IN MITSUBISHI MICROCOMPUTERS ARY M37735EHLXXXHP e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som P IM REL PROM VERSION OF M37735MHLXXXHP DESCRIPTION ●Single power supply ...................................................... 2.7–5.5 V ●Low power dissipation (At 3 V supply voltage, 12 MHz frequency) ............................................ 9 mW (Typ.) ●Interrupts ............................................................ 19 types, 7 levels ●Multiple-function 16-bit timer ................................................. 5 + 3 ●Serial I/O (UART or clock synchronous) ...................................... 3 ●10-bit A-D converter .............................................. 8-channel inputs ●Watchdog timer ●Programmable input/output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8) ............................... 68 ●Clock generating circuit ........................................ 2 circuits built-in ●Small package ..................... 80-pin plastic molded fine-pitch QFP (0.5 mm lead pitch) The M37735EHLXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the PROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. Its strong points are the low power dissipation, the low supply voltage and the small package. The M37735EHLXXXHP has the same function as the M37735MHLXXXHP except that the built-in ROM is PROM. (Refer to the basic function blocks description.) APPLICATION FEATURES Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and so on. Control devices for general industrial equipment such as communication equipment, and so on. ●Number of basic instructions .................................................. 103 ●Memory size PROM ............................................. 124 Kbytes RAM ................................................ 3968 bytes ●Instruction execution time The fastest instruction at 12 MHz frequency ...................... 333 ns 41 42 43 44 45 47 46 49 48 50 51 52 53 55 54 57 56 58 61 40 62 39 63 38 64 37 65 36 66 35 67 34 68 33 69 32 70 31 M37735EHLXXXH P 71 30 72 29 73 28 74 27 75 26 76 25 77 24 20 19 18 17 16 14 15 13 12 11 10 9 8 7 6 5 21 3 80 4 22 2 23 79 1 78 P66/TB1IN P65/TB0IN P64/IN T2 P63/IN T1 P62/IN T0 P61/TA4IN P60/TA4OUT P57/TA3IN/KI3 P56/TA3OUT/KI2 P55/TA2IN/KI1 P54/TA2OUT/KI0 P53/TA1IN P52/TA1OUT P51/TA0 IN P50/TA0OUT P47 P46 P45 P44 P43 P85/C LK1 P84/C TS1/R TS1 P83/TXD0 P82/RXD0/C LKS0 P81/C LK0 P80/C TS0/R TS0/C LKS1 VC C AVC C VR EF AVSS VSS P77/AN7/XC IN P76/AN6/XC O U T P75/AN5/ADTR G/TXD2 P74/AN4/RXD2 P73/AN3/C LK2 P72/AN2/C TS2 P71/AN1 P70/AN0 P67/TB2IN/f SUB 59 60 P86/RxD1 P87/TxD1 P00/C S0 P01/C S1 P02/C S2 P03/C S3 P04/C S4 P05/R SM P P06/A16 P07/A17 P10/A8/D8 P11/A9/D9 P12/A10 /D10 P13/A11 /D11 P14/A12 /D12 P15/A13 /D13 P16/A14 /D14 P17/A15 /D15 P20/A0/D0 P21/A1/D1 PIN CONFIGURATION (TOP VIEW) Outline 80P6D-A, 80P6Q-A P22/A2/D2 P23/A3/D3 P24/A4/D4 P25/A5/D5 P26/A6/D6 P27/A7/D7 P30/WEL P31/WEH P32/ALE P33/H LD A VSS E/R D E XO U T XIN R ESET C N V SS BYTE P40/H O LD P41/R D Y P42/f 1 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Reference External data bus width voltage input selection input VREF BYTE Data Bus(Even) Data Bus(Odd) P0(8) Instruction Queue Buffer Q0(8) P1(8) Instruction Queue Buffer Q2(8) Address Bus Input/Output port P1 Instruction Queue Buffer Q1(8) AVCC Instruction Register(8) Data Buffer DBL(8) Input/Output port P0 Data Buffer DBH(8) Incrementer/Decrementer(24) (0V) VSS Program Counter PC(16) Program Bank Register PG(8) Input/Output port P3 P2(8) A-D Converter(10) CNVss Data Address Register DA(24) P3(4) (0V) AVSS Program Address Register PA(24) Input/Output port P2 Incrementer(24) 2 E Input/Output port P4 Input/Output port P5 Input/Output port P6 P4(8) P5(8) Timer TB0(16) Timer TA0(16) P6(8) Timer TB1(16) UART0(9) UART2(9) Timer TB2(16) Timer TA1(16) Input/Output port P7 P7(8) 3968 bytes RAM Accumulator A(16) Input/Output port P8 124 Kbytes P8(8) XCOUT XCIN Arithmetic Logic Unit(16) PROM Clock Generating Circuit Enable output Accumulatcr B(16) Watchdog Timer XCOUT XCIN Index Register X(16) Timer TA4(16) Stack Pointer S(16) Timer TA2(16) RESET Direct Page Register DPR(16) Index Register Y(16) Clock input Clock output XIN XOUT M37735EHLXXXHP BLOCK DIAGRAM Reset input Processor Status Register PS(11) Timer TA3(16) Input Butter Register IB(16) UART1(9) VCC Data Bank Register DT(8) MITSUBISHI MICROCOMPUTERS Y NAR MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som M37735EHLXXXHP PR PROM VERSION OF M37735MHLXXXHP FUNCTIONS OF M37735EHLXXXHP Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Multi-function timers PROM RAM P0 – P2, P4 – P8 P3 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package Input/Output voltage Output current Functions 103 333 ns (the fastest instruction at external clock 12 MHz frequency) 124 Kbytes 3968 bytes 8-bit ✕ 8 4-bit ✕ 1 16-bit ✕ 5 16-bit ✕ 3 (UART or clock synchronous serial I/O) ✕ 3 10-bit ✕ 1 (8 channels) 12-bit ✕ 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 2.7 – 5.5 V 9 mW (at 3 V supply voltage, external clock 12 MHz frequency) 22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency) 5V 5 mA Maximum 1 Mbytes –40 to 85 °C CMOS high-performance silicon gate