Frequency D824L8B Differential input 4-pole filter Datasheet

D824 Series
1.0 Hz to 102.4 kHz
8-Bit Programmable
2" x 2"
Differential Input
4-Pole Filters
Description
The D824 Series are digitally programmable low
pass and high pass active filters with differential
input that are tunable over a 256:1 frequency range.
D824 filters are available with any one of five
standard factory-set tuning ranges up to 102.4 kHz.
These units contain 8 CMOS logic inputs .
All D824 Series models are convenient, low profile,
easy to use fully finished filters which require no external components or adjustments. They feature low
harmonic distortion, and near theoretical phase and
amplitude characteristics. D824 filters operate from
non-critical ± 12 to ± 18 Vdc power supplies, have a
10 kW (min.) input impedance, a 10 W (max.) output.
Features/Benefits:
• Compact 2" x 2" design minimizes board space
requirements.
• Digitally programmable corner frequency allows
selecting cut-off frequencies specific to each application.
• Plug-in ready-to-use, reducing engineering design and manufacturing cycle time.
• Factory-set tuning range, no external clocks or
adjustments needed.
• Broad range of transfer characteristics and corner
frequencies to meet a wide range of applications.
Applications
• Anti-alias filtering
• Data acquisition systems
• Communication systems and electronics
• Medical electronics equipment and research
• Aerospace, navigation and sonar applications
• Sound and vibration testing
• Real and compressed time data analysis
• Noise elimination
• Signal reconstruction
Programmable Specifications. . . . . . . . . . . . . . Page
Digital Tuning & Control . . . . . . . . . . . . . . . . . . . . . . 2
Available Low-Pass Models: . . . . . . . . . . . . . . . . . . .
D824L8B 4-pole Butterworth . . . . . . . . . . . . . . . . . 3
D824L8L 4-pole Bessel . . . . . . . . . . . . . . . . . . . . . 3
D824L8Y2 4-pole Cheby (0.2 dB Ripple) . . . . . . . . . 3
D824L8Y5 4-pole Cheby (0.5 dB Ripple) . . . . . . . . . 3
Available High-Pass Models: . . . . . . . . . . . . . . . . . .
D824H8B 4-pole Butterworth . . . . . . . . . . . . . . . . . 4
D824H8Y2 4-pole Cheby (0.2 dB Ripple) . . . . . . . . . 4
D824H8Y5 4-pole Cheby (0.5 dB Ripple) . . . . . . . . . 4
General Specifications:
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin-out/package data. . . . . . . . . . . . . . . . . . . . . . . . . 5
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
D824 Series
Digital Tuning &
Control Characteristics
8-Bit Programmable Filters
Digital Tuning Characteristics
Pin-Out Key
The digital tuning interface circuits are a parallel set of eight (8)
4053 CMOS switches which accept CMOS compatible inputs
for the eight tuning bits (D0 - D7).
IN
OUT
GND
+Vs
-Vs
Os
Filter tuning follows the tuning equation given below:
fc = ( fmax/256 ) [ 1 + D7 x 27 + D6 x 26 + D5 x 25 + D4 x 24 + D3
D7 Tuning
D6 Tuning
D5 Tuning
D4 Tuning
D3 Tuning
D2 Tuning
D1 Tuning
D0 Tuning
Analog Input Signal
Analog Output Signal
Power and Signal Return
Supply Voltage, Positive
Supply Voltage, Negative
Offset Adjustment
x 23 + D2 x 22 + D1 x 21 + D0 x 20 ]
where D1 - D7 = "0" or "1", and
fmax = Maximum tuning frequency;
fc = corner frequency;
Minimum tunable frequency = fmax/256 (D0 thru D7 = 0);
Minimum frequency step (Resolution) = fmax/256
7 (MSB)
6
5
4
3
2
1
0 (LSB)
OUT +Vs -Vs
D7
D6
D5
Data Input Specifications
D4
GND
2.00
Input Data Levels
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
(CMOS Logic)
D3
Input Voltage (Vs = 15 Vdc)
Low Level In
0 Vdc min.
High Level In
11 Vdc min.
4 Vdc max.
15 Vdc max.
Input Current
High Level In
Low Level In
- 10 -5 mA typ.
