AVAGO AMMP-6125 10-24 ghz x2 frequency multiplier Datasheet

AMMP-6125
10-24 GHz x2 Frequency Multiplier
Data Sheet
Description
Features
The AMMP-6125 is an easy-to-use surface mounted
packaged integrated frequency multiplier (x2) that
operates from 10 to 24 GHz output frequency. It has integrated amplification, matching, harmonic suppression,
and bias networks. 15 dBc min. of harmonic rejection is
delivered. The input/output are matched to 50 Ω and
fully DC blocked. This MMIC is a cost effective alternative
to hybrid (discrete-FET) amplifiers that require complex
tuning and assembly process.
• 5 x 5 mm surface mount package
Functional Block Diagram
• Microwave Radio Systems
Vd1
1
IN
8
Vg
2
Vd2
3
OUT
4
X2
NC
7
NC
6
NC
5
• Wide frequency operation: 10-24 GHz (Output)
• 50 Ω Input and Output Match
• -40° C to +85° C operation
• Output Power of +21.5 dBm Typical
• Fo, 3xFo, 4Fo Rejection: 15 dBc min
Applications
• VSAT
Pin
Function
1
Vd1
• Satellite Up/Down Link
2
Vg
• Test Equipment
3
Vd2
4
RF_OUT
Package Diagram
5
NC
6
NC
7
NC
8
RF_IN
1
2
3
GND
8
7
6
4
5
TOP VIEW
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model: 40V
ESD Human Body Model: 150V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
ELECTRICAL SPECIFICATIONS
Table 1. Absolute Maximum Ratings
Parameter
Specifications
Description
Min.
Max.
Unit
Vd1
5
V
Vd2
6
V
0
V
CW Input Power
10
dBm
MSL
MSL2
Channel Temperature
150
°C
150
°C
Drain Voltage
Gate Voltage
Vg
-2.5
Storage Temperature
-45
Comments
Table 2. Recommended Operating Range
Parameter
Specifications
Description
Pin
Drain Voltage
Min.
Typical
Max.
Unit
Vd1
3.5
4.0
V
Vd2
5.0
5.5
V
-1.2
-1
V
Gate Voltage
Vg
-1.4
Frequency range
Input
5
12
GHz
Output
10
24
GHz
+4
dBm
Input Power
Quiescent Current
-6
Idsq1
100
mA
Vd1 = 3.5 V
Idsq2
110
mA
Vd2 = 5 V
26.4
°C/W
Thermal Resistance, θch-b
Case Temperature
ESD
2
0
Comments
-40
+85
Human Body Model
150
V
Machine Model
40
V
°C
Table 3. RF Electrical Characteristics
All data measured on a Rogers 4003 demo board at Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V, TA = 25°C, Pin = 0 dBm and 50 Ω at
all ports, unless otherwise specified.
Performance
Min.
Typical
Parameter
Output Power
Fundamental Suppression
3rd Harmonic Suppression
4th Harmonic Suppression
Input Return Loss
Output Return Loss
Drain Current
Freq = 10 GHz
Freq = 17 GHz
Freq = 24 GHz
Freq = 5 GHz
Freq = 8.5 GHz
Freq = 12 GHz
Freq = 15 GHz
Freq = 25.5 GHz
Freq = 36 GHz
20
Max.
22.8
22.1
21.5
21
25.9
29.5
18.3
27.2
25.2
15
-12
-10
115
145
-5
15
15
Id1
Id2
Gate Current (Ig)
Unit
Comments
dBm
dBc
fin = 5, 8.5, 12 GHz
dBc
fin = 5, 8.5, 12 GHz
dBc
dB
dB
mA
mA
µA
Pout = 21 dBm
Note:
1. Output Power, Fundamental Suppression and 3rd Harmonic Suppression measurement accuracy is subjected to the tolerance of ± 0.5 dBm,
± 1 dBc & ± 1 dBc respectively.
