NCP4623 150 mA, Wide Input Voltage Range, Low Dropout Regulator The NCP4623 is a CMOS Linear Voltage Regulator designed for wide input voltage range. The maximum operating input voltage is up to 24 V with a minimum voltage starting from 2 V. The Chip Enable (CE) pin allows the device to lower standby current to 0.1 mA typ. The NCP4623 features many protections for any current or thermal sensitive devices with current fold−back protection, thermal shutdown protection, and peak and short current protection. This device is available in adjustable and fixed voltage output in 0.1 V steps. They are available in very thin XDFN6 1.6x1.6x0.4 mm in size and the very popular SOT23−5 and SOT89−5 packages. Please contact your local sales office for additional output voltage options. http://onsemi.com MARKING DIAGRAMS XDFN6 CASE 711AC 1 Features • Maximum Operating Input Voltage: 24 V • Output Voltage Range: 2.5 V to 12.0 V (available in 0.1 V steps) • • • • • • • • 2.5 V to 24.0 V (adjustable version) Output Voltage Accuracy: ±2.0% Supply Current: 5 mA Stable with Ceramic Capacitors: 1 mF or more Current Fold Back Protection Peak and Short Current Protection Thermal Shutdown Protection Available in XDFN6 1.6 x 1.6 mm, SOT23−5, SOT89−5 Packages These are Pb−Free Devices Typical Applications • • • • Battery−powered Equipment Networking and Communication Equipment Cameras, DVRs, STB and Camcorders Home Appliances VIN C1 100n NCP4623x VIN C1 100n SOT−89 5 CASE 528AB XXXMM SOT−23−5 CASE 1212 1 XXX, XXXX = Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet. C2 100n CE GND VIN VOUT CE ADJ VOUT R1 GND XXX XMM (*Note: Microdot may be in either location) VOUT VOUT NCP4623xADJ VIN 1 XXX XMM C2 100n R2 Figure 1. Typical Application Schematics © Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 2 1 Publication Order Number: NCP4623/D NCP4623 Thermal Protection Thermal Protection VIN VIN VOUT VOUT ADJ Vref Vref Short Protection CE Peak Current Protection CE Short Protection Peak Current Protection GND GND NCP4623Hxxxxx NCP4623HxxADJ Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN (Note 1) Pin No. SOT89−5 Pin No. SOT23 Pin Name 3 1 1 VOUT Output pin 6 2 2 GND Ground 4 3 5 CE Chip enable pin (Active “H”) 1 5 3 VIN Input pin 5 4 4 NC/ADJ 2 − − NC Description No connection (non ADJ versions) / Reference Voltage of Adjustable Output Pin (ADJ versions) No connection 1. Tab is connected to GND. Tab should be connected to GND, but leaving it unconnected is also acceptable http://onsemi.com 2 NCP4623 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN 26.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE −0.3 to VIN + 0.3 V Reference Input Voltage VADJ −0.3 to VIN + 0.3 V Output Current IOUT 250 mA Input Voltage (Note 2) Power Dissipation XDFN6−1616 640 Power Dissipation SOT89−5 900 PD Power Dissipation SOT23−5 mW 420 Junction Temperature TJ −40 to 150 °C Operation Temperature TA −40 to 85 °C TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 3) ESDHBM 2000 V ESD Capability, Machine Model (Note 3) ESDMM 200 V Storage Temperature Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 3. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. Latchup Current Maximum Rating tested per JEDEC standard: JESD78. THERMAL CHARACTERISTICS Rating Symbol Value Unit Thermal Characteristics, XDFN6 Thermal Resistance, Junction−to−Air RqJA 156 °C/W Thermal Characteristics, SOT23−5 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SOT89−5 Thermal Resistance, Junction−to−Air RqJA 111 °C/W ELECTRICAL CHARACTERISTICS NCP4623Hxxxx, CIN = COUT = 0.1 mF, TA = +25°C Parameter Test Conditions Symbol VIN Output Voltage VIN = VOUT(NOM) + 2.0 V, IOUT = 20 mA VOUT Output Voltage Temp. Coefficient VIN = VOUT(NOM) + 2.0 V, IOUT = 20 mA, −40°C ≤ TA ≤ 105ºC DVOUT/DTA ±100 VOUT(NOM) + 1 V ≤ VIN ≤ 24 V, IOUT = 20 mA LineReg 0.05 0.20 LoadReg 20 50 3.1 V ≤ VOUT ≤ 5.0 V 30 75 5.1 V ≤ VOUT ≤ 12.0 V 40 115 0.20 0.40 0.25 0.50 0.30 0.55 Operating Input Voltage Line Regulation Load Regulation VIN = VOUT(NOM) + 2.0 V, IOUT = 1 mA to 40 mA IOUT = 20 mA 2.5 V ≤ VOUT ≤ 3.0 V 2.5 V ≤ VOUT ≤ 7.0 V Min Max Unit 2 24 V x0.98 x1.02 V VDO 7.1 V ≤ VOUT ≤ 10.0 V Dropout Voltage 10.1 V ≤ VOUT ≤ 12.0 V Output Current VIN = VOUT(NOM) + 2.0 V 2.5 V ≤ VOUT ≤ 2.9 V 3.0 V ≤ VOUT ≤ 12.0 V http://onsemi.com 3 IOUT 140 150 Typ ppm/°C %/V mV V mA NCP4623 ELECTRICAL CHARACTERISTICS NCP4623Hxxxx, CIN = COUT = 0.1 mF, TA = +25°C Test Conditions Symbol Short Current Limit Parameter VOUT = 0 V ISC Min Typ 45 Max Unit Quiescent Current VIN = VOUT(NOM) + 2.0 V, VCE = VIN IQ 5 10 mA Standby Current VIN = 24 V, VCE = 0 V ISTB 0.1 1.0 mA CE Pin Threshold Voltage CE Input Voltage “H” VCEH 2.1 VIN V CE Input Voltage “L” VCEL 0 0.3 Power Supply Rejection Ratio VOUT = 3.3V V, VIN = 5.3 V, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz PSRR 35 dB Output Noise Voltage f = 10 Hz to 100 kHz, VOUT = 3.3 V, VIN = 5.3 V, IOUT = 30 mA VN 90 mVrms Thermal Shutdown Temperature TSD 150 °C Thermal Shutdown Release Temperature TSR 125 °C mA ELECTRICAL CHARACTERISTICS NCP4623HxxxADJ, VADJ = VOUT, CIN = COUT = 0.1 mF, TA = +25°C Parameter Test Conditions Operating Input Voltage Symbol Min VIN 2 2.45 Typ Unit 24 V 2.55 V Output Voltage VIN = VOUT(NOM) + 2.0 V, IOUT = 20 mA VOUT Output Voltage Temp. Coefficient VIN = VOUT(NOM) + 2.0 V, IOUT = 20 mA, −40°C ≤ TA ≤ 105ºC DVOUT/DTA ±100 Line Regulation VOUT(NOM) + 1 V ≤ VIN ≤ 24 V, IOUT = 20 mA LineReg 0.05 0.20 %/V Load Regulation VIN = VOUT(NOM) + 2.0 V, IOUT = 1 mA to 40 mA LoadReg 20 50 mV Dropout Voltage IOUT = 20 mA VDO 0.20 0.40 V Output Current VIN = VOUT(NOM) + 2.0 V IOUT Short Current Limit VOUT = 0 V ISC 45 3 Quiescent Current VIN = VOUT(NOM) + 2.0 V, VCE = VIN IQ 5 10 mA Standby Current VIN = 24 V, VCE = 0 V ISTB 0.1 1.0 mA CE Pin Threshold Voltage CE Input Voltage “H” VCEH 2.1 VIN V CE Input Voltage “L” VCEL 0 0.3 VIN = 4.5 V, VOUT = 2.5 V, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz PSRR 40 dB f = 10 Hz to 100 kHz, VOUT = 2.5 V, VIN = 4.5 V, IOUT = 30 mA VN 80 mVrms Thermal Shutdown Temperature TSD 150 °C Thermal Shutdown Release Temperature TSR 125 °C Power Supply Rejection Ratio Output Noise Voltage http://onsemi.com 4 2.50 Max ppm/°C 140 mA mA NCP4623 TYPICAL CHARACTERISTICS 3.5 3.