SILABS EFR32BG12P433F1024GL125-B Efr32bg12 blue gecko bluetooth â®low energy soc family data sheet Datasheet

EFR32BG12 Blue Gecko Bluetooth ®Low
Energy SoC Family Data Sheet
The Blue Gecko Bluetooth Low Energy family of SoCs is part of
the Wireless Gecko portfolio. Blue Gecko SoCs are ideal for enabling energy-friendly Bluetooth 5 networking for IoT devices.
KEY FEATURES
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup
times, a scalable power amplifier, an integrated balun and no-compromise MCU features.
• Up to 1 MB of flash and 256 kB of RAM
• Pin-compatible with EFR32BG1 QFN48
devices (exceptions apply for 5V-tolerant
pins)
Blue Gecko applications include:
•
•
•
•
•
•
•
• 12-channel Peripheral Reflex System,
Low-Energy Sensor Interface & Multichannel Capacitive Sense Interface
IoT Sensors and End Devices
Health and Wellness
Home and Building Automation
Accessories
Human Interface Devices
Metering
Commercial and Retail Lighting and Sensing
• Autonomous Hardware Crypto Accelerator
and True Random Number Generator
• Integrated PA with up to 19 dBm transmit
power for 2.4 GHz and 20 dBm for SubGHz radios
• Integrated balun for 2.4 GHz
• Robust peripheral set and up to 65 GPIO
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
Flash Program
Memory
RAM Memory
Clock Management
Memory
Protection Unit
Debug Interface
with ETM
LDMA
Controller
Energy Management
High Frequency
Crystal
Oscillator
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
Other
CRYPTO
CRC
True Random
Number Generator
SMU
32-bit bus
Peripheral Reflex System
Radio Transceiver
Sub GHz
RFSENSE
BALUN
I
LNA
RF Frontend
Q
FRC
Low Energy
UARTTM
To Sub GHz
receive I/Q
mixers and PA
AGC
Frequency
Synthesizer
MOD
To 2.4 GHz receive
I/Q mixers and PA
I/O Ports
Timers and Triggers
External
Interrupts
Timer/Counter
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
Pin Wakeup
Low Energy
Sensor Interface
Cryotimer
Protocol Timer
2
IC
Analog I/F
ADC
Analog
Comparator
IFADC
Q
2.4 GHz
PA
PGA
USART
RAC
PA
DEMOD
BUFC
I
LNA
RF Frontend
Serial
Interfaces
CRC
RFSENSE
IDAC
Capacitive Sense
VDAC
To Sub GHz
and 2.4 GHz PA
Op-Amp
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
silabs.com | Building a more connected world.
EM2—Deep Sleep
EM3—Stop
EM4—Hibernate
EM4—Shutoff
Rev. 1.0
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
3.2 Radio. . . . . . . . . . . .
3.2.1 Antenna Interface . . . . . . .
3.2.2 Fractional-N Frequency Synthesizer.
3.2.3 Receiver Architecture. . . . . .
3.2.4 Transmitter Architecture . . . . .
3.2.5 Wake on Radio . . . . . . . .
3.2.6 RFSENSE . . . . . . . . .
3.2.7 Flexible Frame Handling. . . . .
3.2.8 Packet and State Trace . . . . .
3.2.9 Data Buffering . . . . . . . .
3.2.10 Radio Controller (RAC). . . . .
3.2.11 Random Number Generator . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
4
5
5
5
5
5
6
6
6
6
6
3.3 Power . . . . . . . . . .
3.3.1 Energy Management Unit (EMU) .
3.3.2 DC-DC Converter . . . . . .
3.3.3 Power Domains . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
7
7
3.4 General Purpose Input/Output (GPIO).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal and External Oscillators .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
. 8
. 8
3.6 Counters/Timers and PWM . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . . .
3.6.2 Wide Timer/Counter (WTIMER) . . . . . .
3.6.3 Real Time Counter and Calendar (RTCC) . . .
3.6.4 Low Energy Timer (LETIMER). . . . . . .
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.6 Pulse Counter (PCNT) . . . . . . . . .
3.6.7 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.7 Communications and Other Digital Peripherals . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
. 9
. 9
. 9
.10
3.8 Security Features. . . . . . . . . . . . . .
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . .
3.8.3 True Random Number Generator (TRNG) . . . . .
3.8.4 Security Management Unit (SMU) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.10
.10
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8
8
8
8
9
9
9
9
Rev. 1.0
3.9 Analog . . . . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . . . . .
3.9.2 Analog Comparator (ACMP) . . . . .
3.9.3 Analog to Digital Converter (ADC) . . .
3.9.4 Capacitive Sense (CSEN) . . . . . .
3.9.5 Digital to Analog Current Converter (IDAC)
3.9.6 Digital to Analog Converter (VDAC) . . .
3.9.7 Operational Amplifiers . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.11
.11
.11
.11
.11
3.10 Reset Management Unit (RMU)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.11 Core and Memory . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . .
3.11.2 Memory System Controller (MSC) . . . . .
3.11.3 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.12
.12
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
3.13 Configuration Summary .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
4. Electrical Specifications
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .17
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . .19
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.1.5 Current Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . . . . . . .23
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . . . . . . .25
4.1.5.3 Current Consumption 1.8 V without DC-DC Converter . . . . . . . . . . . . . . .27
4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC . . . . . . . . . . . . . . .29
4.1.6 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.1.7 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . . .32
4.1.8 Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . .33
4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . . .34
4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band . . . . . . . . . . . . . .34
4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band . . . . . . . . . . . . . .35
4.1.9.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
4.1.9.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate 37
4.1.9.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.1.9.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate 40
4.1.9.7 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band . . . . . .42
4.1.9.8 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band . . . . . . .44
4.1.10 Sub-GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . .46
4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band . . . . . . . . . . . . .47
4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band . . . . . . . . . . . . .49
4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band . . . . . . . . . . . . .52
4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band . . . . . . . . . . . . .54
4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band . . . . . . . . . . . . .56
4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band . . . . . . . . . . . . .57
silabs.com | Building a more connected world.
Rev. 1.0
4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band .
4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band .
4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band .
4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band .
4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band
4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band .
4.1.11 Modem . . . . . . . . . . . . . . . . . . .
4.1.12 Oscillators . . . . . . . . . . . . . . . . . .
4.1.12.1 Low-Frequency Crystal Oscillator (LFXO) . . . . . . .
4.1.12.2 High-Frequency Crystal Oscillator (HFXO) . . . . . .
4.1.12.3 Low-Frequency RC Oscillator (LFRCO) . . . . . . .
4.1.12.4 High-Frequency RC Oscillator (HFRCO) . . . . . . .
4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) . .
4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO) . . . . .
4.1.13 Flash Memory Characteristics . . . . . . . . . . .
4.1.14 General-Purpose I/O (GPIO) . . . . . . . . . . . .
4.1.15 Voltage Monitor (VMON) . . . . . . . . . . . . .
4.1.16 Analog to Digital Converter (ADC) . . . . . . . . . .
4.1.17 Analog Comparator (ACMP) . . . . . . . . . . . .
4.1.18 Digital to Analog Converter (VDAC) . . . . . . . . .
4.1.19 Current Digital to Analog Converter (IDAC) . . . . . . .
4.1.20 Capacitive Sense (CSEN) . . . . . . . . . . . . .
4.1.21 Operational Amplifier (OPAMP) . . . . . . . . . . .
4.1.22 Pulse Counter (PCNT) . . . . . . . . . . . . . .
4.1.23 Analog Port (APORT) . . . . . . . . . . . . . .
4.1.24 I2C . . . . . . . . . . . . . . . . . . . .
4.1.24.1 I2C Standard-mode (Sm) . . . . . . . . . . . .
4.1.24.2 I2C Fast-mode (Fm) . . . . . . . . . . . . . .
4.1.24.3 I2C Fast-mode Plus (Fm+) . . . . . . . . . . . .
4.1.25 USART SPI . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.2 Typical Performance Curves
4.2.1 Supply Current . . . .
4.2.2 DC-DC Converter . . .
4.2.3 2.4 GHz Radio . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.98
.99
. . . . . . . . . . . . . . . . . . . . . . . . 104
. . . . . . . . . . . . . . . . . . . . . . . . 106
5. Typical Connection Diagrams
5.1 Power
.
.
.
.
.
5.3 Other Connections
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . .108
.
5.2 RF Matching Networks .
.
.
.59
.61
.64
.65
.67
.68
.69
.70
.70
.71
.71
.72
.73
.73
.74
.75
.77
.78
.80
.83
.86
.88
.90
.93
.93
.94
.94
.95
.96
.97
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 108
.
.
.
.
.
. 110
.
.111
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1 BGA125 2.4 GHz and Sub-GHz Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 112
6.2 BGA125 2.4 GHz Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 115
.
.
.
.
.
6.3 QFN48 2.4 GHz and Sub-GHz Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.118
6.4 QFN48 2.4 GHz Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.120
6.5 GPIO Functionality Table
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 122
.
.
6.6 Alternate Functionality Overview
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 143
.
Rev. 1.0
6.7 Analog Port (APORT) Client Maps .
7. BGA125 Package Specifications
.
7.3 BGA125 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
. . . . . . . . . . . . . . . . . . . . . . .165
7.1 BGA125 Package Dimensions
7.2 BGA125 PCB Land Pattern
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.165
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.167
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 169
.
8. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 170
8.1 QFN48 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 170
8.2 QFN48 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 172
.
8.3 QFN48 Package Marking .
9. Revision History
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 174
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
9.1 Revision 1.0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 75
9.2 Revision 0.6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 75
9.3 Revision 0.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 75
9.4 Revision 0.2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 75
silabs.com | Building a more connected world.
Rev. 1.0
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Feature List
1. Feature List
The EFR32BG12 highlighted features are listed below.
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• Embedded Trace Macrocell (ETM) for advanced debugging
• Up to 1024 kB flash program memory
• Up to 256 kB RAM data memory
• 2.4 GHz and Sub-GHz radio operation
• TX power up to 19 dBm
• Low Energy Consumption
• 10.0 mA RX current at 2.4 GHz (1 Mbps GFSK)
• 10.8 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS)
• 8.5 mA TX current @ 0 dBm output power at 2.4 GHz
• 70 μA/MHz in Active Mode (EM0)
• 1.5 μA EM2 DeepSleep current (16 kB RAM retention and
RTCC running from LFRCO)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -95.2 dBm sensitivity @ 1 Mbit/s GFSK
• -91.3 dBm sensitivity @ 2 Mbit/s GFSK
• -120.6 dBm sensitivity at 2.4 kbps GFSK (868 MHz)
• Supported Modulation Formats
• GFSK
• 2-FSK / 4-FSK with fully configurable shaping
• Shaped OQPSK / (G)MSK
• Configurable DSSS and FEC
• BPSK / DBPSK TX (OPNs supporting Sub-GHz)
• OOK / ASK (OPNs supporting Sub-GHz)
• Supported Protocols:
• Bluetooth® Low Energy (Bluetooth 5)
• Proprietary Protocols
• Wireless M-Bus (OPNs supporting Sub-GHz)
• Low Power Wide Area Networks (OPNs supporting SubGHz)
• Support for Internet Security
• General Purpose CRC
• True Random Number Generator
• Hardware Cryptographic Acceleration for AES 128/256,
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
silabs.com | Building a more connected world.
• Wide selection of MCU peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2×Analog Comparator (ACMP)
• 2×Digital to Analog Converter (VDAC)
• 3×Operational Amplifier (Opamp)
• Digital to Analog Current Converter (IDAC)
• Low-Energy Sensor Interface (LESENSE)
• Multi-channel Capacitive Sense Interface (CSEN)
• Up to 54 pins connected to analog channels (APORT)
shared between analog peripherals
• Up to 65 General Purpose I/O pins with output state retention and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 2×32-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 3×16-bit Pulse Counter with asynchronous operation
• 2×Watchdog Timer with dedicated RC oscillator
• 4×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUART™)
• 2×I2C interface with SMBus support and address recognition in EM3 Stop
• Wide Operating Range
• 1.8 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• -40 °C to 85 °C
• QFN48 7x7 mm Package
• BGA125 7x7 mm Package
Rev. 1.0 | 1
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Ordering Information
2. Ordering Information
Table 2.1. Ordering Information
Frequency Band
Ordering Code
Protocol Stack
@ Max TX Power
Flash
(kB)
RAM
(kB)
GPIO
Package
EFR32BG12P433F1024GL125-B
• Bluetooth Low
Energy
• Proprietary
• 2.4 GHz @ 19 dBm
• Sub-GHz @ 20 dBm
1024
256
65
BGA125
EFR32BG12P433F1024GM48-B
• Bluetooth Low
Energy
• Proprietary
• 2.4 GHz @ 19 dBm
• Sub-GHz @ 20 dBm
1024
256
28
QFN48
EFR32BG12P432F1024GL125-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 19 dBm
1024
256
65
BGA125
EFR32BG12P432F1024GM48-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 19 dBm
1024
256
31
QFN48
EFR32BG12P332F1024GL125-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 10 dBm
1024
256
65
BGA125
EFR32BG12P332F1024GM48-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 10 dBm
1024
256
31
QFN48
EFR32BG12P232F1024GL125-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 10 dBm
1024
128
65
BGA125
EFR32BG12P232F1024GM48-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 10 dBm
1024
128
31
QFN48
EFR32BG12P132F1024GL125-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 0 dBm
1024
128
65
BGA125
EFR32BG12P132F1024GM48-B
• Bluetooth Low
Energy
• Proprietary
2.4 GHz @ 0 dBm
1024
128
31
QFN48
silabs.com | Building a more connected world.
Rev. 1.0 | 2
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Ordering Information
EFR32 X G 1 2 P 132 F 1024 G L 125 – A R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), L (BGA)
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)
Performance Grade – P (Performance), B (Basic), V (Value)
Device Configuration
Series
Gecko
Family – M (Mighty), B (Blue), F (Flex)
Wireless Gecko 32-bit
Figure 2.1. OPN Decoder
silabs.com | Building a more connected world.
Rev. 1.0 | 3
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for
any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a
short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG12 Wireless
Gecko Reference Manual.
A block diagram of the EFR32BG12 family is shown in Figure 3.1 Detailed EFR32BG12 Block Diagram on page 4. The diagram
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult
Ordering Information.
Radio Transceiver
To RF
Frontend
Circuits
Q
AGC
MOD
FRC
BUFC
PCNT
Port
Mapper
Brown Out /
Power-On
Reset
ARM Cortex-M4 Core
Up to 256 KB RAM
Memory Protection Unit
PAVDD
Energy Management
Floating Point Unit
LDMA Controller
RFVDD
IOVDD
Voltage
Monitor
AVDD
DVDD
Watchdog
Timer
bypass
VREGVDD
VREGSW
DC-DC
Converter
Voltage
Regulator
DECOUPLE
LFXTAL_P
LFXTAL_N
HFXTAL_P
HFXTAL_N
I2C
Up to 1024 KB ISP Flash
Program Memory
Clock Management
ULFRCO
AUXHFRCO
CRYPTO
A A
H P
B B
Port B
Drivers
PBn
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
Port I
Drivers
PIn
Port J
Drivers
PJn
Port K
Drivers
PKn
CRC
LESENSE
Analog Peripherals
IDAC
VDAC
Internal
Reference
12-bit ADC
LFRCO
LFXO
HFRCO
HFXO
Mux & FB
Debug Signals
(shared w/GPIO)
Serial Wire
and ETM
Debug /
Programming
LEUART
Input Mux
RESETn
PAn
RTC / RTCC
USART
Reset
Management
Unit
Port A
Drivers
CRYOTIMER
RAC
Frequency
Synthesizer
Op-Amp
VDD
APORT
PA
Digital Peripherals
LETIMER
TIMER
I
LNA
BALUN
IFADC
PGA
Q
2.4 GHz RF
CRC
PA
RFSENSE
2G4RF_ION
DEMOD
LNA
IOVDD
+
-
SUBGRF_IP
SUBGRF_IN
SUBGRF_OP
SUBGRF_ON
2G4RF_IOP
Port I/O Configuration
Sub-GHz RF
I
Temp
Sense
Capacitive
Sense
+
Analog Comparator
Figure 3.1. Detailed EFR32BG12 Block Diagram
3.2 Radio
The Blue Gecko family features a radio transceiver supporting Bluetooth® Low Energy and proprietary short range wireless protocols.
3.2.1 Antenna Interface
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The
2G4RF_ION pin should be grounded externally.
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching
Networks section.
silabs.com | Building a more connected world.
Rev. 1.0 | 4
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.2.2 Fractional-N Frequency Synthesizer
The EFR32BG12 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.2.3 Receiver Architecture
The EFR32BG12 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion
mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital
converter (IFADC).
The IF frequency is configurable from 70 kHz to 1.4 MHz. The IF can further be configured for high-side or low-side injection, providing
flexibility with respect to known interferers at the image frequency.
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz
radio can be calibrated on-demand by the user for the desired frequency band.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received
frame and the dynamic RSSI measurement can be monitored throughout reception.
3.2.4 Transmitter Architecture
The EFR32BG12 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32BG12. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.
3.2.5 Wake on Radio
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32BG12 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.
3.2.6 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
silabs.com | Building a more connected world.
Rev. 1.0 | 5
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.2.7 Flexible Frame Handling
EFR32BG12 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
3.2.8 Packet and State Trace
The EFR32BG12 Frame Controller has a packet and state trace unit that provides valuable information during the development phase.
It features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
3.2.9 Data Buffering
The EFR32BG12 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.2.10 Radio Controller (RAC)
The Radio Controller controls the top level state of the radio subsystem in the EFR32BG12. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
3.2.11 Random Number Generator
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Building a more connected world.
Rev. 1.0 | 6
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.3 Power
The EFR32BG12 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only
a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator
can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
The EFR32BG12 device family includes support for internal supply voltage scaling, as well as two different power domains groups for
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.
AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.3.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has
fallen below a chosen threshold.
3.3.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.3.3 Power Domains
The EFR32BG12 has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device.
Table 3.1. Peripheral Power Subdomains
Peripheral Power Domain 1
Peripheral Power Domain 2
ACMP0
ACMP1
PCNT0
PCNT1
ADC0
PCNT2
LETIMER0
CSEN
LESENSE
DAC0
APORT
LEUART0
-
I2C0
-
I2C1
-
IDAC
silabs.com | Building a more connected world.
Rev. 1.0 | 7
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.4 General Purpose Input/Output (GPIO)
EFR32BG12 has up to 65 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or
input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.
3.5 Clocking
3.5.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFR32BG12. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
3.5.2 Internal and External Oscillators
The EFR32BG12 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.6.2 Wide Timer/Counter (WTIMER)
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.
3.6.3 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes.
silabs.com | Building a more connected world.
Rev. 1.0 | 8
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.6.4 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.6.6 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.6.7 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.7.3 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)
can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
silabs.com | Building a more connected world.
Rev. 1.0 | 9
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.7.5 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy
budget.
3.8 Security Features
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and
SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.8.3 True Random Number Generator (TRNG)
The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with
NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).
3.8.4 Security Management Unit (SMU)
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and
can optionally generate an interrupt.
3.9 Analog
3.9.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
silabs.com | Building a more connected world.
Rev. 1.0 | 10
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.9.4 Capacitive Sense (CSEN)
The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches
and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through
multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter,
as well as digital threshold comparators to reduce software overhead.
3.9.5 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with
several ranges consisting of various step sizes.
3.9.6 Digital to Analog Converter (VDAC)
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any
CPU intervention. The VDAC is available in all energy modes down to and including EM3.
3.9.7 Operational Amplifiers
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. With
flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins
are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in
conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with
standalone opamps because they are integrated on-chip.
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFR32BG12. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.11 Core and Memory
3.11.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 1024 kB flash program memory
• Up to 256 kB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface
silabs.com | Building a more connected world.
Rev. 1.0 | 11
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.11.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.11.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
silabs.com | Building a more connected world.
Rev. 1.0 | 12
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.12 Memory Map
The EFR32BG12 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFR32BG12 Memory Map — Core Peripherals and Code Space
silabs.com | Building a more connected world.
Rev. 1.0 | 13
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
Figure 3.3. EFR32BG12 Memory Map — Peripherals
silabs.com | Building a more connected world.
Rev. 1.0 | 14
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
System Overview
3.13 Configuration Summary
The features of the EFR32BG12 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.2. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
IrDA I2S SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
IrDA SmartCard
US2_TX, US2_RX, US2_CLK, US2_CS
USART3
IrDA I2S SmartCard
US3_TX, US3_RX, US3_CLK, US3_CS
TIMER0
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
-
TIM1_CC[3:0]
WTIMER0
with DTI
WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1
-
WTIM1_CC[3:0]
silabs.com | Building a more connected world.
Rev. 1.0 | 15
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.
silabs.com | Building a more connected world.
Rev. 1.0 | 16
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
Test Condition
Min
Typ
Max
Unit
TSTG
-50
—
150
°C
Voltage on any supply pin
VDDMAX
-0.3
—
3.8
V
Voltage ramp rate on any
supply pin
VDDRAMPMAX
—
—
1
V / μs
DC voltage on any GPIO pin
VDIGPIN
5V tolerant GPIO pins1
-0.3
—
Min of 5.25
and IOVDD
+2
V
Non-5V tolerant GPIO pins
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
Voltage on HFXO pins
VHFXOPIN
Input RF level on pins
2G4RF_IOP and
2G4RF_ION
PRFMAX2G4
—
—
10
dBm
Voltage differential between
RF pins (2G4RF_IOP 2G4RF_ION)
VMAXDIFF2G4
-50
—
50
mV
Absolute voltage on RF pins
2G4RF_IOP and
2G4RF_ION
VMAX2G4
-0.3
—
3.3
V
Absolute voltage on SubGHz RF pins
VMAXSUBG
Pins SUBGRF_OP and
SUBGRF_ON
-0.3
—
3.3
V
Pins SUBGRF_IP and
SUBGRF_IN,
-0.3
—
0.3
V
Total current into VDD power IVDDMAX
lines
Source
—
—
200
mA
Total current into VSS
ground lines
IVSSMAX
Sink
—
—
200
mA
Sink
—
—
200
mA
Current per I/O pin
IIOMAX
Sink
—
—
50
mA
Source
—
—
50
mA
Sink
—
—
200
mA
Source
—
—
200
mA
-G grade devices
-40
—
105
°C
Current for all I/O pins
Junction temperature
IIOALLMAX
TJ
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Building a more connected world.
Rev. 1.0 | 17
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
• RFVDD ≤ AVDD
• PAVDD ≤ AVDD
silabs.com | Building a more connected world.
Rev. 1.0 | 18
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Operating ambient temperature range
TA
-G temperature grade
-40
25
85
°C
AVDD supply voltage3
VAVDD
1.8
3.3
3.8
V
VREGVDD operating supply
voltage3 1
VVREGVDD
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass 50mA load
1.8
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.8
3.3
3.8
V
DCDC in bypass
—
—
200
mA
VREGVDD current
IVREGVDD
RFVDD operating supply
voltage
VRFVDD
1.62
—
VVREGVDD
V
DVDD operating supply voltage
VDVDD
1.62
—
VVREGVDD
V
PAVDD operating supply
voltage
VPAVDD
1.62
—
VVREGVDD
V
IOVDD operating supply volt- VIOVDD
age (All IOVDD pins)
1.62
—
VVREGVDD
V
DECOUPLE output capacitor4
0.75
1.0
2.75
μF
—
—
0.1
V
VSCALE2, MODE = WS1
—
—
40
MHz
VSCALE0, MODE = WS0
—
—
20
MHz
VSCALE2
—
—
40
MHz
VSCALE0
—
—
20
MHz
CDECOUPLE
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)2
HFCORECLK frequency
HFCLK frequency
fCORE
fHFCLK
Note:
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max.
2. AVDD and VREGVDD pins should be physically shorted.
3. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. .
4. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
silabs.com | Building a more connected world.
Rev. 1.0 | 19
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Thermal Resistance
THETAJA
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
QFN48 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
75.7
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
61.5
—
°C/W
QFN48 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
55.4
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
30.2
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
26.3
—
°C/W
QFN48 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
24.9
—
°C/W
BGA125 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
90.7
—
°C/W
BGA125 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
73.7
—
°C/W
BGA125 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
66.4
—
°C/W
BGA125 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
45
—
°C/W
BGA125 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
39.6
—
°C/W
BGA125 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
37.6
—
°C/W
Rev. 1.0 | 20
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: L_DCDC=4.7 μH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 μF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3
V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.8
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC accuracy
ACCDC
Regulation window4
WINREG
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low Noise (LN) mode, 1.8 V target output
1.7
—
1.9
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 μA
1.63
—
2.2
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
Steady-state output ripple
VR
Radio disabled
—
3
—
mVpp
Output voltage under/overshoot
VOV
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
25
60
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
45
90
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
40
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
100
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Building a more connected world.