process 80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch) 3 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP PIN DESCRIPTION Pin Vcc, Vss CNVss Name Input/Output Power source Apply 2.7 – 5.5 V to Vcc and 0 V to Vss. CNVss input Input RESET Reset input Input XIN Clock input Input XOUT Clock output Enable output Output Output External data bus width selection input Analog power source input Reference voltage input I/O port P0 Input _____ _ E BYTE AVcc, AVss VREF P00 – P07 Input I/O P10 – P17 I/O port P1 I/O P20 – P27 I/O port P2 I/O P30 – P33 I/O port P3 I/O P40 – P47 I/O port P4 I/O P50 – P57 I/O port P5 I/O P60 – P67 I/O port P6 I/O P70 – P77 I/O port P7 I/O P80 – P87 I/O port P8 I/O 4 Functions This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. In the single-chip mode, this pin functions as the enable signal output pin which indicates the access status in the internal bus. ___ In the memory expansion mode or the microprocessor mode, this pin functions as the RDE signal output pin. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. ___ ___ In the memory expansion mode or the microprocessor mode, these pins output CS0 – CS4, ____ RSMP signals, and address (A16, A17). In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address (A0 – A7) is output. In the single-chip mode, these pins have the same function as port P0. In the memory expansion ____ ____ ____ mode or the microprocessor mode, WEL, WEH, ALE, and HLDA signals are output. In the single-chip mode, these pins have the same functions as____ port P0. In___ the memory expansion mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 also functions as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins __ also __ function as I/O pins for timers A0 to A3 and input pins for key input interrupt input (KI0 – KI3). In addition to having the same functions as port P0 in the single-chip mode, ___ these ___ pins also function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP PIN DESCRIPTION (EPROM MODE) Pin VCC, VSS CNVSS BYTE ____ RESET XIN XOUT _ E AVCC, AVSS VREF P00 – P07 P10 – P17 Name Power supply VPP input VPP input Reset input Clock input Clock output Enable output Analog supply input Reference voltage input Address input (A0 – A7) Address input (A8 – A15) Data I/O (D0 – D7) P20 – P27 P30 P31 – P33 P40 – P47 Address input (A16) Input port P3 Input port P4 P50 – P57 Control signal input P60 – P67 Input port P6 P70 – P77 Input port P7 Input port P8 P80 – P87 Input/Output Input Input Input Input Output Output Input Input Input I/O Input Input Input Input Input Input Input Functions Supply 5V±10% to VCC and 0V to VSS. Connect to VPP when programming or verifing. Connect to VPP when programming or verifing. Connect to VSS. Connect a ceramic resonator between XIN and XOUT. Keep open. Connect AVCC to VCC and AVSS to VSS. Connect to VSS. Port P0 functions as the lower 8 bits address input (A0 – A7). Port P1 functions as the higher 8 bits address input (A8 – A15). Port P2 functions as the 8 bits data bus(D0 – D7). P30 functions as the most significant bit address input (A16). Connect to VSS. Connect to VSS. ___ __ __ P50, P51 and P52 function as PGM, OE and CE input pins respectively. Connect P53, P54, P55 and P56 to VCC. Connect P57 to VSS. Connect to VSS. Connect to VSS. Connect to VSS. 5 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP BASIC FUNCTION BLOCKS The M37735EHLXXXHP has the same functions as the M37735MHBXXXFP except for the following : (1) The built-in ROM is PROM. (2) The status of bit 3 of the oscillation circuit control register 1 (address 6F16) at a reset is different. (3) The usage condition of bit 3 of the oscillation circuit control register 1 is different. (4) Part of the processor mode selection method is different. Accordingly, refer to the basic function blocks description in the M37735MHBXXXFP except for Figure 1 (bit configuration of oscillation circuit control register 1), Figure 3 (microcomputer internal status during reset), and Table 1 (microprocessor mode selection method). In the M37735EHLXXXHP, bit 3 of the oscillation circuit control register 1 must be “0”. (Refer to Figure 1.) Bit 3 is “1” at a reset. Accordingly, write “0” to bit 3 in the single-chip mode after reset. 7 6 5 4 3 0 0 2 1 Figure 2 shows how to write data in oscillation circuit control register 1. In the M37735EHLXXXHP, the microprosessor mode cannot be selected by connecting the CNVSS pin to VCC. Connect the CNVSS pin to VSS and start the microcomputer operating from the singlechip mode. Table 1. Relationship between CNVSS pin input level and processor modes CNVSS VSS Description Mode Single-chip mode upon starting ●Single-chip ●Memory expansion after reset. Each mode can be selected by changing the processor ●Microprocessor mode bits by software. 0 CC2 CC1 CC0 Oscillation circuit control register 1 Main clock division selection bit 0 : Main clock is divided by 2. 1 : Main clock is not divided by 2. Address 6F16 Note. Write to the oscillation circuit control register 1 as the flow shown in Figure 2. Main clock external input selection bit 0 : Main-clock oscillation circuit is operating by itself. Watchdog timer is used at returning from STP state. 