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 3.5 7.0 V VIN = 4.3 V 2.5 2.0 6.0 V 1.5 5.0 V 1.0 0.5 0.0 0 50 100 150 200 250 3.0 2.5 2.0 105°C 0.5 0 IOUT, OUTPUT CURRENT (mA) VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 150 200 250 300 6.0 5.0 4.0 3.0 VIN = 6.5 V 2.0 8.0 V 1.0 6.0 V 0 50 100 150 7.0 V 200 250 5.0 25°C 4.0 2.0 1.0 0.0 300 TJ = −40°C 3.0 105°C 0 IOUT, OUTPUT CURRENT (mA) 50 100 150 200 250 300 IOUT, OUTPUT CURRENT (mA) Figure 5. Output Voltage vs. Output Current 5.0 V Version (TJ = 255C) Figure 6. Output Voltage vs. Output Current 5.0 V Version VIN = 7.0 V 14.0 14.0 12.0 12.0 VIN = 13 V 10.0 8.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 100 Figure 4. Output Voltage vs. Output Current 3.3 V Version VIN = 5.3 V 6.0 15 V 10.0 13.5 V 6.0 14 V 4.0 2.0 0.0 50 IOUT, OUTPUT CURRENT (mA) Figure 3. Output Voltage vs. Output Current 3.3 V Version (TJ = 255C) 0.0 25°C 1.0 0.0 300 TJ = −40°C 1.5 0 50 100 150 200 250 IOUT, OUTPUT CURRENT (mA) 6.0 25°C 4.0 2.0 0.0 300 TJ = −40°C 8.0 105°C 0 50 100 150 200 IOUT, OUTPUT CURRENT (mA) Figure 7. Output Voltage vs. Output Current 12.0 V Version (TJ = 255C) 250 Figure 8. Output Voltage vs. Output Current 12.0 V Version VIN = 14.0 V http://onsemi.com 5 300 NCP4623 TYPICAL CHARACTERISTICS 2.0 1.5 VDO, DROPOUT VOLTAGE (V) VDO, DROPOUT VOLTAGE (V) 2.0 105°C 25°C 1.0 TJ = −40°C 0.5 0.0 0 30 60 90 120 1.5 1.0 TJ = −40°C 0.5 0.0 150 0 30 60 90 120 150 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 9. Dropout Voltage vs. Output Current 3.3 V Version Figure 10. Dropout Voltage vs. Output Current 5.0 V Version 3.35 2.0 3.34 VOUT, OUTPUT VOLTAGE (V) VDO, DROPOUT VOLTAGE (V) 105°C 25°C 1.5 1.0 25°C 0.5 105°C TJ = −40°C 0.0 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 0 30 60 90 120 IOUT, OUTPUT CURRENT (mA) 150 −40 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) Figure 11. Dropout Voltage vs. Output Current 12.0 V Version Figure 12. Output Voltage vs. Temperature, 3.3 V Version, VIN = 5.3 V, IOUT = 20 mA 12.05 5.04 12.04 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 5.05 5.03 12.03 5.02 12.02 5.01 12.01 5.00 12.00 4.99 11.99 4.98 11.98 4.97 11.97 4.96 4.95 −40 −20 11.96 −20 0 20 40 60 80 11.95 100 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Output Voltage vs. Temperature, 5.0 V Version, VIN = 7.0 V, IOUT = 20 mA Figure 14. Output Voltage vs. Temperature, 12.0 V Version, VIN = 14.0 V, IOUT = 20 mA http://onsemi.com 6 100 NCP4623 8 8 7 7 6 6 5 5 IGND (mA) IGND (mA) TYPICAL CHARACTERISTICS 4 3 3 2 2 1 1 0 0 0 5 10 15 20 0 25 20 25 VIN, INPUT VOLTAGE (V) 