Maxim MAX19996AETP+T Sige, high-linearity, 2000mhz to 3900mhz downconversion mixer with lo buffer Datasheet

19-4402; Rev 1; 5/09
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
The MAX19996A single, high-linearity downconversion
mixer provides 8.7dB conversion gain, +24.5dBm IIP3,
and 9.8dB noise figure for 2000MHz to 3900MHz WCS,
LTE, WiMAX™, and MMDS wireless infrastructure applications. With an ultra-wide LO frequency range of
2100MHz to 4000MHz, the MAX19996A can be used in
either low-side or high-side LO injection architectures
for virtually all 2.5GHz and 3.5GHz applications. For a
2.5GHz variant tuned specifically for low-side injection,
refer to the MAX19996 data sheet.
In addition to offering excellent linearity and noise
performance, the MAX19996A also yields a high level
of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, and
an LO buffer. On-chip baluns are also integrated to
allow for single-ended RF and LO inputs. The
MAX19996A requires a nominal LO drive of 0dBm,
and supply current is typically 230mA at VCC = 5.0V,
or 150mA at VCC = 3.3V.
The MAX19996A is pin compatible with the MAX19996
2000MHz to 3000MHz mixer. The device is also pin
similar with the MAX9984/MAX9986/MAX9986A
400MHz to 1000MHz mixers and the MAX9993/
MAX9994/MAX9996 1700MHz to 2200MHz mixers,
making this entire family of downconverters ideal for
applications where a common PCB layout is used for
multiple frequency bands.
The MAX19996A is available in a compact 5mm x 5mm,
20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40°C to
+85°C temperature range.
Features
o 2000MHz to 3900MHz RF Frequency Range
o 2100MHz to 4000MHz LO Frequency Range
o 50MHz to 500MHz IF Frequency Range
o 8.7dB Conversion Gain
o 9.8dB Noise Figure
o +24.5dBm Typical Input IP3
o 11dBm Typical Input 1dB Compression Point
o 67dBc Typical 2LO-2RF Spurious Rejection at
PRF = -10dBm
o Integrated LO Buffer
o Integrated RF and LO Baluns for Single-Ended
Inputs
o Low -3dBm to +3dBm LO Drive
o Pin Compatible with the MAX19996 2000MHz to
3000MHz Mixer
o Pin Similar with the MAX9993/MAX9994/MAX9996
Series of 1700MHz to 2200MHz Mixers and the
MAX9984/MAX9986/MAX9986A Series of 400MHz
to 1000MHz Mixers
o Single 5.0V or 3.3V Supply
o External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Ordering Information
TEMP RANGE
PIN-PACKAGE
MAX19996AETP+
PART
-40°C to +85°C
20 Thin QFN-EP*
MAX19996AETP+T
-40°C to +85°C
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Wireless Local Loop
Private Mobile Radios
Military Systems
WiMAX is a trademark of WiMAX Forum.
Pin Configuration/Functional Diagram appears at end of
data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX19996A
General Description
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
IF+, IF-, LO to GND ....................................-0.3V to (VCC + 0.3V)
RF, LO Input Power ........................................................+12dBm
RF, LO Current (RF and LO is DC shorted to GND
through a balun)...............................................................50mA
Continuous Power Dissipation (Note 1) ...............................5.0W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Notes 1, 3)................................................................13°C/W
Operating Case Temperature
Range (Note 4).........................................TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40°C to +85°C, unless otherwise noted. Typical values
are at VCC = 5.0V, TC = +25°C, all parameters are production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5.0
5.25
V
230
245
mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC signals. TC = -40°C to +85°C, unless otherwise noted. Typical values are
at VCC = 3.3V, TC = +25°C, parameters are guaranteed by design and not production tested, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
2
CONDITIONS
MIN
3.0
Total supply current, VCC = 3.3V
TYP
MAX
3.3
3.6
150
_______________________________________________________________________________________
UNITS
V
mA
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
PARAMETER
RF Frequency Range
LO Frequency
SYMBOL
fRF
fLO
IF Frequency
fIF
LO Drive
CONDITIONS
MIN
Typical Application Circuit with C1 = 8.2pF,
see Table 1 for details (Note 5)
2000
TYP
MAX
UNITS
3000
MHz
Typical Application Circuit with C1 = 1.5pF,
see Table 1 for details (Note 5)
3000
3900
(Note 5)
2100
4000
Using Mini-Circuits TC4-1W-17 4:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Note 5)
100
500
Using Mini-Circuits TC4-1W-7A 4:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Note 5)
50
PLO
MHz
MHz
-3
250
0
+3
dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz,
HIGH-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO,
TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER
SYMBOL
fRF = 2300MHz to 2900MHz, TC = +25°C
(Note 7)
Small-Signal Conversion Gain
Gain Variation vs. Frequency
∆GC
Conversion Gain Temperature
Coefficient
TCCG
Single Sideband Noise Figure
NFSSB
Noise Figure Temperature
Coefficient
Noise Figure Under Blocking
CONDITIONS
MIN
TYP
MAX
UNITS
7.9
8.7
9.2
dB
fRF = 2305MHz to 2360MHz
0.1
fRF = 2500MHz to 2570MHz
0.1
fRF = 2570MHz to 2620MHz
0.1
fRF = 2500MHz to 2690MHz
0.2
fRF = 2700MHz to 2900MHz
0.3
dB
TC = -40°C to +85°C
-0.012
No blockers present
9.8
12
fRF = 2600MHz, fIF = 300MHz, PLO = 0dBm,
VCC = +5.0V, TC = +25°C, no blockers present
9.8
10.5
TCNF
fRF = 2300MHz to 2900MHz, single sideband,
no blockers present, TC = -40°C to +85°C
0.018
NFB
+8dBm blocker tone applied to RF port,
fRF = 2600MHz, fLO = 2900MHz,
fBLOCKER = 2400MHz, PLO = 0dBm,
VCC = +5.0V, TC = +25°C (Note 8)
18
dB/°C
dB
dB/°C
22
dB
_______________________________________________________________________________________
3
MAX19996A
RECOMMENDED AC OPERATING CONDITIONS
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz,
HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO,
TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER
Input 1dB Compression Point
Third-Order Input Intercept Point
SYMBOL
IP1dB
IIP3
MIN
TYP
TC = +25°C (Note 9)
CONDITIONS
9.5
11
fRF = 2600MHz TC = +25°C (Notes 7, 9)
10
11
22.5
24.5
dBm
±0.3
dB
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm,
TC = +25°C (Note 7)
fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz,
PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C
IIP3 Variation with TC
PRF = -10dBm
60
67
PRF = -5dBm
55
62
MAX
UNITS
dBm
dBc
2LO-2RF Spur Rejection
2x2
fSPUR = fLO - 150MHz
3LO-3RF Spur Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
17.5
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
19.5
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
200
Ω
IF Output Return Loss
RLIF
RF terminated into 50Ω, LO
driven by 50Ω source, IF
transformed to 50Ω using
external components
shown in the Typical
Application Circuit; see the
Typical Operating
Characteristics for
performance vs. inductor
values
PRF = -10dBm
75
85
PRF = -5dBm
65
75
fIF = 450MHz,
L1 = L2 =
120nH
25
fIF = 350MHz,
L1 = L2 =
270nH
25
fIF = 300MHz,
L1 = L2 =
390nH
25
dB
RF-to-IF Isolation
PLO = +3dBm (Note 7)
LO Leakage at RF Port
PLO = +3dBm
-28.6
2LO Leakage at RF Port
PLO = +3dBm
-29.7
dBm
LO Leakage at IF Port
PLO = +3dBm (Note 7)
-28.4
dBm
4
27
dBc
30
_______________________________________________________________________________________
dB
-22.8
dBm
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values
are for TC = +25°C, VCC = 3.3V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 6)
PARAMETER
Small-Signal Conversion Gain
SYMBOL
CONDITIONS
MIN
GC
TYP
MAX
UNITS
8.3
dB
0.15
dB
Gain Variation vs. Frequency
∆GC
fRF = 2300MHz to 2900MHz, any 100MHz
band
Conversion Gain Temperature
Coefficient
TCCG
TC = -40°C to +85°C
-0.012
dB/°C
Single Sideband Noise Figure
NFSSB
No blockers present
9.6
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
dB/°C
Input 1dB Compression Point
IP1dB
(Note 9)
7.75
dBm
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = -5dBm
19.7
dBm
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = -5dBm,
TC = -40°C to +85°C
±0.5
dB
Third-Order Input Intercept Point
IIP3
IIP3 Variation with TC
PRF = -10dBm
64
PRF = -5dBm
59
PRF = -10dBm
74
PRF = -5dBm
64