1 : Main-clock is input externally. Watchdog timer is not used at returning from STP state. Sub clock external input selection bit 0 : Sub-clock oscillation circuit is operating by itself. Port P76 functions as XCOUT pin. Watchdog timer is used at returning from STP state. 1 : Sub-clock is input externally. Port P76 functions as I/O port. Watchdog timer is not used at returning from STP state. 0 : Always “0” (This bit is “1” at reset, so that write “0” to this bit .) 0 : Always “0” (However, writing data “5516” shown in Figure 2 is possible.) Clock prescaler reset bit Fig. 1 Bit configuration of oscillation circuit control register 1 (corresponding to Figure 63 in data sheet “M37735MHBXXXFP”) Writing data “5516” (LDM instruction) Next instruction Writing data “8016” (LDM instruction) Reset clock prescaler • How to reset clock prescaler Writing data “0Y16” (LDM instruction) CC2 to CC0 selection bits • How to write in CC2 to CC0 selection bits Note. “Y” is the sum of bits to be set. For example, when setting bits 2 and 1 to “1”, “Y” becomes “6”. Fig. 2 How to write data in oscillation circuit control register 1 (identical with Figure 64 in data sheet “M37735MHBXXXFP”) 6 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP RESET CIRCUIT _____ The microcomputer is released from the reset state when the RESET pin is returned to “H” level after holding it at “L” level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Figure 3 shows the microcomputer internal status during reset. Figure 4 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from “L” to “H” after the main-clock oscillation is fully stabilized. Power on 2.7V VCC RESET VCC 0V RESET 0V 0.55V Note. In this case, stabilized clock is input from the external to the main-clock oscillation circuit. Perform careful evalvation at the system design level before using. Fig. 4 Example of a reset circuit 7 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Address Address (0416)••• 0016 Watchdog timer frequency selection flag (6116)••• Port P1 direction register (0516)••• 0016 Memory allocation control register 0 (6316)••• 0 0 0 0 0 0 0 1 Port P2 direction register (0816)••• 0016 UART2 transmit/receive mode register (6416)••• 0 0 0 0 0 0 0 Port P3 direction register (0916)••• UART2 transmit/receive control register 0 (6816)••• 1 0 0 0 Port P4 direction register (0C16)••• 0016 UART2 transmit/receive control register 1 (6916)••• 0 0 0 0 0 0 1 0 Port P5 direction register (0D16)••• 0016 Oscillation circuit control register 0 (6C16)••• 0 0 0 0 0 0 0 1 Port P6 direction register (1016)••• 0016 Port function control register (6D16)••• 0 Port P7 direction register (1116)••• 0016 Serial transmit control register (6E16)••• Port P8 direction register (1416)••• 0016 Oscillation circuit control register 1 (6F16)••• 0 A-D control register 0 (1E16)••• 0 0 0 0 0 ? ? ? A-D/UART2 trans./rece. interrupt control register A-D control register 1 (1F16)••• 0 0 0 UART 0 transmit/receive mode register (3016)••• 0016 UART 1 transmit/receive mode register (3816)••• 0016 UART 0 transmit/receive control register 0 UART 1 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 1 transmit/receive control register 1 Count start flag (3416)••• 0 0 0 0 1 0 0 0 UART 1 receive interrupt control register One- shot start flag Port P0 direction register 0 0 0 0 1 1 0 0016 0 0 0 1 0 0 0 (7016)••• 0 0 0 0 UART 0 transmission interrupt control register (7116)••• 0 0 0 0 (7216)••• 0 0 0 0 UART 1 transmission interrupt control register (7316)••• 0 0 0 0 (7416)••• 0 0 0 0 UART 0 receive interrupt control register (3C16)••• 0 0 0 0 1 0 0 0 Timer A0 interrupt control register (7516)••• 0 0 0 0 (3516)••• 0 0 0 0 0 0 1 0 Timer A1 interrupt control register (7616)••• 0 0 0 0 (3D16)••• 0 0 0 0 0 0 1 0 Timer A2 interrupt control register (7716)••• 0 0 0 0 (4016)••• 0016 Timer A3 interrupt control register (7816)••• 0 0 0 0 (4216)••• 0 0 0 0 0 Timer A4 interrupt control register (7916)••• 0 0 0 0 Up-down flag (4416)••• 0016 Timer B0 interrupt control register (7A16)••• 0 0 0 0 Timer A0 mode register (5616)••• 0016 Timer B1 interrupt control register (7B16)••• 0 0 0 0 Timer A1 mode register (5716)••• 0016 Timer B2 interrupt control register (7C16)••• 0 0 0 0 Timer A2 mode register (5816)••• 0016 INT0 interrupt control register (7D16)••• 0 0 0 0 0 0 Timer A3 mode register (5916)••• 0016 INT1 interrupt control register (7E16)••• 0 0 0 0 0 0 Timer A4 mode register (5A16)••• 0016 INT2/Key input interrupt control register (7F16)••• 0 0 0 0 0 0 Timer B0 mode register (5B16)••• 0 0 1 0 0 0 0 0 Processor status register (PS) Timer B1 mode register (5C16)••• 0 0 1 0 0 0 0 Program bank register (PG) Timer B2 mode register (5D16)••• 0 0 1 0 0 0 0 Processor mode register 0 (5E16)••• Processor mode register 1 (5F16)••• Watchdog timer register (6016)••• 0016 0 FFF16 0 0 0 ? ? 0 0 0 1 ? ? 