A toc137 TC = -30°C, +25°C, +85°C -10 2LO LEAKAGE AT RF PORT (dBm) MAX19996A toc136 2LO LEAKAGE AT RF PORT (dBm) -10 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY PLO = +3dBm 10 20 PLO = 0dBm 30 PLO = -3dBm L1, L2 = 120nH PLO = -3dBm, 0dBm, +3dBm 30 3200 3400 3600 3800 4000 50 140 230 320 410 1800 500 2350 2900 3450 IF FREQUENCY (MHz) LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) LO LEAKAGE AT IF PORT vs. LO FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 220 VCC = 4.75V 210 -30 -40 4000 MAX19996A toc144 L3 = 4.7nH -20 50 RF-TO-IF ISOLATION (dB) 230 MAX19996A toc143 VCC = 5.0V -10 LO LEAKAGE AT IF PORT (dBm) VCC = 5.25V 240 MAX19996A toc142 RF FREQUENCY (MHz) 250 SUPPLY CURRENT (mA) 40 50 3000 L3 = 0Ω 40 30 L3 = 0Ω -50 L3 = 4.7nH 20 -60 200 -35 -5 25 TEMPERATURE (°C) 55 85 2700 3000 3300 LO FREQUENCY (MHz) 3600 3000 3300 3600 3900 RF FREQUENCY (MHz) ______________________________________________________________________________________ 25 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) 8 7 9 8 10 MAX19996A toc147 TC = +25°C MAX19996A toc146 CONVERSION GAIN (dB) TC = -30°C 10 CONVERSION GAIN (dB) MAX19996A toc145 10 9 CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN vs. RF FREQUENCY CONVERSION GAIN (dB) CONVERSION GAIN vs. RF FREQUENCY 9 8 7 7 PLO = -3dBm, 0dBm, +3dBm VCC = 4.75V, 5.0V, 5.25V TC = +85°C 3175 3350 3525 3700 3000 3175 3350 3525 3000 3700 3350 3525 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY 24 TC = -30°C 25 24 PRF = -5dBm/TONE 23 3350 3525 24 VCC = 4.75V, 5.0V, 5.25V 23 23 3175 25 PLO = -3dBm, 0dBm, +3dBm TC = +25°C 3700 3000 3175 3350 3525 3000 3700 3175 3350 3525 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 11 10 9 11 10 9 TC = +25°C 12 11 10 9 PLO = 0dBm, +3dBm 3700 MAX19996A toc153 PLO = -3dBm 12 NOISE FIGURE (dB) 12 13 NOISE FIGURE (dB) TC = +85°C MAX19996A toc152 13 MAX19996A toc151 13 3700 26 INPUT IP3 (dBm) INPUT IP3 (dBm) 25 PRF = -5dBm/TONE MAX19996A toc149 26 MAX19996A toc148 PRF = -5dBm/TONE TC = +85°C 3000 3175 RF FREQUENCY (MHz) 26 INPUT IP3 (dBm) 6 6 3000 MAX19996A toc150 6 NOISE FIGURE (dB) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer VCC = 4.75V, 5.0V, 5.25V TC = -30°C 8 3175 3350 3525 RF FREQUENCY (MHz) 26 8 8 3000 3700 3000 3175 3350 3525 RF FREQUENCY (MHz) 3700 3000 3175 3350 3525 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3700 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer TC = +25°C PLO = 0dBm 60 TC = -30°C 3175 3350 3525 3000 3700 3175 3350 3525 3000 3700 3525 3LO-3RF RESPONSE vs. RF FREQUENCY 3LO-3RF RESPONSE vs. RF FREQUENCY 75 TC = +85°C PRF = -5dBm PLO = -3dBm 85 80 PLO = +3dBm 75 TC = +25°C PRF = -5dBm 85 80 VCC = 5.25V 75 VCC = 5.0V VCC = 4.75V PLO = 0dBm 70 70 3175 3350 3525 3700 70 3000 3175 3350 3525 3700 3000 3175 3350 3525 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY INPUT P1dB (dBm) 12 11 12 11 TC = +25°C TC = -30°C PLO = -3dBm, 0dBm, +3dBm 10 9 3525 RF FREQUENCY (MHz) 3700 12 11 VCC = 5.0V VCC = 4.75V 10 9 9 3350 VCC = 5.25V 13 3700 MAX19996A toc162 13 INPUT P1dB (dBm) TC = +85°C 13 14 MAX19996A toc161 14 MAX19996A toc160 14 3175 3700 90 3LO-3RF RESPONSE (dBc) TC = -30°C 90 3LO-3RF RESPONSE (dBc) MAX19996A toc157 3LO-3RF RESPONSE vs. RF FREQUENCY 80 3000 3350 RF FREQUENCY (MHz) 85 10 3175 RF FREQUENCY (MHz) PRF = -5dBm MAX19996A toc156 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 90 3000 60 50 50 3000 70 PLO = -3dBm 50 3LO-3RF RESPONSE (dBc) PRF = -5dBm MAX19996A toc159 60 PLO = +3dBm 70 80 2LO-2RF RESPONSE (dBc) 70 PRF = -5dBm MAX19996A toc158 