+10 -5 mA typ.
-1 mA max..
+1 mA max.
Input Capacitance
5 pF typ
7.5 pF max.
Input Data Format
Frequency Select Bits
Positive Logic
D2
D1
D0
+IN -IN Os
4
Bottom View
Bit
Weight
MSB
---
---
---
---
---
---
LSB
Logic "1" = +Vs
Logic "0" = Gnd
27
26
25
24
23
22
21
20
fc
Bit Weighting
D0
D7
(Binary-Coded)
LSB (least significant bit)
MSB (most significant bit)
D7
D6
D5
D4
D3
D2
D1
D0
Corner
Frequency
0
0
0
0
0
0
0
0
fmax/256
Frequency Range
256 : 1, Binary Weighted
0
0
0
0
0
0
0
1
fmax/128
0
0
0
0
0
0
1
1
fmax/64
0
0
0
0
0
1
1
1
fmax/32
0
0
0
0
1
1
1
1
fmax/16
0
0
0
1
1
1
1
1
fmax/8
0
0
1
1
1
1
1
1
fmax/4
0
1
1
1
1
1
1
1
fmax/2
1
1
1
1
1
1
1
1
fmax
2
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
D824 Series
4-Pole
Low-Pass Filters
8-Bit Programmable
Model
D824L8B
D824L8L
D824L8Y2
D824L8Y5
Transfer Function
4-Pole,
Butterworth
4-Pole,
Bessel
4-Pole, Chebychev,
0.2 dB Ripple
4-Pole, Chebychev,
0.5 dB Ripple
Size, Model 2
Model 3 thru 6
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
Range fc
1.0 Hz to 102.4 kHz
1.0 Hz to 102.4 kHz
1.0 Hz to 102.4 kHz
1.0 Hz to 102.4 kHz
Theoretical Transfer
Characteristics
Appendix A
Page 7
Appendix A
Page 2
Appendix A
Page 12
Appendix A
Page 15
Passband Ripple
0.0 dB
0.0 dB
0.20 dB
0.50 dB
0 ± 0.1 dB max.
0 ± 0.05 dB typ.
0 ± 0.1 dB max.
0 ± 0.05 dB typ.
0 ± 0.1 dB max.
0 ± 0.05 dB typ.
0 ± 0.1 dB max.
0 ± 0.05 dB typ.
Stopband
Attenuation Rate
24 dB/octave
24 dB/octave
24 dB/octave
24 dB/octave
Cutoff Frequency
Stability
Amplitude
Phase
fc
± 0.01% /°C
-3 dB
-180°
Filter Attenuation
0.67 dB
3.01 dB
30.0 dB
40.0 dB
Product Specifications
(theoretical)
DC Voltage Gain
(non-inverting)
(theoretical)
Phase Match1
± 2% max.
0.80 fc
1.00 fc
2.37 fc
3.16 fc
0 - fc
0 - 0.8 fc
± 0.2 dB max.
± 0.1 dB typ.
0.8 fc - 1.0 fc ± 0.3 dB max.
± 0.15 dB typ.
0 - fc
Total Harmonic
Distortion @ 1 kHz
< - 100 dB typ.
Wide Band Noise
(theoretical)
(5 Hz - 2 MHz)
Narrow Band Noise
(5 Hz - 100 kHz)
± 2% max.
1.86 dB
3.01 dB
30.0 dB
40.0 dB
± 2° max.
± 1° typ.
0.8 fc - 1.0 fc ± 3° max.
± 1.5° typ.
Amplitude Accuracy
0 - 0.8 fc
fc
± 0.01% /°C
-3 dB
-121°
0.80 fc
1.00 fc
3.50 fc
4.72 fc
± 2° max.
± 1° typ.
± 0.2 dB max.
± 0.1 dB typ.
fc
± 0.01% /°C
-3 dB
-231°
-0.20 dB
3.01 dB
30.0 dB
40.0 dB
± 2% max.
0.80 fc
1.00 fc
1.89 fc
2.46 fc
0 - 0.8 fc
± 2° max.
± 1° typ.
0.8 fc - 1.0 fc ± 3° max.
± 1.5° typ.