0016 Program counter (PCH) Content of FFFF16 Program counter (PCL) Content of FFFE16 Direct page register (DPR) Data bank register (DT) 000016 0016 Contents of other registers and RAM are undefined during reset. Initialize them by software. Fig. 3 Microcomputer internal status during reset 8 MITSUBISHI MICROCOMPUTERS MI I L E N ARY M37735EHLXXXHP e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP EPROM MODE address 01000 16 – 1FFFF16. Connect the clock which is either ceramic resonator or external clock to XIN pin and XOUT pin. The M37735EHLXXXHP features an EPROM mode in addition to its _____ normal modes. When the RESET signal level is “L”, the chip automatically enters the EPROM mode. Table 2 lists the correspondence between pins and Figure 5 shows the pin connections in the EPROM mode. The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K. When in the EPROM mode, ports P0, P1, P2, P30, P5 0, P5 1, P5 2, CNVSS and BYTE are used for the EPROM (equivalent to the M5M27C101K). When in this mode, the built-in PROM can be programmed or read from using these pins in the same way as with the M5M27C101K. This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify Table 2. Pin function in EPROM mode M37735EHLXXXHP M5M27C101K VCC V CC VCC VPP VSS CNVSS, BYTE VSS VPP VSS Address input Data I/O Ports P0, P1, P30 Port P2 A0 – A16 D0 – D 7 __ __ P52 P51 CE __ OE ___ CE __ OE ___ P50 PGM 41 42 43 44 46 45 47 50 48 51 49 52 53 55 56 54 57 58 61 40 62 39 63 38 64 37 65 36 66 35 67 34 68 33 69 32 70 31 M37735EHLXXXHP 71 30 P22/A2/D2 P23/A3/D3 P24/A4/D4 P25/A5/D5 P26/A6/D6 P27/A7/D7 P30/WEL P31/WEH P32/ALE P33/HLDA VSS → E/RDE → XOUT ← XIN ← RESET CNVSS ← BYTE ↔ P40/HOLD ↔ P41/RDY ↔ P42/ 1 D2 D3 D4 D5 D6 D7 A16 VSS ∗ VPP 20 19 18 17 16 15 14 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ CE OE PGM P66/TB1IN ↔ P65/TB0IN ↔ P64/INT2 ↔ P63/INT1 ↔ P62/INT0 ↔ P61/TA4IN ↔ P60/TA4OUT ↔ P57/TA3IN/KI3 ↔ P56/TA3OUT/KI2 ↔ P55/TA2IN/KI1 ↔ P54/TA2OUT/KI0 ↔ P53/TA1IN ↔ P52/TA1OUT ↔ P51/TA0IN ↔ P50/TA0OUT ↔ P47 ↔ P46 ↔ P45 ↔ P44 ↔ P43 ↔ 13 21 11 22 80 12 79 10 23 9 24 78 8 25 77 6 26 76 5 27 75 7 74 4 28 3 29 73 1 72 2 VCC P85/CLK1 ↔ P84/CTS1/RTS1 ↔ P83/TXD0 ↔ P82/RXD0/CLKS0 ↔ P81/CLK0 ↔ P80/CTS0/RTS0/CLKS1 ↔ VCC AVCC VREF → AVSS VSS P77/AN7/XCIN ↔ P76/AN6/XCOUT ↔ P75/AN5/ADTRG/TxD2 ↔ P74/AN4/RxD2 ↔ P73/AN3/CLK2 ↔ P72/AN2/CTS2 ↔ P71/AN1 ↔ P70/AN0 ↔ P67/TBIN/ SUB ↔ 59 60 ↔ P86/RXD1 ↔ P87/TXD1 ↔ P00/CS0 ↔ P01/CS1 ↔ P02/CS2 ↔ P03/CS3 ↔ P04/CS4 ↔ P05/RSMP ↔ P06/A16 ↔ P07/A17 ↔ P10/A8/D8 ↔ P11/A9/D9 ↔ P12/A10/D10 ↔ P13/A11/D11 ↔ P14/A12/D12 ↔ P15/A13/D13 ↔ P16/A14/D14 ↔ P17/A15/D15 ↔ P20/A0/D0 ↔ P21/A1/D1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1 PGM ∗ Outline 80P6D-A, 80P6Q-A : Connect to ceramic oscillation circuit. : It is used in the EPROM mode. Fig. 5 Pin connection in EPROM mode 9 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K) Reading __ __ To read the EPROM, set the CE and OE pins to a “L” level. Input the address of the data (A0 – A16) to be read, and the data will be output to the I/O pins D0 – D7. The data I/O pins will be floating when either __ __ the CE or OE pins are in the “H” state. Programming Programming must be performed in 8 bits by a byte program. To __ __ program to the EPROM, set the CE pin to a “L” level and the OE pin to a “H” level. The CPU will enter the programming mode when 12.5 V is applied to the VPP pin. The address to be programmed to is selected with pins A0 – A16, and the data to be programmed is input to pins D0 ___ – D7. Set the PGM pin to a “L” level to being programming. PROM VERSION OF M37735MHLXXXHP Programming operation To program the M37735EHLXXXHP, first set VCC = 6 V, VPP = 12.5 V, and set the address to 0100016. Apply a 0.2 ms programming pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2 ms programming pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2 ✕ X ms). When this series of programming operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached. Finally, when all addresses have been programmed, read with VCC = VPP = 5 V (or VCC = VPP = 5.5 V). Table 3. I/O signal in each mode Pin __ __ ___ CE OE PGM VPP VCC Data I/O VIL VIL VIL VIH VIL VIH X VIH X X 5V 5V 5V 5V Output Floating X 5V 5V VIL 12.5 V 6 V Floating Input Programming Verify VIL VIL VIH 12.5 V 6 V Output Program Disable VIH VIH VIH 12.5 V 6 V Floating Mode Read-out Output Disable Programming Note 1 : An X indicates either VIL or VIH. Programming operation (equivalent to the M5M27C101K) AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted) Symbol Parameter Test conditions Min. 2 tAS Address setup time tOES tDS tAH tDH tDFP tVCS OE setup time 2 Data setup time Address hold time Data hold time Output enable to output float delay VCC setup time VPP setup time 2 tVPS tPW tOPW tCES tOE 10 __ ___ 2 0.19 2 CE setup time __ Data valid from OE 130 0 2 PGM over program pulse width Unit µs µs 2 0.19 __ Max. 0 PGM pulse width ___ Limits Typ. 0.2 0.21 µs µs µs ns µs µs 5.25 ms ms 150 µs ns MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP AC waveforms PROGRAM VERIFY VIH ADDRESS VIL tAH tAS VIH/VOH DATA DATA OUTPUT VALID DATA SET VIL/VOL tDS tDH tDFP VPP VPP VCC VCC +1 VCC VCC tVPS tVCS VIH CE VIL tCES VIH PGM tOES VIL tOE tPW VIH tOPW OE VIL Test conditions for A.C. characteristics Input voltage : VIL = 0.45 V, VIH = 2.4 V Input rise and fall times (10 % – 90 %) : ≤ 20 ns Reference voltage at timing measurement : Input, Output “L” = 0.8 V, “H” = 2 V Programming algorithm flow chart START ADDR=FIRST