2LO-2RF Spur Rejection
2x2
fSPUR = fLO - 150MHz
3LO-3RF Spur Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
17.5
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
19.5
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
200
Ω
IF Output Return Loss
RLIF
RF terminated into 50Ω, LO
driven by 50Ω source, IF
transformed to 50Ω using
external components
shown in the Typical
Application Circuit; see the
Typical Operating
Characteristics for
performance vs. inductor
values
fIF = 450MHz,
L1 = L2 =
120nH
25
fIF = 350MHz,
L1 = L2 =
270nH
25
fIF = 300MHz,
L1 = L2 =
390nH
25
dBc
dBc
dB
RF-to-IF Isolation
fRF = 2300MHz to 2900MHz, PLO = +3dBm
38
dB
LO Leakage at RF Port
fLO = 2600MHz to 3200MHz, PLO = +3dBm
-30
dBm
2LO Leakage at RF Port
fLO = 2600MHz to 3200MHz, PLO = +3dBm
-31
dBm
LO Leakage at IF Port
fLO = 2600MHz to 3200MHz, PLO = +3dBm
-34
dBm
_______________________________________________________________________________________
5
MAX19996A
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz,
HIGH-SIDE LO INJECTION
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 2300MHz TO 2900MHz,
LOW-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources. PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO,
TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, all
parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER
SYMBOL
Small-Signal Conversion Gain
GC
Gain Variation vs. Frequency
∆GC
Conversion Gain Temperature
Coefficient
TCCG
CONDITIONS
fRF = 2300MHz to 2900MHz, TC = +25°C
(Note 7)
fRF = 2300MHz to 2900MHz, any 100MHz
band
UNITS
8.2
8.9
9.5
dB
TC = -40°C to +85°C
-0.012
dB/°C
No blockers present
9.5
12.5
fRF = 2600MHz, fIF = 300MHz,
PLO = 0dBm, VCC = +5.0V, TC = +25°C,
no blockers present
9.5
10.5
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
Input 1dB Compression Point
IP1dB
TC = +25°C (Note 9)
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm,
TC = +25°C (Note 7)
2RF-2LO Spur Rejection
2x2
fSPUR = fLO + 150MHz
3RF-3LO Spur Rejection
3x3
fSPUR = fLO + 100MHz
RF Input Return Loss
RLRF
LO Input Return Loss
RLLO
IF Output Impedance
ZIF
dB/°C
9.5
10.7
dBm
22
24.05
dBm
±0.5
dB
RLIF
PRF = -10dBm
63
68
PRF = -5dBm
58
63
PRF = -10dBm
79
84
PRF = -5dBm
69
74
LO on and IF terminated into a matched
impedance
RF and IF terminated into a matched
impedance
Nominal differential impedance at the IC’s
IF outputs
RF terminated into 50Ω, LO
driven by 50Ω source, IF
transformed to 50Ω using
external components shown
in the Typical Application
Circuit; see the Typical
Operating Characteristics
for performance vs. inductor
values
dB
0.018
fRF = 2300MHz to 2900MHz, PRF1 = PRF2 =
-5dBm, TC = -40°C to +85°C
IIP3 Variation with TC
IF Output Return Loss
MAX
dB
NFSSB
IIP3
TYP
0.1
Single Sideband Noise Figure
Third-Order Input Intercept Point
MIN
dBc
19
dB
18
dB
200
Ω
fIF = 450MHz,
L1 = L2 =
120nH
25
fIF = 350MHz,
L1 = L2 =
270nH
25
fIF = 300MHz,
L1 = L2 =
390nH
25
dB
RF-to-IF Isolation
fRF = 2600MHz, PLO = +3dBm
LO Leakage at RF Port
fLO = 1800MHz to 2900MHz, PLO = +3dBm
-28
-20
dBm
2LO Leakage at RF Port
fLO = 1800MHz to 2900MHz, PLO = +3dBm
-29
-19
dBm
LO Leakage at IF Port
fLO = 1800MHz to 2900MHz, PLO = +3dBm
-24
6
29
dBc
36
_______________________________________________________________________________________
dB
dBm
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO,
TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER
Small-Signal Conversion Gain
Gain Variation vs. Frequency
SYMBOL
GC
∆GC
Conversion Gain Temperature
Coefficient
TCCG
Single Sideband Noise Figure
NFSSB
Noise Figure Temperature
Coefficient
CONDITIONS
TC = +25°C (Note 7)
MIN
TYP
MAX
UNITS
7.5
8.0
8.5
dB
fRF = 3450MHz to 3750MHz, any 100MHz
band
0.15
fRF = 3450MHz to 3750MHz, any 200MHz
band
0.3
dB
TC = -40°C to +85°C
-0.012
No blockers present
10.5
13.5
fRF = 3500MHz, fIF = 300MHz, PLO = 0dBm,
VCC = +5.0V, TC = +25°C, no blockers present
10.5
11.6
TCNF
fRF = 3100MHz to 3900MHz, single sideband,
no blockers present, TC = -40°C to +85°C
0.018
Noise Figure Under Blocking
NFB
+8dBm blocker tone applied to RF port,
fRF = 3500MHz, fLO = 3200MHz,
fBLOCKER = 3750MHz, PLO = 0dBm,
VCC = +5.0V, TC = +25°C (Note 8)
18.7
Input 1dB Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
dB
dB/°C
21
dB
fRF = 3500MHz (Note 9)
10
12
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm
(Note 7)
23
25
dBm
±0.3
dB
fRF = 3100MHz to 3900MHz,
fIF = 300MHz, fRF1 - fRF2 = 1MHz,
PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C
IIP3 Variation with TC
dB/°C
PRF = -10dBm
60
69
PRF = -5dBm
55
64
PRF = -10dBm
78
86
PRF = -5dBm
68
76
2RF-2LO Spur Rejection
2x2
fSPUR = fLO + 150MHz
3RF-3LO Spur Rejection
3x3
fSPUR = fLO + 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
LO Input Return Loss
RLLO
IF Output Impedance
ZIF
dBc
dBc
20
dB
RF and IF terminated into a matched
impedance
16.5
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
_______________________________________________________________________________________
7
MAX19996A
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz,
LOW-SIDE LO INJECTION
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz,
LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO,
TC = -40°C to +85°C. Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz.
All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 6)
PARAMETER
IF Output Return Loss
SYMBOL
RLIF
CONDITIONS
RF terminated into 50Ω, LO
driven by 50Ω source, IF
transformed to 50Ω using
external components
shown in the Typical
Application Circuit; see the
Typical Operating
Characteristics for
performance vs. inductor
values
MIN
TYP
fIF = 450MHz,
L1 = L2 =
120nH
25
fIF = 350MHz,
L1 = L2 =
270nH
25
fIF = 300MHz,
L1 = L2 =
390nH
25
RF-to-IF Isolation
fRF = 2600MHz PLO = +3dBm (Note 7)
23
LO Leakage at RF Port
fLO = 2800MHz to 3600MHz PLO = +3dBm
-31
2LO Leakage at RF Port
PLO = +3dBm
-27
LO Leakage at IF Port
PLO = +3dBm (Note 7)
MAX
UNITS
dB
27
-29.5
dB
-20
dBm
dBm
-20
dBm
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz,
HIGH-SIDE LO INJECTION
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
PARAMETER
Small-Signal Conversion Gain
Gain Variation vs. Frequency
SYMBOL
CONDITIONS
MIN
GC
∆GC
TYP
7.6
fRF = 3450MHz to 3750MHz, any 100MHz
band
MAX
UNITS
dB
0.15
dB
fRF = 3450MHz to 3750MHz, any 200MHz
band
0.3
Conversion Gain Temperature
Coefficient
TCCG
TC = -40°C to +85°C
-0.012
dB/°C
Single Sideband Noise Figure
NFSSB
No blockers present
10.9
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
dB/°C
Input 1dB Compression Point
IP1dB
(Note 9)
12.4
dBm
fRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = -5dBm
24.7
dBm
fRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = -5dBm, TC = -40°C to +85°C
±0.5
dB
Third-Order Input Intercept Point
IIP3
IIP3 Variation with TC
2LO-2RF Spur Rejection
8
2x2
fSPUR = fLO - 150MHz
PRF = -10dBm
69
PRF = -5dBm
64
_______________________________________________________________________________________
dBc
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω
sources, Typical values are for TC = +25°C, VCC = 5.0V, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz. Parameters
are guaranteed by design and not production tested.) (Note 6)
PARAMETER
SYMBOL
CONDITIONS
MIN
PRF = -10dBm
90
PRF = -5dBm
80
3LO-3RF Spur Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
LO Input Return Loss
RLLO
IF Output Impedance
ZIF
IF Output Return Loss
RLIF
TYP
MAX
UNITS
dBc
22
dB
RF and IF terminated into a matched
impedance
16.3
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO
driven by 50Ω source, IF
transformed to 50Ω using
external components
shown in the Typical
Application Circuit; see the
Typical Operating
Characteristics for
performance vs. inductor
values
fIF = 450MHz,
L1 = L2 =
120nH
25
fIF = 350MHz,
L1 = L2 =
270nH
25
fIF = 300MHz,
L1 = L2 =
390nH
25
dB
RF-to-IF Isolation
fRF = 3100MHz to 3700MHz, PLO = +3dBm
26.6
dB
LO Leakage at RF Port
fLO = 3400MHz to 4000MHz, PLO = +3dBm
-38
dBm
2LO Leakage at RF Port
fLO = 3400MHz to 4000MHz, PLO = +3dBm
-13.5
dBm
LO Leakage at IF Port
fLO = 3400MHz to 4000MHz, PLO = +3dBm
-27
dBm
Note 5: Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See
the Typical Operating Characteristics.