Rev. 1.0 | 21
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive2
—
—
200
mA
Low noise (LN) mode, Medium
Drive2
—
—
100
mA
Low noise (LN) mode, Light
Drive2
—
—
50
mA
Low power (LP) mode,
LPCMPBIASEMxx3 = 0
—
—
75
μA
Low power (LP) mode,
LPCMPBIASEMxx3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
4.7
4.7
μF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
μH
—
1.2
2.5
Ω
DCDC nominal output capacitor5
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD.
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the
EMU_DCDCLOEM01CFG register, depending on the energy mode.
4. LP mode controller is a hysteretic controller that maintains the output voltage withinthe specified limits.
5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 μF. Different control loop settings must be used if
CDCDC is lower than 4.7 μF.
silabs.com | Building a more connected world.
Rev. 1.0 | 22
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.5 Current Consumption
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. T = 25 °C. DCDC is off.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.5. Current Consumption 3.3 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
130
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
99
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
99
105
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
124
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
108
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
280
435
μA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
88
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
234
—
μA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
38.4 MHz crystal1
—
80
—
μA/MHz
38 MHz HFRCO
—
50
54
μA/MHz
26 MHz HFRCO
—
52
58
μA/MHz
1 MHz HFRCO
—
230
400
μA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
47
—
μA/MHz
1 MHz HFRCO
—
193
—
μA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 256 kB RAM retention and
RTCC running from LFXO
—
2.9
—
μA
Full 256 kB RAM retention and
RTCC running from LFRCO
—
3.2
—
μA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
—
2.1
3.5
μA
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Full 256 kB RAM retention and
CRYOTIMER running from ULFRCO
—
2.56
4.8
μA
Current consumption in
EM4H mode, with voltage
scaling enabled
128 byte RAM retention, RTCC
running from LFXO
—
1.0
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.45
—
μA
128 byte RAM retention, no RTCC
—
0.43
0.9
μA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
IEM4H_VS
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 23
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
EM4S mode
IEM4S
No RAM retention, no RTCC
Min
Typ
Max
Unit
—
0.04
0.1
μA
Note:
1. CMU_HFXOCTRL_LOWPOWER=0.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 24
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC
output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.6. Current Consumption 3.3 V using DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash4
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
70
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
70
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
85
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
77
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
636
—
μA/MHz
38.4 MHz crystal, CPU running
while loop from flash4
—
98
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
81
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
82
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
95
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
95
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1155
—
μA/MHz
Current consumption in EM0 IACTIVE_CCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise CCM mode1
19 MHz HFRCO, CPU running
while loop from flash
—
101
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1128
—
μA/MHz
Current consumption in EM1 IEM1_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode2
38.4 MHz crystal4
—
59
—
μA/MHz
38 MHz HFRCO
—
41
—
μA/MHz
26 MHz HFRCO
—
48
—
μA/MHz
1 MHz HFRCO
—
610
—
μA/MHz
19 MHz HFRCO
—
52
—
μA/MHz
1 MHz HFRCO
—
587
—
μA/MHz
Current consumption in EM0 IACTIVE_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode2
Current consumption in EM0 IACTIVE_CCM
mode with all peripherals disabled, DCDC in Low Noise
CCM mode1
Current consumption in EM1 IEM1_DCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise DCM mode2
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 25
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Full 256 kB RAM retention and
RTCC running from LFXO
—
2.1
—
μA
Full 256 kB RAM retention and
RTCC running from LFRCO
—
2.2
—
μA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO5
—
1.5
—
μA
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Full 256 kB RAM retention and
CRYOTIMER running from ULFRCO
—
1.81
—
μA
Current consumption in
EM4H mode, with voltage
scaling enabled
128 byte RAM retention, RTCC
running from LFXO
—
0.69
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.39
—
μA
128 byte RAM retention, no RTCC
—
0.39
—
μA
No RAM retention, no RTCC
—
0.06
—
μA
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled, DCDC in LP mode3
Current consumption in
EM4S mode
IEM4H_VS
IEM4S
Test Condition
Note:
1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.
4. CMU_HFXOCTRL_LOWPOWER=0.
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 26
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.5.3 Current Consumption 1.8 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.8 V. T = 25 °C. DCDC is off.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.
Table 4.7. Current Consumption 1.8 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
130
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
99
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
99
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
124
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
277
—
μA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
87
—
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
231
—
μA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
38.4 MHz crystal1
—
80
—
μA/MHz
38 MHz HFRCO
—
50
—
μA/MHz
26 MHz HFRCO
—
52
—
μA/MHz
1 MHz HFRCO
—
227
—
μA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
47
—
μA/MHz
1 MHz HFRCO
—
190
—
μA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 256 kB RAM retention and
RTCC running from LFXO
—
2.8
—
μA
Full 256 kB RAM retention and
RTCC running from LFRCO
—
3.0
—
μA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
—
1.9
—
μA
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Full 256 kB RAM retention and
CRYOTIMER running from ULFRCO
—
2.47
—
μA
Current consumption in
EM4H mode, with voltage
scaling enabled
128 byte RAM retention, RTCC
running from LFXO
—
0.91
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.35
—
μA
128 byte RAM retention, no RTCC
—
0.35
—
μA
no RAM retention, no RTCC
—
0.04
—
μA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
Current consumption in
EM4S mode
IEM4H_VS
IEM4S
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 27
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. CMU_HFXOCTRL_LOWPOWER=0.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 28
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V. T = 25
°C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25
°C.
Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC
Parameter
Symbol
Test Condition
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX_ACTIVE
Current consumption in reIRX_LISTEN
ceive mode, listening for
packet (MCU in EM1 @ 38.4
MHz, peripheral clocks disabled)
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
500 kbit/s, 2GFSK, F = 915 MHz,
Radio clock prescaled by 4
—
9.3
10.2
mA
38.4 kbit/s, 2GFSK, F = 868 MHz,
Radio clock prescaled by 4
—
8.6
10.2
mA
38.4 kbit/s, 2GFSK, F = 490 MHz,
Radio clock prescaled by 4
—
8.6
10.2
mA
50 kbit/s, 2GFSK, F = 433 MHz,
Radio clock prescaled by 4
—
8.6
10.2
mA
38.4 kbit/s, 2GFSK, F = 315 MHz,
Radio clock prescaled by 4
—
8.6
10.2
mA
38.4 kbit/s, 2GFSK, F = 169 MHz,
Radio clock prescaled by 4
—
8.4
10.2
mA
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
10.0
—
mA
2 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
11.5
—
mA
802.15.4 receiving frame, F = 2.4
GHz, Radio clock prescaled by 3
—
10.8
—
mA
500 kbit/s, 2GFSK, F = 915 MHz,
No radio clock prescaling
—
10.2
11
mA
38.4 kbit/s, 2GFSK, F = 868 MHz,
No radio clock prescaling
—
9.5
11
mA
38.4 kbit/s, 2GFSK, F = 490 MHz,
No radio clock prescaling
—
9.5
11
mA
50 kbit/s, 2GFSK, F = 433 MHz,
No radio clock prescaling
—
9.5
11
mA
38.4 kbit/s, 2GFSK, F = 315 MHz,
No radio clock prescaling
—
9.4
11
mA
38.4 kbit/s, 2GFSK, F = 169 MHz,
No radio clock prescaling
—
9.3
11
mA
1 Mbit/s, 2GFSK, F = 2.4 GHz, No
radio clock prescaling
—
10.9
—
mA
2 Mbit/s, 2GFSK, F = 2.4 GHz, No
radio clock prescaling
—
11.9
—
mA
802.15.4, F = 2.4 GHz, No radio
clock prescaling
—
12.3
—
mA
Rev. 1.0 | 29
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
ITX
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
F = 915 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
90.2
134.3
mA
F = 915 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
36
42.5
mA
F = 868 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
79.7
106.7
mA
F = 868 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
35.3
41
mA
F = 490 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
93.8
125.4
mA
F = 433 MHz, CW, 10 dBm
match, PAVDD connected to
DCDC output
—
20.3
24
mA
F = 433 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
34
41.5
mA
F = 315 MHz, CW, 14 dBm
match, PAVDD connected to
DCDC output
—
33.5
42
mA
F = 169 MHz, CW, 20 dBm
match, PAVDD connected directly
to external 3.3V supply
—
88.6
116.7
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 3
—
8.5
—
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 1
—
9.5
—
mA
F = 2.4 GHz, CW, 3 dBm output
power
—
16.5
—
mA
F = 2.4 GHz, CW, 8 dBm output
power
—
26
—
mA
F = 2.4 GHz, CW, 10.5 dBm output power
—
34
—
mA
F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
86
—
mA
F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
131
—
mA
Rev. 1.0 | 30
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.6 Wake Up Times
Table 4.9. Wake Up Times
Parameter
Symbol
Wakeup time from EM1
tEM1_WU
Wake up from EM2
tEM2_WU
Wake up from EM3
tEM3_WU
Test Condition
Min
Typ
Max
Unit
—
3
—
AHB
Clocks
Code execution from flash
—
10.1
—
μs
Code execution from RAM
—
3.2
—
μs
Code execution from flash
—
10.1
—
μs
Code execution from RAM
—
3.2
—
μs
Wake up from EM4H1
tEM4H_WU
Executing from flash
—
80
—
μs
Wake up from EM4S1
tEM4S_WU
Executing from flash
—
291
—
μs
Time from release of reset
source to first instruction exectution
tRESET
Soft Pin Reset released
—
43
—
μs
Any other reset released
—
350
—
μs
Power mode scaling time
tSCALE
VSCALE0 to VSCALE2, HFCLK =
19 MHz4 2
—
31.8
—
μs
VSCALE2 to VSCALE0, HFCLK =
19 MHz3
—
4.3
—
μs
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition,
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA
(with a 2.7 μF capacitor).
3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 μs + 29 HFCLKs.
4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 μs + 28 HFCLKs.
silabs.com | Building a more connected world.
Rev. 1.0 | 31
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.7 Brown Out Detector (BOD)
Table 4.10. Brown Out Detector (BOD)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DVDD BOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling (EM0/EM1)
1.35
—
—
V
DVDD falling (EM2/EM3)
1.3
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
18
—
mV
DVDD BOD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
—
—
1.8
V
AVDD falling (EM0/EM1)
1.62
—
—
V
AVDD falling (EM2/EM3)
1.53
—
—
V
AVDD rising
AVDD BOD hysteresis
VAVDDBOD_HYST
—
20
—
mV
AVDD BOD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
25
—
mV
—
300
—
μs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 BOD response time
tEM4BOD_DELAY
silabs.com | Building a more connected world.
Supply drops at 0.1V/μs rate
Rev. 1.0 | 32
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.8 Frequency Synthesizer
Table 4.11. Frequency Synthesizer
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF synthesizer frequency
range
fRANGE
2400 - 2483.5 MHz
2400
—
2483.5
MHz
779 - 956 MHz
779
—
956
MHz
584 - 717 MHz
584
—
717
MHz
358 - 574 MHz
358
—
574
MHz
191 - 358 MHz
191
—
358
MHz
110 - 191 MHz
110
—
191
MHz
2400 - 2483.5 MHz
—
—
73
Hz
779 - 956 MHz
—
—
24
Hz
584 - 717 MHz
—
—
18.3
Hz
358 - 574 MHz
—
—
12.2
Hz
191 - 358 MHz
—
—
7.3
Hz
110 - 191 MHz
—
—
4.6
Hz
2400 - 2483.5 MHz
—
—
73
Hz
779 - 956 MHz
—
—
24
Hz
584 - 717 MHz
—
—
18.3
Hz
358 - 574 MHz
—
—
12.2
Hz
191 - 358 MHz
—
—
7.3
Hz
110 - 191 MHz
—
—
4.6
Hz
2400 - 2483.5 MHz
—
—
1677
kHz
779 - 956 MHz
—
—
559
kHz
584 - 717 MHz
—
—
419
kHz
358 - 574 MHz
—
—
280
kHz
191 - 358 MHz
—
—
167
kHz
110 - 191 MHz
—
—
105
kHz
LO tuning frequency resolution with 38.4 MHz crystal
Frequency deviation resolution with 38.4 MHz crystal
Maximum frequency deviation with 38.4 MHz crystal
fRES
dfRES
dfMAX
silabs.com | Building a more connected world.
Rev. 1.0 | 33
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9 2.4 GHz RF Transceiver Characteristics
4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.
Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum TX power1
POUTMAX
19.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply
—
19.5
—
dBm
10.5 dBm-rated part numbers
—
10.5
—
dBm
0 dBm-rated part numbers
—
—
—
dBm
-30
—
dBm
Minimum active TX Power
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
1
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power >
10.5 dBm.
—
4.5
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power =
10.5 dBm.
—
3.8
—
dB
1.8 V < VVREGVDD < 3.3 V using
DC-DC converter
—
2.2
—
dB
From -40 to +85 °C, PAVDD connected to DC-DC output
—
1.5
—
dB
From -40 to +85 °C, PAVDD connected to external supply
—
1.5
—
dB
Over RF tuning frequency range
—
0.4
—
dB
2400
—
2483.5
MHz
Output power variation vs
supply at POUTMAX
Output power variation vs
temperature at POUTMAX
POUTVAR_V
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 34
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.
Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Test Condition
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
216 MHz to 960 MHz, Conducted
Measurement
—
-55.2
—
dBm
Above 960 MHz, Conducted
Measurement
—
-47.2
—
dBm
Level above which
RFSENSE will trigger1
RFSENSETRIG
CW at 2.45 GHz
—
-24
—
dBm
Level below which
RFSENSE will not trigger1
RFSENSETHRES CW at 2.45 GHz
—
-50
—
dBm
1% PER sensitivity
SENS2GFSK
2 Mbps 2GFSK signal
—
-89.6
—
dBm
250 kbps 2GFSK signal
—
-100.7
—
dBm
Note:
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 35
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Maximum duty cycle of
85%.
Table 4.14. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Transmit 6dB bandwidth
TXBW
10 dBm
—
781
—
kHz
Power spectral density limit
PSDLIMIT
Per FCC part 15.247 at 10 dBm
—
-8.4
—
dBm/
3kHz
Per FCC part 15.247 at 20 dBm
—
-0.4
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
10.1
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band, 10 dBm
—
1.1
—
MHz
In-band spurious emissions,
with allowed exceptions3
At ± 2 MHz, 10 dBm
—
-39.5
—
dBm
At ± 3 MHz, 10 dBm
—
-44.7
—
dBm
At ± 2 MHz, 20 dBm
—
—
-20
dBm
At ± 3 MHz, 20 dBm
—
—
-30
dBm
SPURINB
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply
SPUROOB_FCC
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
CW carrier, Restricted Bands1 2
—
-47
—
dBm
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
CW carrier, Non-Restricted Bands
—
-26
—
dBc
Spurious emissions out-ofband; per ETSI 300.328
SPURETSI328
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
—
-16
—
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz
—
-42
—
dBm
1-12 GHz
—
-36
—
dBm
Spurious emissions per ETSI SPURETSI440
EN300.440
Note:
1. For 2476 MHz, 1.5 dB of power backoff is used to achieve this value.
2. For 2478 MHz, 4.2 dB of power backoff is used to achieve this value.
3. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
silabs.com | Building a more connected world.
Rev. 1.0 | 36
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz.
Table 4.15. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal1. Packet
length is 20 bytes.
—
10
—
dBm
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
DC-DC converter.
—
-95.2
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-94.9
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity.
—
8.3
—
dB
N+1 adjacent channel selec- C/I1+
tivity, 0.1% BER, with allowable exceptions. Desired is
reference signal at -67 dBm
Interferer is reference signal at +1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-6.5
—
dB
N-1 adjacent channel selec- C/I1tivity, 0.1% BER, with allowable exceptions. Desired is
reference signal at -67 dBm
Interferer is reference signal at -1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-5.5
—
dB
Alternate selectivity, 0.1%
BER, with allowable exceptions. Desired is reference
signal at -67 dBm
C/I2
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-44.5
—
dB
Alternate selectivity, 0.1%
BER, with allowable exceptions. Desired is reference
signal at -67 dBm
C/I3
Interferer is reference signal at ± 3
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-46.4
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-39.8
—
dB
Selectivity to image frequency ± 1 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency ± 1 MHz with 1
MHz precision
—
-47
—
dB
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3
—
-23.7
—
dBm
C/IIM+1
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range
Intermodulation performance IM
silabs.com | Building a more connected world.
Rev. 1.0 | 37
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
silabs.com | Building a more connected world.
Rev. 1.0 | 38
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Maximum duty cycle of
85%.
Table 4.16. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Transmit 6dB bandwidth
TXBW
10 dBm
—
1404
—
kHz
Power spectral density limit
PSDLIMIT
Per FCC part 15.247 at 10 dBm
—
-12.3
—
dBm/
3kHz
Per FCC part 15.247 at 20 dBm
—
-4.0
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
11.3
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band, 10 dBm
—
2.1
—
MHz
In-band spurious emissions,
with allowed exceptions5
At ± 4 MHz, 10 dBm
—
-40.3
—
dBm
At ± 6 MHz, 10 dBm
—
-43.6
—
dBm
At ± 4 MHz, 20 dBm
—
-32.3
—
dBm
At ± 6 MHz, 20 dBm
—
-35.6
—
dBm
SPURINB
Emissions of harmonics outof-band, per FCC part
15.247
SPURHRM_FCC
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply
SPUROOB_FCC
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
CW carrier, Restricted Bands1 2 3
—
-47
—
dBm
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
CW carrier, Non-Restricted Bands
—
-26
—
dBc
Spurious emissions out-ofband; per ETSI 300.328
SPURETSI328
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
—
-16
—
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz
—
-42
—
dBm
1-12 GHz
—
-36
—
dBm
4
Spurious emissions per ETSI SPURETSI440
EN300.440
Note:
1. For 2472 MHz, 1.3 dB of power backoff is used to achieve this value.
2. For 2474 MHz, 3.8 dB of power backoff is used to achieve this value.
3. For 2476 MHz, 7 dB of power backoff is used to achieve this value.
4. For 2478 MHz, 11.2 dB of power backoff is used to achieve this value.
5. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
silabs.com | Building a more connected world.
Rev. 1.0 | 39
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz1.
Table 4.17. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal2. Packet
length is 20 bytes.
—
5
—
dBm
Sensitivity, 0.1% BER
SENS
Signal is reference signal2. Using
DC-DC converter.
—
-91.3
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-91
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity.
—
7.3
—
dB
N+1 adjacent channel selec- C/I1+
tivity, 0.1% BER, with allowable exceptions. Desired is
reference signal at -67 dBm
Interferer is reference signal at +2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-10.4
—
dB
N-1 adjacent channel selec- C/I1tivity, 0.1% BER, with allowable exceptions. Desired is
reference signal at -67 dBm
Interferer is reference signal at -2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-13.9
—
dB
Alternate selectivity, 0.1%
BER, with allowable exceptions. Desired is reference
signal at -67 dBm
C/I2
Interferer is reference signal at ± 4
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-40.9
—
dB
Alternate selectivity, 0.1%
BER, with allowable exceptions. Desired is reference
signal at -67 dBm
C/I3
Interferer is reference signal at ± 6
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-43.7
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-10.4
—
dB
Selectivity to image frequency ± 2 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency ± 2 MHz with 2
MHz precision
—
-40.9
—
dB
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3
—
-25.1
—
dBm
C/IIM+1
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range
Intermodulation performance IM
silabs.com | Building a more connected world.
Rev. 1.0 | 40
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. For the BLE 2Mbps in-band blocking performance, there may be up to 5 spurious response channels where the requirement of
30.8% PER is not met and therefore an exception will need to be taken for each of these frequencies to meet the requirements of
the BLE standard.
2. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
silabs.com | Building a more connected world.
Rev. 1.0 | 41
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.7 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Maximum duty cycle of
66%.
Table 4.18. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Error vector magnitude (offset EVM), per
802.15.4-2011, not including
2415 MHz channel
EVM
Average across frequency. Signal
is DSSS-OQPSK reference packet1
—
3.8
—
% rms
Power spectral density limit
PSDLIMIT
Relative, at carrier ± 3.5 MHz,
19.5 dBm output power level
—
-26
—
dBc/
100kHz
Absolute, at carrier ± 3.5 MHz,
19.5 dBm output power level3
—
-36
—
dBm/
100kHz
Per FCC part 15.247, 19.5 dBm
output power level
—
-4
—
dBm/
3kHz
ETSI
—
12.1
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
2.25
—
MHz
Spurious emissions of harSPURHRM_FCC_
monics in restricted bands
R
per FCC Part 15.205/15.209,
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply,
Test Frequency is 2450 MHz
Continuous transmission of modulated carrier
—
-45.8
—
dBm
Spurious emissions of harSPURHRM_FCC_
monics in non-restricted
NRR
bands per FCC Part
15.247/15.35, Emissions taken at Pout_Max power level
of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency is 2450
MHz
Continuous transmission of modulated carrier
—
-26
—
dBc
Spurious emissions out-ofband (above 2.483 GHz or
below 2.4 GHz) in restricted
bands, per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
Restricted bands 30-88 MHz; continuous transmission of modulated
carrier
—
-61
—
dBm
Restricted bands 88-216 MHz;
continuous transmission of modulated carrier
—
-58
—
dBm
Restricted bands 216-960 MHz;
continuous transmission of modulated carrier
—
-55
—
dBm
Restricted bands >960 MHz; continuous transmission of modulated
carrier4 5
—
-47
—
dBm
SPUROOB_FCC_
R
silabs.com | Building a more connected world.
Rev. 1.0 | 42
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions out-ofSPUROOB_FCC_
band in non-restricted bands NR
per FCC Part 15.247, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
Spurious emissions out-ofband; per ETSI 300.3282
[2400-BW to 2400], [2483.5 to
2483.5+BW];
—
-16
—
dBm
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz, excluding above
frequencies
—
-42
—
dBm
1G-14G
—
-36
—
dBm
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.4402
Note:
1. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with
pseudo-random packet data content.
2. Specified at maximum power output level of 10 dBm.
3. For 2415 MHz, 2 dB of power backoff is used to achieve this value.
4. For 2475 MHz, 2 dB of power backoff is used to achieve this value.
5. For 2480 MHz, 13 dB of power backoff is used to achieve this value.
silabs.com | Building a more connected world.
Rev. 1.0 | 43
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.9.8 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.
Table 4.19. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 1% PER
SAT
Signal is reference signal3. Packet
length is 20 octets.
—
10
—
dBm
Sensitivity, 1% PER
SENS
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
—
-102.7
—
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
—
-102.7
—
dBm
Co-channel interferer rejection, 1% PER
CCR
Desired signal 3 dB above sensitivity limit
—
-4.6
—
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level4
ACRP1
Interferer is reference signal at +1
channel-spacing.
—
40.7
—
dB
Interferer is filtered reference signal1 at +1 channel-spacing.
—
47
—
dB
Interferer is CW at +1 channelspacing2.
—
54.3
—
dB
Interferer is reference signal at -1
channel-spacing.
—
40.8
—
dB
Interferer is filtered reference signal1 at -1 channel-spacing.
—
47.5
—
dB
Interferer is CW at -1 channelspacing.
—
56.5
—
dB
Interferer is reference signal at ± 2
channel-spacing
—
51.5
—
dB
Interferer is filtered reference signal1 at ± 2 channel-spacing
—
53.7
—
dB
Interferer is CW at ± 2 channelspacing
—
62.4
—
dB
Image rejection , 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level4
Interferer is CW in image band2
—
50.4
—
dB
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level4. Interferer is reference
signal
Interferer frequency < Desired frequency - 3 channel-spacing
—
58.5
—
dB
Interferer frequency > Desired frequency + 3 channel-spacing
—
56.4
—
dB
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level4
—
53
—
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level4
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level4
ACRM1
ACR2
silabs.com | Building a more connected world.
Rev. 1.0 | 44
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
—
0.25
—
dB
—
+/-6
—
dB
RSSI resolution
RSSIRES
RSSI accuracy in the linear
region as defined by
802.15.4-2003
RSSILIN
Test Condition
over RSSIMIN to RSSIMAX
Note:
1. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
2. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
3. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s.
4. Reference sensitivity level is -85 dBm.
silabs.com | Building a more connected world.
Rev. 1.0 | 45
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10 Sub-GHz RF Transceiver Characteristics
silabs.com | Building a more connected world.
Rev. 1.0 | 46
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 915 MHz.