LOCATION VCC=6.0 V VPP=12.5 V X=0 PROGRAM ONE PULSE OF 0.2 ms X=X+1 YES X=25? NO FAIL VERIFY BYTE FAIL VERIFY BYTE PASS PROGRAM PULSE OF 0.2X ms DURATION DEVICE FAILED PASS NO INCREMENT ADDR LAST ADDR? YES VCC=VPP=*5.0 V VERIFY ALL BYTE FAIL DEVICE FAILED PASS DEVICE PASSED *4.5 V ≤ VCC = VPP ≤ 5.5 V 11 MITSUBISHI MICROCOMPUTERS MI I L E N ARY M37735EHLXXXHP e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP SAFETY INSTRUCTIONS ADDRESSING MODES (1) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on. (2) The programmable M37735EHLHP that is shipped in blank is also provided. For the M37735EHLHP, Mitsubishi Electric corp. does not perform PROM programming test and screening following the assembly processes. To improve reliability after programming, performing programming and test according to the flow below before use is recommended. The M37735EHLXXXHP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. Programming with PROM programmer Screening (Caution) (Leave at 150 °C for 40 hours) Verify test with PROM programmer Function check in target device Caution : Never expose to 150 °C exceeding 100 hours. 12 MACHINE INSTRUCTION LIST The M37735EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details. DATA REQUIRED FOR PROM ORDERING Please send the following data for writing to PROM. (1) M37735EHLXXXHP writing to PROM order confirmation form (2) 80P6D, 80P6Q mark specification form (3) ROM data (EPROM 3 sets) MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP ABSOLUTE MAXIMUM RATINGS Symbol Vcc AVcc VI VI VO Pd Topr Tstg Parameter Power source voltage Analog power_____ source voltage Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, VREF, XIN Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, 7, P60 – P67, P70 – P77, P40 – P47, P50 – P5 __ P80 – P87, XOUT, E Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12 (Note) Unit V V V –0.3 to Vcc + 0.3 V –0.3 to Vcc + 0.3 V 200 –40 to +85 –65 to +150 mW °C °C Ta = 25 °C Note. When the EPROM is programmed, input voltage of pins CNVSS and BYTE is 13 V respectively. RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) IOH(avg) IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN) Parameter f(XIN) : Operating Power source voltage f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, High-level input voltage P00 – P07, P30 _____ P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, Low-level input voltage P00 – P07, P30 _____ P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10– P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P44 – P47, P50 – P53 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level average output current P44 – P47, P50 – P53 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 2.7 2.7 Limits Typ. Max. 5.5 5.5 Vcc 0 0 Unit V V V V 0.8 Vcc Vcc V 0.8 Vcc Vcc V 0.5 Vcc Vcc V 0 0.2Vcc V 0 0.2Vcc V 0 0.16Vcc V –10 mA –5 mA 10 mA 16 mA 5 mA 12 12 50 mA MHz kHz 32.768 Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”. 13 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted) Symbol Parameter VOH High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOH High-level output voltage P30 – P32 VOH High-level output voltage E VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 VOH _ VOL Low-level output voltage P44 – P47, P50 – P53 VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOL Low-level output voltage P30 – P32 VOL Low-level output voltage E VT+ – VT– Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN, ___ ___ ____ ___ ___ ___ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, __ __ CLK1, CLK2, KI0 – KI3 _ ____ ___ _____ VT+ – VT– Hysteresis RESET VT+ – VT– Hysteresis XIN VT+ – VT– Hysteresis XCIN (When external clock is input) IIH IIL High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 _____ – P57, P60 – P67, P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P53, P60, P61, P65 – P67, _____ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P54 – P57, P62 – P64 Test conditions VCC = 5 V, IOH = –10 mA Limits Typ. Min. Unit Max. 3 VCC = 3 V, IOH = –1 mA 2.5 VCC = 5 V, IOH = –400 µA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA 4.7 3.1 4.8 2.6 3.4 4.8 2.6 V V V V 2 VCC = 5 V, IOL = 10 mA VCC = 3 V, IOL = 1 mA 0.5 VCC = 5 V, IOL = 16 mA VCC = 3 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA 1.8 1.5 0.45 1.9 0.43 0.4 1.6 0.4 0.4 0.4 1 VCC = 3 V 0.1 0.7 VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V 0.2 0.1 0.1 0.06 0.1 0.06 0.5 0.4 0.4 0.26 0.4 0.26 VCC = 5 V VCC = 5 V, VI = 5 V 5 VCC = 3 V, VI = 3 V 4 VCC = 5 V, VI = 0 V –5 VCC = 3 V, VI = 0 V –4 VI = 0 V, VCC = 5 V –5 transistor VCC = 3 V –4 VI = 0 V, VCC = 5 V –0.25 –0.5 –1.0 VCC = 3 V –0.08 –0.18 –0.35 without a pull-up IIL with a pull-up transistor VRAM 14 RAM hold voltage When clock is stopped. 2 V V V V V V V V V µA µA µA mA V MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Parameter Power source current ICC Limits Typ. Max. VCC = 5 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 4.5 9 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 3 6 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 0.75 MHz), f(XCIN) : Stopped, in operating 0.4 0.8 mA 6 12 µA 30 60 µA 3 6 µA 1 µA 20 µA Test conditions Min. When single-chip mode, output pins are open, and other pins are VSS. VCC = 3 V, f(XIN) = 12 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, in operating (Note 3) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, when clock is stopped Ta = 85 °C, when clock is stopped Unit Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. 