Note 6: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: 100% production tested for functional performance.
Note 8: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 9: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50Ω source.
_______________________________________________________________________________________
9
MAX19996A
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—fRF = 3100MHz TO 3900MHz,
HIGH-SIDE LO INJECTION (continued)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
8
9
8
PLO = -3dBm, 0dBm, +3dBm
2800
3000
2000
2200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2600
2800
TC = +25°C
25
22
2600
2800
24
PLO = -3dBm, 0dBm, +3dBm
3000
25
VCC = 4.75V, 5.0V, 5.25V
22
2000
NOISE FIGURE vs. RF FREQUENCY
2200
2400
2600
2800
3000
2000
2200
TC = +25°C
11
NOISE FIGURE (dB)
10
9
PLO = -3dBm, 0dBm, +3dBm
8
2800
12
MAX19996A toc08
11
NOISE FIGURE (dB)
9
2600
3000
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
10
2400
RF FREQUENCY (MHz)
12
MAX19996A toc07
11
8
24
RF FREQUENCY (MHz)
TC = +85°C
3000
23
RF FREQUENCY (MHz)
12
2800
PRF = -5dBm/TONE
22
2400
2600
26
23
TC = -30°C
2400
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
INPUT IP3 (dBm)
24
2200
2200
RF FREQUENCY (MHz)
26
MAX19996A toc04
25
2000
MAX19996A toc03
2000
3000
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
23
2400
RF FREQUENCY (MHz)
26
TC = +85°C
VCC = 4.75V, 5.0V, 5.25V
MAX19996A toc09
2600
INPUT IP3 (dBm)
2400
MAX19996A toc05
2200
8
6
6
2000
9
7
7
TC = +85°C
6
INPUT IP3 (dBm)
10
CONVERSION GAIN (dB)
9
7
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
TC = +25°C
11
MAX19996A toc02
MAX19996A toc01
TC = -30°C
10
CONVERSION GAIN vs. RF FREQUENCY
CONVERSION GAIN vs. RF FREQUENCY
11
MAX19996A toc06
CONVERSION GAIN vs. RF FREQUENCY
11
NOISE FIGURE (dB)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = -30°C
7
2200
2400
2600
RF FREQUENCY (MHz)
10
7
7
2000
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
______________________________________________________________________________________
2800
3000
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
60
PLO = 0dBm
70
60
TC = -30°C, +25°C, +85°C
2800
3000
2000
2200
2600
2800
2000
3000
80
75
TC = -30°C, +25°C, +85°C
85
PRF = -5dBm
3LO-3RF RESPONSE (dBc)
PRF = -5dBm
65
80
2200
2400
2600
2800
3000
2200
2400
2600
2800
9
RF FREQUENCY (MHz)
3000
2600
2800
3000
12
11
10
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
9
9
2800
2400
13
MAX19996A toc17
10
TC = +25°C
2600
2200
INPUT P1dB vs. RF FREQUENCY
11
TC = -30°C
2400
VCC = 4.75V, 5.0V, 5.25V
2000
3000
INPUT P1dB (dBm)
INPUT P1dB (dBm)
11
2200
70
INPUT P1dB vs. RF FREQUENCY
12
2000
75
RF FREQUENCY (MHz)
13
MAX19996A toc16
TC = +85°C
3000
65
2000
INPUT P1dB vs. RF FREQUENCY
10
80
RF FREQUENCY (MHz)
12
2800
PRF = -5dBm
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
13
2600
3LO-3RF RESPONSE vs. RF FREQUENCY
75
70
2400
85
65
2000
2200
RF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. RF FREQUENCY
MAX19996A toc13
3LO-3RF RESPONSE vs. RF FREQUENCY
3LO-3RF RESPONSE (dBc)
2400
RF FREQUENCY (MHz)
85
70
60
MAX19996A toc18
2600
RF FREQUENCY (MHz)
3LO-3RF RESPONSE (dBc)
2400
70
VCC = 4.75V, 5.0V, 5.25V
MAX19996A toc14
2200
80
50
50
2000
INPUT P1dB (dBm)
PRF = -5dBm
PLO = -3dBm
50
MAX19996A toc12
PLO = +3dBm
80
90
MAX19996A toc15
70
MAX19996A toc11
80
PRF = -5dBm
2LO-2RF RESPONSE (dBc)
MAX19996A toc10
2LO-2RF RESPONSE (dBc)
PRF = -5dBm
2LO-2RF RESPONSE vs. RF FREQUENCY
2LO-2RF RESPONSE vs. RF FREQUENCY
90
2LO-2RF RESPONSE (dBc)
2LO-2RF RESPONSE vs. RF FREQUENCY
90
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-30
TC = +25°C
2500
2700
2900
3100
3300
2300
2500
2700
2900
3100
2300
3300
2500
2700
2900
3100
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
30
TC = +85°C
TC = -30°C
40
30
PLO = -3dBm, 0dBm, +3dBm
3300
MAX19996A toc24
50
60
RF-TO-IF ISOLATION (dBm)
40
MAX19996A toc23
TC = +25°C
60
RF-TO-IF ISOLATION (dBm)
MAX19996A toc22
60
50
-30
-40
-40
2300
MAX19996A toc21
MAX19996A toc20
-30
VCC = 4.75V, 5.0V, 5.25V
-20
TC = -30°C
-40
RF-TO-IF ISOLATION (dBm)
PLO = -3dBm, 0dBm, +3dBm
-20
-10
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
-10
LO LEAKAGE AT IF PORT (dBm)
-20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19996A toc19
LO LEAKAGE AT IF PORT (dBm)
-10
VCC = 5.0V, 5.25V
50
40
30
VCC = 4.75V
20
20
2200
2400
2600
2800
2400
2600
2800
3000
2200
2400
2600
2800
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +25°C, +85°C
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-20
-25
-30
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
VCC = 5.25V
-20
-25
-30
VCC = 4.75V, 5.0V
-40
-40
-40
-15
-35
-35
3000
MAX19996A toc27
-15
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc25
TC = -30°C
-10
MAX19996A toc26
RF FREQUENCY (MHz)
-15
2300
2000
RF FREQUENCY (MHz)
-35
12
2200
RF FREQUENCY (MHz)
-10
-20
20
2000
3000
LO LEAKAGE AT RF PORT (dBm)
2000
LO LEAKAGE AT RF PORT (dBm)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
2300
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
2300
2520
2740
2960
LO FREQUENCY (MHz)
______________________________________________________________________________________
3180
3400
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
-30
TC = +25°C
-40
TC = +85°C
-50
-30
-40
2520
2740
2960
3180
3400
2300
2520
2740
2960
VCC = 5.25V
3180
2300
3400
2520
2740
2960
3180
IF PORT RETURN LOSS
vs. IF FREQUENCY
LO PORT RETURN LOSS
vs. LO FREQUENCY
L1, L2 = 270nH
20
30
L1, L2 = 390nH
PLO = +3dBm
40
40
2400
2600
2800
3000
10
20
PLO = 0dBm
30
PLO = -3dBm
L1, L2 = 120nH
40
50
2200
50
140
230
320
410
1800
500
2350
2900
3450
IF FREQUENCY (MHz)
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
220
VCC = 4.75V
210
200
-30
L3 = 4.7nH
-40
25
TEMPERATURE (°C)
55
85
L3 = 4.7nH
40
30
L3 = 0Ω
20
-50
-5
4000
MAX19996A toc36
L3 = 0Ω
-20
50
RF-TO-IF ISOLATION (dB)
230
MAX19996A toc35
VCC = 5.0V
240
-10
LO LEAKAGE AT IF PORT (dBm)
VCC = 5.25V
MAX19996A toc34
RF FREQUENCY (MHz)
250
3400
MAX19996A toc33
10
0
LO PORT RETURN LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
fLO = 2900MHz
IF PORT RETURN LOSS (dB)
MAX19996A toc31
PLO = -3dBm, 0dBm, +3dBm
0
MAX19996A toc32
RF PORT RETURN LOSS
vs. RF FREQUENCY
L1, L2 = 470nH
SUPPLY CURRENT (mA)
-40
LO FREQUENCY (MHz)
20
-35
VCC = 5.0V
LO FREQUENCY (MHz)
10
2000
-30
LO FREQUENCY (MHz)
0
30
VCC = 4.75V
-20
-50
-50
2300