Table 4.20. Sub-GHz RF Transmitter characteristics for 915 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Test Condition
Min
Typ
Max
Unit
902
—
930
MHz
PAVDD connected directly to external 3.3V supply, 20 dBm output
power setting
18
19.8
23.3
dBm
PAVDD connected to DC-DC output, 14 dBm output power setting
12.6
14.2
16.1
dBm
—
-45.5
—
dBm
Minimum active TX Power
POUTMIN
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
4.8
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to DC-DC output
—
1.9
—
dB
-40 to +85C with PAVDD connected to external supply
—
0.6
1.3
dB
-40 to +85C with PAVDD connected to DC-DC output
—
0.7
1.4
dB
PAVDD connected to external
supply
—
0.2
0.6
dB
PAVDD connected to DC-DC output
—
0.3
0.6
dB
Spurious emissions of harSPURHARM_FCC In restricted bands, per FCC Part
monics at 20 dBm output
15.205 / 15.209
_20
power, Conducted measureIn non-restricted bands, per FCC
ment, 20dBm match, PAVDD
Part 15.231
= 3.3V, Test Frequency =
915 MHz
—
-45
-42
dBm
—
-26
-20
dBc
Spurious emissions out-ofSPUROOB_FCC_
band at 20 dBm output pow- 20
er, Conducted measurement,
20dBm match, PAVDD =
3.3V, Test Frequency = 915
MHz
In non-restricted bands, per FCC
Part 15.231
—
-26
-20
dBc
In restricted bands (30-88 MHz),
per FCC Part 15.205 / 15.209
—
-52
-46
dBm
In restricted bands (88-216 MHz),
per FCC Part 15.205 / 15.209
—
-61
-56
dBm
In restricted bands (216-960
MHz), per FCC Part 15.205 /
15.209
—
-58
-52
dBm
In restricted bands (>960 MHz),
per FCC Part 15.205 / 15.209
—
-47
-42
dBm
Output power variation vs
temperature, peak to peak
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency
silabs.com | Building a more connected world.
Rev. 1.0 | 47
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Spurious emissions of harSPURHARM_FCC In restricted bands, per FCC Part
monics at 14 dBm output
15.205 / 15.209
_14
power, Conducted measureIn non-restricted bands, per FCC
ment, 14dBm match, PAVDD
Part 15.231
connected to DC-DC output,
Test Frequency = 915 MHz
—
-47
-42
dBm
—
-26
-20
dBc
Spurious emissions out-ofSPUROOB_FCC_
band at 14 dBm output pow- 14
er, Conducted measurement,
14dBm match, PAVDD connected to DC-DC output,
Test Frequency = 915 MHz
In non-restricted bands, per FCC
Part 15.231
—
-26
-20
dBc
In restricted bands (30-88 MHz),
per FCC Part 15.205 / 15.209
—
-52
-46
dBm
In restricted bands (88-216 MHz),
per FCC Part 15.205 / 15.209
—
-61
-56
dBm
In restricted bands (216-960
MHz), per FCC Part 15.205 /
15.209
—
-58
-52
dBm
In restricted bands (>960 MHz),
per FCC Part 15.205 / 15.209
—
-45
-42
dBm
Error vector magnitude (off- EVM
set EVM), per 802.15.4-2011
Signal is DSSS-OQPSK reference
packet. Modulated according to
802.15.4-2011 DSSS-OQPSK in
the 915MHz band, with pseudorandom packet data content.
PAVDD connected to external
3.3V supply.
—
1.0
2.8
%rms
Power spectral density limit
Relative, at carrier ± 1.2 MHz.
Average spectral power shall be
measured using a 100kHz resolution bandwidth. The reference level shall be the highest average
spectral power measured within ±
600kHz of the carrier frequency.
PAVDD connected to external
3.3V supply.
—
-37.1
-24.8
dBc/
100kHz
Absolute, at carrier ± 1.2 MHz.
Average spectral power shall be
measured using a 100kHz resolution bandwidth. PAVDD connected to external 3.3V supply.
—
-24.2
-20
dBm/
100kHz
PSD
Test Condition
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 48
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 915 MHz.
Table 4.21. Sub-GHz RF Receiver Characteristics for 915 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
902
—
930
MHz
Max usable input level, 0.1% SAT500K
BER
Desired is reference 500 kbps
GFSK signal4
—
10
—
dBm
Sensitivity
Desired is reference 4.8 kbps
OOK signal3, 20% PER
—
-105.2
-100.7
dBm
Desired is reference 600 bps
GFSK signal6, 0.1% BER
—
-126.2
—
dBm
Desired is reference 50 kbps
GFSK signal5, 0.1% BER
—
-108.2
-104.2
dBm
Desired is reference 100 kbps
GFSK signal1, 0.1% BER
—
-105.1
-101.5
dBm
Desired is reference 500 kbps
GFSK signal4, 0.1% BER
—
-98.2
-93.2
dBm
Desired is reference 400 kbps
GFSK signal2, 1% PER
—
-95.2
-91
dBm
SENS
Level above which
RFSENSE will trigger7
RFSENSETRIG
CW at 915 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger7
RFSENSETHRES CW at 915 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 ×
channel-spacing
C/I1
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
48.1
—
dB
Desired is 600 bps GFSK signal6
at 3dB above sensitivity level,
0.1% BER
—
71.4
—
dB
Desired is 50 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
49.8
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
51.1
—
dB
Desired is 500 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
48.1
—
dB
Desired is 400 kbps 4GFSK signal2 at 3dB above sensitivity level,
0.1% BER
—
41.4
—
dB
silabs.com | Building a more connected world.
Rev. 1.0 | 49
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
56.3
—
dB
Desired is 600 bps GFSK signal6
at 3dB above sensitivity level,
0.1% BER
—
74.7
—
dB
Desired is 50 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
55.8
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
56.4
—
dB
Desired is 500 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
51.8
—
dB
Desired is 400 kbps 4GFSK signal2 at 3dB above sensitivity level,
0.1% BER
—
46.8
—
dB
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
48.4
—
dB
Desired is 50 kbps GFSK signal5
at 3dB above sensitivity level,
0.1% BER
—
54.9
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
49.1
—
dB
Desired is 500 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
47.9
—
dB
Desired is 400 kbps 4GFSK signal2 at 3dB above sensitivity level,
0.1% BER
—
42.8
—
dB
Interferer CW at Desired ± 1 MHz
—
58.7
—
dB
Interferer CW at Desired ± 2 MHz
—
62.5
—
dB
Interferer CW at Desired ± 10
MHz
—
76.4
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level
—
45
—
dB
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
—
0.25
—
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
C/IIMAGE
Blocking selectivity, 0.1%
BER. Desired is 100 kbps
GFSK signal at 3dB above
sensitivity level
C/IBLOCKER
Intermod selectivity, 0.1%
BER. CW interferers at 400
kHz and 800 kHz offsets
C/IIM
RSSI resolution
RSSIRES
silabs.com | Building a more connected world.
Test Condition
Over RSSIMIN to RSSIMAX range
Rev. 1.0 | 50
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
216-960 MHz
—
-55
-49.2
dBm
Above 960 MHz
—
-47
-41.2
dBm
Max spurious emissions dur- SPURRX_ARIB
ing active receive mode,per
ARIB STD-T108 Section 3.3
Below 710 MHz, RBW=100kHz
—
-60
-54
dBm
710-900 MHz, RBW=1MHz
—
-61
-55
dBm
900-915 MHz, RBW=100kHz
—
-61
-55
dBm
915-930 MHz, RBW=100kHz
—
-61
-55
dBm
930-1000 MHz, RBW=100kHz
—
-60
-54
dBm
Above 1000 MHz, RBW=1MHz
—
-53
-47
dBm
Note:
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 400
kHz.
2. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 368.920 kHz, channel
spacing = 600 kHz.
3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz.
4. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 835.076 kHz, channel spacing = 1
MHz.
5. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz.
6. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1.2 kHz, channel spacing = 300 kHz.
7. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 51
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 868 MHz.
Table 4.22. Sub-GHz RF Transmitter characteristics for 868 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Test Condition
Min
Typ
Max
Unit
863
—
876
MHz
PAVDD connected directly to external 3.3V supply, 20 dBm output
power setting
17.1
19.3
22.9
dBm
PAVDD connected to DC-DC output, 14 dBm output power setting
11.4
13.7
16.5
dBm
—
-43.5
—
dBm
Minimum active TX Power
POUTMIN
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply at POUTMAX
POUTVAR_V_NO
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
5
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to DC-DC output
—
2
—
dB
-40 to +85C with PAVDD connected to external supply
—
0.6
0.9
dB
-40 to +85C with PAVDD connected to DC-DC output
—
0.5
1.2
dB
PAVDD connected to external
supply
—
0.2
0.6
dB
PAVDD connected to DC-DC output
—
0.2
0.8
dB
Output power variation vs
temperature, peak to peak
DCDC
POUTVAR_T
Output power variation vs RF POUTVAR_F_NO
frequency
DCDC
Spurious emissions of harmonics, Conducted measurement, PAVDD connected
to DC-DC output
SPURHARM_ETSI Per ETSI EN 300-220, Section
7.8.2.1
—
-35
-30
dBm
Spurious emissions out-ofband, Conducted measurement, PAVDD connected to
DC-DC output
SPUROOB_ETSI
Per ETSI EN 300-220, Section
7.8.2.1 (47-74 MHz, 87.5-118
MHz, 174-230 MHz, and 470-862
MHz)
—
-59
-54
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (other frequencies below 1
GHz)
—
-60
-36
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (frequencies above 1
GHz)
—
-36
-30
dBm
Signal is DSSS-BPSK reference
packet. Modulated according to
802.15.4-2015 DSSS-BPSK in the
868MHz band, with pseudo-random packet data content. PAVDD
connected to external 3.3V supply
—
5.7
—
%rms
Error vector magnitude (off- EVM
set EVM), per 802.15.4-2015
silabs.com | Building a more connected world.
Rev. 1.0 | 52
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 53
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 868 MHz.
Table 4.23. Sub-GHz RF Receiver Characteristics for 868 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
863
—
876
MHz
Max usable input level, 0.1% SAT2k4
BER
Desired is reference 2.4 kbps
GFSK signal1
—
10
—
dBm
Max usable input level, 0.1% SAT38k4
BER
Desired is reference 38.4 kbps
GFSK signal2
—
10
—
dBm
Sensitivity
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-120.6
—
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-109.5
-105.4
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-96.4
—
dBm
Desired is reference BPSK signal4, 1% PER
—
-110.6
—
dBm
SENS
Level above which
RFSENSE will trigger5
RFSENSETRIG
CW at 868 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger5
RFSENSETHRES CW at 868 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 ×
channel-spacing
C/I1
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
44.5
56.9
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
35.4
43
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
56.8
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
48.2
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
50.2
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
48.7
—
dB
Interferer CW at Desired ± 1 MHz
—
72.1
—
dB
Interferer CW at Desired ± 2 MHz
—
77.5
—
dB
Interferer CW at Desired ± 10
MHz
—
90.4
—
dB
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level
C/IIMAGE
C/IBLOCKER
silabs.com | Building a more connected world.
Rev. 1.0 | 54
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-63
-57
dBm
1 GHz to 12 GHz
—
-53
-47
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.797 kHz, channel spacing = 12.5
kHz.
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100
kHz.
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.
4. Definition of reference signal is 20 kbps BPSK
5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 55
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 490 MHz.
Table 4.24. Sub-GHz RF Transmitter characteristics for 490 MHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF tuning frequency range
FRANGE
470
—
510
MHz
Maximum TX Power1
POUTMAX
18.1
20.3
23.7
dBm
Minimum active TX Power
POUTMIN
-44.9
—
dBm
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply, peak to peak
POUTVAR_V
at 20 dBm;1.8 V < VVREGVDD <
3.3 V, PAVDD connected directly
to external supply
—
4.3
—
dB
Output power variation vs
temperature, peak to peak
POUTVAR_T
-40 to +85C at 20 dBm
—
0.2
0.9
dB
—
0.2
0.4
dB
Per China SRW Requirement,
Section 2.1, frequencies below
1GHz
—
-40
-36
dBm
Per China SRW Requirement,
Section 2.1, frequencies above
1GHz
—
-36
-30
dBm
Per China SRW Requirement,
Section 3 (48.5-72.5MHz,
76-108MHz, 167-223MHz,
470-556MHz, and 606-798MHz)
—
-54
—
dBm
Per China SRW Requirement,
Section 2.1 (other frequencies below 1GHz)
—
-42
—
dBm
Per China SRW Requirement,
Section 2.1 (frequencies above
1GHz)
—
-36
—
dBm
PAVDD connected directly to external 3.3V supply
Output power variation vs RF POUTVAR_F
frequency
Harmonic emissions, 20
dBm output power setting,
490 MHz
SPURHARM_CN
Spurious emissions, 20 dBm SPUROOB_CN
output power setting, 490
MHz
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 56
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 490 MHz.
Table 4.25. Sub-GHz RF Receiver Characteristics for 490 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
470
—
510
dBm
Max usable input level, 0.1% SAT2k4
BER
Desired is reference 2.4 kbps
GFSK signal3
—
10
—
dBm
Max usable input level, 0.1% SAT38k4
BER
Desired is reference 38.4 kbps
GFSK signal4
—
10
—
dBm
Sensitivity
Desired is reference 2.4 kbps
GFSK signal3, 0.1% BER
—
-122.2
—
dBm
Desired is reference 38.4 kbps
GFSK signal4, 0.1% BER
—
-111.4
-108.9
dBm
Desired is reference 10 kbps
GFSK signal2, 0.1% BER
—
-116.8
-113.9
dBm
Desired is reference 100 kbps
GFSK signal1, 0.1% BER
—
-107.3
-104.7
dBm
SENS
Level above which
RFSENSE will trigger5
RFSENSETRIG
CW at 490 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger5
RFSENSETHRES CW at 490 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 ×
channel-spacing
C/I1
Desired is 2.4 kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
48
60.3
—
dB
Desired is 38.4kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
38.3
45.6
—
dB
Desired is 2.4kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
60.4
—
dB
Desired is 38.4kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
52.6
—
dB
Desired is 2.4kbps GFSK signal3
at 3dB above sensitivity level,
0.1% BER
—
56.5
—
dB
Desired is 38.4kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
54.1
—
dB
Interferer CW at Desired ± 1 MHz
—
73.9
—
dB
Interferer CW at Desired ± 2 MHz
—
75.4
—
dB
Interferer CW at Desired ± 10
MHz
—
90.2
—
dB
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal3 at 3 dB above
sensitivity level
C/IIMAGE
C/IBLOCKER
silabs.com | Building a more connected world.
Rev. 1.0 | 57
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-53
-47
dBm
1 GHz to 12 GHz
—
-53
-47
dBm
RSSI resolution
Symbol
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Test Condition
Note:
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz.
2. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 21.038 kHz.
3. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5
kHz.
4. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100
kHz.
5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 58
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 433 MHz.
Table 4.26. Sub-GHz RF Transmitter characteristics for 433 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Min
Typ
Max
Unit
426
—
445
MHz
PAVDD connected to DCDC output, 14dBm output power
12.5
15.1
17.4
dBm
PAVDD connected to DCDC output, 10dBm output power
8.3
10.6
13.3
dBm
—
-42
—
dBm
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
POUTVAR_V
supply, peak to peak, Pout =
10dBm
At 10 dBm;1.8 V < VVREGVDD <
3.3 V, PAVDD = DC-DC output
—
1.7
—
dB
Output power variation vs
temperature, peak to peak,
Pout= 10dBm
-40 to +85C at 10dBm
—
0.5
1.2
dB
—
0.1
0.2
dB
Minimum active TX Power
POTMIN
Output power step size
POUTSTEP
POUTVAR_T
Test Condition
Output power variation vs RF POUTVAR_F
frequency, Pout = 10dBm
Spurious emissions of harSPURHARM_FCC
monics FCC, Conducted
measurement, 14dBm
match, PAVDD connected to
DCDC output, Test Frequency = 434 MHz
In restricted bands, per FCC Part
15.205 / 15.209
—
-47
-42
dBm
In non-restricted bands, per FCC
Part 15.231
—
-26
-20
dBc
Spurious emissions out-ofSPUROOB_FCC
band FCC, Conducted
measurement, 14dBm
match, PAVDD connected to
DCDC output, Test Frequency = 434 MHz
In non-restricted bands, per FCC
Part 15.231
—
-26
-20
dBc
In restricted bands (30-88 MHz),
per FCC Part 15.205 / 15.209
—
-52
-46
dBm
In restricted bands (88-216 MHz),
per FCC Part 15.205 / 15.209
—
-61
-56
dBm
In restricted bands (216-960
MHz), per FCC Part 15.205 /
15.209
—
-58
-52
dBm
In restricted bands (>960 MHz),
per FCC Part 15.205 / 15.209
—
-47
-42
dBm
—
-42
-36
dBm
—
-36
-30
dBm
Spurious emissions of harSPURHARM_ETSI Per ETSI EN 300-220, Section
monics ETSI, Conducted
7.8.2.1 (frequencies below 1Ghz)
measurement, 14dBm
Per ETSI EN 300-220, Section
match, PAVDD connected to
7.8.2.1 (frequencies above 1Ghz)
DCDC output, Test Frequency = 434 MHz
silabs.com | Building a more connected world.
Rev. 1.0 | 59
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Spurious emissions out-ofSPUROOB_ETSI
band ETSI, Conducted
measurement, 14dBm
match, PAVDD connected to
DCDC output, Test Frequency = 434 MHz
Test Condition
Min
Typ
Max
Unit
Per ETSI EN 300-220, Section
7.8.2.1 (47-74 MHz, 87.5-118
MHz, 174-230 MHz, and 470-862
MHz)
—
-60
-54
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (other frequencies below 1
GHz)
—
-42
-36
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (frequencies above 1
GHz)
—
-36
-30
dBm
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 60
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 433 MHz.
Table 4.27. Sub-GHz RF Receiver Characteristics for 433 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
426
—
445
MHz
Max usable input level, 0.1% SAT2k4
BER
Desired is reference 2.4 kbps
GFSK signal2
—
10
—
dBm
Max usable input level, 0.1% SAT50k
BER
Desired is reference 50 kbps
GFSK signal4
—
10
—
dBm
Sensitivity
Desired is reference 4.8 kbps
OOK signal3, 20% PER
—
-107.4
—
dBm
Desired is reference 100 kbps
GFSK signal1, 0.1% BER
—
-107.3
-105
dBm
Desired is reference 50 kbps
GFSK signal4, 0.1% BER
—
-110.3
-107.2
dBm
Desired is reference 2.4 kbps
GFSK signal2, 0.1% BER
—
-123.1
—
dBm
Desired is reference 9.6 kbps
GFSK signal5, 1% PER
—
-112.6
-109
dBm
SENS
Level above which
RFSENSE will trigger6
RFSENSETRIG
CW at 433 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger6
RFSENSETHRES CW at 433 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 ×
channel-spacing
C/I1
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
51.6
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
35
44.1
—
dB
Desired is 2.4 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
47
61.5
—
dB
Desired is 50 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
45.6
53.1
—
dB
—
35.7
—
dB
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
silabs.com | Building a more connected world.
Rev. 1.0 | 61
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
57.8
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
54.6
—
dB
Desired is 2.4 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
62.4
—
dB
Desired is 50 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
58.1
—
dB
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
—
50.6
—
dB
Desired is 4.8 kbps OOK signal3
at 3dB above sensitivity level,
20% PER
—
46.5
—
dB
Desired is 100 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
51.7
—
dB
Desired is 2.4 kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
57.5
—
dB
Desired is 50 kbps GFSK signal4
at 3dB above sensitivity level,
0.1% BER
—
54.4
—
dB
Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level,
1% PER
—
48
—
dB
Interferer CW at Desired ± 1 MHz
—
75.7
—
dB
Interferer CW at Desired ± 2 MHz
—
77.2
—
dB
Interferer CW at Desired ± 10
MHz
—
92
—
dB
Desired is 2.4 kbps GFSK signal2
at 3dB above sensitivity level
—
58.8
—
dB
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
—
—
5
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
216-960 MHz
—
-55
-49
dBm
Above 960 MHz
—
-47
-41
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
C/IIMAGE
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal2 at 3dB above
sensitivity level
C/IBLOCKER
Intermod selectivity, 0.1%
BER. CW interferers at 12.5
kHz and 25 kHz offsets
C/IIM
RSSI resolution
RSSIRES
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 62
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max spurious emissions dur- SPURRX_ETSI
ing active receive mode, per
ETSI 300-220 Section 8.6
Below 1000 MHz
—
-63
-57
dBm
Above 1000 MHz
—
-53
-47
dBm
Max spurious emissions dur- SPURRX_ARIB
ing active receive mode, per
ARIB STD T67 Section
3.3(5)
Below 710 MHz, RBW=100kHz
—
-60
-54
dBm
Note:
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 200
kHz.
2. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5
kHz.
3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz.
4. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz.
5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 8.5 kHz, channel spacing
= 12.5 kHz.
6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 63
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 315 MHz.
Table 4.28. Sub-GHz RF Transmitter characteristics for 315 MHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF tuning frequency range
FRANGE
195
—
358
MHz
Maximum TX Power1
POUTMAX
13.8
17.2
21.1
dBm
Minimum active TX Power
POUTMIN
-43.9
—
dBm
Output power step size
POUTSTEP
output power > 0 dBm
—
0.5
—
dB
Output power variation vs
supply
POUTVAR_V
1.8 V < VVREGVDD < 3.3 V,
PAVDD = DC-DC output
—
1.8
—
dB
Output power variation vs
temperature
POUTVAR_T
—
0.5
1.2
dB
Output power variation vs RF POUTVAR_F
frequency
—
0.1
0.7
dB
Spurious emissions of harSPURHARM_FCC In restricted bands, per FCC Part
monics at 14 dBm output
15.205 / 15.209
power, Conducted measureIn non-restricted bands, per FCC
ment, 14dBm match, PAVDD
Part 15.231
connected to DC-DC output,
Test Frequency = 315 MHz
—
-47
-42
dBm
—
-26
-20
dBc
Spurious emissions out-ofSPUROOB_FCC
band at 14 dBm output power, Conducted measurement,
14dBm match, PAVDD connected to DC-DC output,
Test Frequency = 315 MHz
In non-restricted bands, per FCC
Part 15.231
—
-26
-20
dBc
In restricted bands (30-88 MHz),
per FCC Part 15.205 / 15.209
—
-52
-46
dBm
In restricted bands (88-216 MHz),
per FCC Part 15.205 / 15.209
—
-61
-56
dBm
In restricted bands (216-960
MHz), per FCC Part 15.205 /
15.209
—
-58
-52
dBm
In restricted bands (>960 MHz),
per FCC Part 15.205 / 15.209
—
-47
-42
dBm
PAVDD connected to DC-DC output
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
silabs.com | Building a more connected world.
Rev. 1.0 | 64
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 315 MHz.
Table 4.29. Sub-GHz RF Receiver Characteristics for 315 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
195
—
358
dBm
Max usable input level, 0.1% SAT2k4
BER
Desired is reference 2.4 kbps
GFSK signal1
—
10
—
dBm
Max usable input level, 0.1% SAT38k4
BER
Desired is reference 38.4 kbps
GFSK signal2
—
10
—
dBm
Sensitivity
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-123.2
-120.7
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-111.4
-108.6
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-98.8
-95.5
dBm
SENS
Level above which
RFSENSE will trigger4
RFSENSETRIG
CW at 315 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger4
RFSENSETHRES CW at 315 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 ×
channel-spacing
C/I1
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
54.1
63.6
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
49.9
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
64.2
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level2,
0.1% BER
—
56.2
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
53
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
51.4
—
dB
Interferer CW at Desired ± 1 MHz
—
75
—
dB
Interferer CW at Desired ± 2 MHz
—
76.5
—
dB
72.6
91.9
—
dB
—
—
5
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 ×
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level
C/IIMAGE
C/IBLOCKER
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
silabs.com | Building a more connected world.
Interferer CW at Desired ± 10
MHz
Rev. 1.0 | 65
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
216-960 MHz
—
-63
-57
dBm
Above 960MHz
—
-53
-47
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
RSSI resolution
RSSIRES
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5
kHz.
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100
kHz.
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
silabs.com | Building a more connected world.
Rev. 1.0 | 66
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 169 MHz.
Table 4.30. Sub-GHz RF Transmitter Characteristics for 169 MHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Maximum TX Power1
POUTMAX
Minimum active TX Power
POUTMIN
Output power step size
POUTSTEP
output power > 0 dBm
Output power variation vs
supply, peak to peak
POUTVAR_V
Output power variation vs
temperature, peak to peak
POUTVAR_T
Spurious emissions of harmonics, Conducted measurement, PAVDD = 3.3V
SPURHARM_ETSI Per ETSI EN 300-220, Section
7.8.2.1 (47-74 MHz, 87.5-118
MHz, 174-230 MHz, and 470-862
MHz)
Spurious emissions out-ofband, Conducted measurement, PAVDD = 3.3V
SPUROOB_ETSI
Test Condition
Min
Typ
Max
Unit
169
—
170
MHz
18.1
19.7
22.4
dBm
-42.6
—
dBm
—
0.5
—
dB
1.8 V < VVREGVDD < 3.3 V,
PAVDD connected to external
supply
—
4.8
5.0
dB
-40 to +85C at 20dBm
—
0.6
1.2
dB
—
-42
—
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (other frequencies below 1
GHz)2
—
-38
—
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (frequencies above 1
GHz)2
—
-36
—
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (47-74 MHz, 87.5-118
MHz, 174-230 MHz, and 470-862
MHz)
—
-42
-36
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (other frequencies below 1
GHz)
—
-42
-36
dBm
Per ETSI EN 300-220, Section
7.8.2.1 (frequencies above 1
GHz)
—
-36
-30
dBm
PAVDD connected to external 3.3
V supply
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. .
