MOTOROLA MJF18008 Power transistor 8.0 amperes 1000 volts 45 and 125 watt Datasheet

MOTOROLA
Order this document
by MJE18008/D
SEMICONDUCTOR TECHNICAL DATA
MJE18008 *
MJF18008 *
 SWITCHMODE
NPN Bipolar Power Transistor
For Switching Power Supply Applications
*Motorola Preferred Device
POWER TRANSISTOR
8.0 AMPERES
1000 VOLTS
45 and 125 WATTS
The MJE/MJF18008 have an applications specific state–of–the–art die designed
for use in 220 V line–operated Switchmode Power supplies and electronic light
ballasts. These high voltage/high speed transistors offer the following:
• Improved Efficiency Due to Low Base Drive Requirements:
— High and Flat DC Current Gain hFE
— Fast Switching
— No Coil Required in Base Circuit for Turn–Off (No Current Tail)
• Tight Parametric Distributions are Consistent Lot–to–Lot
• Two Package Choices: Standard TO–220 or Isolated TO–220
• MJF18008, Case 221D, is UL Recognized at 3500 VRMS: File #E69369
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Rating
Symbol
Collector–Emitter Sustaining Voltage
Collector–Emitter Breakdown Voltage
Emitter–Base Voltage
Collector Current — Continuous
— Peak(1)
Unit
Vdc
1000
Vdc
9.0
Vdc
8.0
16
Adc
IB
IBM
4.0
8.0
Adc
VISOL
—
—
—
4500
3500
1500
Volts
PD
125
1.0
45
0.36
Watts
W/_C
Derate above 25_C
Operating and Storage Temperature
MJF18008
450
VEBO
IC
ICM
Base Current — Continuous
— Peak(1)
RMS Isolation Voltage(2) Test No. 1 Per Fig. 22a
(for 1 sec, R.H. < 30%, Test No. 1 Per Fig. 22b
TC = 25_C)
Test No. 1 Per Fig. 22c
Total Device Dissipation
(TC = 25°C)
MJE18008
VCEO
VCES
TJ, Tstg
CASE 221A–06
TO–220AB
MJE18008
_C
– 65 to 150
THERMAL CHARACTERISTICS
Symbol
MJE18008
MJF18008
Unit
Thermal Resistance — Junction to Case
— Junction to Ambient
Rating
RθJC
RθJA
1.0
62.5
2.78
62.5
_C/W
Maximum Lead Temperature for Soldering
Purposes: 1/8″ from Case for 5 Seconds
TL
CASE 221D–02
ISOLATED TO–220 TYPE
UL RECOGNIZED
MJF18008
_C
260
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise specified)
Characteristic
Symbol
Min
Typ
Max
Unit
VCEO(sus)
ICEO
450
—
—
Vdc
—
—
100
µAdc
ICES
—
—
—
—
—
—
100
500
100
µAdc
IEBO
—
—
100
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH)
Collector Cutoff Current (VCE = Rated VCEO, IB = 0)
Collector Cutoff Current (VCE = Rated VCES, VEB = 0)
Collector Cutoff Current (VCE = 800 V, VEB = 0)
(TC = 125_C)
(TC = 125_C)
Emitter Cutoff Current (VEB = 9.0 Vdc, IC = 0)
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle
10%.
(2) Proper strike and creepage distance must be provided.