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
-20
MAX19996A toc29
TC = -30°C
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc28
2LO LEAKAGE AT RF PORT (dBm)
-10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19996A toc30
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2300
2500
2700
2900
LO FREQUENCY (MHz)
3100
3300
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
13
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
CONVERSION GAIN
vs. RF FREQUENCY
9
8
VCC = 3.3V
10
9
8
7
7
11
MAX19996A toc39
CONVERSION GAIN (dB)
TC = +25°C
11
10
CONVERSION GAIN (dB)
TC = -30°C
10
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc38
VCC = 3.3V
CONVERSION GAIN (dB)
11
MAX19996A toc37
CONVERSION GAIN
vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
9
8
7
VCC = 3.0V, 3.3V, 3.6V
TC = +85°C
6
2400
2600
2800
2400
2600
6
3000
2800
2000
2600
2800
INPUT IP3
vs. RF FREQUENCY
INPUT IP3
vs. RF FREQUENCY
INPUT IP3
vs. RF FREQUENCY
21
INPUT IP3 (dBm)
PRF = -5dBm/TONE
VCC = 3.3V
18
20
19
PRF = -5dBm/TONE
PLO = -3dBm, 0dBm, +3dBm
2600
2800
3000
20
19
VCC = 3.0V, 3.3V, 3.6V
18
18
2400
2000
2200
2400
2600
2800
2000
3000
2200
2400
2600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE (dB)
11
10
9
8
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = +25°C
2800
3000
2800
3000
12
MAX19996A toc45
VCC = 3.3V
11
NOISE FIGURE (dB)
TC = +85°C
11
12
MAX19996A toc44
VCC = 3.3V
MAX19996A toc43
12
3000
21
INPUT IP3 (dBm)
PRF = -5dBm/TONE
VCC = 3.3V
TC = -30°C, +25°C
2200
2400
RF FREQUENCY (MHz)
20
2000
2200
RF FREQUENCY (MHz)
TC = +85°C
INPUT IP3 (dBm)
2200
RF FREQUENCY (MHz)
21
19
2000
3000
MAX19996A toc41
2200
MAX19996A toc40
2000
MAX19996A toc42
6
NOISE FIGURE (dB)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
10
9
VCC = 3.0V, 3.3V, 3.6V
8
TC = -30°C
7
2200
2400
2600
RF FREQUENCY (MHz)
14
7
7
2000
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
PLO = 0dBm
60
2200
2400
2600
2800
3000
50
2000
2200
2400
2600
2800
2000
3000
2200
2400
3LO-3RF RESPONSE
vs. RF FREQUENCY
3LO-3RF RESPONSE
vs. RF FREQUENCY
70
60
TC = -30°C, +25°C, +85°C
PRF = -5dBm
2400
2600
2800
50
2000
3000
2200
2400
2600
2800
2000
3000
2200
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
VCC = 3.3V
INPUT P1dB (dBm)
9
8
7
8
7
VCC = 3.6V
9
7
VCC = 3.3V
PLO = -3dBm, 0dBm, +3dBm
6
TC = -30°C
5
6
RF FREQUENCY (MHz)
2800
3000
VCC = 3.0V
5
5
2600
3000
8
TC = +25°C
2400
2800
10
INPUT P1dB (dBm)
TC = +85°C
10
MAX19996A toc52
VCC = 3.3V
2200
2600
RF FREQUENCY (MHz)
10
9
60
VCC = 3.0V, 3.3V, 3.6V
50
2200
70
PLO = -3dBm, 0dBm, +3dBm
50
3000
80
3LO-3RF RESPONSE (dBc)
PRF = -5dBm
VCC = 3.3V
3LO-3RF RESPONSE (dBc)
60
80
MAX19996A toc50
3LO-3RF RESPONSE
vs. RF FREQUENCY
MAX19996A toc49
RF FREQUENCY (MHz)
70
2000
2800
RF FREQUENCY (MHz)
PRF = -5dBm
VCC = 3.3V
6
2600
RF FREQUENCY (MHz)
80
2000
60
VCC = 3.0V, 3.3V, 3.6V
50
2000
70
MAX19996A toc51
50
MAX19996A toc48
PRF = -5dBm
PLO = -3dBm
TC = -30°C, +25°C, +85°C
3LO-3RF RESPONSE (dBc)
MAX19996A toc47
PLO = +3dBm
70
80
MAX19996A toc54
60
PRF = -5dBm
VCC = 3.3V
2LO-2RF RESPONSE (dBc)
70
80
MAX19996A toc53
2LO-2RF RESPONSE (dBc)
PRF = -5dBm
VCC = 3.3V
2LO-2RF RESPONSE (dBc)
80
INPUT P1dB (dBm)
2LO-2RF RESPONSE
vs. RF FREQUENCY
2LO-2RF RESPONSE
vs. RF FREQUENCY
MAX19996A toc46
2LO-2RF RESPONSE
vs. RF FREQUENCY
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-30
-40
TC = +25°C
TC = -30°C
2500
2700
2900
3100
-40
PLO = -3dBm, 0dBm, +3dBm
2500
2700
2900
3300
3100
2300
2700
2900
3100
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
20
50
PLO = -3dBm, 0dBm, +3dBm
40
30
60
2400
2600
2800
3000
VCC = 3.0V, 3.3V, 3.6V
40
30
20
20
2200
50
2000
2200
2400
2600
2000
3000
2800
2200
2400
2600
2800
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -30°C, +25°C, +85°C
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
-50
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
-20
3000
MAX19996A toc63
VCC = 3.3V
LO LEAKAGE AT RF PORT (dBm)
-30
-20
LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
MAX19996A toc62
RF FREQUENCY (MHz)
MAX19996A toc61
RF FREQUENCY (MHz)
-20
3300
MAX19996A toc60
VCC = 3.3V
RF-TO-IF ISOLATION (dB)
MAX19996A toc58
30
60
MAX19996A toc59
RF-TO-IF ISOLATION
vs. RF FREQUENCY
40
2300
2500
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
-40
-40
LO FREQUENCY (MHz)
VCC = 3.3V
2000
-30
LO FREQUENCY (MHz)
60
50
MAX19996A toc57
VCC = 3.0V, 3.3V, 3.6V
-50
2300
3300
RF-TO-IF ISOLATION (dB)
2300
RF-TO-IF ISOLATION (dB)
-30
-20
-50
-50
16
VCC = 3.3V
LO LEAKAGE AT IF PORT (dBm)
TC = +85°C
-20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19996A toc56
VCC = 3.3V
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20
MAX19996A toc55
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
-30
VCC = 3.0V, 3.3V, 3.6V
-40
-50
2300
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
2300
2520
2740
2960
LO FREQUENCY (MHz)
______________________________________________________________________________________
3180
3400
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
-40
-50
2740
2960
3180
2300
2740
2960
3180
3400
2520
2740
2960
20
10
VCC = 3.0V, 3.3V, 3.6V
20
30
0
40
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
3000
PLO = 0dBm
10
20
PLO = -3dBm
30
40
50
2200
VCC = 3.3V
PLO = +3dBm
LO PORT RETURN LOSS (dB)
15
IF PORT RETURN LOSS (dB)
10
fLO = 2900MHz
MAX19996A toc68
LO PORT RETURN LOSS
vs. LO FREQUENCY
0
50
140
230
320
410
1800
500
2350
2900
3450
IF FREQUENCY (MHz)
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
150
140
VCC = 3.3V
L3 = 0Ω
-20
-30
-40
TEMPERATURE (°C)
40
30
L3 = 0Ω
20
-50
130
25
VCC = 3.3V
L3 = 4.7nH
L3 = 4.7nH
VCC = 3.0V
-5
4000
50
RF-TO-IF ISOLATION (dB)
VCC = 3.3V
160
-10
LO LEAKAGE AT IF PORT (dBm)
VCC = 3.6V
MAX19996A toc70
RF FREQUENCY (MHz)
170
3400
3180
IF PORT RETURN LOSS
vs. IF FREQUENCY
5
-35
MAX19996A toc66
2300
RF PORT RETURN LOSS
vs. RF FREQUENCY
30
SUPPLY CURRENT (mA)
2520
LO FREQUENCY (MHz)
MAX19996A toc67
RF PORT RETURN LOSS (dB)
3400
-50
LO FREQUENCY (MHz)
VCC = 3.3V
2000
-40
LO FREQUENCY (MHz)
0
25
-30
VCC = 3.6V
-50
2520
VCC = 3.3V
VCC = 3.0V
PLO = -3dBm, 0dBm, +3dBm
TC = +85°C
2300
-20
MAX19996A toc69
TC = +25°C
-40
-20
-10
MAX19996A toc72
-30
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
TC = -30°C
-10
MAX19996A toc65
-20
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX19996A toc71
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
-10
MAX19996A toc64