2. Typical value marginally passes specification. Additional margin can be obtained by increasing the order of the harmonic filter.
silabs.com | Building a more connected world.
Rev. 1.0 | 67
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 169 MHz.
Table 4.31. Sub-GHz RF Receiver Characteristics for 169 MHz Band
Parameter
Symbol
Tuning frequency range
FRANGE
Test Condition
Min
Typ
Max
Unit
169
—
170
dBm
Max usable input level, 0.1% SAT2k4
BER
Desired is reference 2.4 kbps
GFSK signal1
—
10
—
dBm
Max usable input level, 0.1% SAT38k4
BER
Desired is reference 38.4 kbps
GFSK signal2
—
10
—
dBm
Sensitivity
Desired is reference 2.4 kbps
GFSK signal1, 0.1% BER
—
-124
—
dBm
Desired is reference 38.4 kbps
GFSK signal2, 0.1% BER
—
-112.2
-108
dBm
Desired is reference 500 kbps
GFSK signal3, 0.1% BER
—
-99.2
-96
dBm
SENS
Level above which
RFSENSE will trigger4
RFSENSETRIG
CW at 169 MHz
—
-28.1
—
dBm
Level below which
RFSENSE will not trigger4
RFSENSETHRES CW at 169 MHz
—
-50
—
dBm
Adjacent channel selectivity,
Interferer is CW at ± 1 x
channel-spacing
C/I1
Desired is 2.4 kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
64.8
—
dB
Desired is 38.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
43.3
51.4
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
67.4
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
60.6
—
dB
Desired is 2.4kbps GFSK signal1
at 3dB above sensitivity level,
0.1% BER
—
47.1
—
dB
Desired is 38.4kbps GFSK signal2
at 3dB above sensitivity level,
0.1% BER
—
47.1
—
dB
Interferer CW at Desired ± 1 MHz
—
73.4
—
dB
Interferer CW at Desired ± 2 MHz
—
75
—
dB
Interferer CW at Desired ± 10
MHz
80
90.1
—
dB
—
—
5
dBm
Alternate channel selectivity, C/I2
Interferer is CW at ± 2 x
channel-spacing
Image rejection, Interferer is
CW at image frequency
Blocking selectivity, 0.1%
BER. Desired is 2.4 kbps
GFSK signal1 at 3 dB above
sensitivity level
C/IIMAGE
C/IBLOCKER
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
silabs.com | Building a more connected world.
Rev. 1.0 | 68
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-98
—
—
dBm
Over RSSIMIN to RSSIMAX range
—
0.25
—
dBm
30 MHz to 1 GHz
—
-63
-57
dBm
1 GHz to 12 GHz
—
-53
-47
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
RSSI resolution
RSSIRES
Max spurious emissions dur- SPURRX
ing active receive mode
Note:
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5
kHz.
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100
kHz.
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
4.1.11 Modem
Table 4.32. Modem
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Receive bandwidth
BWRX
Configurable range with 38.4 MHz
crystal
0.1
—
2530
kHz
IF frequency
fIF
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
—
1371
kHz
DSSS symbol length
SLDSSS
Configurable in steps of 1 chip
2
—
32
chips
DSSS bits per symbol
BPSDSSS
Configurable
1
—
4
bits/
symbol
silabs.com | Building a more connected world.
Rev. 1.0 | 69
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.12 Oscillators
4.1.12.1 Low-Frequency Crystal Oscillator (LFXO)
Table 4.33. Low-Frequency Crystal Oscillator (LFXO)
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4. In CMU_LFXOCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 70
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.12.2 High-Frequency Crystal Oscillator (HFXO)
Table 4.34. High-Frequency Crystal Oscillator (HFXO)
Parameter
Symbol
Test Condition
Crystal frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO_38M4
Supported range of crystal
load capacitance 1
CHFXO_CL
On-chip tuning cap range 2
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Frequency tolerance for the
crystal
FTHFXO
Min
Typ
Max
Unit
38
38.4
40
MHz
—
—
60
Ω
6
—
12
pF
9
20
25
pF
—
0.04
—
pF
38.4 MHz, ESR = 50 Ohm, CL =
10 pF
—
300
—
μs
38.4 MHz, ESR = 50 Ohm, CL =
10 pF
-40
—
40
ppm
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
4.1.12.3 Low-Frequency RC Oscillator (LFRCO)
Table 4.35. Low-Frequency RC Oscillator (LFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF2 = 1
31.3
32.768
33.6
kHz
ENVREF2 = 0
31.3
32.768
33.4
kHz
—
500
—
μs
ENVREF = 1 in
CMU_LFRCOCTRL
—
370
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
520
—
nA
Startup time
tLFRCO
Current consumption 1
ILFRCO
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
2. In CMU_LFRCOCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 71
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.12.4 High-Frequency RC Oscillator (HFRCO)
Table 4.36. High-Frequency RC Oscillator (HFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency accuracy
fHFRCO_ACC
At production calibrated frequencies, across supply voltage and
temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
244
265
μA
fHFRCO = 32 MHz
—
204
222
μA
fHFRCO = 26 MHz
—
173
188
μA
fHFRCO = 19 MHz
—
143
156
μA
fHFRCO = 16 MHz
—
123
136
μA
fHFRCO = 13 MHz
—
110
124
μA
fHFRCO = 7 MHz
—
85
94
μA
fHFRCO = 4 MHz
—
32
37
μA
fHFRCO = 2 MHz
—
28
34
μA
fHFRCO = 1 MHz
—
26
31
μA
—
0.8
—
%
Current consumption on all
supplies
IHFRCO
Coarse trim step size (% of
period)
SSHFRCO_COARS
Fine trim step size (% of period)
SSHFRCO_FINE
—
0.1
—
%
Period jitter
PJHFRCO
—
0.2
—
% RMS
E
silabs.com | Building a more connected world.
Rev. 1.0 | 72
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Table 4.37. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Parameter
Symbol
Test Condition
Frequency accuracy
fAUXHFRCO_ACC
Start-up time
tAUXHFRCO
Current consumption on all
supplies
IAUXHFRCO
Coarse trim step size (% of
period)
CO_COARSE
Fine trim step size (% of period)
CO_FINE
Period jitter
PJAUXHFRCO
Min
Typ
Max
Unit
At production calibrated frequencies, across supply voltage and
temperature
-3
—
3
%
fAUXHFRCO ≥ 19 MHz
—
400
—
ns
4 < fAUXHFRCO < 19 MHz
—
1.4
—
μs
fAUXHFRCO ≤ 4 MHz
—
2.5
—
μs
fAUXHFRCO = 38 MHz
—
193
213
μA
fAUXHFRCO = 32 MHz
—
157
175
μA
fAUXHFRCO = 26 MHz
—
135
151
μA
fAUXHFRCO = 19 MHz
—
108
122
μA
fAUXHFRCO = 16 MHz
—
100
113
μA
fAUXHFRCO = 13 MHz
—
77
88
μA
fAUXHFRCO = 7 MHz
—
53
63
μA
fAUXHFRCO = 4 MHz
—
29
36
μA
fAUXHFRCO = 2 MHz
—
28
34
μA
fAUXHFRCO = 1 MHz
—
27
31
μA
—
0.8
—
%
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.95
1
1.07
kHz
SSAUXHFRSSAUXHFR-
4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO)
Table 4.38. Ultra-low Frequency RC Oscillator (ULFRCO)
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 73
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.13 Flash Memory Characteristics3
Table 4.39. Flash Memory Characteristics3
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Word (32-bit) programming
time
tW_PROG
Test Condition
Min
Typ
Max
Unit
10000
—
—
cycles
10
—
—
years
Burst write, 128 words, average
time per word
20
24.4
30
μs
Single word
60
68.4
80
μs
Page erase time
tPERASE
20
26.4
35
ms
Mass erase time1
tMERASE
20
26.5
35
ms
Device erase time2
tDERASE
—
69
100
ms
Page erase current4
IERASE
—
—
1.6
mA
Write current4
IWRITE
—
—
3.8
mA
Supply voltage during flash
erase and write
VFLASH
1.62
—
3.6
V
Note:
1. Mass erase is issued by the CPU and erases all flash.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW).
3. Flash data retention information is published in the Quarterly Quality and Reliability Report.
4. Measured at 25 °C.
silabs.com | Building a more connected world.
Rev. 1.0 | 74
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.14 General-Purpose I/O (GPIO)
Table 4.40. General-Purpose I/O (GPIO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input low voltage
VIL
GPIO pins
—
—
IOVDD*0.3
V
Input high voltage
VIH
GPIO pins
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VOH
Sourcing 3 mA, IOVDD ≥ 3 V,
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD
—
0.1
30
nA
LFXO Pins, GPIO ≤ IOVDD
—
0.1
50
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
30
40
65
kΩ
15
25
45
ns
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up/pull-down resistor
RPUD
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Building a more connected world.
Rev. 1.0 | 75
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Note:
1. In GPIO_Pn_CTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 76
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.15 Voltage Monitor (VMON)
Table 4.41. Voltage Monitor (VMON)
Parameter
Symbol
Test Condition
Supply current (including
I_SENSE)
IVMON
Loading of monitored supply
ISENSE
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
In EM0 or EM1, 1 supply monitored
—
6.3
10
μA
In EM0 or EM1, 4 supplies monitored
—
12.5
17
μA
In EM2, EM3 or EM4, 1 supply
monitored and above threshol
—
62
—
nA
In EM2, EM3 or EM4, 1 supply
monitored and below threshold
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored and all above threshold
—
99
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored and all below threshold
—
99
—
nA
In EM0 or EM1
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/μs rate
—
460
—
ns
—
26
—
mV
Rev. 1.0 | 77
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.16 Analog to Digital Converter (ADC)
Table 4.42. Analog to Digital Converter (ADC)
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
—
—
VFS
V
-VFS/2
—
VFS/2
V
1
—
VAVDD
V
Power supply rejection2
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
270
315
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
125
—
μA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 3
—
80
—
μA
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 1 3
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL
SPROG = 0, GPBIASACC = 1 3
—
45
—
μA
—
8
—
μA
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
105
—
μA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
70
—
μA
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP
Continous operation. WARMUPMODE4 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
325
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
175
—
μA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 3
—
125
—
μA
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 0 3
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL
SPROG = 0, GPBIASACC = 0 3
—
85
—
μA
—
16
—
μA
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
160
—
μA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
125
—
μA
Current from HFPERCLK
HFPERCLK = 16 MHz
—
160
—
μA
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP
Continous operation. WARMUPMODE4 = KEEPADCWARM
IADC_CLK
silabs.com | Building a more connected world.
Rev. 1.0 | 78
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
ADC clock frequency
Min
Typ
Max
Unit
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time1
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE4 = NORMAL
—
—
5
μs
WARMUPMODE4 = KEEPINSTANDBY
—
—
2
μs
WARMUPMODE4 = KEEPINSLOWACC
—
—
1
μs
Internal reference6, differential
measurement
58
67
—
dB
External reference5, differential
measurement
—
68
—
dB
Spurious-free dynamic range SFDRADC
(SFDR)
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No missing codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Offset error
VADCOFFSETERR
-3
0
3
LSB
Gain error in ADC
VADCGAIN
Using internal reference
—
-0.2
3.5
%
Using external reference
—
-1
—
%
—
-1.84
—
mV/°C
Startup time of reference
generator and ADC core
SNDR at 1Msps and fIN =
10kHz
Temperature sensor slope
tADCSTART
SNDRADC
VTS_SLOPE
Test Condition
Note:
1. Derived from ADCCLK.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_BIASPROG register.
4. In ADCn_CNTL register.
5. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential
input range with this configuration is ± 1.25 V.
6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum
value is production-tested using sine wave input at 1.5 dB lower than full scale.
silabs.com | Building a more connected world.
Rev. 1.0 | 79
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.17 Analog Comparator (ACMP)
Table 4.43. Analog Comparator (ACMP)
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
Supply voltage
VACMPVDD
Active current not including
voltage reference2
IACMP
Current consumption of inter- IACMPREF
nal voltage reference2
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
—
—
VACMPVDD
V
BIASPROG4 ≤ 0x10 or FULLBIAS4 = 0
1.8
—
VVREGVDD_
V
0x10 < BIASPROG4 ≤ 0x20 and
FULLBIAS4 = 1
2.1
BIASPROG4 = 1, FULLBIAS4 = 0
—
50
—
nA
BIASPROG4 = 0x10, FULLBIAS4
=0
—
306
—
nA
BIASPROG4 = 0x02, FULLBIAS4
=1
—
6.5
—
μA
BIASPROG4 = 0x20, FULLBIAS4
=1
—
75
92
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
MAX
—
VVREGVDD_
V
MAX
Rev. 1.0 | 80
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Hysteresis (VCM = 1.25 V,
BIASPROG4 = 0x10, FULLBIAS4 = 1)
VACMPHYST
Comparator delay3
tACMPDELAY
Min
Typ
Max
Unit
HYSTSEL5 = HYST0
-3
0
3
mV
HYSTSEL5 = HYST1
5
18
27
mV
HYSTSEL5 = HYST2
12
33
50
mV
HYSTSEL5 = HYST3
17
46
65
mV
HYSTSEL5 = HYST4
23
57
82
mV
HYSTSEL5 = HYST5
26
68
98
mV
HYSTSEL5 = HYST6
30
79
130
mV
HYSTSEL5 = HYST7
34
90
150
mV
HYSTSEL5 = HYST8
-3
0
3
mV
HYSTSEL5 = HYST9
-27
-18
-5
mV
HYSTSEL5 = HYST10
-50
-33
-12
mV
HYSTSEL5 = HYST11
-65
-45
-17
mV
HYSTSEL5 = HYST12
-82
-57
-23
mV
HYSTSEL5 = HYST13
-98
-67
-26
mV
HYSTSEL5 = HYST14
-130
-78
-30
mV
HYSTSEL5 = HYST15
-150
-88
-34
mV
BIASPROG4 = 1, FULLBIAS4 = 0
—
30
—
μs
BIASPROG4 = 0x10, FULLBIAS4
=0
—
3.7
—
μs
BIASPROG4 = 0x02, FULLBIAS4
=1
—
360
—
ns
BIASPROG4 = 0x20, FULLBIAS4
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG4 =0x10, FULLBIAS4
=1
Reference voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
2
2.5
2.8
V
CSRESSEL6 = 0
—
inf
—
kΩ
CSRESSEL6 = 1
—
15
—
kΩ
CSRESSEL6 = 2
—
27
—
kΩ
CSRESSEL6 = 3
—
39
—
kΩ
CSRESSEL6 = 4
—
51
—
kΩ
CSRESSEL6 = 5
—
100
—
kΩ
CSRESSEL6 = 6
—
162
—
kΩ
CSRESSEL6 = 7
—
235
—
kΩ
Capacitive sense internal re- RCSRES
sistance
silabs.com | Building a more connected world.
Rev. 1.0 | 81
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.
2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP +
IACMPREF.
3. ± 100 mV differential drive.
4. In ACMPn_CTRL register.
5. In ACMPn_HYSTERESIS register.
6. In ACMPn_INPUTSEL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 82
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.18 Digital to Analog Converter (VDAC)
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.44. Digital to Analog Converter (VDAC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output voltage
VDACOUT
Single-Ended
0
—
VVREF
V
-VVREF
—
VVREF
V
500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4
—
396
—
μA
44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4
—
72
—
μA
200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, BGRREQTIME =
1, EM2REFENTIME = 9, REFSEL
= 4, SETTLETIME = 0x0A, WARMUPTIME = 0x02
—
1.2
—
μA
Differential2
Current consumption including references (2 channels)1
IDAC
Current from HFPERCLK4
IDAC_CLK
—
5.8
—
μA/MHz
Sample rate
SRDAC
—
—
500
ksps
DAC clock frequency
fDAC
—
—
1
MHz
Conversion time
tDACCONV
fDAC = 1MHz
2
—
—
μs
Settling time
tDACSETTLE
50% fs step settling to 5 LSB
—
2.5
—
μs
Startup time
tDACSTARTUP
Enable to 90% fs output, settling
to 10 LSB
—
—
12
μs
Output impedance
ROUT
DRIVESTRENGTH = 2, 0.4 V ≤
VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 μA <
IOUT < 400 μA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 2, 0.1 V ≤
VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 μA <
IOUT < 100 μA, Full supply range
—
2
—
Ω
Vout = 50% fs. DC
—
65.5
—
dB
Power supply rejection ratio6 PSRR
silabs.com | Building a more connected world.
Rev. 1.0 | 83
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
500 ksps, single-ended, internal
1.25V reference
—
60.4
—
dB
500 ksps, single-ended, internal
2.5V reference
—
61.6
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
64.0
—
dB
500 ksps, differential, internal
1.25V reference
—
63.3
—
dB
500 ksps, differential, internal
2.5V reference
—
64.4
—
dB
500 ksps, differential, 3.3V VDD
reference
—
65.8
—
dB
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal
ratio (1 kHz sine wave),
1.25V reference
Noise band limited to 22 kHz
500 ksps, single-ended, internal
2.5V reference
—
65.3
—
dB
—
66.7
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
70.0
—
dB
500 ksps, differential, internal
1.25V reference
—
67.8
—
dB
500 ksps, differential, internal
2.5V reference
—
69.0
—
dB
500 ksps, differential, 3.3V VDD
reference
—
68.5
—
dB
—
70.2
—
dB
Signal to noise and distortion SNDRDAC
ratio (1 kHz sine wave),
Noise band limited to 250
kHz
Test Condition
Total harmonic distortion
THD
Differential non-linearity3
DNLDAC
-0.99
—
1
LSB
Intergral non-linearity
INLDAC
-4
—
4
LSB
Offset error5
VOFFSET
T = 25 °C
-8
—
8
mV
Across operating temperature
range
-25
—
25
mV
T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-1.5
—
1.5
%
T = 25 °C, Internal reference (REFSEL = 1V25 or 2V5)
-5
—
5
%
T = 25 °C, External reference
(REFSEL = VDD or EXT)
-1.5
—
1.5
%
Across operating temperature
range, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-3.5
—
3.5
%
Across operating temperature
range, Internal reference (REFSEL = 1V25 or 2V5)
-7.5
—
7.5
%
Across operating temperature
range, External reference (REFSEL = VDD or EXT)
-1.5
—
1.5
%
Gain error5
VGAIN
silabs.com | Building a more connected world.
Rev. 1.0 | 84
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
External load capactiance,
OUTSCALE=0
CLOAD
Test Condition
Min
Typ
Max
Unit
—
—
75
pF
Note:
1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive
the load.
2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is
limited to the single-ended range.
3. Entire range is monotonic and has no missing codes.
4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when
the clock to the DAC module is enabled in the CMU.
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.
6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale
silabs.com | Building a more connected world.
Rev. 1.0 | 85
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.19 Current Digital to Analog Converter (IDAC)
Table 4.45. Current Digital to Analog Converter (IDAC)
Parameter
Symbol
Number of ranges
NIDAC_RANGES
Output current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total accuracy, STEPSEL1 = ACCIDAC
0x80
Start up time
tIDAC_SU
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-3
—
3
%
EM0 or EM1, Across operating
temperature range
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
—
-0.7
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
Output within 1% of steady state
value
—
5
—
μs
Rev. 1.0 | 86
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value),
Current consumption2
IIDAC
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Test Condition
Min
Typ
Max
Unit
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
EM0 or EM1 Source mode, excluding output current, Across operating temperature range
—
11
18
μA
EM0 or EM1 Sink mode, excluding output current, Across operating temperature range
—
13
21
μA
EM2 or EM3 Source mode, excluding output current, T = 25 °C
—
0.023
—
μA
EM2 or EM3 Sink mode, excluding output current, T = 25 °C
—
0.041
—
μA
EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C
—
11
—
μA
EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C
—
13
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.11
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.06
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.04
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.03
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.05
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.04
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.03
—
%
Note:
1. In IDAC_CURPROG register.
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Building a more connected world.
Rev. 1.0 | 87
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.20 Capacitive Sense (CSEN)
Table 4.46. Capacitive Sense (CSEN)
Parameter
Symbol
Test Condition
Single conversion time (1x
accumulation)
tCNV
Maximum external capactive CEXTMAX
load
Min
Typ
Max
Unit
12-bit SAR Conversions
—
20.2
—
μs
16-bit SAR Conversions
—
26.4
—
μs
Delta Modulation Conversion (single comparison)
—
1.55
—
μs
CS0CG=7 (Gain = 1x), including
routing parasitics
—
68
—
pF
CS0CG=0 (Gain = 10x), including
routing parasitics
—
680
—
pF
—
1
—
kΩ
12-bit SAR conversions, 20 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
—
326
—
nA
Delta Modulation conversions, 20
ms conversion rate, CS0CG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
226
—
nA
12-bit SAR conversions, 200 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
—
33
—
nA
Delta Modulation conversions,
200 ms conversion rate,
CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
25
—
nA
12-bit SAR conversions, 20 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
—
690
—
nA
Delta Modulation conversions, 20
ms scan rate, 8 comparisons per
sample (DMCR = 1, DMR = 2),
CS0CG=0 (Gain = 10x), 8 samples per scan1
—
515
—
nA
12-bit SAR conversions, 200 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
—
79
—
nA
Delta Modulation conversions,
200 ms scan rate, 8 comparisons
per sample (DMCR = 1, DMR =
2), CS0CG=0 (Gain = 10x), 8
samples per scan1
—
57
—
nA
Maximum external series im- REXTMAX
pedance
Supply current, EM2 bonded ICSEN_BOND
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
Supply current, EM2 scan
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
ICSEN_EM2
silabs.com | Building a more connected world.
Rev. 1.0 | 88
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Supply current, continuous
conversions, WARMUPMODE=KEEPCSENWARM
ICSEN_ACTIVE
SAR or Delta Modulation conversions of 33 pF capacitor,
CS0CG=0 (Gain = 10x), always
on
—
90.5
—
μA
HFPERCLK supply current
ICSEN_HFPERCLK Current contribution from
HFPERCLK when clock to CSEN
block is enabled.
—
2.25
—
μA/MHz
Note:
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module
is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current =
single_sample_current * (number_of_channels * accumulation)).
silabs.com | Building a more connected world.
Rev. 1.0 | 89
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.21 Operational Amplifier (OPAMP)
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as
specified in table footnotes8 1.
Table 4.47. Operational Amplifier (OPAMP)
Parameter
Symbol
Test Condition
Supply voltage
VOPA
HCMDIS = 0, Rail-to-rail input
range
Input voltage
VIN
Min
Typ
Max
Unit
2
—
3.8
V
HCMDIS = 1
1.62
—
3.8
V
HCMDIS = 0, Rail-to-rail input
range
VVSS
—
VOPA
V
HCMDIS = 1
VVSS
—
VOPA-1.2
V
Input impedance
RIN
100
—
—
MΩ
Output voltage
VOUT
VVSS
—
VOPA
V
Load capacitance2
CLOAD
OUTSCALE = 0
—
—
75
pF
OUTSCALE = 1
—
—
37.5
pF
DRIVESTRENGTH = 2 or 3, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Buffer connection,
Full supply range
—
0.25
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 μA <
IOUT < 400 μA, Buffer connection,
Full supply range
—
0.6
—
Ω
DRIVESTRENGTH = 2 or 3, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Buffer connection,
Full supply range
—
0.4
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 μA <
IOUT < 100 μA, Buffer connection,
Full supply range
—
1
—
Ω
Buffer connection
0.99
1
1.01
-
3x Gain connection
2.93
2.99
3.05
-
16x Gain connection
15.07
15.7
16.33
-
DRIVESTRENGTH = 3, OUTSCALE = 0
—
580
—
μA
DRIVESTRENGTH = 2, OUTSCALE = 0
—
176
—
μA
DRIVESTRENGTH = 1, OUTSCALE = 0
—
13
—
μA
DRIVESTRENGTH = 0, OUTSCALE = 0
—
4.7
—
μA
Output impedance
Internal closed-loop gain
Active current4
ROUT
GCL
IOPA
silabs.com | Building a more connected world.