Product Consistency Distribution Charts at 5 GHz, 8.5 GHz and 12 GHz,
Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V (Sample size of 2,800 pieces)
LSL
19
20
21
22
23
Pout @ 10 GHz, Mean = 22.8 dBm, LSL = 20 dBm
LSL
24
25
24
25
LSL
19
20
21
22
23
Pout @ 24 GHz, Mean = 21.5 dBm, LSL = 20 dBm
3
19
20
21
22
23
Pout @ 17 GHz, Mean = 22.1 dBm, LSL = 20 dBm
24
25
Product Consistency Distribution Charts at 5 GHz, 8.5 GHz and 12 GHz,
Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V (Sample size of 2,800 pieces) (Continued)
LSL
14
16
LSL
18
20
22
24
26
28
30
32
34
FS @ 5 GHz, Mean = 21 dBc, LSL = 15 dBc
14
16
18
20
22
24
26
28
30
32
34
14
24
26
28
30
32
34
16
18
20
22
24
26
28
30
32
34
30
32
34
LSL
18
20
22
24
26
28
Harmonics @ 25.5 GHz, Mean = 27.2 dBc, LSL = 15 dBc
4
22
Harmonics @ 15 GHz, Mean = 18.3 dBc, LSL = 15 dBc
LSL
16
20
LSL
FS @ 12 GHz, Mean = 29.5 dBc, LSL = 15 dBc
14
18
FS @ 8.5 GHz, Mean = 25.9 dBc, LSL = 15 dBc
LSL
14
16
30
32
34
14
16
18
20
22
24
26
28
Harmonics @ 36 GHz, Mean = 25.2 dBc, LSL = 15 dBc
Selected performance plots
30
25
20
20
Output Power [2H] (dBm)
Output Power (dBm)
All data measured on a Rogers 4003 demo board at Vd1 = 3.5 V, Vd2 = 5 V, Vg = -1.2 V, TA = 25° C, Pin = 0 dBm and 50 Ω
at all ports, unless otherwise specified.
10
0
-10
1H
2H
3H
4H
-20
-30
10
12
14
16
18
20
22
Output Frequency (GHz)
24
26
-5
20
20
Output Power [2H] (dBm)
Output Power [2H] (dBm)
0
25
15
10
25° C
-40° C
85° C
5
10
12
Pin = -6 dBm
14
16
18
20
22
Output Frequency (GHz)
24
26
0
28
Output Power [2H] (dBm)
15
10
12
Pin = +2 dBm
14
16
18
20
22
Output Frequency (GHz)
24
16
18
20
22
Output Frequency (GHz)
24
26
28
26
28
Figure 5. Output Power vs. Output Frequency @ Pin = +2 dBm over Temperature
10
12
Pin = 0 dBm
14
16
18
20
22
Output Frequency (GHz)
24
26
28
Figure 4. Output Power vs. Output Frequency @ Pin = 0 dBm over Temperature
20
10
14
25° C
-40° C
85° C
5
20
0
12
10
25
25° C
-40° C
85° C
10
15
25
5
Pin = -6 dBm
Pin = -4 dBm
Pin = -2 dBm
Pin = 0 dBm
Pin = +2 dBm
Pin = +4 dBm
Figure 2. Output Power [2H] vs Output Frequency Over Pin
Figure 3. Output Power vs. Output Frequency @ Pin = -6 dBm over Temperature
Output Power [2H] (dBm)
5
25
0
5
10
-10
28
Figure 1. Output Power vs. Output Frequency @ Pin = 0 dBm
15
15
10
25° C
-40° C
85° C
5
0
10
12
Pin = +4 dBm
14
16
18
20
22
Output Frequency (GHz)
24
26
28
Figure 6. Output Power vs. Output Frequency @ Pin = +4 dBm over Temperature
300
0
Total Drain Current [Id] (mA)
I/P & O/P Return Loss (dB)
-5
-10
-15
-20
-25
-30
S11
S22
-35
-40
4
6
8
10
12 14 16 18
Frequency (GHz)
20
22
24
40
30
30
Suppression [3H] (dBc)
Suppression [1H] (dBc)
220
20
10
Pin = -6 dBm
Pin = 0 dBm
Pin = +4 dBm
10
12
14
16
18
20
22
Output Frequency (GHz)
24
-6
-4
-2
0
Input Power [1H] (dBm)
2
4
20
10
0
26
Pin = -6 dBm
Pin = 0 dBm
Pin = +4 dBm
10
12
14
16
18
20
22
Output Frequency (GHz)
24
26
Figure 10. 3rd Harmonic [3H] Suppression vs Output Frequency at Variable Pin
40
Output Power [2H] (dBm)
25
30
20
10
0
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
Figure 8. Total Drain Current vs. Pin
Figure 9. Fundamental [1H] Suppression vs Output Frequency at Variable Pin
Suppression [4H] (dBc)
240
40
0
Pin = -6 dBm
Pin = 0 dBm
Pin = +4 dBm
10
12
14
16
18
20
22
Output Frequency (GHz)
24
26
Figure 11. 4th Harmonic [4H] Suppression vs Output Frequency at Variable Pin
6
260
200
26
Figure 7. Input and Output Return Loss at Pin = 0 dBm
280
20
15
10
10 GHz [2H]
14 GHz [2H]
18 GHz [2H]
22 GHz [2H]
26 GHz [2H]
5
0
-6
-5
-4
-3 -2
-1
0
1
Input Power [1H] (dBm)