2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. 3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. 4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”. A–D CONVERTER CHARACTERISTICS (VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Symbol — — RLADDER tCONV VREF VIA Parameter Resolution Absolute accuracy Ladder resistance Conversion time Reference voltage Analog input voltage Test conditions VREF = VCC VREF = VCC VREF = VCC Min. 10 19.6 2.7 0 Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 15 MITSUBISHI MICROCOMPUTERS MI I L E N ARY M37735EHLXXXHP e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP TIMING REQUIREMENTS (V CC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted. External clock input Symbol tc tw(H) tw(L) tr tf Parameter External clock input cycle time (Note 3) External clock input high-level pulse width (Note 4) External clock input low-level pulse width (Note 4) External clock rise time External clock fall time Limits Min. 83 33 33 Max. 15 15 Unit ns ns ns ns ns Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns. 4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / t c must be set to values from 0.45 through 0.55. Single-chip mode Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D–E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) Parameter Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Limits Min. 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Memory expansion mode and microprocessor mode Symbol tsu(D–RDE) tsu(RDY– 1) tsu(HOLD– 1) th(RDE–D) th( 1–RDY) th( 1–HOLD) 16 Parameter Data input setup time ___ RDY input setup time HOLD input setup time Data input hold time ___ RDY input hold time ____ HOLD input hold time ____ Limits Min. 50 80 80 0 0 0 Max. Unit ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR Timer A input (Count input in event counter mode) Symbol tc(TA) tw(TAH) tw(TAL) PROM VERSION OF M37735MHLXXXHP Parameter TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 250 125 125 Max. Unit ns ns ns Timer A input (Gating input in timer mode) Symbol tc(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Limits Min. 666 333 333 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer A input (External trigger input in one-shot pulse mode) Symbol t c(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 666 166 166 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer A input (External trigger input in pulse width modulation mode) Symbol tw(TAH) tw(TAL) Parameter TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 166 166 Max. Unit ns ns Timer A input (Up-down input in event counter mode) Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) Parameter TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Limits Min. 3333 1666 1666 666 666 Max. Unit ns ns ns ns ns Timer A input (Two-phase pulse input in event counter mode) Symbol tc(TA) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) Parameter TAjIN input cycle time TAjIN input setup time TAjOUT input setup time Limits Min. 2000 500 500 Max. Unit ns ns ns 17 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Timer B input (Count input in event counter mode) Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 250 125 125 500 250 250 TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Max. Unit ns ns ns ns ns ns Timer B input (Pulse period measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. Timer B input (Pulse width measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19. A-D trigger input Symbol Limits Parameter Min. 1333 166 ____ tc(AD) tw(ADL) AD TRG input cycle time (minimum allowable trigger) ____ ADTRG input low-level pulse width Max. Unit ns ns Serial I/O Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) Limits Parameter Min. 333 166 166 CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time Max. 100 0 65 75 ____ Unit ns ns ns ns ns ns ns ___ External interrupt INTi input, key input interrupt KIi input Symbol Parameter ___ tw(INH) tw(INL) tw(KIL) 18 INTi input high-level pulse width ___ INTi input low-level pulse width __ KIi input low-level pulse width Limits Min. 250 250 250 Max. Unit ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP DATA FORMULAS Timer A input (Gating input in timer mode) Symbol Parameter tc(TA) TAiIN input cycle time tw(TAH) TAiIN input high-level pulse width tw(TAL) TAiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Timer A input (External trigger input in one-shot pulse mode) Symbol tc(TA) Parameter TAiIN input cycle time Limits Min. 8 ✕ 109 2 · f(f2) Max. Unit ns Timer B input (In pulse period measurement mode or pulse width measurement mode) Symbol Parameter tc(TB) TBiIN input cycle time tw(TBH) TBiIN input high-level pulse width tw(TBL) TBiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”. 