7 7 6 6 5 5 4 3 4 3 2 2 1 1 0 5 10 15 20 0 −40 25 VIN, INPUT VOLTAGE (V) 7 7 6 6 5 5 IGND (mA) 8 4 3 1 1 40 60 40 60 80 100 3 2 20 20 4 2 0 0 Figure 18. Supply Current vs. Temperature, 3.3 V Version, VIN = 5.3 V 8 −20 −20 TJ, JUNCTION TEMPERATURE (°C) Figure 17. Supply Current vs. Input Voltage, 12.0 V Version IGND (mA) 15 Figure 16. Supply Current vs. Input Voltage, 5.0 V Version 8 0 −40 10 VIN, INPUT VOLTAGE (V) 8 0 5 Figure 15. Supply Current vs. Input Voltage, 3.3 V Version IGND (mA) IGND (mA) 4 80 0 −40 100 −20 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 19. Supply Current vs. Temperature, 5.0 V Version, VIN = 7.0 V Figure 20. Supply Current vs. Temperature, 12.0 V Version, VIN = 14.0 V http://onsemi.com 7 NCP4623 6.0 3.0 5.0 2.5 1.5 20 mA 1.0 1 mA 0.5 0 5 10 15 20 4.0 3.0 IOUT = 40 mA 2.0 10 15 20 VIN, INPUT VOLTAGE (V) 60 10.0 50 8.0 6.0 IOUT = 40 mA 4.0 IOUT = 1 mA 30 10 10 30 mA 15 20 0 0.1 25 150 mA 1 10 100 VIN, INPUT VOLTAGE (V) FREQUENCY (kHz) Figure 23. Output Voltage vs. Input Voltage, 12.0 V Version Figure 24. PSRR, 3.3 V Version, VIN = 6.3 V 70 60 60 50 50 IOUT = 1 mA 40 30 mA 30 25 20 20 mA 1 mA 5 40 70 1000 IOUT = 1 mA 40 30 mA 30 20 20 150 mA 10 0 5 Figure 22. Output Voltage vs. Input Voltage, 5.0 V Version 12.0 0 0 VIN, INPUT VOLTAGE (V) 70 0.0 1 mA Figure 21. Output Voltage vs. Input Voltage, 3.3 V Version 14.0 2.0 20 mA 1.0 0.0 25 PSRR (dB) VOUT, OUTPUT VOLTAGE (V) IOUT = 40 mA 2.0 0.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 3.5 PSRR (dB) VOUT, OUTPUT VOLTAGE (V) TYPICAL CHARACTERISTICS 0.1 1 10 10 100 VIN, INPUT VOLTAGE (V) 1000 0 0.1 Figure 25. PSRR, 5.0 V Version, VIN = 8.0 V 150 mA 1 10 FREQUENCY (kHz) 100 1000 Figure 26. PSRR, 12.0 V Version, VIN = 15.0 V http://onsemi.com 8 NCP4623 TYPICAL CHARACTERISTICS 7.0 16 6.0 14 12 VN (mVrms/√Hz) 4.0 3.0 2.0 10 8.0 6.0 4.0 1.0 2.0 0.1 1 10 100 0 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 27. Output Voltage Noise, 3.3 V Version, VIN = 5.3 V, IOUT = 30 mA Figure 28. Output Voltage Noise, 5.0 V Version, VIN = 7.0 V, IOUT = 30 mA 45 6.0 40 5.5 35 5.0 4.5 VOUT (V) 30 25 20 15 3.1 2.9 2.7 2.5 10 2.3 5.0 2.1 0 0.01 1.9 0.1 1 10 100 0 1000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 FREQUENCY (kHz) t (ms) Figure 29. Output Voltage Noise, 12.0 V Version, VIN = 14.0 V, IOUT = 30 mA Figure 30. Line Transients, 2.5 V Version, tR = tF = 5 ms, IOUT = 30 mA 6.8 6.3 5.8 5.3 3.9 VIN (V) VOUT (V) VN (mVrms/√Hz) 0 0.01 VIN (V) VN (mVrms/√Hz) 5.0 3.7 3.5 3.3 3.1 2.9 2.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 t (ms) 0.8 0.9 Figure 31. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA http://onsemi.com 9 1.0 1.0 NCP4623 TYPICAL CHARACTERISTICS 8.5 8.0 7.5 5.6 VIN (V) VOUT (V) 7.0 5.4 5.2 5.0 4.8 4.6 4.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 32. Line Transients, 5.0 V Version, tR = tF = 5 ms, IOUT = 30 mA 15.5 15.0 14.5 VIN (V) VOUT (V) 14.0 12.6 12.4 12.2 12.0 11.8 11.6 11.