2
Figure 12. Output Power [2H] vs Pin at variable Output Frequency
3
4
50
23
21
19
17
15
Fout = 10 GHz
-6
-5
-4
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
-3
-2
-1
0
1
Input Power [1H] (dBm)
2
3
30
25
20
25
40
23
35
21
19
17
Fout = 14 GHz
-6
-5
-4
2
3
4
Suppression [1H] (dBc)
19
-4
2
Figure 17. Output Power [2H] vs Input Power @ Fout = 18 GHz
4
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
-6
-5
-4
-3
-2 -1
0
1
Input Power [1H] (dBm)
2
3
4
3
30
25
20
15
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
-3
-2
-1
0
1
Input Power [1H] (dBm)
3
Figure 16. Fundamental Suppression [1H] vs Input Power @ Fout = 14 GHz
21
-5
2
Fout = 14 GHz
10
35
-6
-3
-2 -1
0
1
Input Power [1H] (dBm)
20
23
15
-4
25
40
Fout = 18 GHz
-5
30
25
17
-6
15
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
-3
-2
-1
0
1
Input Power [1H] (dBm)
Fout = 10 GHz
Figure 14. Fundamental Suppression [1H] vs Input Power @ Fout = 10 GHz
Suppression [1H] (dBc)
Output Power [2H] (dBm)
Output Power [2H] (dBm)
35
10
4
Figure 15. Output Power [2H] vs Input Power @ Fout = 14 GHz
7
40
15
Figure 13. Output Power [2H] vs Input Power @ Fout = 10 GHz
15
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
45
Suppression [1H] (dBc)
Output Power [2H] (dBm)
25
4
10
Fout = 18 GHz
-6
-5
-4
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
-3
-2 -1
0
1
Input Power [1H] (dBm)
2
3
4
Figure 18. Fundamental Suppression [1H] vs Input Power @ Fout = 18 GHz
35
23
30
Suppression [1H] (dBc)
Output Power [2H] (dBm)
25
21
19
17
15
-6
-5
-4
-3
-2
-1
0
1
Input Power [1H] (dBm)
2
3
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
Fout = 22 GHz
-6
-5
-4
-3
-2
-1
0
1
Input Power [1H] (dBm)
2
3
4
Figure 20. Fundamental Suppression [1H] vs Input Power @ Fout = 22 GHz
20
20
18
Suppression [1H] (dBc)
Output Power [2H] (dBm)
15
5
4
Figure 19. Output Power [2H] vs Input Power @ Fout = 22 GHz
16
14
12
10
20
10
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
Fout = 22 GHz
25
-5
-4
10
5
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
Fout = 26 GHz
-6
15
-3
-2
-1
0
1
Input Power [1H] (dBm)
2
3
Figure 21. Output Power [2H] vs Input Power @ Fout = 26 GHz
0
4
Vg = -1.4 V, Vd2 = 5 V
Vg = -1.2 V, Vd2 = 5 V
Fout = 26 GHz
-6
-5
-4
-3
-2
-1
0
1
Input Power [1H] (dBm)
2
3
4
Figure 22. Fundamental Suppression [1H] vs Input Power @ Fout = 26 GHz
Evaluation Board Description and Application Circuit for AMMP-6125
GND 1
2
3 GND
Vd1
Vg
4.7 µF
0.1 µF
4.7 µF
0.1 µF
Vd1
1
IN
AMMP
6125
YWWDNN
OUT
RFin
IN
8
Vd2
Vg
2
0.1 µF
Vd2
3
OUT
4
X2
NC
7
NC
6
RFout
NC
5
Table 4. Pin Description
Pin #
Function
Biasing
Comment
GND
1
2
3
GND
GND
Vd1
Vg
Vd2
GND
3.5 V
-1.2 V
5.0 V
100 mA (measure current)
5 mA (measure current)
110 mA (measure current)
8
Recommended quiescent DC bias condition for optimum
power and linearity performance is Vd1 = 3.5 V, Vd2 = 5 V
and Vg = -1.2 V. The gate voltage, Vg, biases the doubling
circuit only; it does not adjust the amplifier bias current.
Minor improvements in the AMMP-6125’s output power
and fundamental suppression can be obtained by adjusting Vg from -1.0 V to -1.5 V.
Package, Tape & Reel, and Ordering Information
Please refer to Avago Technologies Application Note 5521, AMxP-xxxx production Assembly Process (Land Pattern B).
Part Number Ordering Information
Part Number
Devices per
Container
Container
AMMP-6125-BLKG
10
antistatic bag
AMMP-6125-TR1G
100
7” Reel
AMMP-6125-TR2G
500
7” Reel
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.
AV02-3208EN - July 9, 2013
Similar pages