Rev. 1.0 | 90
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Open-loop gain
GOL
Loop unit-gain frequency7
Phase margin
Output voltage noise
UGF
PM
NOUT
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
DRIVESTRENGTH = 3
—
135
—
dB
DRIVESTRENGTH = 2
—
137
—
dB
DRIVESTRENGTH = 1
—
121
—
dB
DRIVESTRENGTH = 0
—
109
—
dB
DRIVESTRENGTH = 3, Buffer
connection
—
3.38
—
MHz
DRIVESTRENGTH = 2, Buffer
connection
—
0.9
—
MHz
DRIVESTRENGTH = 1, Buffer
connection
—
132
—
kHz
DRIVESTRENGTH = 0, Buffer
connection
—
34
—
kHz
DRIVESTRENGTH = 3, 3x Gain
connection
—
2.57
—
MHz
DRIVESTRENGTH = 2, 3x Gain
connection
—
0.71
—
MHz
DRIVESTRENGTH = 1, 3x Gain
connection
—
113
—
kHz
DRIVESTRENGTH = 0, 3x Gain
connection
—
28
—
kHz
DRIVESTRENGTH = 3, Buffer
connection
—
67
—
°
DRIVESTRENGTH = 2, Buffer
connection
—
69
—
°
DRIVESTRENGTH = 1, Buffer
connection
—
63
—
°
DRIVESTRENGTH = 0, Buffer
connection
—
68
—
°
DRIVESTRENGTH = 3, Buffer
connection, 10 Hz - 10 MHz
—
146
—
μVrms
DRIVESTRENGTH = 2, Buffer
connection, 10 Hz - 10 MHz
—
163
—
μVrms
DRIVESTRENGTH = 1, Buffer
connection, 10 Hz - 1 MHz
—
170
—
μVrms
DRIVESTRENGTH = 0, Buffer
connection, 10 Hz - 1 MHz
—
176
—
μVrms
DRIVESTRENGTH = 3, 3x Gain
connection, 10 Hz - 10 MHz
—
313
—
μVrms
DRIVESTRENGTH = 2, 3x Gain
connection, 10 Hz - 10 MHz
—
271
—
μVrms
DRIVESTRENGTH = 1, 3x Gain
connection, 10 Hz - 1 MHz
—
247
—
μVrms
DRIVESTRENGTH = 0, 3x Gain
connection, 10 Hz - 1 MHz
—
245
—
μVrms
Rev. 1.0 | 91
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Slew rate5
SR
DRIVESTRENGTH = 3,
INCBW=13
—
4.7
—
V/μs
DRIVESTRENGTH = 3,
INCBW=0
—
1.5
—
V/μs
DRIVESTRENGTH = 2,
INCBW=13
—
1.27
—
V/μs
DRIVESTRENGTH = 2,
INCBW=0
—
0.42
—
V/μs
DRIVESTRENGTH = 1,
INCBW=13
—
0.17
—
V/μs
DRIVESTRENGTH = 1,
INCBW=0
—
0.058
—
V/μs
DRIVESTRENGTH = 0,
INCBW=13
—
0.044
—
V/μs
DRIVESTRENGTH = 0,
INCBW=0
—
0.015
—
V/μs
Startup time6
TSTART
DRIVESTRENGTH = 2
—
—
12
μs
Input offset voltage
VOSI
DRIVESTRENGTH = 2 or 3, T =
25 °C
-2
—
2
mV
DRIVESTRENGTH = 1 or 0, T =
25 °C
-2
—
2
mV
DRIVESTRENGTH = 2 or 3,
across operating temperature
range
-12
—
12
mV
DRIVESTRENGTH = 1 or 0,
across operating temperature
range
-30
—
30
mV
DC power supply rejection
ratio9
PSRRDC
Input referred
—
70
—
dB
DC common-mode rejection
ratio9
CMRRDC
Input referred
—
70
—
dB
Total harmonic distortion
THDOPA
DRIVESTRENGTH = 2, 3x Gain
connection, 1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
DRIVESTRENGTH = 0, 3x Gain
connection, 0.1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
silabs.com | Building a more connected world.
Rev. 1.0 | 92
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5
V. Nominal voltage gain is 3.
2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,
or the OPAMP may not be stable.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause
another ~10 μA current when the OPAMP drives 1.5 V between output and ground.
5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.
6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.
7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth
product of the OPAMP and 1/3 attenuation of the feedback network.
8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,
VOUTPUT = 0.5 V.
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR
and CMRR specifications do not apply to this transition region.
4.1.22 Pulse Counter (PCNT)
Table 4.48. Pulse Counter (PCNT)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input frequency
FIN
Asynchronous Single and Quadrature Modes
—
—
20
MHz
Sampled Modes with Debounce
filter set to 0.
—
—
8
kHz
Min
Typ
Max
Unit
4.1.23 Analog Port (APORT)
Table 4.49. Analog Port (APORT)
Parameter
Symbol
Test Condition
Supply current2 1
IAPORT
Operation in EM0/EM1
—
7
—
μA
Operation in EM2/EM3
—
915
—
nA
Note:
1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of
the requests by the specified continuous current number.
2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.
silabs.com | Building a more connected world.
Rev. 1.0 | 93
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.24 I2C
4.1.24.1 I2C Standard-mode (Sm)1
Table 4.50. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU_DAT
250
—
—
ns
SDA hold time3
tHD_DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU_STA
4.7
—
—
μs
(Repeated) START condition tHD_STA
hold time
4
—
—
μs
STOP condition set-up time
tSU_STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 94
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.24.2 I2C Fast-mode (Fm)1
Table 4.51. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
SDA set-up time
tSU_DAT
100
—
—
ns
SDA hold time3
tHD_DAT
100
—
900
ns
Repeated START condition
set-up time
tSU_STA
0.6
—
—
μs
(Repeated) START condition tHD_STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU_STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 95
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.24.3 I2C Fast-mode Plus (Fm+)1
Table 4.52. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
μs
SCL clock high time
tHIGH
0.26
—
—
μs
SDA set-up time
tSU_DAT
50
—
—
ns
SDA hold time
tHD_DAT
100
—
—
ns
Repeated START condition
set-up time
tSU_STA
0.26
—
—
μs
(Repeated) START condition tHD_STA
hold time
0.26
—
—
μs
STOP condition set-up time
tSU_STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.
silabs.com | Building a more connected world.
Rev. 1.0 | 96
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.1.25 USART SPI
SPI Master Timing
Table 4.53. SPI Master Timing
Parameter
Symbol
SCLK period 1 3 2
tSCLK
CS to MOSI 1 3
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
-14.5
—
13.5
ns
SCLK to MOSI 1 3
tSCLK_MO
-8.5
—
8
ns
MISO setup time 1 3
tSU_MI
IOVDD = 1.62 V
92
—
—
ns
IOVDD = 3.0 V
42
—
—
ns
-10
—
—
ns
tH_MI
MISO hold time 1 3
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 97
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.54. SPI Slave Timing
Parameter
Symbol
SCLK period 1 3 2
Test Condition
Min
Typ
Max
Unit
tSCLK
6*
tHFPERCLK
—
—
ns
SCLK high time1 3 2
tSCLK_HI
2.5 *
tHFPERCLK
—
—
ns
SCLK low time1 3 2
tSCLK_LO
2.5 *
tHFPERCLK
—
—
ns
CS active to MISO 1 3
tCS_ACT_MI
4
—
70
ns
CS disable to MISO 1 3
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 3
tSU_MO
8
—
—
ns
MOSI hold time 1 3 2
tH_MO
7
—
—
ns
SCLK to MISO 1 3 2
tSCLK_MI
10 + 1.5 *
tHFPERCLK
—
65 + 2.5 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Building a more connected world.
Rev. 1.0 | 98
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 99
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 100
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 101
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 102
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply
silabs.com | Building a more connected world.
Rev. 1.0 | 103
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.8. DC-DC Converter Typical Performance Characteristics
silabs.com | Building a more connected world.
Rev. 1.0 | 104
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
20mV/div
offset:1.8V
100mA
VSW
ILOAD
1mA
2V/div
offset:1.8V
100μs/div
10μs/div
Figure 4.9. DC-DC Converter Transition Waveforms
silabs.com | Building a more connected world.
Rev. 1.0 | 105
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
4.2.3 2.4 GHz Radio
Figure 4.10. 2.4 GHz RF Transmitter Output Power
silabs.com | Building a more connected world.
Rev. 1.0 | 106
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Electrical Specifications
Figure 4.11. 2.4 GHz RF Receiver Sensitivity
silabs.com | Building a more connected world.
Rev. 1.0 | 107
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
Main
Supply
+
–
VREGVDD
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.1. EFR32BG12 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.2. EFR32BG12 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)
silabs.com | Building a more connected world.
Rev. 1.0 | 108
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Typical Connection Diagrams
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.3. EFR32BG12 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)
silabs.com | Building a more connected world.
Rev. 1.0 | 109
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Typical Connection Diagrams
5.2 RF Matching Networks
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 110 for applications in the 2.4GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page
111 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For
low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF
transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
Typical RF matching network circuit diagrams are shown in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on
page 111 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
PAVDD
PAVDD
L0
2G4RF_IOP
2G4RF_ION
PAVDD
50Ω
C0
L0
L1
2G4RF_IOP
2G4RF_ION
50Ω
C0
C1
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
silabs.com | Building a more connected world.
Rev. 1.0 | 110
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Typical Connection Diagrams
Sub-GHz Match Topology I (169-450 MHz)
PAVDD
L1
L2
C0
L3
C5
L5
L6
L7
SUBGRF_IN
50Ω
C2
C7
C4
L0
C8
C9
C10
C3
SUBGRF_IP
C1
L4
C6
BAL1
SUBGRF_ON
SUBGRF_OP
Sub-GHz Match Topology 2 (450-915 MHz)
C0
L3
PAVDD
L5
L6
50Ω
SUBGRF_IN
L0
C4
C7
C8
C9
SUBGRF_IP
C1
L4
BAL1
SUBGRF_ON
SUBGRF_OP
Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits
5.3 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
silabs.com | Building a more connected world.
Rev. 1.0 | 111
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6. Pin Definitions
6.1 BGA125 2.4 GHz and Sub-GHz Device Pinout
Figure 6.1. BGA125 2.4 GHz and Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview.
Table 6.1. BGA125 2.4 GHz and Sub-GHz Device Pinout
Pin Name
Pins Description
Pin Name
Pins Description
PF3
A1
GPIO (5V)
PF1
A2
GPIO (5V)
PC5
A3
GPIO (5V)
PC3
A4
GPIO (5V)
PC0
A5
GPIO (5V)
PC11
A6
GPIO (5V)
PC9
A7
GPIO (5V)
PC7
A8
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 112
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
Decouple output for on-chip voltage regulator. An external decoupling capacitor is
required at this pin.
Pin Name
DECOUPLE
A9
VREGVDD
A11 Voltage regulator VDD input
VREGVSS
A13
B11 Voltage regulator VSS
B12
PF8
B1
GPIO (5V)
PF2
B2
GPIO (5V)
PF0
B3
GPIO (5V)
PC4
B4
GPIO (5V)
PC1
B5
GPIO (5V)
PJ14
B6
GPIO (5V)
PC10
B7
GPIO (5V)
PC8
B8
GPIO (5V)
PC6
B9
GPIO (5V)
IOVDD
B10
F2
Digital IO power supply.
F11
M12
DVDD
Pins Description
VREGSW
A10 Digital power supply.
A12 DCDC regulator switching node
AVDD
B13 Analog power supply.
PF11
C1
GPIO (5V)
PF10
C2
GPIO (5V)
PF9
C3
GPIO (5V)
PC2
C5
GPIO (5V)
PJ15
C6
GPIO (5V)
PB15
C10 GPIO
PB14
C11 GPIO
PB13
C12 GPIO
PB12
C13 GPIO
PF14
D1
GPIO (5V)
PF13
D2
PF12
D3
GPIO (5V)
PB11
D11 GPIO
PB10
D12 GPIO (5V)
PB9
D13 GPIO (5V)
PK1
E1
GPIO (5V)
GPIO (5V)
GPIO (5V)
PK0
E2
GPIO
PF15
E3
VSS
E5
E6
E7
E8
E9
F5
F6
F7
F8
F9
G5
G6
G7
G8
G9
H5
H6
H7
H8
H9
J5
J6
J7
J8
J9
K2
L2
Ground
PB8
E12 GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 113
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
Pin Name
Pins Description
PB7
E13 GPIO (5V)
PK2
F1
GPIO (5V)
PB6
F12
GPIO (5V)
PI3
F13
GPIO (5V)
PF5
G1
GPIO (5V)
PF4
G2
GPIO (5V)
PI2
G11 GPIO (5V)
PI1
G12 GPIO (5V)
PI0
G13 GPIO (5V)
PF7
H1
PA9
H12 GPIO (5V)
PF6
H2
GPIO (5V)
PA8
H13 GPIO (5V)
PA7
J11
PA5
J13
PA4
K12 GPIO
GPIO (5V)
RFVDD
J1
J2
Radio power supply
GPIO (5V)
PA6
J12
GPIO (5V)
GPIO (5V)
HFXTAL_N
K1
High Frequency Crystal input pin.
PA3
K13 GPIO
BODEN
L10
Brown-Out Detector Enable. This pin may
be left disconnected or tied to AVDD.
PA1
L13
GPIO
M1
Reset input, active low. To apply an external reset source to this pin, it is required to
only drive this pin low during reset, and let
the internal pull-up ensure that reset is released.
RFVSS
M2
M3
M4
M5
N5
Radio Ground
PAVSS
M6
M7
Power Amplifier (PA) voltage regulator
VSS
PAVDD
M8
N8
Power Amplifier (PA) voltage regulator
VDD input
PD9
M9
GPIO (5V)
PD13
M11 GPIO
HFXTAL_P
L1
High Frequency Crystal output pin.
PA2
L12
GPIO
RESETn
PD11
PA0
M10 GPIO (5V)
M13 GPIO
SUBGRF_OP
N1
Sub GHz Differential RF output, positive
path.
SUBGRF_ON
N2
Sub GHz Differential RF output, negative
path.
SUBGRF_IP
N3
Sub GHz Differential RF input, positive
path.
SUBGRF_IN
N4
Sub GHz Differential RF input, negative
path.
2G4RF_ION
N6
2.4 GHz Differential RF input/output, negative path. This pin should be externally
grounded.
2G4RF_IOP
N7
2.4 GHz Differential RF input/output, positive path.
PD8
N9
GPIO (5V)
PD10
N10 GPIO (5V)
PD12
N11 GPIO (5V)
PD14
N12 GPIO
PD15
N13 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 114
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.2 BGA125 2.4 GHz Device Pinout
Figure 6.2. BGA125 2.4 GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview.
Table 6.2. BGA125 2.4 GHz Device Pinout
Pin Name
Pins Description
Pin Name
Pins Description
PF3
A1
GPIO (5V)
PF1
A2
GPIO (5V)
PC5
A3
GPIO (5V)
PC3
A4
GPIO (5V)
PC0
A5
GPIO (5V)
PC11
A6
GPIO (5V)
PC9
A7
GPIO (5V)
PC7
A8
GPIO (5V)
DECOUPLE
A9
Decouple output for on-chip voltage regulator. An external decoupling capacitor is
required at this pin.
VREGVDD
A11 Voltage regulator VDD input
silabs.com | Building a more connected world.
DVDD
VREGSW
A10 Digital power supply.
A12 DCDC regulator switching node
Rev. 1.0 | 115
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
Pin Name
Pins Description
A13
B11 Voltage regulator VSS
B12
PF8
B1
GPIO (5V)
PF2
B2
GPIO (5V)
PF0
B3
GPIO (5V)
PC4
B4
GPIO (5V)
PC1
B5
GPIO (5V)
PJ14
B6
GPIO (5V)
PC10
B7
GPIO (5V)
PC8
B8
GPIO (5V)
PC6
B9
GPIO (5V)
VREGVSS
IOVDD
B10
F2
Digital IO power supply.
F11
M12
AVDD
B13 Analog power supply.
PF11
C1
GPIO (5V)
PF10
C2
GPIO (5V)
PF9
C3
GPIO (5V)
PC2
C5
GPIO (5V)
PJ15
C6
GPIO (5V)
PB15
C10 GPIO
PB14
C11 GPIO
PB13
C12 GPIO
PB12
C13 GPIO
PF14
D1
GPIO (5V)
PF13
D2
PF12
D3
GPIO (5V)
PB11
D11 GPIO
PB10
D12 GPIO (5V)
PB9
D13 GPIO (5V)
PK1
E1
GPIO (5V)
GPIO (5V)
GPIO (5V)
PK0
E2
GPIO
PF15
E3
VSS
E5
E6
E7
E8
E9
F5
F6
F7
F8
F9
G5
G6
G7
G8
G9
H5
H6
H7
H8
H9
J5
J6
J7
J8
J9
K2
L2
Ground
PB8
E12 GPIO (5V)
PB7
E13 GPIO (5V)
PK2
F1
GPIO (5V)
PB6
F12
GPIO (5V)
PI3
F13
GPIO (5V)
PF5
G1
GPIO (5V)
PF4
G2
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 116
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
Pin Name
Pins Description
PI2
G11 GPIO (5V)
PI1
PI0
G13 GPIO (5V)
PF7
H1
PA9
H12 GPIO (5V)
PF6
H2
GPIO (5V)
PA8
H13 GPIO (5V)
PA7
J11
PA5
J13
PA4
K12 GPIO
G12 GPIO (5V)
GPIO (5V)
RFVDD
J1
J2
Radio power supply
GPIO (5V)
PA6
J12
GPIO (5V)
GPIO (5V)
HFXTAL_N
K1
High Frequency Crystal input pin.
PA3
K13 GPIO
BODEN
L10
Brown-Out Detector Enable. This pin may
be left disconnected or tied to AVDD.
PA1
L13
GPIO
M1
Reset input, active low. To apply an external reset source to this pin, it is required to
only drive this pin low during reset, and let
the internal pull-up ensure that reset is released.
RFVSS
M2
M3
M4
M5
N5
Radio Ground
PAVSS
M6
M7
Power Amplifier (PA) voltage regulator
VSS
PAVDD
M8
N8
Power Amplifier (PA) voltage regulator
VDD input
PD9
M9
GPIO (5V)
PD13
M11 GPIO
HFXTAL_P
L1
High Frequency Crystal output pin.
PA2
L12
GPIO
RESETn
NC
N1
N2
N3
N4
No Connect.
2G4RF_IOP
N7
2.4 GHz Differential RF input/output, positive path.
PD11
PA0
M10 GPIO (5V)
M13 GPIO
2G4RF_ION
N6
2.4 GHz Differential RF input/output, negative path. This pin should be externally
grounded.
PD8
N9
GPIO (5V)
PD10
N10 GPIO (5V)
PD12
N11 GPIO (5V)
PD14
N12 GPIO
PD15
N13 GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 117
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.3 QFN48 2.4 GHz and Sub-GHz Device Pinout
Figure 6.3. QFN48 2.4 GHz and Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview.
Table 6.3. QFN48 2.4 GHz and Sub-GHz Device Pinout
Pin Name
Pins Description
Pin Name
Pins Description
VSS
0
Ground
PF0
1
GPIO (5V)
PF1
2
GPIO (5V)
PF2
3
GPIO (5V)
PF3
4
GPIO (5V)
PF4
5
GPIO (5V)
PF5
6
GPIO (5V)
PF6
7
GPIO (5V)
PF7
8
GPIO (5V)
RFVDD
9
Radio power supply
HFXTAL_N
10
High Frequency Crystal input pin.
HFXTAL_P
11
High Frequency Crystal output pin.
silabs.com | Building a more connected world.
Rev. 1.0 | 118
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
Pin Name
Pins Description
RESETn
12
Reset input, active low. To apply an external reset source to this pin, it is required to
only drive this pin low during reset, and let
the internal pull-up ensure that reset is released.
SUBGRF_ON
14
Sub GHz Differential RF output, negative
path.
SUBGRF_IN
16
Sub GHz Differential RF input, negative
path.
RFVSS
17
Radio Ground
PAVSS
18
Power Amplifier (PA) voltage regulator
VSS
2G4RF_ION
19
2.4 GHz Differential RF input/output, negative path. This pin should be externally
grounded.
2G4RF_IOP
20
2.4 GHz Differential RF input/output, positive path.
PAVDD
21
Power Amplifier (PA) voltage regulator
VDD input
PD13
22
GPIO
PD14
23
GPIO
PD15
24
GPIO
PA0
25
GPIO
PA1
26
GPIO
PA2
27
GPIO
PA3
28
GPIO
PA4
29
GPIO
PA5
30
GPIO (5V)
PB11
31
GPIO
PB12
32
GPIO
PB13
33
GPIO
AVDD
34
Analog power supply.
PB14
35
GPIO
PB15
36
GPIO
VREGVSS
37
Voltage regulator VSS
VREGSW
38
DCDC regulator switching node
VREGVDD
39
Voltage regulator VDD input
DVDD
40
Digital power supply.
DECOUPLE
41
Decouple output for on-chip voltage regulator. An external decoupling capacitor is
required at this pin.
IOVDD
42
Digital IO power supply.
PC6
43
GPIO (5V)
PC7
44
GPIO (5V)
PC8
45
GPIO (5V)
PC9
46
GPIO (5V)
PC10
47
GPIO (5V)
PC11
48
GPIO (5V)
SUBGRF_OP
13
Sub GHz Differential RF output, positive
path.
SUBGRF_IP
15
Sub GHz Differential RF input, positive
path.
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 119
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.4 QFN48 2.4 GHz Device Pinout
Figure 6.4. QFN48 2.4 GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview.
Table 6.4. QFN48 2.4 GHz Device Pinout
Pin Name
Pins Description
Pin Name
Pins Description
VSS
0
Ground
PF0
1
GPIO (5V)
PF1
2
GPIO (5V)
PF2
3
GPIO (5V)
PF3
4
GPIO (5V)
PF4
5
GPIO (5V)
PF5
6
GPIO (5V)
PF6
7
GPIO (5V)
PF7
8
GPIO (5V)
RFVDD
9
Radio power supply
HFXTAL_N
10
High Frequency Crystal input pin.
HFXTAL_P
11
High Frequency Crystal output pin.
silabs.com | Building a more connected world.
Rev. 1.0 | 120
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Pin Name
Pins Description
RESETn
12
Reset input, active low. To apply an external reset source to this pin, it is required to
only drive this pin low during reset, and let
the internal pull-up ensure that reset is released.
RFVSS
14
Radio Ground
2G4RF_ION
16
2.4 GHz Differential RF input/output, negative path. This pin should be externally
grounded.
PAVDD
18
PD11
Pin Name
Pins Description
NC
13
No Connect.
PAVSS
15
Power Amplifier (PA) voltage regulator
VSS
2G4RF_IOP
17
2.4 GHz Differential RF input/output, positive path.
Power Amplifier (PA) voltage regulator
VDD input
PD10
19
GPIO (5V)
20
GPIO (5V)
PD12
21
GPIO (5V)
PD13
22
GPIO
PD14
23
GPIO
PD15
24
GPIO
PA0
25
GPIO
PA1
26
GPIO
PA2
27
GPIO
PA3
28
GPIO
PA4
29
GPIO
PA5
30
GPIO (5V)
PB11
31
GPIO
PB12
32
GPIO
PB13
33
GPIO
AVDD
34
Analog power supply.
PB14
35
GPIO
PB15
36
GPIO
VREGVSS
37
Voltage regulator VSS
VREGSW
38
DCDC regulator switching node
VREGVDD
39
Voltage regulator VDD input
DVDD
40
Digital power supply.
DECOUPLE
41
Decouple output for on-chip voltage regulator. An external decoupling capacitor is
required at this pin.
IOVDD
42
Digital IO power supply.
PC6
43
GPIO (5V)
PC7
44
GPIO (5V)
PC8
45
GPIO (5V)
PC9
46
GPIO (5V)
PC10
47
GPIO (5V)
PC11
48
GPIO (5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 121
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.5 GPIO Functionality Table
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO
pin, followed by the functionality available on that pin. Refer to 6.6 Alternate Functionality Overview for a list of GPIO locations available
for each function.
Table 6.5. GPIO Functionality Table
GPIO Name
Pin Alternate Functionality / Description
Analog
PF3
PF1
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24
WTIM0_CDTI2 #31
WTIM1_CC0 #27
WTIM1_CC1 #25
WTIM1_CC2 #23
WTIM1_CC3 #21 LETIM0_OUT0 #27 LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
US2_TX #16
US2_RX #15
US2_CLK #14
US2_CS #13
US2_CTS #12
US2_RTS #11
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22
WTIM0_CDTI1 #31
WTIM0_CDTI2 #29
WTIM1_CC0 #25
WTIM1_CC1 #23
WTIM1_CC2 #21
WTIM1_CC3 #19 LETIM0_OUT0 #25 LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
US2_TX #15
US2_RX #14
US2_CLK #13
US2_CS #12
US2_CTS #11
US2_RTS #10
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
BOOT_RX
silabs.com | Building a more connected world.
Rev. 1.0 | 122
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC5
PC3
PC0
Pin Alternate Functionality / Description
Analog
Timers
Communication
BUSAY BUSBX
WTIM0_CC0 #25
WTIM0_CC1 #23
WTIM0_CC2 #21
WTIM0_CDTI0 #17
WTIM0_CDTI1 #15
WTIM0_CDTI2 #13
WTIM1_CC0 #9
WTIM1_CC1 #7
WTIM1_CC2 #5
WTIM1_CC3 #3
PCNT1_S0IN #18
PCNT1_S1IN #17
PCNT2_S0IN #18
PCNT2_S1IN #17
US3_TX #23
US3_RX #22
US3_CLK #21
US3_CS #20
US3_CTS #19
US3_RTS #18
I2C1_SDA #18
I2C1_SCL #17
BUSAY BUSBX
WTIM0_CC0 #23
WTIM0_CC1 #21
WTIM0_CC2 #19
WTIM0_CDTI0 #15
WTIM0_CDTI1 #13
WTIM0_CDTI2 #11
WTIM1_CC0 #7
WTIM1_CC1 #5
WTIM1_CC2 #3
WTIM1_CC3 #1
PCNT1_S0IN #16
PCNT1_S1IN #15
PCNT2_S0IN #16
PCNT2_S1IN #15
US3_TX #21
US3_RX #20
US3_CLK #19
US3_CS #18
US3_CTS #17
US3_RTS #16
I2C1_SDA #16
I2C1_SCL #15
BUSBY BUSAX
WTIM0_CC0 #20
WTIM0_CC1 #18
WTIM0_CC2 #16
WTIM0_CDTI0 #12
WTIM0_CDTI1 #10
WTIM0_CDTI2 #8
WTIM1_CC0 #4
WTIM1_CC1 #2
WTIM1_CC2 #0
PCNT1_S0IN #13
PCNT1_S1IN #12
PCNT2_S0IN #13
PCNT2_S1IN #12
US3_TX #18
US3_RX #17
US3_CLK #16
US3_CS #15
US3_CTS #14
US3_RTS #13
I2C1_SDA #13
I2C1_SCL #12
silabs.com | Building a more connected world.
