NVMFS5C645NL Power MOSFET 60 V, 4.0 mW, 100 A, Single N−Channel Features • • • • • • Small Footprint (5x6 mm) for Compact Design Low RDS(on) to Minimize Conduction Losses Low QG and Capacitance to Minimize Driver Losses NVMFS5C645NLWF − Wettable Flank Option for Enhanced Optical Inspection AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant www.onsemi.com V(BR)DSS RDS(ON) MAX ID MAX 4.0 mW @ 10 V 60 V 100 A 5.7 mW @ 4.5 V MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Parameter Drain−to−Source Voltage Gate−to−Source Voltage Continuous Drain Current RqJC (Notes 1, 3) TC = 25°C Power Dissipation RqJC (Note 1) Continuous Drain Current RqJA (Notes 1, 2, 3) Steady State Pulsed Drain Current Value Unit VDSS 60 V VGS ±20 V ID 100 A TC = 100°C TC = 25°C 71 PD TC = 100°C TA = 25°C Power Dissipation RqJA (Notes 1 & 2) Symbol Steady State TA = 100°C TA = 25°C N−CHANNEL MOSFET A 22 PD 1.8 1 820 A TJ, Tstg −55 to +175 °C IS 100 A Single Pulse Drain−to−Source Avalanche Energy (IL(pk) = 5 A) EAS 185 mJ Lead Temperature for Soldering Purposes (1/8″ from case for 10 s) TL 260 °C Source Current (Body Diode) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. THERMAL RESISTANCE MAXIMUM RATINGS Parameter MARKING DIAGRAM W 3.7 IDM Operating Junction and Storage Temperature S (1,2,3) 15 TA = 100°C TA = 25°C, tp = 10 ms G (4) W 79 40 ID D (5) Symbol Value Unit Junction−to−Case − Steady State RqJC 1.9 °C/W Junction−to−Ambient − Steady State (Note 2) RqJA 41 DFN5 (SO−8FL) CASE 488AA STYLE 1 5C645L A Y W ZZ D S S S G D 5C645L AYWZZ D D = Specific Device Code = Assembly Location = Year = Work Week = Lot Traceability ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. 2. Surface−mounted on FR4 board using a 650 mm2, 2 oz. Cu pad. 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. © Semiconductor Components Industries, LLC, 2016 February, 2017 − Rev. 2 1 Publication Order Number: NVMFS5C645NL/D NVMFS5C645NL ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Symbol Test Condition Min Drain−to−Source Breakdown Voltage V(BR)DSS VGS = 0 V, ID = 250 mA 60 Drain−to−Source Breakdown Voltage Temperature Coefficient V(BR)DSS/ TJ Typ Max Unit OFF CHARACTERISTICS Zero Gate Voltage Drain Current IDSS Gate−to−Source Leakage Current V 15.5 VGS = 0 V, VDS = 48 V mV/°C TJ = 25 °C 10 TJ = 125°C 250 IGSS VDS = 0 V, VGS = 20 V VGS(TH) VGS = VDS, ID = 250 mA 100 mA nA ON CHARACTERISTICS (Note 4) Gate Threshold Voltage Threshold Temperature Coefficient VGS(TH)/TJ Drain−to−Source On Resistance Forward Transconductance RDS(on) 1.2 2.0 −4.9 VGS = 10 V ID = 50 A 3.3 4.0 VGS = 4.5 V ID = 50 A 4.6 5.7 gFS VDS = 15 V, ID = 50 A V mV/°C 105 mW S CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS 2200 VGS = 0 V, f = 1 MHz, VDS = 50 V 900 pF 17 Total Gate Charge QG(TOT) VGS = 4.5 V, VDS = 30 V; ID = 50 A 16 Total Gate Charge QG(TOT) VGS = 10 V, VDS = 30 V; ID = 50 A 34 Threshold Gate Charge QG(TH) Gate−to−Source Charge QGS Gate−to−Drain Charge QGD Plateau Voltage VGP 2.8 td(ON) 10 1.5 VGS = 4.5 V, VDS = 30 V; ID = 50 A nC 5.6 5.1 V SWITCHING CHARACTERISTICS (Note 5) Turn−On Delay Time Rise Time Turn−Off Delay Time Fall Time tr td(OFF) VGS = 4.5 V, VDS = 30 V, ID = 50 A, RG = 2.5 W tf 15 ns 24 5.0 DRAIN−SOURCE DIODE CHARACTERISTICS Forward Diode Voltage Reverse Recovery Time Charge Time Discharge Time Reverse Recovery Charge VSD VGS = 0 V, IS = 50 A TJ = 25°C 0.88 TJ = 125°C 0.78 tRR ta tb 1.2 V 41 VGS = 0 V, dIS/dt = 100 A/ms, IS = 50 A QRR 21 ns 20 32 nC Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width v 300 ms, duty cycle v 2%. 