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
55
85
2300
2500
2700
2900
LO FREQUENCY (MHz)
3100
3300
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
17
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 3000MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
9
8
7
TC = +85°C
8
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
3000
2200
2400
2600
2800
2000
3000
INPUT IP3
vs. RF FREQUENCY
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
24
23
3000
PRF = -5dBm/TONE
25
INPUT IP3 (dBm)
INPUT IP3 (dBm)
25
2800
26
MAX19996A toc77
26
23
24
23
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
TC = -30°C
TC = +25°C
22
22
22
2400
2600
2800
3000
2000
2200
2400
2600
2800
2000
3000
2200
2400
2600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
10
9
8
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = -30°C
2800
3000
11
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = +25°C
7
7
7
2400
3000
MAX19996A toc81
11
NOISE FIGURE (dB)
11
2800
12
NOISE FIGURE (dB)
TC = +85°C
MAX19996A toc80
12
MAX19996A toc79
12
2200
2600
INPUT IP3
vs. RF FREQUENCY
24
2000
2400
RF FREQUENCY (MHz)
TC = +85°C
2200
2200
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
2000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
26
25
8
6
2000
MAX19996A toc76
2200
9
7
6
2000
INPUT IP3 (dBm)
9
7
6
2600
RF FREQUENCY (MHz)
18
10
MAX19996A toc78
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
TC = +25°C
11
MAX19996A toc74
TC = -30°C
CONVERSION GAIN (dB)
11
MAX19996A toc73
11
10
CONVERSION GAIN
vs. RF FREQUENCY
CONVERSION GAIN
vs. RF FREQUENCY
MAX19996A toc75
CONVERSION GAIN
vs. RF FREQUENCY
NOISE FIGURE (dB)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
PLO = +3dBm
PLO = 0dBm
70
60
TC = -30°C, +25°C, +85°C
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
2000
3000
2200
2400
2600
2800
3RF-3LO RESPONSE
vs. RF FREQUENCY
3RF-3LO RESPONSE
vs. RF FREQUENCY
3RF-3LO RESPONSE
vs. RF FREQUENCY
70
PRF = -5dBm
80
75
70
PRF = -5dBm
65
2600
2800
3000
2000
2200
2400
2600
2800
2000
3000
2200
2400
2600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB (dBm)
11
10
11
RF FREQUENCY (MHz)
3000
VCC = 4.75V
9
9
2800
3000
MAX19996A toc90
VCC = 5.0V
TC = -30°C
2600
2800
11
PLO = -3dBm, 0dBm, +3dBm
9
2400
VCC = 5.25V
10
10
TC = +25°C
3000
12
INPUT P1dB (dBm)
12
2800
13
MAX19996A toc89
MAX19996A toc88
13
TC = +85°C
2200
VCC = 4.75V, 5.0V, 5.25V
70
RF FREQUENCY (MHz)
13
12
75
65
65
2400
80
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C, +25°C, +85°C
2200
3000
85
3RF-3LO RESPONSE (dBc)
75
85
3RF-3LO RESPONSE (dBc)
MAX19996A toc85
RF FREQUENCY (MHz)
80
MAX19996A toc84
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
PRF = -5dBm
2000
60
RF FREQUENCY (MHz)
85
2000
70
50
50
2000
80
PLO = -3dBm
50
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
MAX19996A toc87
60
80
90
2RF-2LO RESPONSE (dBc)
70
PRF = -5dBm
MAX19996A toc83
80
90
MAX19996A toc86
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
2RF-2LO RESPONSE (dBc)
90
INPUT P1dB (dBm)
2RF-2LO RESPONSE
vs. RF FREQUENCY
2RF-2LO RESPONSE
vs. RF FREQUENCY
MAX19996A toc82
2RF-2LO RESPONSE
vs. RF FREQUENCY
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
______________________________________________________________________________________
19
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
-30
PLO = -3dBm, 0dBm, +3dBm
-20
-30
-10
MAX19996A toc93
MAX19996A toc92
TC = -30°C
-20
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19996A toc91
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
VCC = 4.75V, 5.0V, 5.25V
-20
-30
TC = +25°C
TC = +85°C
-40
1900
2100
2300
2500
1700
2100
2300
2500
1700
2700
2300
2500
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = -30°C
30
PLO = -3dBm, 0dBm, +3dBm
40
30
2400
2600
2800
3000
50
VCC = 4.75V, 5.0V, 5.25V
40
30
20
20
2200
2000
2200
2400
2600
2800
2000
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
-30
-35
PLO = -3dBm, 0dBm, +3dBm
-20
-25
-30
2240
2460
LO FREQUENCY (MHz)
2680
2900
-20
-25
-30
-40
-40
2020
VCC = 4.75V, 5.0V, 5.25V
-35
-35
-40
-15
3000
MAX19996A toc99
-15
-10
LO LEAKAGE AT RF PORT (dBm)
-20
MAX19996A toc98
TC = -30°C, +25°C, +85°C
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc97
-10
2700
MAX19996A toc96
MAX19996A toc95
50
60
RF-TO-IF ISOLATION (dB)
40
60
RF-TO-IF ISOLATION (dB)
TC = +25°C, +85°C
1800
2100
RF-TO-IF ISOLATION
vs. RF FREQUENCY
50
2000
1900
LO FREQUENCY (MHz)
20
20
1900
LO FREQUENCY (MHz)
MAX19996A toc94
RF-TO-IF ISOLATION (dB)
2700
LO FREQUENCY (MHz)
60
-15
-40
-40
1700
LO LEAKAGE AT RF PORT (dBm)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
1800
2020
2240
2460
LO FREQUENCY (MHz)
2680
2900
1800
2020
2240
2460
LO FREQUENCY (MHz)
______________________________________________________________________________________
2680
2900
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
-30
TC = +85°C
TC = +25°C
PLO = -3dBm, 0dBm, +3dBm
-20
-30
-40
-10
MAX19996A toc102
MAX19996A toc101
TC = -30°C
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc100
2LO LEAKAGE AT RF PORT (dBm)
-10
-40
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
VCC = 4.75V
-30
-40
VCC = 5.0V
VCC = 5.25V
-50
2020
2240
2460
2680
2900
1800
2020
2240
2460
2680
1800
2900
2460
2680
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
LO PORT RETURN LOSS
vs. LO FREQUENCY
L1, L2 = 270nH
20
30
L1, L2 = 390nH
L1, L2 = 470nH
40
40
PLO = +3dBm
10
20
PLO = 0dBm
30
PLO = -3dBm
40
50
2200
2400
2600
2800
3000
50
140
230
320
410
1800
500
2350
2900
3450
IF FREQUENCY (MHz)
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
220
VCC = 4.75V
210
-20
-30
4000
MAX19996A toc108
L3 = 0Ω
-10
60
RF-TO-IF ISOLATION (dB)
230
MAX19996A toc107
VCC = 5.0V
0
LO LEAKAGE AT IF PORT (dBm)
VCC = 5.25V
240
MAX19996A toc106
RF FREQUENCY (MHz)
250
2900
MAX19996A toc105
10
0
LO PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
30
VCC = 4.75V, 5.0V, 5.25V
fLO = 2300MHz
IF PORT RETURN LOSS (dB)
MAX19996A toc103
20
0
MAX19996A toc104
LO FREQUENCY (MHz)
L1, L2 = 120nH
SUPPLY CURRENT (mA)
2240
LO FREQUENCY (MHz)
10
2000
2020
LO FREQUENCY (MHz)
0
RF PORT RETURN LOSS (dB)
-50
-50
1800
50
L3 = 4.7nH
40
30
L3 = 4.7nH
L3 = 0Ω
200
20
-40
-35
-5
25
TEMPERATURE (°C)
55
85
1700
1900
2100
2300
LO FREQUENCY (MHz)
2500
2700
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
21
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 3000MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
8
7