2LO-2RF RESPONSE (dBc) TC = +85°C 80 MAX19996A toc155 PRF = -5dBm 2LO-2RF RESPONSE (dBc) 80 INPUT P1dB (dBm) 2LO-2RF RESPONSE vs. RF FREQUENCY 2LO-2RF RESPONSE vs. RF FREQUENCY MAX19996A toc154 2LO-2RF RESPONSE vs. RF FREQUENCY 3000 3175 3350 3525 RF FREQUENCY (MHz) 3700 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) ______________________________________________________________________________________ 27 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) -30 TC = +25°C PLO = -3dBm -20 -30 TC = +85°C 3475 3650 3825 3475 3650 3825 3300 4000 MAX19996A toc165 3825 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 15 25 3350 3525 3700 VCC = 4.75V, 5.0V, 5.25V 35 25 15 15 3175 3000 3175 3350 3525 3000 3700 3175 3350 3525 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY -35 -45 -35 3500 3750 LO FREQUENCY (MHz) 4000 VCC = 4.75V, 5.0V, 5.25V -25 -35 -45 -45 3250 3700 MAX19996A toc171 MAX19996A toc170 PLO = -3dBm, 0dBm, +3dBm -25 -15 LO LEAKAGE AT RF PORT (dBm) TC = -30°C, +25°C, +85°C -15 LO LEAKAGE AT RF PORT (dBm) MAX19996A toc169 -15 4000 MAX19996A toc168 PLO = -3dBm, 0dBm, +3dBm 35 45 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 25 45 MAX19996A toc167 RF-TO-IF ISOLATION vs. RF FREQUENCY TC = -30°C, +25°C, +85°C 3000 3650 LO FREQUENCY (MHz) 35 -25 3475 LO FREQUENCY (MHz) MAX19996A toc166 RF-TO-IF ISOLATION (dB) 3300 4000 LO FREQUENCY (MHz) 45 3000 -30 -40 -40 3300 VCC = 4.75V, 5.0V, 5.25V -20 PLO = +3dBm -40 28 PLO = 0dBm -10 LO LEAKAGE AT IF PORT (dBm) TC = -30°C -20 -10 LO LEAKAGE AT IF PORT (dBm) MAX19996A toc163 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX19996A toc164 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer 3000 3250 3500 3750 LO FREQUENCY (MHz) 4000 3000 3250 3500 3750 LO FREQUENCY (MHz) ______________________________________________________________________________________ 4000 SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer -20 -30 -40 -20 -30 3250 3500 3750 4000 -30 -40 3000 3250 3500 3750 3000 4000 3500 3750 IF PORT RETURN LOSS vs. IF FREQUENCY LO PORT RETURN LOSS vs. LO FREQUENCY L1, L2 = 270nH 20 30 L1, L2 = 390nH 40 PLO = -3dBm, 0dBm, +3dBm 30 3100 3300 3500 3700 PLO = +3dBm 10 20 PLO = 0dBm 30 PLO = -3dBm L1, L2 = 120nH 40 50 2900 50 140 230 320 410 1800 500 2350 2900 3450 IF FREQUENCY (MHz) LO FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) LO LEAKAGE AT IF PORT vs. LO FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY 220 VCC = 4.75V 210 -30 L3 = 4.7nH -40 -50 50 RF-TO-IF ISOLATION (dB) 230 MAX19996A toc179 VCC = 5.0V -20 LO LEAKAGE AT IF PORT (dBm) VCC = 5.25V 240 MAX19996A toc178 RF FREQUENCY (MHz) 250 L3 = 0Ω 30 L3 = 4.7nH 20 -60 -5 25 TEMPERATURE (°C) 55 85 4000 40 L3 = 0Ω 200 4000 MAX19996A toc177 10 0 LO PORT RETURN LOSS (dB) 20 VCC = 4.75V, 5.0V, 5.25V fLO = 3800MHz IF PORT RETURN LOSS (dB) MAX19996A toc175 15 0 MAX19996A toc176 RF PORT RETURN LOSS vs. RF FREQUENCY 10 -35 3250 LO FREQUENCY (MHz) L1, L2 = 470nH SUPPLY CURRENT (mA) -20 LO FREQUENCY (MHz) 5 2700 -10 LO FREQUENCY (MHz) 0 25 VCC = 4.75V, 5.0V, 5.25V MAX19996A toc174 -10 -40 3000 RF PORT RETURN LOSS (dB) PLO = -3dBm, 0dBm, +3dBm 0 MAX19996A toc180 -10 MAX19996A toc173 TC = -30°C, +25°C, +85°C 0 2LO LEAKAGE AT RF PORT (dBm) MAX19996A toc172 2LO LEAKAGE AT RF PORT (dBm) 0 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 3300 3475 3650 3825 LO FREQUENCY (MHz) 4000 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) ______________________________________________________________________________________ 29 MAX19996A Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.) MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Pin Description PIN NAME 1, 6, 8, 14 VCC FUNCTION 2 RF Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires an input DC-blocking capacitor. 