0 - 0.8 fc
fc
± 0.01% /°C
-3 dB
-245°
± 2% max.
-0.43 dB
3.01 dB
30.0 dB
40.0 dB
0 - 0.8 fc
0.8 fc - 1.0 fc
0.80 fc
1.00 fc
1.80 fc
2.33 fc
± 2° max.
± 1° typ.
± 3° max.
± 1.5° typ.
± 0.2 dB max.
± 0.1 dB typ.
0.8 fc - 1.0 fc ± 0.3 dB max.
± 0.15 dB typ.
0 - 0.8 fc
< - 100 dB typ.
< - 88 dB typ.
< - 88 dB typ.
200 mVrms typ.
200 mVrms typ.
200 mVrms typ.
200 mVrms typ.
50 mVrms typ.
50 mVrms typ.
50 mVrms typ.
50 mVrms typ.
0.8 fc - 1.0 fc
± 0.2 dB max.
± 0.1 dB typ.
± 0.3 dB max.
± 0.15 dB typ.
1. Unit to unit match for the same transfer function, set to the same frequency and operating configuration, and from the same manufacturing lot.
3
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
D824 Series
4-Pole
High-Pass Filters
8-Bit Programmable
Model
D824H8B
D824H8Y2
D824H8Y5
Transfer Function
4-Pole,
Butterworth
4-Pole,Chebychev,
0.2 dB Ripple
4-Pole, Chebychev,
0.5 dB Ripple
Size, Model 2
Model 3 thru 6
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
2.0” x 2.0” x 0.5”
2.0” x 2.0” x 0.4”
Range fc
1.0 Hz to 102.4 kHz
1.0 Hz to 102.4 kHz
1.0 Hz to 102.4 kHz
Theoretical Transfer
Characteristics
Appendix A
Page 27
Appendix A
Page 31
Appendix A
Page 33
Passband Ripple
0.0 dB
0.20 dB
0.50 dB
0 ± 0.2 dB to 100 kHz
0 ± 0.5 dB to 120 kHz
0 ± 0.2 dB to 100 kHz
0 ± 0.5 dB to 120 kHz
0 ± 0.2 dB to 100 kHz
0 ± 0.5 dB to 120 kHz
Power Bandwidth
120 kHz
120 kHz
120 kHz
Small Signal Bandwidth
(-6 dB) 1 MHz
(-6 dB) 1 MHz
(-6 dB) 1 MHz
Stopband
Attenuation Rate
24 dB/octave
24 dB/octave
24 dB/octave
Cutoff Frequency
Stability
Amplitude
Phase
fc
± 0.01% /°C
-3 dB
-180°
Filter Attenuation
40 dB
30 dB
3.01 dB
0.02 dB
Product Specifications
(theoretical)
Voltage Gain
(non-inverting)
(theoretical)
± 2% max.
0.31 fc
0.42 fc
1.00 fc
2.00 fc
fc
± 0.01% /°C
-3 dB
-231°
± 2% max.
40.0 dB
30.0 dB
3.01 dB
-0.07 dB
0.41 fc
0.53 fc
1.00 fc
2.00 fc
fc
± 0.01% /°C
-3 dB
-245°
40.0 dB
30.0 dB
3.01 dB
-0.25 dB
± 2% max.
0.43 fc
0.56 fc
1.00 fc
2.00 fc
Phase Match1
fc - 100 kHz ± 3° max.
± 1.5° typ.
fc - 100 kHz ± 3° max.
± 1.5° typ.
fc - 100 kHz ± 3° max.
± 1.5° typ.
Amplitude Accuracy
1.0 - 1.25 fc
± 0.3 dB max.
± 0.15 dB typ.
1.25 fc-100 kHz ± 0.2 dB max.
± 0.1 dB typ.
1.00 - 1.25 fc ± 0.3 dB max.
± 0.15 dB typ.
1.25 fc-100 kHz ± 0.2 dB max.
± 0.1 dB typ.
1.00 - 1.25 fc ± 0.3 dB max.
± 0.15 dB typ.
1.25 fc-100 kHz± 0.2 dB max.
± 0.1 dB typ.
Total Harmonic
Distortion @ 1 kHz
< - 100 dB typ.