Radio
Other
Rev. 1.0 | 123
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC11
PC9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13
WTIM0_CC0 #31
WTIM0_CC1 #29
WTIM0_CC2 #27
WTIM0_CDTI0 #23
WTIM0_CDTI1 #21
WTIM0_CDTI2 #19
WTIM1_CC0 #15
WTIM1_CC1 #13
WTIM1_CC2 #11
WTIM1_CC3 #9 LETIM0_OUT0 #16 LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
PCNT2_S0IN #20
PCNT2_S1IN #19
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
I2C1_SDA #20
I2C1_SCL #19
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
BUSAY BUSBX
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11
WTIM0_CC0 #29
WTIM0_CC1 #27
WTIM0_CC2 #25
WTIM0_CDTI0 #21
WTIM0_CDTI1 #19
WTIM0_CDTI2 #17
WTIM1_CC0 #13
WTIM1_CC1 #11
WTIM1_CC2 #9
WTIM1_CC3 #7 LETIM0_OUT0 #14 LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT #12
MODEM_ANT0 #11
MODEM_ANT1 #10
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
ETM_TD2 #3
silabs.com | Building a more connected world.
Rev. 1.0 | 124
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC7
PF8
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9
WTIM0_CC0 #27
WTIM0_CC1 #25
WTIM0_CC2 #23
WTIM0_CDTI0 #19
WTIM0_CDTI1 #17
WTIM0_CDTI2 #15
WTIM1_CC0 #11
WTIM1_CC1 #9
WTIM1_CC2 #7
WTIM1_CC3 #5 LETIM0_OUT0 #12 LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT #10
MODEM_ANT0 #9
MODEM_ANT1 #8
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
ETM_TD0 #3
BUSBY BUSAX
WTIM1_CC1 #30
WTIM1_CC2 #28
WTIM1_CC3 #26
PCNT1_S0IN #21
PCNT1_S1IN #20
PCNT2_S0IN #21
PCNT2_S1IN #20
US2_TX #21
US2_RX #20
US2_CLK #19
US2_CS #18
US2_CTS #17
US2_RTS #16
I2C1_SDA #21
I2C1_SCL #20
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23
WTIM0_CDTI2 #30
WTIM1_CC0 #26
WTIM1_CC1 #24
WTIM1_CC2 #22
WTIM1_CC3 #20 LETIM0_OUT0 #26 LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
silabs.com | Building a more connected world.
ETM_TCLK #0
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO
DBG_SWO #0
GPIO_EM4WU0
Rev. 1.0 | 125
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PF0
PC4
PC1
PJ14
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21
WTIM0_CDTI1 #30
WTIM0_CDTI2 #28
WTIM1_CC0 #24
WTIM1_CC1 #22
WTIM1_CC2 #20
WTIM1_CC3 #18 LETIM0_OUT0 #24 LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
US2_TX #14
US2_RX #13
US2_CLK #12
US2_CS #11
US2_CTS #10
US2_RTS #9
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
BOOT_TX
BUSBY BUSAX
WTIM0_CC0 #24
WTIM0_CC1 #22
WTIM0_CC2 #20
WTIM0_CDTI0 #16
WTIM0_CDTI1 #14
WTIM0_CDTI2 #12
WTIM1_CC0 #8
WTIM1_CC1 #6
WTIM1_CC2 #4
WTIM1_CC3 #2
PCNT1_S0IN #17
PCNT1_S1IN #16
PCNT2_S0IN #17
PCNT2_S1IN #16
US3_TX #22
US3_RX #21
US3_CLK #20
US3_CS #19
US3_CTS #18
US3_RTS #17
I2C1_SDA #17
I2C1_SCL #16
BUSAY BUSBX
WTIM0_CC0 #21
WTIM0_CC1 #19
WTIM0_CC2 #17
WTIM0_CDTI0 #13
WTIM0_CDTI1 #11
WTIM0_CDTI2 #9
WTIM1_CC0 #5
WTIM1_CC1 #3
WTIM1_CC2 #1
PCNT1_S0IN #14
PCNT1_S1IN #13
PCNT2_S0IN #14
PCNT2_S1IN #13
US3_TX #19
US3_RX #18
US3_CLK #17
US3_CS #16
US3_CTS #15
US3_RTS #14
I2C1_SDA #14
I2C1_SCL #13
PCNT1_S0IN #11
PCNT1_S1IN #10
PCNT2_S0IN #11
PCNT2_S1IN #10
US3_TX #16
US3_RX #15
US3_CLK #14
US3_CS #13
US3_CTS #12
US3_RTS #11
I2C1_SDA #11
I2C1_SCL #10
BUSACMP1Y BUSACMP1X
silabs.com | Building a more connected world.
LES_ALTEX2
Rev. 1.0 | 126
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC10
PC8
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12
WTIM0_CC0 #30
WTIM0_CC1 #28
WTIM0_CC2 #26
WTIM0_CDTI0 #22
WTIM0_CDTI1 #20
WTIM0_CDTI2 #18
WTIM1_CC0 #14
WTIM1_CC1 #12
WTIM1_CC2 #10
WTIM1_CC3 #8 LETIM0_OUT0 #15 LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
PCNT2_S0IN #19
PCNT2_S1IN #18
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
I2C1_SDA #19
I2C1_SCL #18
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
ETM_TD3 #3
GPIO_EM4WU12
BUSBY BUSAX
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10
WTIM0_CC0 #28
WTIM0_CC1 #26
WTIM0_CC2 #24
WTIM0_CDTI0 #20
WTIM0_CDTI1 #18
WTIM0_CDTI2 #16
WTIM1_CC0 #12
WTIM1_CC1 #10
WTIM1_CC2 #8
WTIM1_CC3 #6 LETIM0_OUT0 #13 LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT #11
MODEM_ANT0 #10
MODEM_ANT1 #9
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
ETM_TD1 #3
silabs.com | Building a more connected world.
Rev. 1.0 | 127
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC6
PF11
PF10
PF9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8
WTIM0_CC0 #26
WTIM0_CC1 #24
WTIM0_CC2 #22
WTIM0_CDTI0 #18
WTIM0_CDTI1 #16
WTIM0_CDTI2 #14
WTIM1_CC0 #10
WTIM1_CC1 #8
WTIM1_CC2 #6
WTIM1_CC3 #4 LETIM0_OUT0 #11 LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
MODEM_ANT0 #8
MODEM_ANT1 #7
CMU_CLK0 #2
CMU_CLKI0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
ETM_TCLK #3
BUSAY BUSBX
WTIM1_CC2 #31
WTIM1_CC3 #29
PCNT1_S0IN #24
PCNT1_S1IN #23
PCNT2_S0IN #24
PCNT2_S1IN #23
US2_TX #24
US2_RX #23
US2_CLK #22
US2_CS #21
US2_CTS #20
US2_RTS #19
US3_TX #24
US3_RX #23
US3_CLK #22
US3_CS #21
US3_CTS #20
US3_RTS #19
I2C1_SDA #24
I2C1_SCL #23
ETM_TD2 #0
BUSBY BUSAX
WTIM1_CC2 #30
WTIM1_CC3 #28
PCNT1_S0IN #23
PCNT1_S1IN #22
PCNT2_S0IN #23
PCNT2_S1IN #22
US2_TX #23
US2_RX #22
US2_CLK #21
US2_CS #20
US2_CTS #19
US2_RTS #18
I2C1_SDA #23
I2C1_SCL #22
ETM_TD1 #0
BUSAY BUSBX
WTIM1_CC1 #31
WTIM1_CC2 #29
WTIM1_CC3 #27
PCNT1_S0IN #22
PCNT1_S1IN #21
PCNT2_S0IN #22
PCNT2_S1IN #21
US2_TX #22
US2_RX #21
US2_CLK #20
US2_CS #19
US2_CTS #18
US2_RTS #17
I2C1_SDA #22
I2C1_SCL #21
ETM_TD0 #0
silabs.com | Building a more connected world.
Rev. 1.0 | 128
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PC2
PJ15
PB15
Pin Alternate Functionality / Description
Analog
Timers
Communication
BUSBY BUSAX
WTIM0_CC0 #22
WTIM0_CC1 #20
WTIM0_CC2 #18
WTIM0_CDTI0 #14
WTIM0_CDTI1 #12
WTIM0_CDTI2 #10
WTIM1_CC0 #6
WTIM1_CC1 #4
WTIM1_CC2 #2
WTIM1_CC3 #0
PCNT1_S0IN #15
PCNT1_S1IN #14
PCNT2_S0IN #15
PCNT2_S1IN #14
US3_TX #20
US3_RX #19
US3_CLK #18
US3_CS #17
US3_CTS #16
US3_RTS #15
I2C1_SDA #15
I2C1_SCL #14
BUSACMP1Y BUSACMP1X
PCNT1_S0IN #12
PCNT1_S1IN #11
PCNT2_S0IN #12
PCNT2_S1IN #11
US3_TX #17
US3_RX #16
US3_CLK #15
US3_CS #14
US3_CTS #13
US3_RTS #12
I2C1_SDA #12
I2C1_SCL #11
BUSCY BUSDX
LFXTAL_P
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7
WTIM0_CC0 #19
WTIM0_CC1 #17
WTIM0_CC2 #15
WTIM0_CDTI0 #11
WTIM0_CDTI1 #9
WTIM0_CDTI2 #7
WTIM1_CC0 #3
WTIM1_CC1 #1 LETIM0_OUT0 #10 LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
US1_TX #10
US1_RX #9
US1_CLK #8
US1_CS #7
US1_CTS #6
US1_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
silabs.com | Building a more connected world.
Radio
Other
LES_ALTEX3
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
Rev. 1.0 | 129
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PB14
PB13
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
LFXTAL_N
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6
WTIM0_CC0 #18
WTIM0_CC1 #16
WTIM0_CC2 #14
WTIM0_CDTI0 #10
WTIM0_CDTI1 #8
WTIM0_CDTI2 #6
WTIM1_CC0 #2
WTIM1_CC1 #0 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9 US0_RX
#8 US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
US1_TX #9 US1_RX
#8 US1_CLK #7
US1_CS #6
US1_CTS #5
US1_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
BUSCY BUSDX
OPA2_N
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5
WTIM0_CC0 #17
WTIM0_CC1 #15
WTIM0_CC2 #13
WTIM0_CDTI0 #9
WTIM0_CDTI1 #7
WTIM0_CDTI2 #5
WTIM1_CC0 #1 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8 US0_RX
#7 US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8 US1_RX
#7 US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
CMU_CLKI0 #0
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
silabs.com | Building a more connected world.
Rev. 1.0 | 130
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PB12
PF14
PF13
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
OPA2_OUT
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4
WTIM0_CC0 #16
WTIM0_CC1 #14
WTIM0_CC2 #12
WTIM0_CDTI0 #8
WTIM0_CDTI1 #6
WTIM0_CDTI2 #4
WTIM1_CC0 #0 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7 US0_RX
#6 US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
US1_TX #7 US1_RX
#6 US1_CLK #5
US1_CS #4
US1_CTS #3
US1_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
PCNT1_S0IN #27
PCNT1_S1IN #26
PCNT2_S0IN #27
PCNT2_S1IN #26
US2_TX #27
US2_RX #26
US2_CLK #25
US2_CS #24
US2_CTS #23
US2_RTS #22
US3_TX #27
US3_RX #26
US3_CLK #25
US3_CS #24
US3_CTS #23
US3_RTS #22
I2C1_SDA #27
I2C1_SCL #26
WTIM1_CC3 #31
PCNT1_S0IN #26
PCNT1_S1IN #25
PCNT2_S0IN #26
PCNT2_S1IN #25
US2_TX #26
US2_RX #25
US2_CLK #24
US2_CS #23
US2_CTS #22
US2_RTS #21
US3_TX #26
US3_RX #25
US3_CLK #24
US3_CS #23
US3_CTS #22
US3_RTS #21
I2C1_SDA #26
I2C1_SCL #25
BUSBY BUSAX
BUSAY BUSBX
silabs.com | Building a more connected world.
Rev. 1.0 | 131
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PF12
PB11
PB10
Timers
Communication
BUSBY BUSAX
WTIM1_CC3 #30
PCNT1_S0IN #25
PCNT1_S1IN #24
PCNT2_S0IN #25
PCNT2_S1IN #24
US2_TX #25
US2_RX #24
US2_CLK #23
US2_CS #22
US2_CTS #21
US2_RTS #20
US3_TX #25
US3_RX #24
US3_CLK #23
US3_CS #22
US3_CTS #21
US3_RTS #20
I2C1_SDA #25
I2C1_SCL #24
BUSCY BUSDX
OPA2_P
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3
WTIM0_CC0 #15
WTIM0_CC1 #13
WTIM0_CC2 #11
WTIM0_CDTI0 #7
WTIM0_CDTI1 #5
WTIM0_CDTI2 #3
LETIM0_OUT0 #6
LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6 US0_RX
#5 US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6 US1_RX
#5 US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
US3_TX #15
US3_RX #14
US3_CLK #13
US3_CS #12
US3_CTS #11
US3_RTS #10
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
WTIM0_CC0 #14
WTIM0_CC1 #12
WTIM0_CC2 #10
WTIM0_CDTI0 #6
WTIM0_CDTI1 #4
WTIM0_CDTI2 #2
PCNT1_S0IN #10
PCNT1_S1IN #9
PCNT2_S0IN #10
PCNT2_S1IN #9
US2_TX #13
US2_RX #12
US2_CLK #11
US2_CS #10
US2_CTS #9
US2_RTS #8
US3_TX #14
US3_RX #13
US3_CLK #12
US3_CS #11
US3_CTS #10
US3_RTS #9
I2C1_SDA #10
I2C1_SCL #9
OPA2_OUTALT #1
BUSDY BUSCX
silabs.com | Building a more connected world.
Radio
Other
ETM_TD3 #0
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
Rev. 1.0 | 132
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PB9
OPA2_OUTALT #0
BUSCY BUSDX
PK1
PK0
PF15
IDAC0_OUT
BUSAY BUSBX
silabs.com | Building a more connected world.
Timers
Communication
WTIM0_CC0 #13
WTIM0_CC1 #11
WTIM0_CC2 #9
WTIM0_CDTI0 #5
WTIM0_CDTI1 #3
WTIM0_CDTI2 #1
PCNT1_S0IN #9
PCNT1_S1IN #8
PCNT2_S0IN #9
PCNT2_S1IN #8
US2_TX #12
US2_RX #11
US2_CLK #10
US2_CS #9
US2_CTS #8
US2_RTS #7
US3_TX #13
US3_RX #12
US3_CLK #11
US3_CS #10
US3_CTS #9
US3_RTS #8
I2C1_SDA #9
I2C1_SCL #8
PCNT1_S0IN #30
PCNT1_S1IN #29
PCNT2_S0IN #30
PCNT2_S1IN #29
US2_TX #30
US2_RX #29
US2_CLK #28
US2_CS #27
US2_CTS #26
US2_RTS #25
US3_TX #30
US3_RX #29
US3_CLK #28
US3_CS #27
US3_CTS #26
US3_RTS #25
I2C1_SDA #30
I2C1_SCL #29
PCNT1_S0IN #29
PCNT1_S1IN #28
PCNT2_S0IN #29
PCNT2_S1IN #28
US2_TX #29
US2_RX #28
US2_CLK #27
US2_CS #26
US2_CTS #25
US2_RTS #24
US3_TX #29
US3_RX #28
US3_CLK #27
US3_CS #26
US3_CTS #25
US3_RTS #24
I2C1_SDA #29
I2C1_SCL #28
PCNT1_S0IN #28
PCNT1_S1IN #27
PCNT2_S0IN #28
PCNT2_S1IN #27
US2_TX #28
US2_RX #27
US2_CLK #26
US2_CS #25
US2_CTS #24
US2_RTS #23
US3_TX #28
US3_RX #27
US3_CLK #26
US3_CS #25
US3_CTS #24
US3_RTS #23
I2C1_SDA #28
I2C1_SCL #27
Radio
Other
Rev. 1.0 | 133
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PB8
PB7
BUSDY BUSCX
BUSCY BUSDX
PK2
PB6
BUSDY BUSCX
silabs.com | Building a more connected world.
Timers
Communication
Radio
Other
WTIM0_CC0 #12
WTIM0_CC1 #10
WTIM0_CC2 #8
WTIM0_CDTI0 #4
WTIM0_CDTI1 #2
WTIM0_CDTI2 #0
PCNT1_S0IN #8
PCNT1_S1IN #7
PCNT2_S0IN #8
PCNT2_S1IN #7
US2_TX #11
US2_RX #10
US2_CLK #9
US2_CS #8
US2_CTS #7
US2_RTS #6
US3_TX #12
US3_RX #11
US3_CLK #10
US3_CS #9
US3_CTS #8
US3_RTS #7
I2C1_SDA #8
I2C1_SCL #7
ETM_TD3 #2
WTIM0_CC0 #11
WTIM0_CC1 #9
WTIM0_CC2 #7
WTIM0_CDTI0 #3
WTIM0_CDTI1 #1
PCNT1_S0IN #7
PCNT1_S1IN #6
PCNT2_S0IN #7
PCNT2_S1IN #6
US2_TX #10
US2_RX #9
US2_CLK #8
US2_CS #7
US2_CTS #6
US2_RTS #5
US3_TX #11
US3_RX #10
US3_CLK #9
US3_CS #8
US3_CTS #7
US3_RTS #6
I2C1_SDA #7
I2C1_SCL #6
ETM_TD2 #2
PCNT1_S0IN #31
PCNT1_S1IN #30
PCNT2_S0IN #31
PCNT2_S1IN #30
US2_TX #31
US2_RX #30
US2_CLK #29
US2_CS #28
US2_CTS #27
US2_RTS #26
US3_TX #31
US3_RX #30
US3_CLK #29
US3_CS #28
US3_CTS #27
US3_RTS #26
I2C1_SDA #31
I2C1_SCL #30
WTIM0_CC0 #10
WTIM0_CC1 #8
WTIM0_CC2 #6
WTIM0_CDTI0 #2
WTIM0_CDTI1 #0
PCNT1_S0IN #6
PCNT1_S1IN #5
PCNT2_S0IN #6
PCNT2_S1IN #5
US2_TX #9 US2_RX
#8 US2_CLK #7
US2_CS #6
US2_CTS #5
US2_RTS #4
US3_TX #10
US3_RX #9
US3_CLK #8
US3_CS #7
US3_CTS #6
US3_RTS #5
I2C1_SDA #6
I2C1_SCL #5
CMU_CLKI0 #3
ETM_TD1 #2
Rev. 1.0 | 134
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PI3
PF5
PF4
BUSADC0Y BUSADC0X
BUSAY BUSBX
BUSBY BUSAX
silabs.com | Building a more connected world.
Timers
Communication
Radio
Other
PCNT1_S0IN #5
PCNT1_S1IN #4
PCNT2_S0IN #5
PCNT2_S1IN #4
US2_TX #8 US2_RX
#7 US2_CLK #6
US2_CS #5
US2_CTS #4
US2_RTS #3
US3_TX #9 US3_RX
#8 US3_CLK #7
US3_CS #6
US3_CTS #5
US3_RTS #4
I2C1_SDA #5
I2C1_SCL #4
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26
WTIM1_CC0 #29
WTIM1_CC1 #27
WTIM1_CC2 #25
WTIM1_CC3 #23 LETIM0_OUT0 #29 LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
US2_TX #18
US2_RX #17
US2_CLK #16
US2_CS #15
US2_CTS #14
US2_RTS #13
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT #27
MODEM_ANT0 #26
MODEM_ANT1 #25
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25
WTIM1_CC0 #28
WTIM1_CC1 #26
WTIM1_CC2 #24
WTIM1_CC3 #22 LETIM0_OUT0 #28 LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
US2_TX #17
US2_RX #16
US2_CLK #15
US2_CS #14
US2_CTS #13
US2_RTS #12
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT #26
MODEM_ANT0 #25
MODEM_ANT1 #24
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
LES_ALTEX7
ETM_TD0 #2
Rev. 1.0 | 135
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PI2
PI1
PI0
PF7
Timers
Communication
PCNT1_S0IN #4
PCNT1_S1IN #3
PCNT2_S0IN #4
PCNT2_S1IN #3
US2_TX #7 US2_RX
#6 US2_CLK #5
US2_CS #4
US2_CTS #3
US2_RTS #2
US3_TX #8 US3_RX
#7 US3_CLK #6
US3_CS #5
US3_CTS #4
US3_RTS #3
I2C1_SDA #4
I2C1_SCL #3
LES_ALTEX6
ETM_TCLK #2
BUSADC0Y BUSADC0X
US2_TX #6 US2_RX
#5 US2_CLK #4
US2_CS #3
US2_CTS #2
US2_RTS #1
LES_ALTEX5
BUSADC0Y BUSADC0X
US2_TX #5 US2_RX
#4 US2_CLK #3
US2_CS #2
US2_CTS #1
US2_RTS #0
LES_ALTEX4
BUSADC0Y BUSADC0X
BUSAY BUSBX
silabs.com | Building a more connected world.
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28
WTIM1_CC0 #31
WTIM1_CC1 #29
WTIM1_CC2 #27
WTIM1_CC3 #25 LETIM0_OUT0 #31 LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
PCNT1_S0IN #20
PCNT1_S1IN #19
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
US2_TX #20
US2_RX #19
US2_CLK #18
US2_CS #17
US2_CTS #16
US2_RTS #15
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
Radio
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT #29
MODEM_ANT0 #28
MODEM_ANT1 #27
Other
CMU_CLKI0 #1
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
Rev. 1.0 | 136
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PF6
PA9
PA8
PA7
PA6
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27
WTIM1_CC0 #30
WTIM1_CC1 #28
WTIM1_CC2 #26
WTIM1_CC3 #24 LETIM0_OUT0 #30 LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
PCNT1_S0IN #19
PCNT1_S1IN #18
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
US2_TX #19
US2_RX #18
US2_CLK #17
US2_CS #16
US2_CTS #15
US2_RTS #14
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT #28
MODEM_ANT0 #27
MODEM_ANT1 #26
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
BUSACMP0Y BUSACMP0X
WTIM0_CC0 #9
WTIM0_CC1 #7
WTIM0_CC2 #5
WTIM0_CDTI0 #1
PCNT1_S0IN #3
PCNT1_S1IN #2
PCNT2_S0IN #3
PCNT2_S1IN #2
US2_TX #4 US2_RX
#3 US2_CLK #2
US2_CS #1
US2_CTS #0
US2_RTS #31
I2C1_SDA #3
I2C1_SCL #2
LES_ALTEX1
ETM_TD3 #1
BUSACMP0Y BUSACMP0X
WTIM0_CC0 #8
WTIM0_CC1 #6
WTIM0_CC2 #4
WTIM0_CDTI0 #0
PCNT1_S0IN #2
PCNT1_S1IN #1
PCNT2_S0IN #2
PCNT2_S1IN #1
US2_TX #3 US2_RX
#2 US2_CLK #1
US2_CS #0
US2_CTS #31
US2_RTS #30
I2C1_SDA #2
I2C1_SCL #1
LES_ALTEX0
ETM_TD2 #1
BUSCY BUSDX
WTIM0_CC0 #7
WTIM0_CC1 #5
WTIM0_CC2 #3
PCNT1_S0IN #1
PCNT1_S1IN #0
PCNT2_S0IN #1
PCNT2_S1IN #0
US2_TX #2 US2_RX
#1 US2_CLK #0
US2_CS #31
US2_CTS #30
US2_RTS #29
I2C1_SDA #1
I2C1_SCL #0
LES_CH15
ETM_TD1 #1
BUSDY BUSCX
WTIM0_CC0 #6
WTIM0_CC1 #4
WTIM0_CC2 #2
PCNT1_S0IN #0
PCNT1_S1IN #31
PCNT2_S0IN #0
PCNT2_S1IN #31
US2_TX #1 US2_RX
#0 US2_CLK #31
US2_CS #30
US2_CTS #29
US2_RTS #28
I2C1_SDA #0
I2C1_SCL #31
LES_CH14
ETM_TD0 #1
silabs.com | Building a more connected world.