3, 4, 5, 10, 12, 13, 17 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. 7 LOBIAS 9, 15 N.C. 11 LO Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor. 16 LEXT External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value). 18, 19 IF-, IF+ Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). 20 IFBIAS IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1% (230mA bias condition) from IFBIAS to GND. — EP Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1% (230mA bias condition) from LOBIAS to ground. Not internally connected. Pins can be grounded. Detailed Description When used as a high-side LO injection mixer in the 2300MHz to 2900MHz RF band, the MAX19996A provides 8.7dB of conversion gain and +24.5dBm of IIP3 with a typical noise figure of 9.8dB. The integrated baluns and matching circuitry allow for 50Ω singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19996A’s input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO-2RF performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX19996A is specified to operate over an RF input range of 2000MHz to 3900MHz, an LO range of 2100MHz to 4000MHz, and an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). 30 RF Input and Balun The MAX19996A RF input provides a 50Ω match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 14dB over the RF frequency range of 2300MHz to 2900MHz. A return loss of 15dB over the 3000MHz to 3900MHz range can be achieved by changing the DC-blocking capacitor to 1.5pF. LO Inputs, Buffer, and Balun With a broadband LO drive circuit spanning 2100MHz to 4000MHz, the MAX19996A can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO input is internally matched to 50Ω, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Differential IF Output Amplifier The MAX19996A has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX19996A mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher inductor values to maintain a good IF match. The differential, open-collector IF output ports require these inductors to be connected to VCC. Note that these differential ports are ideal for providing enhanced 2LO-2RF and 2RF-2LO performance. Singleended IF applications require a 4:1 (impedance ratio) balun to transform the 200Ω differential IF impedance to a 50Ω single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Applications Information Input and Output Matching The RF input provides a 50Ω match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. A 1.5pF capacitor value should be used to match the RF port for the 3000MHz to 3900MHz band. The LO input is internally matched to 50Ω; use a 2pF DC-blocking capacitor to cover operations spanning the 2100MHz to 4000MHz LO range. The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit). Reduced-Power Mode The MAX19996A has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. Nominal values for these resistors are given in Table 1. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If ±1% resistors are not readily available, substitute with ±5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by up to 57%. See the 3.3V Supply AC Electrical Characteristics—fRF = 2300MHz to 2900MHz, High-Side LO Injection table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. LEXT Inductor Short LEXT to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be so that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 90mA flows through LEXT, it is important to use a low-DCR wire-wound inductor. Layout Considerations A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be so that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19996A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and Table 1. ______________________________________________________________________________________ 31 MAX19996A High-Linearity Mixer The core of the MAX19996A is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, IIP3, 2LO-2RF rejection, and noise-figure performance are typically +24.5dBm, 67dBc, and 9.8dB, respectively. MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer Table 1. Component Values DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402). Use for RF frequencies ranging from 2000MHz to 3000MHz. C1 1 Murata Electronics North America, Inc. 1.5pF microwave capacitor (0402). Use for RF frequencies ranging from 3000MHz to 3900MHz. C2, C6, C8, C11 4 0.01µF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, capacitors — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. C13, C14 2 1000pF microwave capacitors (0402) Murata Electronics North America, Inc. C15 1 82pF microwave capacitor (0402) Murata Electronics North America, Inc. L1, L2 2 390nH wire-wound high-Q inductors* (0805) (see the Typical Operating Characteristics) Coilcraft, Inc. L3 1 4.7nH wire-wound high-Q inductor (0603) Coilcraft, Inc. R1 1 R2 1 698Ω ±1% resistor (0402). Use for VCC = 5.0V applications. 1.1kΩ ±1% resistor (0402). Use for VCC = 3.3V applications. 604Ω ±1% resistor (0402). Use for VCC = 5.0V applications. 845Ω±1% resistor (0402). Use for VCC = 3.3V applications. Digi-Key Corp. Digi-Key Corp. R3 1 0Ω resistor (1206) T1 1 4:1 IF balun TC4-1W-17* Digi-Key Corp. Mini-Circuits U1 1 MAX19996A IC (20 TQFN-EP) Maxim Integrated Products, Inc. *Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz. Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX19996A’s 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19996A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. 32 ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer C13 C15 L1 3 6 IF OUTPUT T1 2 L2 R3 1 4 C14 4:1 R1 20 C2 VCC C1 RF INPUT RF 19 LEXT GND 18 17 16 15 1 MAX19996A 2 14 N.C. VCC +5.0V C11 GND GND 3 13 4 12 GND GND EP C10 11 5 +5.0V C6 9 LO LO INPUT 10 GND 8 N.C. 7 LOBIAS 6 VCC GND VCC C3 IF- +5.0V IF+ IFBIAS L3 R2 NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. C8 +5.0V C9 PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. ______________________________________________________________________________________ 33 MAX19996A Typical Application Circuit VCC IF+ IF- GND LEXT TOP VIEW IFBIAS Pin Configuration/ Functional Diagram 20 19 18 17 16 RF 2 GND 3 GND 4 MAX19996A Chip Information PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. 15 1 N.C. 14 VCC 13 GND 12 GND 11 LO PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 Thin QFN-EP T2055+3 21-0140 EP 34 6 7 8 9 10 VCC N.C. GND 5 LOBIAS GND VCC MAX19996A SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer ______________________________________________________________________________________ SiGe, High-Linearity, 2000MHz to 3900MHz Downconversion Mixer with LO Buffer REVISION NUMBER REVISION DATE 0 1/09 Initial release — 1 5/09 Updated Electrical Characteristics table limits 6 DESCRIPTION PAGES CHANGED Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35 © 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX19996A Revision History