µAdc
(continued)
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
REV 1
 Motorola, Inc. 1995
Motorola Bipolar Power Transistor Device Data
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
vÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise specified)
Characteristic
Symbol
Min
Typ
Max
Unit
Base–Emitter Saturation Voltage (IC = 2.0 Adc, IB = 0.2 Adc)
Base–Emitter Saturation Voltage (IC = 4.5 Adc, IB = 0.9 Adc)
VBE(sat)
—
—
0.82
0.92
1.1
1.25
Vdc
Collector–Emitter Saturation Voltage
(IC = 2.0 Adc, IB = 0.2 Adc)
VCE(sat)
—
—
—
—
0.3
0.3
0.35
0.4
0.6
0.65
0.7
0.8
hFE
14
—
6.0
5.0
11
11
10
—
28
9.0
8.0
15
16
20
34
—
—
—
—
—
—
—
fT
—
13
—
MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Cob
—
100
150
pF
Input Capacitance (VEB = 8.0 V)
Cib
—
1750
2500
pF
VCE(dsat)
—
—
5.5
11.5
—
—
Vdc
(TC = 125°C)
(TC = 125°C)
—
—
3.5
6.5
—
—
(TC = 125°C)
—
—
11.5
14.5
—
—
(TC = 125°C)
—
—
2.4
9.0
—
—
ton
—
—
200
190
300
—
ns
toff
—
—
1.2
1.5
2.5
—
µs
ton
—
—
100
250
180
—
ns
toff
—
—
1.6
2.0
2.5
—
µs
tfi
—
—
100
120
180
—
ns
tsi
—
—
1.5
1.9
2.75
—
µs
tc
—
—
250
230
350
—
ns
tfi
—
—
85
135
150
—
ns
tsi
—
—
2.0
2.6
3.2
—
µs
tc
—
—
210
250
300
—
ns
ON CHARACTERISTICS
(TC = 125_C)
(IC = 4.5 Adc, IB = 0.9 Adc)
(TC = 125_C)
DC Current Gain (IC = 1.0 Adc, VCE = 5.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 4.5 Adc, VCE = 1.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 2.0 Adc, VCE = 1.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 10 mAdc, VCE = 5.0 Vdc)
Vdc
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHz)
Dynamic Saturation Voltage:
Determined 1.0 µs and
3.0 µs respectively after
rising IB1 reaches 90% of
final IB1
(see Figure 18)
(IC = 2.0 Adc
IB1 = 200 mAdc
VCC = 300 V)
(IC = 5.0 Adc
IB1 = 1.0 Adc
VCC = 300 V)
1.0 µs
3.0 µs
1.0 µs
3.0 µs
SWITCHING CHARACTERISTICS: Resistive Load (D.C.
Turn–On Time
(IC = 2.0 Adc, IB1 = 0.2 Adc,
IB2 = 1.0 Adc, VCC = 300 V)
10%, Pulse Width = 20 µs)
(TC = 125°C)
Turn–Off Time
(TC = 125°C)
Turn–On Time
(IC = 4.5 Adc, IB1 = 0.9 Adc,
IB2 = 2.25 Adc, VCC = 300 V)
(TC = 125°C)
Turn–Off Time
(TC = 125°C)
SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 µH)
Fall Time
(IC = 2.0 Adc, IB1 = 0.2 Adc,
IB2 = 1.0 Adc)
(TC = 125°C)
Storage Time
(TC = 125°C)
Crossover Time
(TC = 125°C)
Fall Time
(IC = 4.5 Adc, IB1 = 0.9 Adc,
IB2 = 2.25 Adc)
(TC = 125°C)
Storage Time
(TC = 125°C)
Crossover Time
(TC = 125°C)
2
Motorola Bipolar Power Transistor Device Data
TYPICAL STATIC CHARACTERISTICS
100
VCE = 1 V
TJ = 125°C
h FE , DC CURRENT GAIN
h FE , DC CURRENT GAIN
100
TJ = 25°C
10
TJ = – 20°C
1
0.01
1
0.1
TJ = 25°C
10
TJ = – 20°C
1
0.01
10
VCE = 5 V
TJ = 125°C
0.1
1
10
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 1. DC Current Gain @ 1 Volt
Figure 2. DC Current Gain @ 5 Volts
2
10
1.5
IC = 1 A
1
3A
5A
V CE , VOLTAGE (VOLTS)
V CE , VOLTAGE (VOLTS)
TJ = 25°C
8 A 10 A
0.5
1
IC/IB = 10
0.1
IC/IB = 5
0
0.01
0.1
1
0.01
0.01
10
1
10
IC COLLECTOR CURRENT (AMPS)
Figure 3. Collector Saturation Region
Figure 4. Collector–Emitter Saturation Voltage
10000
1.2
TJ = 25°C
f = 1 MHz
Cib
1.1
1000
1
C, CAPACITANCE (pF)
V BE , VOLTAGE (VOLTS)
0.1
IB, BASE CURRENT (AMPS)
1.3
0.9
0.8
0.7 TJ = 25°C
0.6
100
Cob
10
IC/IB = 5
IC/IB = 10
0.5 TJ = 125°C
0.4
0.01
TJ = 25°C
TJ = 125°C
0.1
1
10
1
1
10
100
IC, COLLECTOR CURRENT (AMPS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 5. Base–Emitter Saturation Region
Figure 6. Capacitance
Motorola Bipolar Power Transistor Device Data
1000
3
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
1500
4500
IB(off) = IC/2
VCC = 300 V
PW = 20 µs