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 33. Line Transients, 12.0 V Version, tR = tF = 5 ms, IOUT = 30 mA 45 30 15 IOUT (mA) VOUT (V) 0 3.1 2.9 2.7 2.5 2.3 2.1 1.9 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Load Transients, 2.5 V Version, IOUT = 1 30 mA, tR = tF = 50 ms, VIN = 4.5 V http://onsemi.com 10 4.0 NCP4623 TYPICAL CHARACTERISTICS 45 30 15 3.9 IOUT (mA) VOUT (V) 0 3.7 3.5 3.3 3.1 2.9 2.7 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 t (ms) Figure 34 - Load Transients, 3.3 V Version, IOUT = 1 - 30 mA, tR = tF = 50 ms, VIN = 5.3 V 45 30 15 IOUT (mA) VOUT (V) 0 5.6 5.4 5.2 5.0 4.8 4.6 4.4 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 35. Load Transients, 5.0 V Version, IOUT = 1 − 30 mA, tR = tF = 50 ms, VIN = 7.0 V 45 30 15 12.6 IOUT (mA) VOUT (V) 0 12.4 12.2 12.0 11.8 11.6 11.4 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Figure 36. Load Transients, 12.0 V Version, IOUT = 1 − 30 mA, tR = tF = 50 ms, VIN = 14.0 V http://onsemi.com 11 4.0 NCP4623 TYPICAL CHARACTERISTICS 150 100 50 4.0 IOUT (mA) VOUT (V) 0 3.5 3.0 2.5 2.0 1.5 1.0 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 37. Load Transients, 2.5 V Version, IOUT = 1 − 100 mA, tR = tF = 50 ms, VIN = 4.5 V 150 100 50 4.8 IOUT (mA) VOUT (V) 0 4.3 3.8 3.3 2.8 2.3 1.8 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 38. Load Transients, 3.3 V Version, IOUT = 1 − 100 mA, tR = tF = 50 ms, VIN = 5.3 V 150 100 50 6.5 IOUT (mA) VOUT (V) 0 6.0 5.5 5.0 4.5 4.0 3.5 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 t (ms) Figure 39. Load Transients, 5.0 V Version, IOUT = 1 − 100 mA, tR = tF = 50 ms, VIN = 7.0 V http://onsemi.com 12 4.0 NCP4623 TYPICAL CHARACTERISTICS 150 100 50 13.5 IOUT (mA) VOUT (V) 0 13.0 12.5 12.0 11.5 11.0 10.5 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 t (ms) Figure 40. Load Transients, 12.0 V Version, IOUT = 1 − 100 mA, tR = tF = 50 ms, VIN = 14.0 V 6.75 Chip Enable 4.50 2.25 IOUT = 1 mA VCE (V) VOUT (V) 0 2.5 2.0 IOUT = 150 mA 1.5 1.0 0.5 IOUT = 30 mA 0 −0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 41. Start−up, 2.5 V Version, VIN = 4.5 V 7.95 Chip Enable 5.30 2.65 VCE (V) VOUT (V) 0 IOUT = 1 mA 4.0 3.0 2.0 IOUT = 150 mA 1.0 0 −1.0 IOUT = 30 mA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t (ms) Figure 42. Start−up, 3.3 V Version, VIN = 5.3 V http://onsemi.com 13 1.0 NCP4623 TYPICAL CHARACTERISTICS 10.50 Chip Enable 7.00 3.50 5.0 VCE (V) VOUT (V) 0 IOUT = 1 mA 4.0 3.0 IOUT = 150 mA 2.0 1.0 IOUT = 30 mA 0 −1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 43. Start−up, 5.0 V Version, VIN = 7.0 V 21 Chip Enable 14 7 12.0 VCE (V) VOUT (V) 0 IOUT = 1 mA 9.0 6.0 IOUT = 30 mA 3.0 IOUT = 150 mA 0 −3.