< - 88 dB typ.
< - 88 dB typ.
Wide Band Noise
400 mVrms typ.
400 mVrms typ.
400 mVrms typ.
Narrow Band Noise
100 mVrms typ.
100 mVrms typ.
100 mVrms typ.
(theoretical)
(5 Hz - 100 kHz)
1. Unit to unit match for the same transfer function, set to the same frequency and operating configuration, and from the same manufacturing lot.
4
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
D824 Series
Pin-Out and Package Data
Ordering Information
Specification
(25°C and Vs ± 15 Vdc)
Analog Input Characteristics1
Impedance
Voltage Range
Max. Safe Voltage
Analog Output Characteristics
Impedance (Closed Loop)
Linear Operating Range
Maximum Current2
Offset Voltage3
Offset Temp. Coeff.
Power Supply (±V)
Rated Voltage
Operating Range
Maximum Safe Voltage
Quiescent Current
4-Pole
Pin-Out & Package Data
10 kW min.
± 10 Vpeak
±Vs
2.00
G-5
0.5 0.4
11 W typ.
10 W max.
± 10V
± 2 mA
22 mV typ.
20 mV max.
50 mV/°C
G-4
0.15 min.
Side View
0.025 Dia.
All dimensions are in inches
All Case Dimensions ± 0.02"
Grid Dimensions 0.1" x 0.1"
OUT +Vs -Vs
D7
D6
± 15 Vdc
± 12 to ± 18 Vdc
± 18 Vdc
D5
D4
GND
2.00
D3
± 13 mA typ.
± 20 mA max.
D2
D1
D0
Temperature
Operating
Storage
-20 to +70°C
-25 to +85°C
+IN -IN Os
4
Bottom View
Filter Mounting Assembly-See FMA-02A
Notes:
1. Input and output signal voltage referenced to supply common.
2. Output is short circuit protected to common.
DO NOT CONNECT TO ±Vs.
3. Adjustable to zero.
4. Units operate with or without offset pin connected.
Ordering Information
Filter Type
Transfer Function
L - Low Pass
H - High Pass
B - Butterworth
L - Bessel
Y2 - Chebychev (0.2 dB Ripple)
Y5 - Chebychev (0.5 dB Ripple)
DC Offset Adjustment
± Vs
D824L8B-3
Do not connect
if trim is not
required.
20 k W
(Cermet)
Model Number
OS
e.g., Model
Number
2
3
4
5
6
- Vs
T uning
Range (Hz)
1.0 to 256
10 to 2560
100 to 25.6k
200 to 51.2k
400 to 102.4k
Minimum
Step(Hz)
1.0
10
100
200
400
Case
G-5
G-4
G-4
G-4
G-4
We hope the information given here will be helpful. The information is based on data and our best knowledge, and we consider the information to be true and accurate. Please read all statements,
recommendations or suggestions herein in conjunction with our conditions of sale which apply to all goods supplied by us. We assume no responsibility for the use of these statements,
recommendations or suggestions, nor do we intend them as a recommendation for any use which would infringe any patent or copyright.
IN-00D824-00
5
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
Product Handling
Procedure
Programmable Filter Modules Power Sequence & ESD
November 2000
Programmable Filters Modules
818, 824, 828, 828BP, 828BR, 854, 858, R854, R858
I. Scope
The following precautions are necessary when handling and installing Frequency Devices
programmable filter modules.
II. Digital Circuit Description
The digital input pins connect directly to 4000 series CMOS logic, such as the 4053 analog switch. The
power supply (Vss) for the digital logic on the module comes directly from the +15 Volt pin on the
module. This sets the threshold voltage at 11.0 V minimum to 15.0 V maximum for a "1" (High) level
and 0.0 V minimum to 4.0 V maximum for a "0" (Low) level. Applying a voltage between 4.0 and 11.0
V will produce unpredictable operation. Connecting 5 Volt or 3.3 V logic devices directly to the filter
module without using a voltage translator will result in erratic operation of the filter.
III. (VERY IMPORTANT) Power-Up and Power-Down Sequence
Do not plug-in or un-plug module while power is applied. It is imperative that power is
supplied to the + 15 V pin on the filter module before or at the same instance that any digital pin is
pulled High (> 0.0 V). Failure to do this will result in excessive current flowing through the digital input
pin and through a protection diode internal to the 4000 logic, which will result in damage to the module.