IB(off) = IC/2
VCC = 300 V
PW = 20 µs
3500
1000
3000
IC/IB = 5
IC/IB = 10
t, TIME (ns)
TJ = 125°C
t, TIME (ns)
TJ = 25°C
TJ = 125°C
IC/IB = 5
4000
TJ = 25°C
500
2500
2000 IC/IB = 10
1500
1000
500
0
0
0
1
3
2
5
4
6
7
1
8
Figure 8. Resistive Switching, toff
IC/IB = 5
1500
1000
2
3
3500
IC = 2 A
3000
2500
2000
1500
1000
TJ = 25°C
TJ = 125°C
1
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
4000
2000
500
TJ = 25°C
TJ = 125°C
4500
t si , STORAGE TIME (ns)
t, TIME (ns)
8
5000
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
2500
500
IC/IB = 10
4
5
6
7
0
8
3
4
5
IC = 4.5 A
7
8
9
6
10
11
12
13
14
IC COLLECTOR CURRENT (AMPS)
hFE, FORCED GAIN
Figure 9. Inductive Storage Time, tsi
Figure 10. Inductive Storage Time, tsi(hFE)
400
15
300
TJ = 25°C
TJ = 125°C
350
t, TIME (ns)
250
tfi
200
150
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
100
50
0
1
2
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
250
tc
300
t, TIME (ns)
7
6
Figure 7. Resistive Switching, ton
3000
4
5
4
IC, COLLECTOR CURRENT (AMPS)
3500
0
3
2
IC, COLLECTOR CURRENT (AMPS)
tfi
200
tc
150
100
TJ = 25°C
TJ = 125°C
3
4
5
6
7
8
50
1
2
3
4
5
6
7
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 11. Inductive Switching, tc and tfi
IC/IB = 5
Figure 12. Inductive Switching, tc and tfi
IC/IB = 10
Motorola Bipolar Power Transistor Device Data
8
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
400
160
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
t fi , FALL TIME (ns)
IC = 2 A
130
120
110
100
IC = 4.5 A
90
80
60
4
3
5
6
7
300
250
200
150
IC = 4.5 A
100
TJ = 25°C
TJ = 125°C
70
TJ = 25°C
TJ = 125°C
50
8
9
10
11
12
13
15
14
IB(off) = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 µH
IC = 2 A
350
TC , CROSSOVER TIME (ns)
150
140
3
4
5
6
7
8
9
10
11
12
13
14
hFE, FORCED GAIN
hFE, FORCED GAIN
Figure 13. Inductive Fall Time
Figure 14. Inductive Crossover Time
15
GUARANTEED SAFE OPERATING AREA INFORMATION
9
100
5 ms
10 µs
1 ms
I C , COLLECTOR CURRENT (AMPS)
I C , COLLECTOR CURRENT (AMPS)
DC (MJE18008)
1 µs
10
EXTENDED
SOA
1
DC (MJF18008)
0.1
6
5
4
3
2
–5V
1
VBE(off) = 0 V
–1, 5 V
100
1000
0
200
400
600
800
1000
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 15. Forward Bias Safe Operating Area
Figure 16. Reverse Bias Switching Safe
Operating Area
1,0
POWER DERATING FACTOR
7
0
0.01
10
SECOND BREAKDOWN
DERATING
0,8
0,6
0,4
THERMAL DERATING
0,2
0,0
20
TC ≤ 125°C
IC/IB ≥ 4
LC = 500 µH
8
40
60
80
100
120
140
TC, CASE TEMPERATURE (°C)
Figure 17. Forward Bias Power Derating
Motorola Bipolar Power Transistor Device Data
160
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation
than the curves indicate. The data of Figure 15 is based on TC
= 25°C; TJ(pk) is variable depending on power level. Second
breakdown pulse limits are valid for duty cycles to 10% but
must be derated when T C > 25°C. Second breakdown
limitations do not derate the same as thermal limitations.
Allowable current at the voltages shown in Figure 15 may be
found at any case temperature by using the appropriate curve
on Figure 17. TJ(pk) may be calculated from the data in Figure
20 and 21. At any case temperatures, thermal limitations will
reduce the power that can be handled to values less than the
limitations imposed by second breakdown. For inductive
loads, high voltage and current must be sustained simultaneously during turn–off with the base–to–emitter junction
reverse–biased. The safe level is specified as a reverse–
biased safe operating area (Figure 16). This rating is verified
under clamped conditions so that the device is never
subjected to an avalanche mode.