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 45. Start−up, 12.0 V Version, VIN = 14.0 V 6.75 4.50 2.25 0 2.5 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 2.0 1.5 1.0 IOUT = 30 mA 0.5 0 −0.5 IOUT = 150 mA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 44. Shutdown, 2.5 V Version, VIN = 4.5 V http://onsemi.com 14 NCP4623 TYPICAL CHARACTERISTICS 7.95 5.30 2.65 0 VCE (V) VOUT (V) Chip Enable 4.0 IOUT = 1 mA 3.0 2.0 IOUT = 30 mA 1.0 0 IOUT = 150 mA −1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 46. Shutdown, 3.3 V Version, VIN = 5.3 V 10.5 7.0 3.5 0 5.0 4.0 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 3.0 2.0 IOUT = 30 mA 1.0 0 IOUT = 150 mA −1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 47. Shutdown, 5.0 V Version, VIN = 7.0 V 21 14 7 0 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 12.0 9.0 6.0 IOUT = 30 mA 3.0 0 −3.0 IOUT = 150 mA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t (ms) Figure 48. Shutdown, 12.0 V Version, VIN = 14.0 V http://onsemi.com 15 1.0 NCP4623 APPLICATION INFORMATION A typical application circuits for NCP4623 series is shown in Figure 49. VIN C1 100n VIN C1 100n NCP4623x VIN ǒ VOUT VOUT V OUT + 2.5 1 ) C2 100n CE GND NCP4623xADJ VIN VOUT CE ADJ Ǔ R1 ) R1 @ I ADJ R2 (eq. 1) Enable Operation The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. Do not leave the CE pin unconnected or between VCEH and VCEL voltage levels as this may leave the output voltage unstable or cause indefinite and unexpected currents flows internally. VOUT R1 GND of voltage divider low enough to achieve cross current around 2 mA to eliminate error. Output voltage can be computed from the equation: C2 100n Current Limit This regulator includes a fold−back type current limit circuit. This type of protection doesn’t limit output current up to specified current capability in normal operation, but when an over current occurs, output voltage and current decrease until the over current condition ends. Typical characteristics of this protection type can be observed in the Output Voltage vs. Output Current graphs shown in the typical characteristics section of this datasheet. R2 Figure 49. Typical Application Schematics Input Decoupling Capacitor (C1) A 0.1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4623. Higher values and lower ESR improves line transient response. Thermal As power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications. The IC includes internal thermal shutdown circuit that stops operation of regulator, if junction temperature is higher than 150°C. After that, when junction temperature decreases below 125°C, the operation of voltage regulator will resume. During high power dissipation condition, the regulator shuts down and resumes repeatedly protecting itself from overheating. Output Decoupling Capacitor (C2) Recommended values of the ceramic output decoupling capacitor is in the range from 0.1 mF to 2.2 mF. Stable operation of the regulator should be achieved within this range. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters. Output Voltage Setting (ADJ version) The output voltage of the adjustable regulator may be set for any output voltage from its voltage reference (2.5 V) up to VIN voltage by an external voltage divider connected between VOUT and GND pins with its center connected to the ADJ pin. The voltage divider is loaded by current into ADJ pin that is typically around 200 nA. This current may cause an error in VOUT, therefore it is good to choose values PCB layout Make the VIN and GND line as large as practical. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. http://onsemi.com 16 NCP4623 ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4623HSNADJT1G Adjustable Enable high J24 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP4623HSN050T1G 5.0 V Enable high J50 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP4623HSN100T1G 10.0 V Enable high J00 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP4623HSN120T1G 12.0 V Enable high J20 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP4623HMXADJTCG Adjustable Enable high BQ24 XDFN1616−6 (Pb−Free) 5000 / Tape & Reel NCP4623HMX033TCG 3.3 V Enable high BQ33 XDFN1616−6 (Pb−Free) 5000 / Tape & Reel NCP4623HMX045TCG 4.5 V Enable high BQ45 XDFN1616−6 (Pb−Free) 5000 / Tape & Reel NCP4623HMX048TCG 4.8 V Enable high BQ48 XDFN1616−6 (Pb−Free) 5000 / Tape & Reel NCP4623HMX050TCG 5.0 V Enable high BQ50 XDFN1616−6 (Pb−Free) 5000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 17 NCP4623 PACKAGE DIMENSIONS XDFN6 1.6x1.6, 0.5P CASE 711AC−01 ISSUE O NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. A B D 2X ÉÉÉ ÉÉÉ ÉÉÉ 0.05 C PIN ONE REFERENCE 2X E DIM A A1 b D D2 E E2 E3 e L L1 0.05 C TOP VIEW A 0.05 C A1 0.05 C NOTE 3 0.05 M D2 1 2X 3X RECOMMENDED MOUNTING FOOTPRINT* C A B 1.70 L 3 L1 SEATING PLANE C SIDE VIEW E2 6X 0.05 E3 6 MILLIMETERS MIN MAX −−− 0.40 0.00 0.05 0.15 0.25 1.60 BSC 1.25 1.35 1.60 BSC 0.65 0.75 0.15 REF 0.50 BSC 0.15 0.25 0.05 BSC 4 e 6X M PACKAGE OUTLINE b 0.05 M 0.77 1.79 0.38 C A B C A B 1 0.50 PITCH BOTTOM VIEW 6X 0.36 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 18 NCP4623 PACKAGE DIMENSIONS SOT−89, 5 LEAD CASE 528AB−01 ISSUE O D E NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. LEAD THICKNESS INCLUDES LEAD FINISH. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEASURED AT DATUM PLANE C. H DIM A b b1 c D D2 E e H L L2 L3 L4 L5 1 TOP VIEW c A 0.10 C C SIDE VIEW e b1 L 1 e b 2 L3 L4 RECOMMENDED MOUNTING FOOTPRINT* L2 4X 3 4 0.57 1.75 L5 5 MILLIMETERS MIN MAX 1.40 1.60 0.32 0.52 0.37 0.57 0.30 0.50 4.40 4.60 1.40 1.80 2.40 2.60 1.40 1.60 4.25 4.45 1.10 1.50 0.80 1.20 0.95 1.35 0.65 1.05 0.20 0.60 2.79 1.50 0.45 4.65 D2 BOTTOM VIEW 1.30 1 1.65 2X 2X 1.50 0.62 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 19 NCP4623 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A A 5 E 1 L1 A1 4 2 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B S A S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 DIM A A1 A2 b c D E E1 e L L1 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 20 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4623/D