19 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP SWITCHING CHARACTERISTICS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Single-chip mode Symbol td(E–P0Q) td(E–P1Q) td(E–P2Q) td(E–P3Q) td(E–P4Q) td(E–P5Q) td(E–P6Q) td(E–P7Q) td(E–P8Q) Parameter Test conditions Port P0 data output delay time Port P1 data output delay time Port P2 data output delay time Port P3 data output delay time Port P4 data output delay time Port P5 data output delay time Port P6 data output delay time Port P7 data output delay time Port P8 data output delay time Fig. 6 Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. P0 P1 P2 P3 P4 P5 P6 P7 P8 φ1 E Fig. 6 Measuring circuit for ports P0 – P8 and φ1 20 50 pF Limits Min. Max. 300 300 300 300 300 300 300 300 300 Unit ns ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Memory expansion mode and microprocessor mode (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Symbol Parameter td(CS–WE) td(CS–RDE) Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time td(An–WE) td(An–RDE) Address output delay time td(A–WE) td(A–RDE) Address output delay time th(WE–An) th(RDE–An) Address hold time tw(ALE) ALE pulse width tsu(A–ALE) th(ALE–A) Address output setup time Address hold time td(ALE–WE) td(ALE–RDE) ALE output delay time td(WE–DQ) th(WE–DQ) Data output delay time Data hold time ___ ___ tw(WE) WEL/WEH pulse width tpxz(RDE–DZ) tpzx(RDE–DZ) Floating start delay time Floating release delay time tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA) Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Fig. 6 Limits Min. Max. 20 ns 182 ns 4 ns 20 ns 182 ns 20 ns 162 ns 40 ns 40 ns 123 ns 10 ns 93 ns 9 ns 40 ns 4 ns 40 131 ns ns ns ns 298 ns 40 90 No wait Wait 1 Wait 0 Unit 53 128 ns ns ns 295 ns 25 ns RSMP hold time 0 ns φ1 output delay time 0 ___ RDE pulse width 10 No wait Wait 1 Wait 0 ____ RSMP output delay time ____ 30 ns 120 ns ____ HLDA output delay time Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”. 21 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note1)) Symbol Parameter td(CS–WE) td(CS–RDE) Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time td(An–WE) td(An–RDE) Wait mode No wait Wait 1 Wait 0 Address output delay time Address output delay time th(WE–An) th(RDE–An) Address hold time tw(ALE) ALE pulse width No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 tsu(A–ALE) Address output setup time No wait Wait 1 Wait 0 th(ALE–A) Address hold time No wait Wait 1 Wait 0 td(ALE–WE) td(ALE–RDE) td(WE–DQ) ALE output delay time 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) tw(WE) WEL/WEH pulse width ___ ___ tpxz(RDE–DZ) Floating start delay time tpzx(RDE–DZ) Floating release delay time ___ RDE pulse width 22 ns – 63 ns – 68 ns – 63 ns – 88 ns – 43 ns – 43 ns – 43 ns – 73 ns – 73 ns ns – 43 ns ns 4 1 ✕ 109 2 · f(f2) – 43 ns 90 No wait Wait 1 Wait 0 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) ns – 35 ns – 35 ns 10 No wait Wait 1 Wait 0 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) ns – 43 ns – 30 ns – 38 ns – 38 ns td(RSMP–WE) – 58 RSMP output delay time td(RSMP–RDE) ____ th(φ1–RSMP) 0 RSMP hold time td(WE–φ1) φ1 output delay time 0 td(RDE–φ1) Notes 1. This applies when the main clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”. ____ ns 9 1 ✕ 109 2 · f(f2) Unit ns Data output delay time Data hold time tw(RDE) No wait Wait 1 Wait 0 th(WE–DQ) Max. 4 No wait Wait 1 Wait 0 td(A–WE) td(A–RDE) Limits Min. 1 ✕ 109 – 63 2 · f(f2) 9 3 ✕ 10 – 68 2 · f(f2) ns ns 30 ns MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP TIMING DIAGRAM tr tf tw(H) tc tw(L) XIN E td(E–P0Q) Port P0 output tsu(P0D–E) th(E–P0D) Port P0 input td(E–P1Q) Port P1 output tsu(P1D–E) th(E–P1D) Port P1 input td(E–P2Q) Port P2 output tsu(P2D–E) th(E–P2D) Port P2 input td(E–P3Q) Port P3 output tsu(P3D–E) th(E–P3D) Port P3 input td(E–P4Q) Port P4 output tsu(P4D–E) th(E–P4D) Port P4 input td(E–P5Q) Port P5 output tsu(P5D–E) th(E–P5D) Port P5 input td(E–P6Q) Port P6 output tsu(P6D–E) th(E–P6D) Port P6 input td(E–P7Q) Port P7 output tsu(P7D–E) th(E–P7D) Port P7 input td(E–P8Q) Port P8 output tsu(P8D–E) th(E–P8D) Port P8 input 23 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) In event counter mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising) th(TIN–UP) tsu(UP–TIN) In event counter mode (When two-phase pulse input is selected) tc(TA) TAjIN input tsu(TAjIN–TAjOUT ) t su(TAjIN –TAjOUT ) tsu(TAjOUT –TAjIN ) TAjOUT input tsu(TAjOUT –TAjIN) tc(TB) tw(TBH) TBiIN input tw(TBL) 24 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C–Q) TxDi td(C–Q) tsu(D–C) th(C–D) RxDi tw(INL) INTi input Kli input tw(INH) tw(KNL) 25 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Memory expansion mode and microprocessor mode (When wait bit = “1”) φ1 WEL WEH RDE RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “0”) φ1 WEL WEH RDE RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “1” or “0” in common) φ1 tsu(HOLD–φ1) th(φ1–HOLD) HOLD input td(φ1–HLDA) HLDA output Test conditions • VCC = 2.7 – 5.5 V • Input timing voltage : V IL = 0.2VCC, VIH = 0.8V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V 26 td(φ1–HLDA) MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Memory expansion mode and m icroprocessor