The proper power-up and power-down sequence is:
1. Connect filter module ground.
2. Connect filter module +15 V.
3. Connect filter module -15 V.
4. Connect the input signal.
All four of the above steps can also occur simultaneously. Power-down should occur in the reverse
order.
IV. ESD Issues
Like most modern electronic equipment, the modules can be damaged by electrostatic discharge (ESD).
The modules are shipped from the factory in sealed, anti-static packaging and should be kept in the
sealed package prior to mounting on a circuit board. The following additional rules should also be
observed when handling the modules after they are removed from the factory packaging:
1. Only a person wearing a properly grounded wrist strap should handle the modules.
2. Any work surface that the modules are placed on must be properly ESD grounded.
3. Any insulating materials capable of generating static charge (such as paper) should be kept
away from the modules.
Static generating clothing should be covered with an ESD-protective smock.
1
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] • Web Address: http://www.freqdev.com
Low-Pass
4-Pole
Appendix A
Bessel
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.00
0.00
0.00
.336
0.10
-0.028
-12.1
.336
0.20
-0.111
-24.2
.336
0.30
-0.251
-36.3
.336
0.40
-0.448
-48.4
.336
0.50
-0.705
-60.6
.336
0.60
-1.02
-72.7
.336
0.70
-1.41
-84.8
.336
0.80
-1.86
-96.8
.335
0.85
-2.11
-103
.334
0.90
-2.40
-109
.333
0.95
-2.69
-115
.332
1.00
-3.01
-121
.330
1.10
-3.71
-133
.325
1.20
-4.51
-144
.318
1.30
-5.39
-156
.308
-166
1.40
-6.37
.295
-177
1.50
-7.42
.280
-187
1.60
-8.54
.263
-195
1.70
-9.71
.246
-204
1.80
-10.9
.228
1.90
-12.2
-212
.211
2.00
-13.4
-219
.194
2.25
-16.5
-235
.158
2.50
-19.5
-248
.129
2.75
-22.4
-259
.107
-267
3.00
-25.1
.089
-275
3.25
-27.6
.076
-281
3.50
-30.0
.065
-291
4.00
-34.4
.049
-305
5.00
-41.9
.031
6.00
-315
.021
-48.1
7.00
-321
.016
-53.4
8.00
-326
.012
-58.0
9.00
-330
.009
-62.0
10.0
-333
.008
-65.7
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
1.0 2 3 4 5 6 7 10.0
Normalized Frequency(f/fc)
Delay (Normalized)
Delay (sec)
1.0
0.5
0.0
0.1
0.15 2
3
4
5 6 7 89
1.0 1.5
Normalized Time (1/f sec)
Step Response (V/V)
Step Response
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
1.2
1.0
0.8
0.6
0.4
0.2
-0.0
-0.2
0
1
2
3
4
Normalized Time (1/f sec)
2
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
5
Low-Pass
4-Pole
Appendix A
Butterworth
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.00
0.00
0.00
.416
0.10
0.00
-15.0
.418
0.20
0.00
-30.1
.423
0.30
-0.00
-45.5
.433
0.40
-0.003
-61.4
.449
0.50
-0.017
-78.0
.474
0.60
-0.072
-95.7
.511
0.70
-0.243
-115
.558
0.80
-0.674
-136
.604
0.85
-1.047
-147
.619
0.90
-1.555
-158
.622
0.95
-2.21
-169
.612
1.00
-3.01
-180
.588
1.10
-4.97
-200
.513
1.20
-7.24
-217
.427
1.30
-9.62
-231
.350
1.40
-12.0
-242
.289
1.50
-14.3
-252
.241
1.60
-16.4
-260
.204
1.70
-18.5
-266
.175
1.80
-20.5
-272
.152
1.90
-22.3
-277
.134
2.00
-24.1