9
8
7
10
MAX19996A toc111
TC = +25°C
9
10
MAX19996A toc110
TC = -30°C
CONVERSION GAIN (dB)
MAX19996A toc109
10
CONVERSION GAIN (dB)
CONVERSION GAIN
vs. RF FREQUENCY
CONVERSION GAIN
vs. RF FREQUENCY
CONVERSION GAIN (dB)
CONVERSION GAIN
vs. RF FREQUENCY
9
8
7
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
TC = +85°C
3300
3600
3900
3000
3900
INPUT IP3
vs. RF FREQUENCY
PRF = -5dBm/TONE
PRF = -5dBm/TONE
26
INPUT IP3 (dBm)
INPUT IP3 (dBm)
26
25
VCC = 4.75V, 5.0V, 5.25V
PLO = -3dBm, 0dBm, +3dBm
23
23
3300
3600
25
24
24
23
3900
3000
3300
3600
3000
3900
3300
3600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
11
10
9
11
10
TC = -30°C
RF FREQUENCY (MHz)
10
VCC = 4.75V, 5.0V, 5.25V
8
8
3600
11
PLO = -3dBm, 0dBm, +3dBm
8
3300
12
9
9
TC = +25°C
3900
3900
MAX19996A toc117
12
NOISE FIGURE (dB)
12
13
NOISE FIGURE (dB)
TC = +85°C
MAX19996A toc116
13
MAX19996A toc115
13
3900
27
MAX19996A toc113
MAX19996A toc112
27
TC = +25°C
3000
3600
INPUT IP3
vs. RF FREQUENCY
25
3000
3300
INPUT IP3
vs. RF FREQUENCY
TC = -30°C
22
3600
RF FREQUENCY (MHz)
TC = +85°C
24
3300
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
26
3000
RF FREQUENCY (MHz)
27
INPUT IP3 (dBm)
6
6
3000
MAX19996A toc114
6
NOISE FIGURE (dB)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
3000
3300
3600
RF FREQUENCY (MHz)
3900
3000
3300
3600
RF FREQUENCY (MHz)
______________________________________________________________________________________
3900
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
70
PLO = -0dBm
60
TC = -30°C, +25°C, +85°C
3300
3600
3300
3600
3000
3900
3RF-3LO RESPONSE
vs. RF FREQUENCY
3RF-3LO RESPONSE
vs. RF FREQUENCY
3RF-3LO RESPONSE
vs. RF FREQUENCY
PRF = -5dBm
TC = -30°C, +25°C, +85°C
80
75
70
PRF = -5dBm
3600
75
70
VCC = 4.75V, 5.0V, 5.25V
65
65
3300
80
PLO = -3dBm, 0dBm, +3dBm
65
3900
3000
3300
3600
3000
3900
3300
3600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
12
11
12
11
TC = +25°C
9
RF FREQUENCY (MHz)
11
VCC = 4.75V
3900
VCC = 5.0V
9
9
3600
12
10
10
3300
VCC = 5.25V
13
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C
3900
MAX19996A toc126
13
INPUT P1dB (dBm)
13
14
INPUT P1dB (dBm)
TC = +85°C
MAX19996A toc125
14
MAX19996A toc124
14
3900
85
3RF-3LO RESPONSE (dBc)
85
3RF-3LO RESPONSE (dBc)
MAX19996A toc121
RF FREQUENCY (MHz)
75
3000
3600
RF FREQUENCY (MHz)
80
10
3300
RF FREQUENCY (MHz)
PRF = -5dBm
3000
60
50
3000
3900
85
70
70
VCC = 4.75V, 5.0V, 5.25V
50
3000
MAX19996A toc120
PRF = -5dBm
PLO = -3dBm
50
3RF-3LO RESPONSE (dBc)
MAX19996A toc119
PLO = +3dBm
80
MAX19996A toc123
60
PRF = -5dBm
2RF-2LO RESPONSE (dBc)
70
80
MAX19996A toc122
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
2RF-2LO RESPONSE (dBc)
80
INPUT P1dB (dBm)
2RF-2LO RESPONSE
vs. RF FREQUENCY
2RF-2LO RESPONSE
vs. RF FREQUENCY
MAX19996A toc118
2RF-2LO RESPONSE
vs. RF FREQUENCY
3000
3300
3600
RF FREQUENCY (MHz)
3900
3000
3300
3600
3900
RF FREQUENCY (MHz)
______________________________________________________________________________________
23
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
-20
TC = +85°C
-30
3000
3300
3600
MAX19996A toc129
MAX19996A toc128
2700
3000
3300
2700
3600
3000
3300
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
15
PLO = -3dBm, 0dBm, +3dBm
35
25
45
RF-TO-IF ISOLATION (dB)
25
RF-TO-IF ISOLATION (dB)
MAX19996A toc130
35
45
MAX19996A toc131
LO FREQUENCY (MHz)
TC = -30°C, +25°C, +85°C
3300
3600
3900
VCC = 4.75V, 5.0V, 5.25V
35
25
3000
3300
3600
3000
3900
3300
3600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-35
-45
-25
-35
3200
3500
LO FREQUENCY (MHz)
3800
VCC = 4.75V, 5.0V, 5.25V
-25
-35
-45
-45
2900
3900
MAX19996A toc135
PLO = -3dBm, 0dBm, +3dBm
-15
LO LEAKAGE AT RF PORT (dBm)
-25
LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc133
TC = -30°C, +25°C, +85°C
-15
MAX19996A toc134
RF FREQUENCY (MHz)
-15
3600
15
15
2600
-30
LO FREQUENCY (MHz)
45
3000
VCC = 4.75V, 5.0V, 5.25V
-40
-40
2700
RF-TO-IF ISOLATION (dB)
-30
-20
TC = +25°C
-40
24
PLO = -3dBm, 0dBm, +3dBm
-20
-10
MAX19996A toc132
TC = -30°C
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19996A toc127
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
2600
2900
3200
3500
LO FREQUENCY (MHz)
3800
2600
2900
3200
3500
LO FREQUENCY (MHz)
______________________________________________________________________________________
3800
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
-30
-40
-50
-20
-30
-40
2900
3200
3500
3800
VCC = 4.75V, 5.0V, 5.25V
-20
-30
-40
-50
-50
2600
2900
3200
3500
2600
3800
2900
3200
3500
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
LO PORT RETURN LOSS
vs. LO FREQUENCY
10
15
20
VCC = 4.75V, 5.0V, 5.25V
fLO = 3200MHz
10
L1, L2 = 270nH
20
30
L1, L2 = 390nH
40
25
L1, L2 = 470nH
0
3800
MAX19996A toc141
5
0
LO PORT RETURN LOSS (dB)
MAX19996A toc139
0
MAX19996A toc140
LO FREQUENCY (MHz)
IF PORT RETURN LOSS (dB)
2600
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
-10
MAX19996A toc138
-20
MAX19996A toc137
TC = -30°C, +25°C, +85°C
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc136
2LO LEAKAGE AT RF PORT (dBm)
-10
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = +3dBm
10
20
PLO = 0dBm
30
PLO = -3dBm
L1, L2 = 120nH
PLO = -3dBm, 0dBm, +3dBm
30
3200
3400
3600
3800
4000
50
140
230
320
410
1800
500
2350
2900
3450
IF FREQUENCY (MHz)
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
220
VCC = 4.75V
210
-30
-40
4000
MAX19996A toc144
L3 = 4.7nH
-20
50
RF-TO-IF ISOLATION (dB)
230
MAX19996A toc143
VCC = 5.0V
-10
LO LEAKAGE AT IF PORT (dBm)
VCC = 5.25V
240
MAX19996A toc142
RF FREQUENCY (MHz)
250
SUPPLY CURRENT (mA)
40
50
3000
L3 = 0Ω
40
30
L3 = 0Ω
-50
L3 = 4.7nH
20
-60
200
-35
-5
25
TEMPERATURE (°C)
55
85
2700
3000
3300
LO FREQUENCY (MHz)
3600
3000
3300
3600
3900
RF FREQUENCY (MHz)
______________________________________________________________________________________
25
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
8
7
9
8
10
MAX19996A toc147
TC = +25°C
MAX19996A toc146
CONVERSION GAIN (dB)
TC = -30°C
10
CONVERSION GAIN (dB)
MAX19996A toc145
10
9
CONVERSION GAIN
vs. RF FREQUENCY
CONVERSION GAIN
vs. RF FREQUENCY
CONVERSION GAIN (dB)
CONVERSION GAIN
vs. RF FREQUENCY
9
8
7
7
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
TC = +85°C
3175
3350
3525
3700
3000
3175
3350
3525
3000
3700
3350
3525
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3
vs. RF FREQUENCY
INPUT IP3
vs. RF FREQUENCY
INPUT IP3
vs. RF FREQUENCY
24
TC = -30°C
25
24