mode (No wait : When wait bit = “1”) tw(L) tw(H) tf tr tc XIN φ1 td(WE– φ1) td(WE– φ1) td(RDE– φ1 ) td(RDE– φ1) CS0 – CS4 t d(CS–WE) td(CS–RDE) th(WE –CS) An th(RDE– CS) Address Address td(An–WE) tw(ALE) Address td(An–RDE ) td(ALE –WE) th(RDE –An) th(WE–An) ALE td(ALE –RDE) th(ALE –A) tsu(A–ALE) th(WE–DQ) Am/Dm Address Data td(WE–DQ) tpxz(RDE –DZ) tpzx(RDE –DZ) Address Address td(A–RDE) t d(A–WE) tw(WE) th(RDE–D) WEL, WEH t su(D–RDE) DmIN Data tw(RDE) RDE th(φ1–RSMP) td(RSMP –WE) td(RSMP –RDE) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 27 MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Memory expansion mode and m icroprocessor mode (Wait 1 : The external memory area is accessed when wait bit = “0” and wait selection bit = “1”.) tw(L) tw(H) tf tr tc XIN φ1 td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE-φ1) CS0 – CS4 th(WE–CS) th(RDE–CS) td(CS–RDE) td(CS–WE) An Address td(An–WE) tw(ALE) Address th(RDE–An) td(An–RDE) th(WE-An) td(ALE–WE) ALE th(ALE–A) tsu(A–ALE) Am/Dm td(ALE–RDE) tpxz(RDE–DZ) th(WE–DQ) Address td(A–WE) Data td(WE–DQ) Address tpzx(RDE–DZ) Address td(A–RDE) tw(WE) th(RDE–D) WEL, WEH tsu(D–RDE) DmIN Data tw(RDE) RDE th(φ1–RSMP) RSMP td(RSMP–WE) Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 28 td(RSMP–RDE) MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som PR PROM VERSION OF M37735MHLXXXHP Memory expansion mode and microprocessor mode (Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.) tw(L) tw(H) tf tr tc XIN φ1 td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE–φ1) CS0 – CS4 td(CS–WE) th(WE–CS) td(CS–RDE) th(RDE–CS) Address An Address td(An–WE) tw(ALE) Address td(An–RDE) td(ALE–WE) th(RDE–An) th(WE–An) ALE td(ALE–RDE) tsu(A–ALE) Am/Dm Address th(ALE–A) Data th(WE–DQ) tpxz(RDE–DZ) tpzx(RDE–DZ) Address Address td(WE–DQ) td(A–WE) td(A–RDE) tw(WE) WEL, WEH tsu(D–RDE) DmIN th(RDE–D) Data tw(RDE) RDE td(RSMP–WE) th(φ1–RSMP) td(RSMP–RDE) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 29 Y NAR MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som MITSUBISHI MICROCOMPUTERS M37735EHLXXXHP PR PACKAGE OUTLINE 30 PROM VERSION OF M37735MHLXXXHP MITSUBISHI MICROCOMPUTERS Y NAR M37735EHLXXXHP I e. n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T ametric ic t No e par Som IM REL P PROM VERSION OF M37735MHLXXXHP GZZ–SH00–41B<68A0> ROM number 7700 FAMILY WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37735EHLXXXHP MITSUBISHI ELECTRIC Receipt Date: Section head Supervisor signature signature Customer TEL ( Company name Date issued ) Date: Issuance signatures Note : Please fill in all items marked Responsible officer Supervisor 1. Confirmation Specify the name of the product being ordered and the type of EPROMs submitted. Three sets of EPROMs are required for each pattern. If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted. Checksum code for entire EPROM areas (hexadecimal notation) EPROM Type : (1) Set “FF 16” in the shaded area. 27C201 (2) Address 0 16 to 0F16 are the area for storing the data on model designation.This area must be written with the data 00000 00010 shown below. Address and data are written in hexadecimal notation. 20000 128K DATA 3FFFF 4D 33 37 37 33 35 45 48 Address 0 1 2 3 4 5 6 7 4C FF FF FF FF FF FF FF Address 8 9 A B C D E F 2. Mark specification Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37735EHLXXXHP) and attach to the Writing to PROM Order Confirmation Form. 3. Comments 31 I Y NAR e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som IM REL MITSUBISHI MICROCOMPUTERS M37735EHLXXXHP P 32 PROM VERSION OF M37735MHLXXXHP Y NAR MI ELI e. n. atio chang cific o spe bject t l a fin su ot a its are is n m This etric li : e m ic Not e para Som MITSUBISHI MICROCOMPUTERS M37735EHLXXXHP PR PROM VERSION OF M37735MHLXXXHP Keep safety first in your circuit designs! ¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials ¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 1996 MITSUBISHI ELECTRIC CORP. H-LF448-A KI-9610 Printed in Japan (ROD) 2 New publication, effective Oct. 1996. Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. M37735EHLXXXHP Datasheet Rev. date Revision Description 1.00 First Edition 970604 1.01 The following are added: 980421 • PROM ORDER CONFIRMATION FORM • MARK SPECIFICATION FORM 2.00 The following are revised: Page P1 PIN CONFIGURATION (TOP VIEW) 980731 Previous Version Revised Version Outline 80P6D-A Outline 80P6D-A, 80P6Q-A P9 Fig. 5 P9 Left column Line 4 Table 2 list... Table 2 lists... P12 Right column Line 2 The M37735EHLXXXHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode. The M37735EHLXXXHP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. MACHINE INSTRUCTION LIST The M37735EHLXXXHP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details. Line 10 P16 Memory expansion mode and microprocessor mode MACHINE INSTRUCTION LIST The M37735EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details. (2) 80P6D, 80P6Q mark specification form (2) 80P6D mark specification form Previous Version Symbol tsu (D–E) Parameter Data input setup time Limits Min. Max. 80 Unit ns Revised Version Symbol tsu (D–E) Parameter Data input setup time Limits Min. 50 (1) Max. Unit ns