5
10
5
4
VCE
dyn 1 µs
3
8
2
VOLTS
90% IC
tfi
IC
9
tsi
7
dyn 3 µs
1
6
0
5
tc
VCLAMP
10% VCLAMP
IB
90% IB1
10% IC
4
–1
90% IB
–2
3
1 µs
–3
–4
2
3 µs
IB
–5
0
1
0
1
2
3
4
TIME
5
6
7
0
8
Figure 18. Dynamic Saturation Voltage Measurements
1
2
3
4
TIME
5
6
7
8
Figure 19. Inductive Switching Measurements
+15 V
1 µF
150 Ω
3W
100 Ω
3W
IC PEAK
100 µF
MTP8P10
VCE PEAK
VCE
MTP8P10
RB1
MPF930
IB1
MUR105
Iout
MPF930
+10 V
IB
A
IB2
50 Ω
RB2
MJE210
COMMON
500 µF
150 Ω
3W
MTP12N10
1 µF
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 VOLTS
IC(pk) = 100 mA
–Voff
INDUCTIVE SWITCHING
L = 200 µH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED FOR
DESIRED IB1
RBSOA
L = 500 µH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED
FOR DESIRED IB1
Table 1. Inductive Load Switching Drive Circuit
6
Motorola Bipolar Power Transistor Device Data
TYPICAL THERMAL RESPONSE
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
1
D = 0.5
0.2
0.1
0.1
P(pk)
0.05
0.02
t1
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.1
1
10
RθJC(t) = r(t) RθJC
RθJC = 1.0°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) RθJC(t)
100
1000
t, TIME (ms)
Figure 20. Typical Thermal Response (ZθJC(t)) for MJE18008
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
1
D = 0.5
0.2
0.1
P(pk)
0.1
0.05
t1
t2
DUTY CYCLE, D = t1/t2
0.02
0.01
0.01
RθJC(t) = r(t) RθJC
RθJC = 2.78°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) RθJC(t)
SINGLE PULSE
0.1
1
10
100
1000
10000
100000
t, TIME (ms)
Figure 21. Typical Thermal Response (ZθJC(t)) for MJF18008
Motorola Bipolar Power Transistor Device Data
7
TEST CONDITIONS FOR ISOLATION TESTS*
CLIP
MOUNTED
FULLY ISOLATED
PACKAGE
CLIP
LEADS
HEATSINK
MOUNTED
FULLY ISOLATED
PACKAGE
0.107″ MIN
MOUNTED
FULLY ISOLATED
PACKAGE
LEADS
LEADS
HEATSINK
HEATSINK
0.107″ MIN
0.110″ MIN
Figure 22a. Screw or Clip Mounting Position
for Isolation Test Number 1
Figure 22b. Clip Mounting Position
for Isolation Test Number 2
Figure 22c. Screw Mounting Position
for Isolation Test Number 3
* Measurement made between leads and heatsink with all leads shorted together
MOUNTING INFORMATION**
4–40 SCREW
CLIP
PLAIN WASHER
HEATSINK
COMPRESSION WASHER
HEATSINK
NUT
Figure 23a. Screw–Mounted
Figure 23b. Clip–Mounted
Figure 23. Typical Mounting Techniques
for Isolated Package
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw
torque of 6 to 8 in . lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a
constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in . lbs will
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in . lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10
in . lbs of mounting torque under any mounting conditions.
** For more information about mounting power semiconductors see Application Note AN1040.
8
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
B
–T–
F
SEATING
PLANE
C
T
4
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
S
A
Q
1 2 3
H
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
U
K
Z
L
R
V
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
–––
–––
0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
–––
–––
2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
CASE 221A–06
TO–220AB
ISSUE Y
–T–
–B–
F
SEATING
PLANE
C
S
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
U
A
1 2 3
H
–Y–
K
G
N
L
D
J
R
3 PL
0.25 (0.010)
M
B
M
Y
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
U
INCHES
MIN
MAX
0.621
0.629
0.394
0.402
0.181
0.189
0.026
0.034
0.121
0.129
0.100 BSC
0.123
0.129
0.018
0.025
0.500
0.562
0.045
0.060
0.200 BSC
0.126
0.134
0.107
0.111
0.096
0.104
0.259
0.267
MILLIMETERS
MIN
MAX
15.78
15.97
10.01
10.21
4.60
4.80
0.67
0.86
3.08
3.27
2.54 BSC
3.13
3.27
0.46
0.64
12.70
14.27
1.14
1.52
5.08 BSC
3.21
3.40
2.72
2.81
2.44
2.64
6.58
6.78
STYLE 2:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
CASE 221D–02
(ISOLATED TO–220 TYPE)
UL RECOGNIZED: FILE #E69369
ISSUE D
Motorola Bipolar Power Transistor Device Data
9
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
10
◊
Motorola Bipolar Power Transistor Device Data
*MJE18008/D*
MJE18008/D
Similar pages