IRFB7440GPbF IRFB7440GPBF TO-220AB IRFB7440GPbF Applications Brushed Motor drive applications l BLDC Motor drive applications l Battery powered circuits l Half-bridge and full-bridge topologies l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters l DC/AC Inverters Benefits l l l l l G S Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free Halogen-Free Base Part Number Package Type RDS(on), Drain-to -Source On Resistance (m ) IRFB7440GPbF VDSS RDS(on) typ. max. ID c 120A G D S Gate Drain Source Standard Pack Form Tube TO-220 40V 2.0m 2.5m 208A ID (Package Limited) Orderable Part Number Quantity 50 7.0 IRFB7440GPbF 240 ID = 100A 6.0 Limited By Package 200 ID, Drain Current (A) l D 5.0 T J = 125°C 4.0 3.0 2.0 160 120 80 40 T J = 25°C 1.0 0 4 6 8 10 12 14 16 18 20 25 75 100 125 150 175 T C , Case Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 2. Maximum Drain Current vs. Case Temperature Fig 1. Typical On-Resistance vs. Gate Voltage 2014-8-13 50 1 www.kersemi.com IRFB7440GPBF Absolute Maximum Ratings Max. Units ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM Symbol Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current 208 147 120 772 A PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 208 1.4 ± 20 -55 to + 175 VGS TJ TSTG Parameter d Avalanche Characteristics EAS (Thermally limited) EAS (tested) IAR EAR Single Pulse Avalanche Energy Symbol e Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy d Thermal Resistance RJC RCS RJA c c W W/°C V °C 300 10lbf in (1.1N m) x x 238 298 See Fig. 14, 15, 22a, 22b k d Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient mJ A mJ Typ. Max. Units ––– 0.50 ––– 0.72 ––– 62 °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.048mH RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 1330A/μs, VDD V(BR)DSS, TJ 175°C. 2014-8-13 2 Min. Typ. Max. Units 40 ––– ––– ––– 2.2 ––– ––– ––– ––– ––– ––– 0.035 2.0 3.0 3.0 ––– ––– ––– ––– 2.6 ––– ––– 2.5 ––– 3.9 1.0 150 100 -100 ––– V V/°C m m V μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 5.0mA VGS = 10V, ID = 100A VGS = 6.0V, ID = 50A VDS = VGS, ID = 100μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V g g d Pulse width 400μs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. This value determined from sample failure population, starting T J = 25°C, L= 0.048mH, RG = 50, IAS = 100A, VGS =10V. www.kersemi.com IRFB7440GPBF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. 88 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 90 23 32 58 24 68 115 68 4730 680 460 845 980 Max. Units Min. Typ. ––– ––– 193 ––– ––– 772 ––– ––– ––– ––– ––– ––– ––– 0.9 6.8 24 28 17 20 1.3 1.3 ––– ––– ––– ––– ––– ––– ––– 135 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 100A ID = 100A VDS =20V VGS = 10V ID = 100A, VDS =0V, VGS = 10V VDD = 20V ID = 30A R G = 2.7 VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol IS Parameter VSD dv/dt trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Peak Diode Recovery Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ISM 2014-8-13 d f 3 Max. Units Conditions A MOSFET symbol showing the G A integral reverse p-n junction diode. V TJ = 25°C, IS = 100A, VGS = 0V V/ns TJ = 175°C, IS = 100A, VDS = 40V ns TJ = 25°C VR = 34V, TJ = 125°C IF = 100A di/dt = 100A/μs nC TJ = 25°C TJ = 125°C A TJ = 25°C g D S g www.kersemi.com IRFB7440GPBF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 1 60μs PULSE WIDTH 100 BOTTOM 10 4.5V 60μs PULSE WIDTH Tj = 25°C Tj = 175°C 0.1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 2.0 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 T J = 175°C T J = 25°C 10 VDS = 10V 60μs PULSE WIDTH ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 1.0 3 4 5 6 7 8 9 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 10000 Ciss Coss Crss 1000 100 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 20 40 60 80 100 120 QG, Total Gate Charge (nC) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 2014-8-13 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4 Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage www.kersemi.com IRFB7440GPBF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100μsec 100 1msec Limited by package 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 0.1 1 0.8 50 Id = 5.0mA VDS= 0V to 32V 48 0.6 47 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 49 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 46 45 44 0.4 43 0.2 42 41 0.0 40 0 -60 -40 -20 0 20 40 60 80 100120140160180 5 T J , Temperature ( °C ) 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m) 10 Fig 12. Typical COSS Stored Energy 40 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V 30 VGS =10V 20 10 0 0 100 200 300 400 500 600 700 800 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 2014-8-13 5 www.kersemi.com IRFB7440GPBF 1 Thermal Response ( Z thJC ) °C/W D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 200 150 100 50 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 2014-8-13 6 www.kersemi.com IRFB7440GPBF 8 IF = 60A V R = 34V 7 4.0 TJ = 25°C TJ = 125°C 6 3.0 IRRM (A) VGS(th), Gate threshold Voltage (V) 5.0 ID = 100μA ID = 1.0mA ID = 1.0A 5 4 3 2.0 2 1 1.0 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 8 110 IF = 100A V R = 34V 7 IF = 60A V R = 34V 100 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 90 QRR (nC) 6 IRRM (A) 400 diF /dt (A/μs) 5 4 80 70 3 60 2 50 1 40 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt 100 IF = 100A V R = 34V QRR (nC) 80 TJ = 25°C TJ = 125°C 60 40 20 0 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 21 - Typical Stored Charge vs. dif/dt 2014-8-13 7 www.kersemi.com IRFB7440GPBF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01 tp I AS Fig 22b. Unclamped Inductive Waveforms Fig 22a. Unclamped Inductive Test Circuit RD VDS VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width µs Duty Factor td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50K 12V tf .2F .3F D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 2014-8-13 Qgd Qgodr Fig 24b. Gate Charge Waveform 8 www.kersemi.com