PRF = -5dBm/TONE
23
3350
3525
24
VCC = 4.75V, 5.0V, 5.25V
23
23
3175
25
PLO = -3dBm, 0dBm, +3dBm
TC = +25°C
3700
3000
3175
3350
3525
3000
3700
3175
3350
3525
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
NOISE FIGURE
vs. RF FREQUENCY
11
10
9
11
10
9
TC = +25°C
12
11
10
9
PLO = 0dBm, +3dBm
3700
MAX19996A toc153
PLO = -3dBm
12
NOISE FIGURE (dB)
12
13
NOISE FIGURE (dB)
TC = +85°C
MAX19996A toc152
13
MAX19996A toc151
13
3700
26
INPUT IP3 (dBm)
INPUT IP3 (dBm)
25
PRF = -5dBm/TONE
MAX19996A toc149
26
MAX19996A toc148
PRF = -5dBm/TONE
TC = +85°C
3000
3175
RF FREQUENCY (MHz)
26
INPUT IP3 (dBm)
6
6
3000
MAX19996A toc150
6
NOISE FIGURE (dB)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
VCC = 4.75V, 5.0V, 5.25V
TC = -30°C
8
3175
3350
3525
RF FREQUENCY (MHz)
26
8
8
3000
3700
3000
3175
3350
3525
RF FREQUENCY (MHz)
3700
3000
3175
3350
3525
RF FREQUENCY (MHz)
______________________________________________________________________________________
3700
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
TC = +25°C
PLO = 0dBm
60
TC = -30°C
3175
3350
3525
3000
3700
3175
3350
3525
3000
3700
3525
3LO-3RF RESPONSE
vs. RF FREQUENCY
3LO-3RF RESPONSE
vs. RF FREQUENCY
75
TC = +85°C
PRF = -5dBm
PLO = -3dBm
85
80
PLO = +3dBm
75
TC = +25°C
PRF = -5dBm
85
80
VCC = 5.25V
75
VCC = 5.0V
VCC = 4.75V
PLO = 0dBm
70
70
3175
3350
3525
3700
70
3000
3175
3350
3525
3700
3000
3175
3350
3525
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB
vs. RF FREQUENCY
INPUT P1dB (dBm)
12
11
12
11
TC = +25°C
TC = -30°C
PLO = -3dBm, 0dBm, +3dBm
10
9
3525
RF FREQUENCY (MHz)
3700
12
11
VCC = 5.0V
VCC = 4.75V
10
9
9
3350
VCC = 5.25V
13
3700
MAX19996A toc162
13
INPUT P1dB (dBm)
TC = +85°C
13
14
MAX19996A toc161
14
MAX19996A toc160
14
3175
3700
90
3LO-3RF RESPONSE (dBc)
TC = -30°C
90
3LO-3RF RESPONSE (dBc)
MAX19996A toc157
3LO-3RF RESPONSE
vs. RF FREQUENCY
80
3000
3350
RF FREQUENCY (MHz)
85
10
3175
RF FREQUENCY (MHz)
PRF = -5dBm
MAX19996A toc156
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
90
3000
60
50
50
3000
70
PLO = -3dBm
50
3LO-3RF RESPONSE (dBc)
PRF = -5dBm
MAX19996A toc159
60
PLO = +3dBm
70
80
2LO-2RF RESPONSE (dBc)
70
PRF = -5dBm
MAX19996A toc158
2LO-2RF RESPONSE (dBc)
TC = +85°C
80
MAX19996A toc155
PRF = -5dBm
2LO-2RF RESPONSE (dBc)
80
INPUT P1dB (dBm)
2LO-2RF RESPONSE
vs. RF FREQUENCY
2LO-2RF RESPONSE
vs. RF FREQUENCY
MAX19996A toc154
2LO-2RF RESPONSE
vs. RF FREQUENCY
3000
3175
3350
3525
RF FREQUENCY (MHz)
3700
3000
3175
3350
3525
3700
RF FREQUENCY (MHz)
______________________________________________________________________________________
27
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
-30
TC = +25°C
PLO = -3dBm
-20
-30
TC = +85°C
3475
3650
3825
3475
3650
3825
3300
4000
MAX19996A toc165
3825
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
15
25
3350
3525
3700
VCC = 4.75V, 5.0V, 5.25V
35
25
15
15
3175
3000
3175
3350
3525
3000
3700
3175
3350
3525
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-35
-45
-35
3500
3750
LO FREQUENCY (MHz)
4000
VCC = 4.75V, 5.0V, 5.25V
-25
-35
-45
-45
3250
3700
MAX19996A toc171
MAX19996A toc170
PLO = -3dBm, 0dBm, +3dBm
-25
-15
LO LEAKAGE AT RF PORT (dBm)
TC = -30°C, +25°C, +85°C
-15
LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc169
-15
4000
MAX19996A toc168
PLO = -3dBm, 0dBm, +3dBm
35
45
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
25
45
MAX19996A toc167
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = -30°C, +25°C, +85°C
3000
3650
LO FREQUENCY (MHz)
35
-25
3475
LO FREQUENCY (MHz)
MAX19996A toc166
RF-TO-IF ISOLATION (dB)
3300
4000
LO FREQUENCY (MHz)
45
3000
-30
-40
-40
3300
VCC = 4.75V, 5.0V, 5.25V
-20
PLO = +3dBm
-40
28
PLO = 0dBm
-10
LO LEAKAGE AT IF PORT (dBm)
TC = -30°C
-20
-10
LO LEAKAGE AT IF PORT (dBm)
MAX19996A toc163
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX19996A toc164
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
3000
3250
3500
3750
LO FREQUENCY (MHz)
4000
3000
3250
3500
3750
LO FREQUENCY (MHz)
______________________________________________________________________________________
4000
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
-20
-30
-40
-20
-30
3250
3500
3750
4000
-30
-40
3000
3250
3500
3750
3000
4000
3500
3750
IF PORT RETURN LOSS
vs. IF FREQUENCY
LO PORT RETURN LOSS
vs. LO FREQUENCY
L1, L2 = 270nH
20
30
L1, L2 = 390nH
40
PLO = -3dBm, 0dBm, +3dBm
30
3100
3300
3500
3700
PLO = +3dBm
10
20
PLO = 0dBm
30
PLO = -3dBm
L1, L2 = 120nH
40
50
2900
50
140
230
320
410
1800
500
2350
2900
3450
IF FREQUENCY (MHz)
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
220
VCC = 4.75V
210
-30
L3 = 4.7nH
-40
-50
50
RF-TO-IF ISOLATION (dB)
230
MAX19996A toc179
VCC = 5.0V
-20
LO LEAKAGE AT IF PORT (dBm)
VCC = 5.25V
240
MAX19996A toc178
RF FREQUENCY (MHz)
250
L3 = 0Ω
30
L3 = 4.7nH
20
-60
-5
25
TEMPERATURE (°C)
55
85
4000
40
L3 = 0Ω
200
4000
MAX19996A toc177
10
0
LO PORT RETURN LOSS (dB)
20
VCC = 4.75V, 5.0V, 5.25V
fLO = 3800MHz
IF PORT RETURN LOSS (dB)
MAX19996A toc175
15
0
MAX19996A toc176
RF PORT RETURN LOSS
vs. RF FREQUENCY
10
-35
3250
LO FREQUENCY (MHz)
L1, L2 = 470nH
SUPPLY CURRENT (mA)
-20
LO FREQUENCY (MHz)
5
2700
-10
LO FREQUENCY (MHz)
0
25
VCC = 4.75V, 5.0V, 5.25V
MAX19996A toc174
-10
-40
3000
RF PORT RETURN LOSS (dB)
PLO = -3dBm, 0dBm, +3dBm
0
MAX19996A toc180
-10
MAX19996A toc173
TC = -30°C, +25°C, +85°C
0
2LO LEAKAGE AT RF PORT (dBm)
MAX19996A toc172
2LO LEAKAGE AT RF PORT (dBm)
0
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
3300
3475
3650
3825
LO FREQUENCY (MHz)
4000
3000
3175
3350
3525
3700
RF FREQUENCY (MHz)
______________________________________________________________________________________
29
MAX19996A
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3000MHz to 3700MHz, LO is high-side
injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25°C, unless otherwise noted.)
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
Pin Description
PIN
NAME
1, 6, 8, 14
VCC
FUNCTION
2
RF
Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires an
input DC-blocking capacitor.
3, 4, 5, 10,
12, 13, 17
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP)
together.
7
LOBIAS
9, 15
N.C.
11
LO
Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
16
LEXT
External Inductor Connection. Connect an inductor from this pin to ground to increase the RF-to-IF and
LO-to-IF isolation (see the Typical Operating Characteristics for typical performance vs. inductor value).