Rev. 1.0 | 137
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PA5
PA4
PA3
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
VDAC0_OUT0ALT /
OPA0_OUTALT #0
BUSCY BUSDX
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2
WTIM0_CC0 #5
WTIM0_CC1 #3
WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5 US0_RX
#4 US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5 US1_RX
#4 US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
US2_TX #0 US2_RX
#31 US2_CLK #30
US2_CS #29
US2_CTS #28
US2_RTS #27
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
MODEM_ANT0 #2
MODEM_ANT1 #1
CMU_CLKI0 #4
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
LES_CH13
ETM_TCLK #1
VDAC0_OUT1ALT /
OPA1_OUTALT #2
BUSDY BUSCX
OPA0_N
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1
WTIM0_CC0 #4
WTIM0_CC1 #2
WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4 US0_RX
#3 US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4 US1_RX
#3 US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
MODEM_ANT0 #1
MODEM_ANT1 #0
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
LES_CH12
BUSCY BUSDX
VDAC0_OUT0 /
OPA0_OUT
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0
WTIM0_CC0 #3
WTIM0_CC1 #1 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3 US0_RX
#2 US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3 US1_RX
#2 US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
MODEM_ANT0 #0
MODEM_ANT1 #31
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
LES_CH11
GPIO_EM4WU8
silabs.com | Building a more connected world.
Rev. 1.0 | 138
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PA2
PA1
PD9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
VDAC0_OUT1ALT /
OPA1_OUTALT #1
BUSDY BUSCX
OPA0_P
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31
WTIM0_CC0 #2
WTIM0_CC1 #0 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2 US0_RX
#1 US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2 US1_RX
#1 US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
MODEM_ANT0 #31
MODEM_ANT1 #30
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
LES_CH10
BUSCY BUSDX
ADC0_EXTP
VDAC0_EXT
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30
WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1 US0_RX
#0 US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1 US1_RX
#0 US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
LES_CH9
BUSCY BUSDX
TIM0_CC0 #17
US0_TX #17
TIM0_CC1 #16
TIM0_CC2 #15
US0_RX #16
TIM0_CDTI0 #14
US0_CLK #15
TIM0_CDTI1 #13
US0_CS #14
TIM0_CDTI2 #12
US0_CTS #13
US0_RTS #12
TIM1_CC0 #17
TIM1_CC1 #16
US1_TX #17
TIM1_CC2 #15
US1_RX #16
TIM1_CC3 #14
US1_CLK #15
WTIM0_CC1 #31
US1_CS #14
WTIM0_CC2 #29
US1_CTS #13
WTIM0_CDTI0 #25
US1_RTS #12
WTIM0_CDTI1 #23 US3_TX #1 US3_RX
WTIM0_CDTI2 #21
#0 US3_CLK #31
WTIM1_CC0 #17
US3_CS #30
WTIM1_CC1 #15
US3_CTS #29
US3_RTS #28
WTIM1_CC2 #13
WTIM1_CC3 #11 LELEU0_TX #17
TIM0_OUT0 #17 LELEU0_RX #16
TIM0_OUT1 #16
I2C0_SDA #17
I2C0_SCL #16
PCNT0_S0IN #17
PCNT0_S1IN #16
FRC_DCLK #17
FRC_DOUT #16
FRC_DFRAME #15
MODEM_DCLK #17
MODEM_DIN #16
MODEM_DOUT #15
MODEM_ANT0 #14
MODEM_ANT1 #13
CMU_CLK0 #4
PRS_CH3 #8
PRS_CH4 #0
PRS_CH5 #6
PRS_CH6 #11
ACMP0_O #17
ACMP1_O #17
LES_CH1
silabs.com | Building a more connected world.
Rev. 1.0 | 139
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PD11
PD13
PA0
Radio
Other
BUSCY BUSDX
TIM0_CC0 #19
US0_TX #19
TIM0_CC1 #18
US0_RX #18
TIM0_CC2 #17
US0_CLK #17
TIM0_CDTI0 #16
US0_CS #16
TIM0_CDTI1 #15
US0_CTS #15
TIM0_CDTI2 #14
US0_RTS #14
TIM1_CC0 #19
US1_TX #19
TIM1_CC1 #18
US1_RX #18
TIM1_CC2 #17
US1_CLK #17
TIM1_CC3 #16
US1_CS #16
WTIM0_CC2 #31
US1_CTS #15
WTIM0_CDTI0 #27
US1_RTS #14
WTIM0_CDTI1 #25
US3_TX #3 US3_RX
WTIM0_CDTI2 #23
#2 US3_CLK #1
WTIM1_CC0 #19
US3_CS #0
WTIM1_CC1 #17
US3_CTS #31
WTIM1_CC2 #15
US3_RTS #30
WTIM1_CC3 #13 LELEU0_TX #19
TIM0_OUT0 #19 LELEU0_RX #18
TIM0_OUT1 #18
I2C0_SDA #19
PCNT0_S0IN #19
I2C0_SCL #18
PCNT0_S1IN #18
FRC_DCLK #19
FRC_DOUT #18
FRC_DFRAME #17
MODEM_DCLK #19
MODEM_DIN #18
MODEM_DOUT #17
MODEM_ANT0 #16
MODEM_ANT1 #15
PRS_CH3 #10
PRS_CH4 #2
PRS_CH5 #1
PRS_CH6 #13
ACMP0_O #19
ACMP1_O #19
LES_CH3
VDAC0_OUT0ALT /
OPA0_OUTALT #1
BUSCY BUSDX
OPA1_P
TIM0_CC0 #21
US0_TX #21
TIM0_CC1 #20
US0_RX #20
TIM0_CC2 #19
US0_CLK #19
TIM0_CDTI0 #18
US0_CS #18
TIM0_CDTI1 #17
US0_CTS #17
TIM0_CDTI2 #16
US0_RTS #16
TIM1_CC0 #21
US1_TX #21
TIM1_CC1 #20
US1_RX #20
TIM1_CC2 #19
US1_CLK #19
TIM1_CC3 #18
US1_CS #18
WTIM0_CDTI0 #29
US1_CTS #17
WTIM0_CDTI1 #27
US1_RTS #16
WTIM0_CDTI2 #25 US3_TX #5 US3_RX
WTIM1_CC0 #21
#4 US3_CLK #3
WTIM1_CC1 #19
US3_CS #2
WTIM1_CC2 #17
US3_CTS #1
WTIM1_CC3 #15 LEUS3_RTS #0
TIM0_OUT0 #21 LELEU0_TX #21
TIM0_OUT1 #20
LEU0_RX #20
PCNT0_S0IN #21
I2C0_SDA #21
PCNT0_S1IN #20
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
MODEM_ANT0 #18
MODEM_ANT1 #17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
LES_CH5
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29
WTIM0_CC0 #0 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
LES_CH8
BUSDY BUSCX
ADC0_EXTN
silabs.com | Building a more connected world.
Timers
Communication
US0_TX #0 US0_RX
#31 US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0 US1_RX
#31 US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
Rev. 1.0 | 140
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
PD8
PD10
PD12
Pin Alternate Functionality / Description
Analog
Timers
Communication
BUSDY BUSCX
WTIM0_CC1 #30
WTIM0_CC2 #28
WTIM0_CDTI0 #24
WTIM0_CDTI1 #22
WTIM0_CDTI2 #20
WTIM1_CC0 #16
WTIM1_CC1 #14
WTIM1_CC2 #12
WTIM1_CC3 #10
US3_TX #0 US3_RX
#31 US3_CLK #30
US3_CS #29
US3_CTS #28
US3_RTS #27
Radio
Other
LES_CH0
BUSDY BUSCX
TIM0_CC0 #18
US0_TX #18
TIM0_CC1 #17
US0_RX #17
TIM0_CC2 #16
US0_CLK #16
TIM0_CDTI0 #15
US0_CS #15
TIM0_CDTI1 #14
US0_CTS #14
TIM0_CDTI2 #13
US0_RTS #13
TIM1_CC0 #18
US1_TX #18
TIM1_CC1 #17
US1_RX #17
TIM1_CC2 #16
US1_CLK #16
TIM1_CC3 #15
US1_CS #15
WTIM0_CC2 #30
US1_CTS #14
WTIM0_CDTI0 #26
US1_RTS #13
WTIM0_CDTI1 #24
US3_TX #2 US3_RX
WTIM0_CDTI2 #22
#1 US3_CLK #0
WTIM1_CC0 #18
US3_CS #31
WTIM1_CC1 #16
US3_CTS #30
WTIM1_CC2 #14
US3_RTS #29
WTIM1_CC3 #12 LELEU0_TX #18
TIM0_OUT0 #18 LELEU0_RX #17
TIM0_OUT1 #17
I2C0_SDA #18
PCNT0_S0IN #18
I2C0_SCL #17
PCNT0_S1IN #17
FRC_DCLK #18
FRC_DOUT #17
FRC_DFRAME #16
MODEM_DCLK #18
MODEM_DIN #17
MODEM_DOUT #16
MODEM_ANT0 #15
MODEM_ANT1 #14
CMU_CLK1 #4
PRS_CH3 #9
PRS_CH4 #1
PRS_CH5 #0
PRS_CH6 #12
ACMP0_O #18
ACMP1_O #18
LES_CH2
VDAC0_OUT1ALT /
OPA1_OUTALT #0
BUSDY BUSCX
TIM0_CC0 #20
US0_TX #20
TIM0_CC1 #19
US0_RX #19
TIM0_CC2 #18
US0_CLK #18
TIM0_CDTI0 #17
US0_CS #17
TIM0_CDTI1 #16
US0_CTS #16
TIM0_CDTI2 #15
US0_RTS #15
TIM1_CC0 #20
US1_TX #20
TIM1_CC1 #19
US1_RX #19
TIM1_CC2 #18
US1_CLK #18
TIM1_CC3 #17
US1_CS #17
WTIM0_CDTI0 #28
US1_CTS #16
WTIM0_CDTI1 #26
US1_RTS #15
WTIM0_CDTI2 #24 US3_TX #4 US3_RX
WTIM1_CC0 #20
#3 US3_CLK #2
WTIM1_CC1 #18
US3_CS #1
WTIM1_CC2 #16
US3_CTS #0
WTIM1_CC3 #14 LEUS3_RTS #31
TIM0_OUT0 #20 LELEU0_TX #20
TIM0_OUT1 #19
LEU0_RX #19
PCNT0_S0IN #20
I2C0_SDA #20
PCNT0_S1IN #19
I2C0_SCL #19
FRC_DCLK #20
FRC_DOUT #19
FRC_DFRAME #18
MODEM_DCLK #20
MODEM_DIN #19
MODEM_DOUT #18
MODEM_ANT0 #17
MODEM_ANT1 #16
PRS_CH3 #11
PRS_CH4 #3
PRS_CH5 #2
PRS_CH6 #14
ACMP0_O #20
ACMP1_O #20
LES_CH4
silabs.com | Building a more connected world.
Rev. 1.0 | 141
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PD14
PD15
Radio
Other
BUSDY BUSCX
VDAC0_OUT1 /
OPA1_OUT
TIM0_CC0 #22
US0_TX #22
TIM0_CC1 #21
US0_RX #21
TIM0_CC2 #20
US0_CLK #20
TIM0_CDTI0 #19
US0_CS #19
TIM0_CDTI1 #18
US0_CTS #18
TIM0_CDTI2 #17
US0_RTS #17
TIM1_CC0 #22
US1_TX #22
TIM1_CC1 #21
US1_RX #21
TIM1_CC2 #20
US1_CLK #20
TIM1_CC3 #19
US1_CS #19
WTIM0_CDTI0 #30
US1_CTS #18
WTIM0_CDTI1 #28
US1_RTS #17
WTIM0_CDTI2 #26 US3_TX #6 US3_RX
WTIM1_CC0 #22
#5 US3_CLK #4
WTIM1_CC1 #20
US3_CS #3
WTIM1_CC2 #18
US3_CTS #2
WTIM1_CC3 #16 LEUS3_RTS #1
TIM0_OUT0 #22 LELEU0_TX #22
TIM0_OUT1 #21
LEU0_RX #21
PCNT0_S0IN #22
I2C0_SDA #22
PCNT0_S1IN #21
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
MODEM_ANT0 #19
MODEM_ANT1 #18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
LES_CH6
GPIO_EM4WU4
VDAC0_OUT0ALT /
OPA0_OUTALT #2
BUSCY BUSDX
OPA1_N
TIM0_CC0 #23
US0_TX #23
TIM0_CC1 #22
US0_RX #22
TIM0_CC2 #21
US0_CLK #21
TIM0_CDTI0 #20
US0_CS #20
TIM0_CDTI1 #19
US0_CTS #19
TIM0_CDTI2 #18
US0_RTS #18
TIM1_CC0 #23
US1_TX #23
TIM1_CC1 #22
US1_RX #22
TIM1_CC2 #21
US1_CLK #21
TIM1_CC3 #20
US1_CS #20
WTIM0_CDTI0 #31
US1_CTS #19
WTIM0_CDTI1 #29
US1_RTS #18
WTIM0_CDTI2 #27 US3_TX #7 US3_RX
WTIM1_CC0 #23
#6 US3_CLK #5
WTIM1_CC1 #21
US3_CS #4
WTIM1_CC2 #19
US3_CTS #3
WTIM1_CC3 #17 LEUS3_RTS #2
TIM0_OUT0 #23 LELEU0_TX #23
TIM0_OUT1 #22
LEU0_RX #22
PCNT0_S0IN #23
I2C0_SDA #23
PCNT0_S1IN #22
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
MODEM_ANT0 #20
MODEM_ANT1 #19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
LES_CH7
DBG_SWO #2
silabs.com | Building a more connected world.
Timers
Communication
Rev. 1.0 | 142
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.6 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO
pin. Refer to 6.5 GPIO Functionality Table for a list of functions available on each GPIO pin.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.6. Alternate Functionality Overview
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
ACMP0_O
0: PA0
1: PA1
2: PA2
3: PA3
ACMP1_O
0: PA0
1: PA1
2: PA2
3: PA3
24 - 27
28 - 31
Description
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP0, digital output.
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Analog comparator
ACMP1, digital output.
0: PA0
Analog to digital
converter ADC0 external reference input negative pin.
0: PA1
Analog to digital
converter ADC0 external reference input positive pin.
ADC0_EXTN
ADC0_EXTP
0: PF1
BOOT_RX
Bootloader RX.
0: PF0
BOOT_TX
Bootloader TX.
CMU_CLK0
0: PA1
1: PB15
2: PC6
3: PC11
4: PD9
5: PD14
6: PF2
7: PF7
Clock Management
Unit, clock output
number 0.
CMU_CLK1
0: PA0
1: PB14
2: PC7
3: PC10
4: PD10
5: PD15
6: PF3
7: PF6
Clock Management
Unit, clock output
number 1.
4: PA5
CMU_CLKI0
0: PB13
1: PF7
2: PC6
3: PB6
silabs.com | Building a more connected world.
Clock Management
Unit, clock output
number I0.
Rev. 1.0 | 143
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
0: PF0
DBG_SWCLKTCK
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
0: PF1
DBG_SWDIOTMS
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
0: PF2
1: PB13
2: PD15
3: PC11
Debug-interface
Serial Wire viewer
Output.
0: PF3
Debug-interface
JTAG Test Data In.
DBG_SWO
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
DBG_TDI
0: PF2
DBG_TDO
Debug-interface
JTAG Test Data
Out.
Note that this function is enabled to
pin out of reset.
ETM_TCLK
0: PF8
1: PA5
2: PI2
3: PC6
Embedded Trace
Module ETM clock .
ETM_TD0
0: PF9
1: PA6
2: PI3
3: PC7
Embedded Trace
Module ETM data
0.
ETM_TD1
0: PF10
1: PA7
2: PB6
3: PC8
Embedded Trace
Module ETM data
1.
silabs.com | Building a more connected world.
Rev. 1.0 | 144
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
ETM_TD2
0: PF11
1: PA8
2: PB7
3: PC9
Embedded Trace
Module ETM data
2.
ETM_TD3
0: PF12
1: PA9
2: PB8
3: PC10
Embedded Trace
Module ETM data
3.
FRC_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Frame Controller,
Data Sniffer Clock.
FRC_DFRAME
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Frame Controller,
Data Sniffer Frame
active
FRC_DOUT
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Frame Controller,
Data Sniffer Output.
0: PF2
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU0
0: PF7
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU1
0: PD14
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU4
0: PA3
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU8
0: PB13
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU9
0: PC10
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU12
I2C0_SCL
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
I2C0 Serial Clock
Line input / output.
I2C0_SDA
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
I2C0 Serial Data input / output.
silabs.com | Building a more connected world.
Rev. 1.0 | 145
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
I2C1_SCL
0: PA7
1: PA8
2: PA9
3: PI2
4: PI3
5: PB6
6: PB7
7: PB8
8: PB9
9: PB10
10: PJ14
11: PJ15
I2C1_SDA
0: PA6
1: PA7
2: PA8
3: PA9
4: PI2
5: PI3
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PJ14
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
12: PC0
13: PC1
14: PC2
15: PC3
16: PC4
17: PC5
18: PC10
19: PC11
20: PF8
21: PF9
22: PF10
23: PF11
24: PF12
25: PF13
26: PF14
27: PF15
28: PK0
29: PK1
30: PK2
31: PA6
I2C1 Serial Clock
Line input / output.
12: PJ15
13: PC0
14: PC1
15: PC2
16: PC3
17: PC4
18: PC5
19: PC10
20: PC11
21: PF8
22: PF9
23: PF10
24: PF11
25: PF12
26: PF13
27: PF14
28: PF15
29: PK0
30: PK1
31: PK2
I2C1 Serial Data input / output.
0: PK0
IDAC0_OUT
IDAC0 output.
0: PA8
LESENSE alternate
excite output 0.
LES_ALTEX0
0: PA9
LESENSE alternate
excite output 1.
LES_ALTEX1
0: PJ14
LESENSE alternate
excite output 2.
LES_ALTEX2
0: PJ15
LESENSE alternate
excite output 3.
LES_ALTEX3
0: PI0
LESENSE alternate
excite output 4.
LES_ALTEX4
0: PI1
LESENSE alternate
excite output 5.
LES_ALTEX5
0: PI2
LESENSE alternate
excite output 6.
LES_ALTEX6
0: PI3
LESENSE alternate
excite output 7.
LES_ALTEX7
0: PD8
LESENSE channel
0.
LES_CH0
0: PD9
LES_CH1
silabs.com | Building a more connected world.
LESENSE channel
1.
Rev. 1.0 | 146
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
0: PD10
LESENSE channel
2.
LES_CH2
0: PD11
LESENSE channel
3.
LES_CH3
0: PD12
LESENSE channel
4.
LES_CH4
0: PD13
LESENSE channel
5.
LES_CH5
0: PD14
LESENSE channel
6.
LES_CH6
0: PD15
LESENSE channel
7.
LES_CH7
0: PA0
LESENSE channel
8.
LES_CH8
0: PA1
LESENSE channel
9.
LES_CH9
0: PA2
LESENSE channel
10.
LES_CH10
0: PA3
LESENSE channel
11.
LES_CH11
0: PA4
LESENSE channel
12.
LES_CH12
0: PA5
LESENSE channel
13.
LES_CH13
0: PA6
LES_CH14
silabs.com | Building a more connected world.
LESENSE channel
14.
Rev. 1.0 | 147
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
0: PA7
LESENSE channel
15.
LES_CH15
LETIM0_OUT0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Low Energy Timer
LETIM0, output
channel 0.
LETIM0_OUT1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Low Energy Timer
LETIM0, output
channel 1.
LEU0_RX
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
LEUART0 Receive
input.
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
LEU0_TX
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
0: PB14
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
0: PB15
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
LFXTAL_N
LFXTAL_P
MODEM_ANT0
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
MODEM antenna
control output 0,
used for antenna
diversity.
MODEM_ANT1
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
MODEM antenna
control output 1,
used for antenna
diversity.
MODEM_DCLK
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
MODEM data clock
out.
MODEM_DIN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
MODEM data in.
MODEM_DOUT
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
MODEM data out.
silabs.com | Building a more connected world.
Rev. 1.0 | 148
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PA4
Description
Operational Amplifier 0 external negative input.
OPA0_N
0: PA2
Operational Amplifier 0 external positive input.
OPA0_P
0: PD15
Operational Amplifier 1 external negative input.
OPA1_N
0: PD13
Operational Amplifier 1 external positive input.
OPA1_P
0: PB13
Operational Amplifier 2 external negative input.
OPA2_N
0: PB12
Operational Amplifier 2 output.
OPA2_OUT
OPA2_OUTALT
0: PB9
1: PB10
Operational Amplifier 2 alternative output.
0: PB11
Operational Amplifier 2 external positive input.
OPA2_P
PCNT0_S0IN
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Pulse Counter
PCNT0 input number 0.
PCNT0_S1IN
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Pulse Counter
PCNT0 input number 1.
PCNT1_S0IN
0: PA6
1: PA7
2: PA8
3: PA9
4: PI2
5: PI3
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PJ14
12: PJ15
13: PC0
14: PC1
15: PC2
16: PC3
17: PC4
18: PC5
19: PF6
20: PF7
21: PF8
22: PF9
23: PF10
24: PF11
25: PF12
26: PF13
27: PF14
28: PF15
29: PK0
30: PK1
31: PK2
Pulse Counter
PCNT1 input number 0.
PCNT1_S1IN
0: PA7
1: PA8
2: PA9
3: PI2
4: PI3
5: PB6
6: PB7
7: PB8
8: PB9
9: PB10
10: PJ14
11: PJ15
12: PC0
13: PC1
14: PC2
15: PC3
16: PC4
17: PC5
18: PF6
19: PF7
20: PF8
21: PF9
22: PF10
23: PF11
24: PF12
25: PF13
26: PF14
27: PF15
28: PK0
29: PK1
30: PK2
31: PA6
Pulse Counter
PCNT1 input number 1.
PCNT2_S0IN
0: PA6
1: PA7
2: PA8
3: PA9
4: PI2
5: PI3
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PJ14
12: PJ15
13: PC0
14: PC1
15: PC2
16: PC3
17: PC4
18: PC5
19: PC10
20: PC11
21: PF8
22: PF9
23: PF10
24: PF11
25: PF12
26: PF13
27: PF14
28: PF15
29: PK0
30: PK1
31: PK2
Pulse Counter
PCNT2 input number 0.
silabs.com | Building a more connected world.
Rev. 1.0 | 149
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
PCNT2_S1IN
0: PA7
1: PA8
2: PA9
3: PI2
4: PI3
5: PB6
6: PB7
7: PB8
8: PB9
9: PB10
10: PJ14
11: PJ15
12: PC0
13: PC1
14: PC2
15: PC3
PRS_CH0
0: PF0
1: PF1
2: PF2
3: PF3
4: PF4
5: PF5
6: PF6
7: PF7
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
PRS_CH1
0: PF1
1: PF2
2: PF3
3: PF4
4: PF5
5: PF6
6: PF7
7: PF0
Peripheral Reflex
System PRS, channel 1.
PRS_CH2
0: PF2
1: PF3
2: PF4
3: PF5
4: PF6
5: PF7
6: PF0
7: PF1
Peripheral Reflex
System PRS, channel 2.
PRS_CH3
0: PF3
1: PF4
2: PF5
3: PF6
4: PF7
5: PF0
6: PF1
7: PF2
PRS_CH4
0: PD9
1: PD10
2: PD11
3: PD12
4: PD13
5: PD14
6: PD15
PRS_CH5
0: PD10
1: PD11
2: PD12
3: PD13
4: PD14
5: PD15
6: PD9
PRS_CH6
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PD9
PRS_CH7
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PA0
PRS_CH8
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PA0
10: PA1
PRS_CH9
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
10: PA2
11: PC6
PRS_CH10
0: PC6
1: PC7
2: PC8
3: PC9
4: PC10
5: PC11
PRS_CH11
0: PC7
1: PC8
2: PC9
3: PC10
4: PC11
5: PC6
silabs.com | Building a more connected world.
8 - 11
8: PD9
9: PD10
10: PD11
11: PD12
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
16: PC4
17: PC5
18: PC10
19: PC11
20: PF8
21: PF9
22: PF10
23: PF11
24: PF12
25: PF13
26: PF14
27: PF15
28: PK0
29: PK1
30: PK2
31: PA6
Description
Pulse Counter
PCNT2 input number 1.
Peripheral Reflex
System PRS, channel 0.
12: PD13
13: PD14
14: PD15
Peripheral Reflex
System PRS, channel 3.
Peripheral Reflex
System PRS, channel 4.
Peripheral Reflex
System PRS, channel 5.
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Peripheral Reflex
System PRS, channel 8.
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
Peripheral Reflex
System PRS, channel 11.
Rev. 1.0 | 150
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
TIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 0 Capture
Compare input /
output channel 0.
TIM0_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 0 Capture
Compare input /
output channel 1.
TIM0_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 0 Capture
Compare input /
output channel 2.
TIM0_CDTI0
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 0 Complimentary Dead Time
Insertion channel 0.
TIM0_CDTI1
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
Timer 0 Complimentary Dead Time
Insertion channel 1.