-282
.119
2.25
-28.2
-291
.091
2.50
-31.8
-299
.072
2.75
-35.1
-304
.059
3.00
-38.2
-309
.049
3.25
-41.0
-313
.041
3.50
-43.5
-317
.035
4.00
-48.2
-322
.027
5.00
-55.9
-330
.017
6.00
-62.3
-335
.012
7.00
-67.6
-339
.009
8.00
-72.2
-341
.007
9.00
-76.3
-343
.005
-80.0
10.0
-345
.004
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
1.0 2 3 4 5 6 7 10.0
Normalized Frequency(f/fc)
Delay (Normalized)
Delay (sec)
2.0
1.0
0.0
0.1
0.15 2
3
4
5 6 7 89
1.0 1.5
Normalized Frequency(f/fc)
Step Response (V/V)
Step Response
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
1.2
1.0
0.8
0.6
0.4
0.2
-0.0
0
1
2
3
4
Normalized Time (1/f sec)
7
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
5
Low-Pass
4-Pole, 0.2 dB Ripple
Appendix A
Chebychev
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.00
0.000
0.00
.478
0.10
0.039
-17.3
.487
0.20
0.129
-35.2
.509
0.30
0.195
-54.0
.533
0.40
0.174
-73.4
.547
0.50
0.074
-93.2
.553
0.000
0.60
-113
.575
0.074
0.70
-135
.654
0.199
0.80
-162
.836
0.063
0.85
-178
.947
-0.443
0.90
-196
1.02
.989
0.95
-214
-1.47
.873
1.00
-231
-3.01
.583
1.10
-257
-6.89
.385
1.20
-274
-10.8
.271
1.30
-286
-14.5
1.40
-17.7
-294
.202
1.50
-20.7
-300
.158
1.60
-23.4
-306
.128
1.70
-25.8
-310
.107
1.80
-28.1
-313
.090
-30.2
1.90
-316
.078
-32.2
2.00
-319
.068
-36.7
-324
2.25
.051
-40.6
-328
2.50
.039
-44.1
-331
2.75
.032
3.00
-47.3
-334
.026
3.25
-50.2
-336
.022
3.50
-52.8
-338
.018
4.00
-57.6
-341
.014
5.00
-65.5
-345
.009
-71.9
6.00
-347
.006
-77.3
7.00
-349
.004
-82.0
8.00
-351
.003
-86.1
9.00
-352
.003
-89.8
10.0
-352
.002
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
1.0 2 3 4 5 6 7 810.0
Normalized Frequency(f/fc)
Delay (Normalized)
Delay (sec)
2.0
1.0
0.0
0.1
0.15 2
3
4
5 6 7 89
1.0 1.5
Normalized Time (1/f sec)
Step Response (V/V)
Step Response
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
1.2
1.0
0.8
0.6
0.4
0.2
-0.0
0
12
1
2
3
4
Normalized Time (1/f sec)
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
5
Low-Pass
4-Pole, 0.5 dB Ripple
Appendix A
Chebychev
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.00
0.00
0.00
.476
0.10
0.087
-17.3
.492
0.20
0.295
-35.7
.533
0.30
0.474
-55.7
.577
0.40
0.463
-76.9
.596
0.50
0.248
-98.2
.583
0.60
0.025
-119
.578
0.70
0.072
-141
.647
0.80
0.432
-168
.881
0.85
0.482
-185
1.06
0.90
0.062
-205
1.18
0.95
-1.12
-226
1.13
1.00
-3.01
-245
.946
1.10
-7.61
-272
.559
1.20
-12.0
-288
.345
1.30
-15.9
-298
.235
1.40
-19.3
-305
.173
1.50
-22.4
-311
.134
1.60
-25.1
-315
.108
1.70
-27.6
-318
.089
1.80
-29.9
-321
.075
-32.1
1.90
-324
.065
-34.1
2.00
-326
.057
-38.6
2.25
-301
.042
-42.6
2.50
-334
.033
-46.1
2.75
-336
.026
3.00
-49.3
-339
.021
3.25
-52.2
-340
.018
3.50
-54.9
-342
.015
4.00
-59.7
-344
.011
5.00
-67.6
-347
.007
6.00
-74.0
-350
.005
7.00
-79.4
-351
.004
8.00
-84.1
-352
.003
9.00
-88.2
-353
.002
10.0
-91.9
-354
.002
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
2
3 4 5 6 78
1.0
10.0
Normalized Frequency(f/fc)
Delay (Normalized)
Delay (sec)
2.0