18, 19
IF-, IF+
Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical
Application Circuit).
20
IFBIAS
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698Ω 1% (230mA
bias condition) from IFBIAS to GND.
—
EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via
grounds are also required to achieve the noted RF performance.
Power Supply. Bypass to GND with 0.01µF capacitors as close as possible to the pin.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604Ω 1% (230mA bias
condition) from LOBIAS to ground.
Not internally connected. Pins can be grounded.
Detailed Description
When used as a high-side LO injection mixer in the
2300MHz to 2900MHz RF band, the MAX19996A provides 8.7dB of conversion gain and +24.5dBm of IIP3
with a typical noise figure of 9.8dB. The integrated
baluns and matching circuitry allow for 50Ω singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the
mixer core, reducing the LO drive required at the
MAX19996A’s input to a -3dBm to +3dBm range. The IF
port incorporates a differential output, which is ideal for
providing enhanced 2LO-2RF performance.
Specifications are guaranteed over broad frequency
ranges to allow for use in WCS, LTE, WiMAX, and
MMDS base stations. The MAX19996A is specified to
operate over an RF input range of 2000MHz to
3900MHz, an LO range of 2100MHz to 4000MHz, and
an IF range of 50MHz to 500MHz. The external IF components set the lower frequency range (see the Typical
Operating Characteristics for details). Operation
beyond these ranges is possible (see the Typical
Operating Characteristics for additional information).
30
RF Input and Balun
The MAX19996A RF input provides a 50Ω match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun.
When using an 8.2pF DC-blocking capacitor, the RF
port input return loss is typically 14dB over the RF frequency range of 2300MHz to 2900MHz. A return loss of
15dB over the 3000MHz to 3900MHz range can be
achieved by changing the DC-blocking capacitor to
1.5pF.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 2100MHz
to 4000MHz, the MAX19996A can be used in either
low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. The LO
input is internally matched to 50Ω, requiring only a 2pF
DC-blocking capacitor. A two-stage internal LO buffer
allows for a -3dBm to +3dBm LO input power range.
The on-chip low-loss balun, along with an LO buffer,
drives the double-balanced mixer. All interfacing and
matching components from the LO inputs to the IF outputs are integrated on-chip.
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
Differential IF Output Amplifier
The MAX19996A has an IF frequency range of 50MHz
to 500MHz, where the low-end frequency depends on
the frequency response of the external IF components.
The MAX19996A mixer is tuned for a 300MHz IF using
390nH external pullup bias inductors. Lower IF frequencies would require higher inductor values to maintain a
good IF match. The differential, open-collector IF output
ports require these inductors to be connected to VCC.
Note that these differential ports are ideal for providing
enhanced 2LO-2RF and 2RF-2LO performance. Singleended IF applications require a 4:1 (impedance ratio)
balun to transform the 200Ω differential IF impedance
to a 50Ω single-ended system. Use the TC4-1W-17 4:1
transformer for IF frequencies above 200MHz and the
TC4-1W-7A 4:1 transformer for frequencies below
200MHz. The user can use a differential IF amplifier or
SAW filter on the mixer IF port, but a DC block is
required on both IF+/IF- ports to keep external DC from
entering the IF ports of the mixer.
Applications Information
Input and Output Matching
The RF input provides a 50Ω match when combined
with a series DC-blocking capacitor. Use an 8.2pF
capacitor value for RF frequencies ranging from
2000MHz to 3000MHz. A 1.5pF capacitor value should
be used to match the RF port for the 3000MHz to
3900MHz band. The LO input is internally matched to
50Ω; use a 2pF DC-blocking capacitor to cover operations spanning the 2100MHz to 4000MHz LO range.
The IF output impedance is 200Ω (differential). For
evaluation, an external low-loss 4:1 (impedance ratio)
balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).
Reduced-Power Mode
The MAX19996A has two pins (LOBIAS, IFBIAS) that
allow external resistors to set the internal bias currents.
Nominal values for these resistors are given in Table 1.
Larger value resistors can be used to reduce power
dissipation at the expense of some performance loss.
If ±1% resistors are not readily available, substitute with
±5% resistors.
Significant reductions in power consumption can also
be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power
consumption by up to 57%. See the 3.3V Supply AC
Electrical Characteristics—fRF = 2300MHz to 2900MHz,
High-Side LO Injection table and the relevant 3.3V
curves in the Typical Operating Characteristics section
to evaluate the power vs. performance tradeoffs.
LEXT Inductor
Short LEXT to ground using a 0Ω resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation,
L3 can be changed to optimize performance (see the
Typical Operating Characteristics). However, the load
impedance presented to the mixer must be so that any
capacitances from IF- and IF+ to ground do not exceed
several picofarads to ensure stable operating conditions. Since approximately 90mA flows through LEXT, it
is important to use a low-DCR wire-wound inductor.
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
The load impedance presented to the mixer must be so
that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best performance, route the ground pin traces directly to the
exposed pad under the package. The PCB exposed
pad MUST be connected to the ground plane of the
PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This
method provides a good RF/thermal-conduction path
for the device. Solder the exposed pad on the bottom
of the device package to the PCB. The MAX19996A
evaluation kit can be used as a reference for board layout. Gerber files are available upon request at
www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with
the capacitors shown in the Typical Application Circuit
and Table 1.
______________________________________________________________________________________
31
MAX19996A
High-Linearity Mixer
The core of the MAX19996A is a double-balanced,
high-performance passive mixer. Exceptional linearity is
provided by the large LO swing from the on-chip LO
buffer. When combined with the integrated IF amplifiers, IIP3, 2LO-2RF rejection, and noise-figure performance are typically +24.5dBm, 67dBc, and 9.8dB,
respectively.
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
Table 1. Component Values
DESIGNATION
QTY
DESCRIPTION
COMPONENT SUPPLIER
8.2pF microwave capacitor (0402). Use for RF frequencies
ranging from 2000MHz to 3000MHz.
C1
1
Murata Electronics North America, Inc.
1.5pF microwave capacitor (0402). Use for RF frequencies
ranging from 3000MHz to 3900MHz.
C2, C6, C8, C11
4
0.01µF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, capacitors
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
C13, C14
2
1000pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C15
1
82pF microwave capacitor (0402)
Murata Electronics North America, Inc.
L1, L2
2
390nH wire-wound high-Q inductors* (0805)
(see the Typical Operating Characteristics)
Coilcraft, Inc.
L3
1
4.7nH wire-wound high-Q inductor (0603)
Coilcraft, Inc.
R1
1
R2
1
698Ω ±1% resistor (0402). Use for VCC = 5.0V applications.
1.1kΩ ±1% resistor (0402). Use for VCC = 3.3V applications.
604Ω ±1% resistor (0402). Use for VCC = 5.0V applications.
845Ω±1% resistor (0402). Use for VCC = 3.3V applications.
Digi-Key Corp.
Digi-Key Corp.
R3
1
0Ω resistor (1206)
T1
1
4:1 IF balun TC4-1W-17*
Digi-Key Corp.
Mini-Circuits
U1
1
MAX19996A IC (20 TQFN-EP)
Maxim Integrated Products, Inc.
*Use 470nH inductors and TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19996A’s 20-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX19996A is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
32
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
C13
C15
L1
3
6
IF
OUTPUT
T1
2
L2
R3
1
4
C14
4:1
R1
20
C2
VCC
C1
RF
INPUT
RF
19
LEXT
GND
18
17
16
15
1
MAX19996A
2
14
N.C.
VCC
+5.0V
C11
GND
GND
3
13
4
12
GND
GND
EP
C10
11
5
+5.0V
C6
9
LO
LO
INPUT
10
GND
8
N.C.
7
LOBIAS
6
VCC
GND
VCC
C3
IF-
+5.0V
IF+
IFBIAS
L3
R2
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
C8
+5.0V
C9
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
______________________________________________________________________________________
33
MAX19996A
Typical Application Circuit
VCC
IF+
IF-
GND
LEXT
TOP VIEW
IFBIAS
Pin Configuration/
Functional Diagram
20
19
18
17
16
RF
2
GND
3
GND
4
MAX19996A
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
15
1
N.C.
14
VCC
13
GND
12
GND
11
LO
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 Thin QFN-EP
T2055+3
21-0140
EP
34
6
7
8
9
10
VCC
N.C.
GND
5
LOBIAS
GND
VCC
MAX19996A
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
______________________________________________________________________________________
SiGe, High-Linearity, 2000MHz to 3900MHz
Downconversion Mixer with LO Buffer
REVISION
NUMBER
REVISION
DATE
0
1/09
Initial release
—
1
5/09
Updated Electrical Characteristics table limits
6
DESCRIPTION
PAGES
CHANGED
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX19996A
Revision History
Similar pages