TIM0_CDTI2
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
Timer 0 Complimentary Dead Time
Insertion channel 2.
TIM1_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Timer 1 Capture
Compare input /
output channel 0.
TIM1_CC1
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
Timer 1 Capture
Compare input /
output channel 1.
TIM1_CC2
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 2.
TIM1_CC3
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
Timer 1 Capture
Compare input /
output channel 3.
US0_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART0 clock input / output.
US0_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART0 chip select input / output.
US0_CTS
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART0 Clear To
Send hardware
flow control input.
silabs.com | Building a more connected world.
24 - 27
28 - 31
Description
Rev. 1.0 | 151
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
US0_RTS
US0_RX
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
20 - 23
24 - 27
28 - 31
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
USART0 Asynchronous Receive.
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
US0_TX
Description
USART0 Request
To Send hardware
flow control output.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
US1_CLK
0: PA2
1: PA3
2: PA4
3: PA5
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
9: PC6
10: PC7
11: PC8
12: PC9
13: PC10
14: PC11
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PA0
31: PA1
USART1 clock input / output.
US1_CS
0: PA3
1: PA4
2: PA5
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD9
15: PD10
16: PD11
17: PD12
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF3
25: PF4
26: PF5
27: PF6
28: PF7
29: PA0
30: PA1
31: PA2
USART1 chip select input / output.
US1_CTS
0: PA4
1: PA5
2: PB11
3: PB12
4: PB13
5: PB14
6: PB15
7: PC6
8: PC7
9: PC8
10: PC9
11: PC10
12: PC11
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PA0
29: PA1
30: PA2
31: PA3
USART1 Clear To
Send hardware
flow control input.
US1_RTS
0: PA5
1: PB11
2: PB12
3: PB13
4: PB14
5: PB15
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD9
13: PD10
14: PD11
15: PD12
16: PD13
17: PD14
18: PD15
19: PF0
20: PF1
21: PF2
22: PF3
23: PF4
24: PF5
25: PF6
26: PF7
27: PA0
28: PA1
29: PA2
30: PA3
31: PA4
USART1 Request
To Send hardware
flow control output.
0: PA1
1: PA2
2: PA3
3: PA4
4: PA5
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD9
17: PD10
18: PD11
19: PD12
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
27: PF4
28: PF5
29: PF6
30: PF7
31: PA0
USART1 Asynchronous Receive.
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
11: PC6
12: PC7
13: PC8
14: PC9
15: PC10
16: PC11
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
US1_RX
US1_TX
USART1 Synchronous mode Master
Input / Slave Output (MISO).
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
silabs.com | Building a more connected world.
Rev. 1.0 | 152
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
US2_CLK
0: PA7
1: PA8
2: PA9
3: PI0
4: PI1
5: PI2
6: PI3
7: PB6
8: PB7
9: PB8
10: PB9
11: PB10
12: PF0
13: PF1
14: PF3
15: PF4
US2_CS
0: PA8
1: PA9
2: PI0
3: PI1
4: PI2
5: PI3
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PF0
US2_CTS
0: PA9
1: PI0
2: PI1
3: PI2
4: PI3
5: PB6
6: PB7
7: PB8
US2_RTS
0: PI0
1: PI1
2: PI2
3: PI3
US2_RX
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
16: PF5
17: PF6
18: PF7
19: PF8
20: PF9
21: PF10
22: PF11
23: PF12
24: PF13
25: PF14
26: PF15
27: PK0
28: PK1
29: PK2
30: PA5
31: PA6
USART2 clock input / output.
12: PF1
13: PF3
14: PF4
15: PF5
16: PF6
17: PF7
18: PF8
19: PF9
20: PF10
21: PF11
22: PF12
23: PF13
24: PF14
25: PF15
26: PK0
27: PK1
28: PK2
29: PA5
30: PA6
31: PA7
USART2 chip select input / output.
8: PB9
9: PB10
10: PF0
11: PF1
12: PF3
13: PF4
14: PF5
15: PF6
16: PF7
17: PF8
18: PF9
19: PF10
20: PF11
21: PF12
22: PF13
23: PF14
24: PF15
25: PK0
26: PK1
27: PK2
28: PA5
29: PA6
30: PA7
31: PA8
USART2 Clear To
Send hardware
flow control input.
4: PB6
5: PB7
6: PB8
7: PB9
8: PB10
9: PF0
10: PF1
11: PF3
12: PF4
13: PF5
14: PF6
15: PF7
16: PF8
17: PF9
18: PF10
19: PF11
20: PF12
21: PF13
22: PF14
23: PF15
24: PK0
25: PK1
26: PK2
27: PA5
28: PA6
29: PA7
30: PA8
31: PA9
USART2 Request
To Send hardware
flow control output.
0: PA6
1: PA7
2: PA8
3: PA9
4: PI0
5: PI1
6: PI2
7: PI3
8: PB6
9: PB7
10: PB8
11: PB9
12: PB10
13: PF0
14: PF1
15: PF3
16: PF4
17: PF5
18: PF6
19: PF7
20: PF8
21: PF9
22: PF10
23: PF11
24: PF12
25: PF13
26: PF14
27: PF15
28: PK0
29: PK1
30: PK2
31: PA5
USART2 Asynchronous Receive.
0: PA5
1: PA6
2: PA7
3: PA8
4: PA9
5: PI0
6: PI1
7: PI2
8: PI3
9: PB6
10: PB7
11: PB8
12: PB9
13: PB10
14: PF0
15: PF1
16: PF3
17: PF4
18: PF5
19: PF6
20: PF7
21: PF8
22: PF9
23: PF10
24: PF11
25: PF12
26: PF13
27: PF14
28: PF15
29: PK0
30: PK1
31: PK2
USART2 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
US2_TX
Description
USART2 Synchronous mode Master
Input / Slave Output (MISO).
USART2 Synchronous mode Master
Output / Slave Input (MOSI).
US3_CLK
0: PD10
1: PD11
2: PD12
3: PD13
4: PD14
5: PD15
6: PI2
7: PI3
8: PB6
9: PB7
10: PB8
11: PB9
12: PB10
13: PB11
14: PJ14
15: PJ15
16: PC0
17: PC1
18: PC2
19: PC3
20: PC4
21: PC5
22: PF11
23: PF12
24: PF13
25: PF14
26: PF15
27: PK0
28: PK1
29: PK2
30: PD8
31: PD9
USART3 clock input / output.
US3_CS
0: PD11
1: PD12
2: PD13
3: PD14
4: PD15
5: PI2
6: PI3
7: PB6
8: PB7
9: PB8
10: PB9
11: PB10
12: PB11
13: PJ14
14: PJ15
15: PC0
16: PC1
17: PC2
18: PC3
19: PC4
20: PC5
21: PF11
22: PF12
23: PF13
24: PF14
25: PF15
26: PK0
27: PK1
28: PK2
29: PD8
30: PD9
31: PD10
USART3 chip select input / output.
US3_CTS
0: PD12
1: PD13
2: PD14
3: PD15
4: PI2
5: PI3
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PB11
12: PJ14
13: PJ15
14: PC0
15: PC1
16: PC2
17: PC3
18: PC4
19: PC5
20: PF11
21: PF12
22: PF13
23: PF14
24: PF15
25: PK0
26: PK1
27: PK2
28: PD8
29: PD9
30: PD10
31: PD11
USART3 Clear To
Send hardware
flow control input.
US3_RTS
0: PD13
1: PD14
2: PD15
3: PI2
4: PI3
5: PB6
6: PB7
7: PB8
8: PB9
9: PB10
10: PB11
11: PJ14
12: PJ15
13: PC0
14: PC1
15: PC2
16: PC3
17: PC4
18: PC5
19: PF11
20: PF12
21: PF13
22: PF14
23: PF15
24: PK0
25: PK1
26: PK2
27: PD8
28: PD9
29: PD10
30: PD11
31: PD12
USART3 Request
To Send hardware
flow control output.
silabs.com | Building a more connected world.
Rev. 1.0 | 153
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
US3_RX
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
0: PD9
1: PD10
2: PD11
3: PD12
4: PD13
5: PD14
6: PD15
7: PI2
8: PI3
9: PB6
10: PB7
11: PB8
12: PB9
13: PB10
14: PB11
15: PJ14
16: PJ15
17: PC0
18: PC1
19: PC2
20: PC3
21: PC4
22: PC5
23: PF11
24: PF12
25: PF13
26: PF14
27: PF15
28: PK0
29: PK1
30: PK2
31: PD8
USART3 Asynchronous Receive.
0: PD8
1: PD9
2: PD10
3: PD11
4: PD12
5: PD13
6: PD14
7: PD15
8: PI2
9: PI3
10: PB6
11: PB7
12: PB8
13: PB9
14: PB10
15: PB11
16: PJ14
17: PJ15
18: PC0
19: PC1
20: PC2
21: PC3
22: PC4
23: PC5
24: PF11
25: PF12
26: PF13
27: PF14
28: PF15
29: PK0
30: PK1
31: PK2
USART3 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
US3_TX
USART3 Synchronous mode Master
Input / Slave Output (MISO).
USART3 Synchronous mode Master
Output / Slave Input (MOSI).
0: PA1
Digital to analog
converter VDAC0
external reference
input pin.
0: PA3
Digital to Analog
Converter DAC0
output channel
number 0.
0: PA5
1: PD13
2: PD15
Digital to Analog
Converter DAC0 alternative output for
channel 0.
0: PD14
Digital to Analog
Converter DAC0
output channel
number 1.
0: PD12
1: PA2
2: PA4
Digital to Analog
Converter DAC0 alternative output for
channel 1.
VDAC0_EXT
VDAC0_OUT0 /
OPA0_OUT
VDAC0_OUT0AL
T / OPA0_OUTALT
VDAC0_OUT1 /
OPA1_OUT
VDAC0_OUT1AL
T / OPA1_OUTALT
WTIM0_CC0
0: PA0
1: PA1
2: PA2
3: PA3
4: PA4
5: PA5
6: PA6
7: PA7
8: PA8
9: PA9
10: PB6
11: PB7
12: PB8
13: PB9
14: PB10
15: PB11
16: PB12
17: PB13
18: PB14
19: PB15
20: PC0
21: PC1
22: PC2
23: PC3
24: PC4
25: PC5
26: PC6
27: PC7
28: PC8
29: PC9
30: PC10
31: PC11
Wide timer 0 Capture Compare input / output channel
0.
WTIM0_CC1
0: PA2
1: PA3
2: PA4
3: PA5
4: PA6
5: PA7
6: PA8
7: PA9
8: PB6
9: PB7
10: PB8
11: PB9
12: PB10
13: PB11
14: PB12
15: PB13
16: PB14
17: PB15
18: PC0
19: PC1
20: PC2
21: PC3
22: PC4
23: PC5
24: PC6
25: PC7
26: PC8
27: PC9
28: PC10
29: PC11
30: PD8
31: PD9
Wide timer 0 Capture Compare input / output channel
1.
WTIM0_CC2
0: PA4
1: PA5
2: PA6
3: PA7
4: PA8
5: PA9
6: PB6
7: PB7
8: PB8
9: PB9
10: PB10
11: PB11
12: PB12
13: PB13
14: PB14
15: PB15
16: PC0
17: PC1
18: PC2
19: PC3
20: PC4
21: PC5
22: PC6
23: PC7
24: PC8
25: PC9
26: PC10
27: PC11
28: PD8
29: PD9
30: PD10
31: PD11
Wide timer 0 Capture Compare input / output channel
2.
WTIM0_CDTI0
0: PA8
1: PA9
2: PB6
3: PB7
4: PB8
5: PB9
6: PB10
7: PB11
8: PB12
9: PB13
10: PB14
11: PB15
12: PC0
13: PC1
14: PC2
15: PC3
16: PC4
17: PC5
18: PC6
19: PC7
20: PC8
21: PC9
22: PC10
23: PC11
24: PD8
25: PD9
26: PD10
27: PD11
28: PD12
29: PD13
30: PD14
31: PD15
Wide timer 0 Complimentary Dead
Time Insertion
channel 0.
silabs.com | Building a more connected world.
Rev. 1.0 | 154
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Description
WTIM0_CDTI1
0: PB6
1: PB7
2: PB8
3: PB9
4: PB10
5: PB11
6: PB12
7: PB13
8: PB14
9: PB15
10: PC0
11: PC1
12: PC2
13: PC3
14: PC4
15: PC5
16: PC6
17: PC7
18: PC8
19: PC9
20: PC10
21: PC11
22: PD8
23: PD9
24: PD10
25: PD11
26: PD12
27: PD13
28: PD14
29: PD15
30: PF0
31: PF1
Wide timer 0 Complimentary Dead
Time Insertion
channel 1.
WTIM0_CDTI2
0: PB8
1: PB9
2: PB10
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
8: PC0
9: PC1
10: PC2
11: PC3
12: PC4
13: PC5
14: PC6
15: PC7
16: PC8
17: PC9
18: PC10
19: PC11
20: PD8
21: PD9
22: PD10
23: PD11
24: PD12
25: PD13
26: PD14
27: PD15
28: PF0
29: PF1
30: PF2
31: PF3
Wide timer 0 Complimentary Dead
Time Insertion
channel 2.
WTIM1_CC0
0: PB12
1: PB13
2: PB14
3: PB15
4: PC0
5: PC1
6: PC2
7: PC3
8: PC4
9: PC5
10: PC6
11: PC7
12: PC8
13: PC9
14: PC10
15: PC11
16: PD8
17: PD9
18: PD10
19: PD11
20: PD12
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
28: PF4
29: PF5
30: PF6
31: PF7
Wide timer 1 Capture Compare input / output channel
0.
WTIM1_CC1
0: PB14
1: PB15
2: PC0
3: PC1
4: PC2
5: PC3
6: PC4
7: PC5
8: PC6
9: PC7
10: PC8
11: PC9
12: PC10
13: PC11
14: PD8
15: PD9
16: PD10
17: PD11
18: PD12
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
26: PF4
27: PF5
28: PF6
29: PF7
30: PF8
31: PF9
Wide timer 1 Capture Compare input / output channel
1.
WTIM1_CC2
0: PC0
1: PC1
2: PC2
3: PC3
4: PC4
5: PC5
6: PC6
7: PC7
8: PC8
9: PC9
10: PC10
11: PC11
12: PD8
13: PD9
14: PD10
15: PD11
16: PD12
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
24: PF4
25: PF5
26: PF6
27: PF7
28: PF8
29: PF9
30: PF10
31: PF11
Wide timer 1 Capture Compare input / output channel
2.
WTIM1_CC3
0: PC2
1: PC3
2: PC4
3: PC5
4: PC6
5: PC7
6: PC8
7: PC9
8: PC10
9: PC11
10: PD8
11: PD9
12: PD10
13: PD11
14: PD12
15: PD13
16: PD14
17: PD15
18: PF0
19: PF1
20: PF2
21: PF3
22: PF4
23: PF5
24: PF6
25: PF7
26: PF8
27: PF9
28: PF10
29: PF11
30: PF12
31: PF13
Wide timer 1 Capture Compare input / output channel
3.
silabs.com | Building a more connected world.
Rev. 1.0 | 155
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
6.7 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.5 APORT Connection Diagram on page 156 Shows the APORT routing for this device family. A complete description of
APORT functionality can be found in the Reference Manual.
ACMP0X
ACMP0Y
ADC1X
ADC1Y
DY
DX
CY
CX
PC6
PC7
PC8
PC9
PC10
PJ14
PC11
PC0
PJ15
PC1
PC2
PC3
PC4
PC5
1X
IDAC0
1Y
ACMP1X
ACMP1Y
PB15
PF0
PF1
POS
PF2
ACMP1
PF3
NEG
PF8
PF9
0X
1X
2X
3X
4X
0Y
1Y
2Y
3Y
4Y
0X
1X
2X
3X
4X
0Y
1Y
2Y
3Y
4Y
PB14
POS
PB13
OPA2_N
ACMP0
PB12
NEG
OUT2
PB11
OPA2_P
PF10
VDAC0_OPA2ALT
VDAC0_OPA2ALT
OUT2ALT
OUT2ALT
PF11
PB9
POS
PB6
NEG
0Y
1Y
2Y
3Y
4Y
PF12
PF13
PF14
ADC0
PF15
PK0
PK1
EXTP
EXTN
PK2
PF4
PF5
PB10
0X
1X
2X
3X
4X
POS
OPA0_P
1X
2X
3X
4X
NEG
OPA0_N
1Y
2Y
3Y
4Y
PF6
PF7
AX
AY
BX
BY
OPA0
OUT
OUT0
OUT0ALT
OUT1
OUT2
OUT3
OUT4
POS
OPA2_P
1X
2X
3X
4X
NEG
OPA2_N
1Y
2Y
3Y
4Y
OPA2
PB8
PB7
PI3
PI2
PI1
OPA1_P
1X
2X
3X
4X
POS
OPA1_N
1Y
2Y
3Y
4Y
NEG
OUT1
OUT1ALT
OUT1
OUT2
OUT3
OUT4
PI0
PA9
PA8
PA7 LESENSE
OPA1
PA6 LESENSE
OUT
OUT0ALT
OUT1ALT
VDAC0_OUT0ALT
VDAC0_OUT1ALT
OPA0_N
OPA0_INN0
PA5 LESENSE
PA4 LESENSE
OUT0
OUT1ALT
OPA0_OUT
VDAC0_OUT1ALT
OPA0_P
OPA0_INP0
PA3 LESENSE
PA2 LESENSE
ADC_EXTP
ADC_EXTN
OUT0ALT
ADC0_EXTP
ADC0_EXTN
PA1 LESENSE
PA0 LESENSE
OPA0ALT
PD15 LESENSE
BUSADC0X,
BUSADC0Y
ACMP0X,
ACMP1Y, …
BUSACMP0X,
BUSACMP1Y, ...
CEXT_SENSE
2X
2Y
4X
4Y
VDAC0_OUT1ALT
OPA1_OUT
ADC0X,
ADC0Y
OPA1_INN0
OUT1
BUSAX, BUSBY, ...
CSEN
VDAC0_OUT0ALT
OPA1_INP0
AX, BY, …
ALT0OUT
OPA1_P
APORTnX, APORTnY
OPA1N
1X
1Y
3X
3Y
CEXT
nX, nY
OUT2
OUT2ALT
OUT1
OUT2
OUT3
OUT4
ALT1OUT
OUT
PD14 LESENSE
PD13 LESENSE
PD11 LESENSE
PD12 LESENSE
PD9 LESENSE
PD10 LESENSE
PD8 LESENSE
Figure 6.5. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
silabs.com | Building a more connected world.
Rev. 1.0 | 156
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PA8
PA9
PA8
PA9
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP0Y BUSACMP0X Bus
APORT0Y
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
Table 6.7. ACMP0 Bus and Pin Mapping
Rev. 1.0 | 157
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PJ14
PJ15
PJ14
PJ15
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP1Y BUSACMP1X Bus
APORT0Y
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Table 6.8. ACMP1 Bus and Pin Mapping
Rev. 1.0 | 158
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
PB15
PB13
BUSCY
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PI0
PI1
PI2
PI3
PI0
PI1
PI2
PI3
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSADC0Y BUSADC0X Bus
APORT0Y
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Table 6.9. ADC0 Bus and Pin Mapping
Rev. 1.0 | 159
silabs.com | Building a more connected world.
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT1Y APORT1X Port
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSDX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
APORT4Y APORT4X APORT2Y APORT2X
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT3Y APORT3X APORT1Y APORT1X
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Table 6.10. CSEN Bus and Pin Mapping
CEXT
CEXT_SENSE
Table 6.11. IDAC0 Bus and Pin Mapping
Rev. 1.0 | 160
silabs.com | Building a more connected world.
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
Table 6.12. VDAC0 / OPA Bus and Pin Mapping
OPA0_N
OPA0_P
Rev. 1.0 | 161
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
OPA1_N
OPA1_P
OPA2_N
Rev. 1.0 | 162
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSDX
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSCX
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSBX
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
OPA2_OUT
OPA2_P
VDAC0_OUT0 / OPA0_OUT
Rev. 1.0 | 163
silabs.com | Building a more connected world.
PD8
PD10
PD12
PD14
PA0
PA2
PA4
PA6
PB6
PB8
PB10
PB12
PB14
BUSDY
PD9
PD11
PD13
PD15
PA1
PA3
PA5
PA7
PB7
PB9
PB11
PB13
PB15
BUSCY
PC0
PC2
PC4
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSBY
PC1
PC3
PC5
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Pin Definitions
VDAC0_OUT1 / OPA1_OUT
Rev. 1.0 | 164
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
BGA125 Package Specifications
7. BGA125 Package Specifications
7.1 BGA125 Package Dimensions
Figure 7.1. BGA125 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 165
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
BGA125 Package Specifications
Table 7.1. BGA125 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.87
0.94
A1
0.16
0.21
0.26
A2
0.61
0.66
0.71
c
0.17
0.21
0.25
D
6.90
7.00
7.10
E
6.90
7.00
7.10
D1
---
6.00
---
E1
---
6.00
---
e
---
0.50
---
b
0.25
0.30
0.35
aaa
0.10
bbb
0.10
ddd
0.08
eee
0.15
fff
0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
silabs.com | Building a more connected world.
Rev. 1.0 | 166
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
BGA125 Package Specifications
7.2 BGA125 PCB Land Pattern
Figure 7.2. BGA125 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 167
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
BGA125 Package Specifications
Table 7.2. BGA125 PCB Land Pattern Dimensions
Dimension
Min
Nom
X
0.25
C1
6.00
C2
6.00
E1
0.5
E2
0.5
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 168
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
BGA125 Package Specifications
7.3 BGA125 Package Marking
EFR32
PPPPPPPPPP
YYWWTTTTTT
Figure 7.3. BGA125 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Device Configuration (1, 2,...)
5. Performance Grade (P | B | V)
6. Feature Code (1 to 7)
7. TRX Code (3 = TXRX | 2= RX | 1 = TX)
8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K)
10. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
silabs.com | Building a more connected world.
Rev. 1.0 | 169
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
QFN48 Package Specifications
8. QFN48 Package Specifications
8.1 QFN48 Package Dimensions
Figure 8.1. QFN48 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 170
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
QFN48 Package Specifications
Table 8.1. QFN48 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D
6.90
7.00
7.10
E
6.90
7.00
7.10
D2
5.15
5.30
5.45
E2
5.15
5.30
5.45
e
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
—
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 171
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
QFN48 Package Specifications
8.2 QFN48 PCB Land Pattern
Figure 8.2. QFN48 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 172
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
QFN48 Package Specifications
Table 8.2. QFN48 PCB Land Pattern Dimensions
Dimension
Typ
S1
6.01
S
6.01
L1
4.70
W1
4.70
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 173
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
QFN48 Package Specifications
8.3 QFN48 Package Marking
EFR32
PPPPPPPPPP
YYWWTTTTTT
Figure 8.3. QFN48 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Device Configuration (1, 2,...)
5. Performance Grade (P | B | V)
6. Feature Code (1 to 7)
7. TRX Code (3 = TXRX | 2= RX | 1 = TX)
8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K)
10. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
silabs.com | Building a more connected world.
Rev. 1.0 | 174
EFR32BG12 Blue Gecko Bluetooth ®Low Energy SoC Family Data Sheet
Revision History
9. Revision History
9.1 Revision 1.0
2017-04-14
•
•
•
•
•
Added Thermal Characteristics table.
Finalized specification tables. All tables were updated with latest characterization data and production test limits.
Updated typical performance graphs for DC-DC.
Minor typographical, clarity, and consistency improvements.
Condensed pin function tables with new formatting.
9.2 Revision 0.6
2017-02-23
• Updated 2 Mbps BLE receiver specifications with latest characteriztion data.
• Added table-wide conditions to BLE 1 Mbps and 2 Mbps receiver tables.
• Clarified opamp noise measurement conditions in electrical spec table.
9.3 Revision 0.5
2017-02-03
•
•
•
•
•
•
•
•
•
•
•
•
New corporate stylesheet applied.
Updated device block diagrams on front page and in System Overview.
Updated Feature List with latest characterization numbers.
"Bluetooth Smart" changed to "Bluetooth Low Energy" throughout document.
All OPNs changed to revision B.
Minor typographical corrections and clarifications in System Overview.
Electrical Characteristics Table Changes
• All specification tables updated with latest characterization data and production test limits.
• Split 2.4 GHz BLE tables into separate tables for 1 Mbps and 2 Mbps data rates.
• Split HFRCO/AUXHFRCO table into separate tables for HFRCO and AUXHFRCO.
• OPAMP, CSEN, and VDAC specification line items updated to match test conditions.
• Added tables for Analog Port (APORT) and Pulse Counter (PCNT).
Added Typical Performance Curves for supply current, DCDC, and RF parameters.
Added missing alternate functions and descriptions to Pinout and Alternate Function tables.
Added APORT Connection Diagram.
Corrected Package Marking description for QFN48 and BGA125.
Corrected Package Marking diagram for QFN48.
9.4 Revision 0.2
2016-09-21
Initial release.
silabs.com | Building a more connected world.
Rev. 1.0 | 175
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com
Similar pages