1.0
0.0
0.1
0.15 2
3
4
5 6 7 89
1.0 1.5
Normalized Time (1/f sec)
Step Response (V/V)
Step Response
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
1.2
1.0
0.8
0.6
0.4
0.2
-0.0
0
15
1
2
3
4
Normalized Time (1/f sec)
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
5
High-Pass
4-Pole
Appendix A
Butterworth
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.10
-80.0
345
.418
-55.9
0.20
330
.423
-41.8
0.30
314
.433
-31.8
0.40
299
.449
-24.1
0.50
282
.474
0.60
-17.8
264
.511
0.70
-12.6
245
.558
0.80
-8.43
224
.604
0.85
-6.69
213
.619
202
0.90
-5.22
.622
0.95
-3.99
191
.612
1.00
-3.01
180
.588
1.20
-0.908
143
.427
.289
1.40
-0.285
118
.204
1.60
-0.100
100
1.80
-0.039
87.6
.152
2.00
-0.017
78.0
.119
61.4
2.50
-0.003
.072
-0.001
50.7
3.00
.049
0.00
37.8
4.00
.027
5.00
0.00
30.1
.017
6.00
0.00
25.1
.012
7.00
0.00
21.4
.009
0.00
8.00
18.8
.007
0.00
9.00
16.7
.005
10.0
0.00
15.0
.004
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
1.0 2 3 4 5 6 7 10.0
Normalized Frequency(f/fc)
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
27
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
High-Pass
4-Pole, 0.2 dB Ripple
Appendix A
Chebychev
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.10
-89.8
352
.212
-65.1
0.20
345
.218
-51.1
0.30
337
.228
-40.6
0.40
328
.245
-32.2
0.50
319
.272
-25.0
0.60
308
.314
-18.6
0.70
296
.383
-12.7
0.80
280
.500
-7.34
0.90
259
.686
-3.01
1.00
231
.873
.633
1.20
172
.140
.275
1.50
128
.031
.197
1.70
111
.003
.138
2.00
93.2
.074
.088
2.50
73.4
.174
3.00
.200
60.4
.060
4.00
.170
44.5
.033
5.00
.129
35.2
.020
.098
6.00
29.2
.014
7.00
.076
24.9
.010
.060
8.00
21.7
.008
.048
9.00
19.3
.006
.040
10.0
17.3
.005
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
1.0 2 3 4 5 6 7 8 10.0
Normalized Frequency(f/fc)
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
31
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
High-Pass
4-Pole, 0.5 dB Ripple
Appendix A
Chebychev
Theoretical Transfer Characteristics
1
f/fc
Amp
Phase
Delay
(Hz)
(dB)
(deg)
(sec)
0.10
-91.9
354
.174
-67.6
0.20
347
.179
-53.1
0.30
341
.188
-42.6
0.40
334
.203
-34.1
0.50
326
.226
-26.8
0.60
317
.263
-20.2
0.70
307
.326
-14.0
0.80
293
.440
-8.13
0.90
274
.651
-3.01
1.00
245
.946
.693
1.20
179
.500
.271
1.50
133
.014
.199
1.70
117
.043
.146
2.00
98.2
.249
.095
2.50
76.9
.469
3.00
.498
62.7
.065
4.00
.401
45.5
.035
5.00
.296
35.7
.021
.221
6.00
29.4
.014
7.00
.169
25.0
.010
.133
8.00
21.8
.008
.107
9.00
19.3
.006
.088
10.0
17.3
.005
Frequency Response
Amp (dB)
0
-20
-40
-60
-80
-100
0.1
2
3 4 5 6 78
2
3 4 5 6 78
1.0
10.0
Normalized Frequency(f/fc)
1.Normalized Group Delay:
The above delay data is normalized to a corner frequency
of 1.0Hz.The actual delay is the normalized delay divided
by the actual corner frequency (fc).
Normalized Delay
Actual Delay =
Actual Corner Frequency (fc) in Hz
33
1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176
e-mail: [email protected] Web Address: http://www.freqdev.com
Similar pages