5. Switching characteristics are independent of operating junction temperatures. www.onsemi.com 2 NVMFS5C645NL 3.8 V 140 10 V to 4.5 V 120 3.6 V 100 3.4 V 80 3.2 V 60 3.0 V 40 2.8 V TJ = −55°C 100 80 60 40 20 0 0.5 1.0 1.5 2.0 2.5 0 3.0 1.0 1.5 2.0 2.5 3.0 3.5 Figure 1. On−Region Characteristics Figure 2. Transfer Characteristics TJ = 25°C ID = 50 A 9 8 7 6 5 4 3 4 5 6 7 8 9 10 VGS, GATE VOLTAGE (V) 4.0 8 TJ = 25°C 7 6 VGS = 4.5 V 5 4 VGS = 10 V 3 2 10 30 50 70 90 110 130 150 ID, DRAIN CURRENT (A) Figure 3. On−Resistance vs. Gate−to−Source Voltage Figure 4. On−Resistance vs. Drain Current and Gate Voltage 2.5 100,000 TJ = 125°C VGS = 10 V ID = 50 A 2.0 IDSS, LEAKAGE (nA) RDS(on), NORMALIZED DRAIN−TO− SOURCE RESISTANCE 0.5 VGS, GATE−TO−SOURCE VOLTAGE (V) 10 3 0 VDS, DRAIN−TO−SOURCE VOLTAGE (V) RDS(on), DRAIN−TO−SOURCE RESISTANCE (W) RDS(on), DRAIN−TO−SOURCE RESISTANCE (W) TJ = 25°C 120 20 0 TJ = 125°C 140 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) TYPICAL CHARACTERISTICS 1.5 1.0 0.5 0 −50 −25 0 25 50 75 100 125 150 175 10,000 TJ = 85°C 1000 100 10 5 15 25 35 45 TJ, JUNCTION TEMPERATURE (°C) VDS, DRAIN−TO−SOURCE VOLTAGE (V) Figure 5. On−Resistance Variation with Temperature Figure 6. Drain−to−Source Leakage Current vs. Voltage www.onsemi.com 3 55 NVMFS5C645NL C, CAPACITANCE (pF) CISS 2000 1600 VGS = 0 V TJ = 25°C f = 1 MHz COSS 1200 800 400 0 CRSS 0 10 20 30 40 50 60 VGS, GATE−TO−SOURCE VOLTAGE (V) 10 2400 30 QT 25 8 20 6 15 QGD QGS 4 2 0 10 VDS = 30 V TJ = 25°C ID = 25 A 0 4 8 12 16 20 24 28 5 32 0 VDS, DRAIN−TO−SOURCE VOLTAGE (V) QG, TOTAL GATE CHARGE (nC) Figure 7. Capacitance Variation Figure 8. Gate−to−Source and Drain−to−Source Voltage vs. Total Charge VDS, DRAIN−TO−SOURCE VOLTAGE (V) TYPICAL CHARACTERISTICS 1000 td(off) tf 100 t, TIME (ns) IS, SOURCE CURRENT (A) 45 VGS = 4.5 V VDD = 30 V ID = 25 A tr td(on) 10 40 TJ = 125°C 35 30 TJ = 25°C 25 20 15 TJ = −55°C 10 5 1 1 10 0 100 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 RG, GATE RESISTANCE (W) VSD, SOURCE−TO−DRAIN VOLTAGE (V) Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current 1000 100 TC = 25°C VGS ≤ 10 V 0.01 ms 0.1 ms 10 1 ms 10 ms 10 TJ(initial) = 25°C IPEAK (A) IDS (A) 100 TJ(initial) = 100°C 1 RDS(on) Limit Thermal Limit Package Limit 1 0.1 1 10 0.1 100 1E−04 1E−03 VDS (V) TIME IN AVALANCHE (s) Figure 11. Safe Operating Area Figure 12. IPEAK vs. Time in Avalanche www.onsemi.com 4 1E−02 NVMFS5C645NL 100 RqJA(t) (°C/W) 50% Duty Cycle 10 20% 10% 5% 1 2% 1% NVMFS5C646NL 650 mm2, 2 oz., Cu Single Layer Pad 0.1 Single Pulse 0.01 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 PULSE TIME (sec) Figure 13. Thermal Characteristics DEVICE ORDERING INFORMATION Device Marking Package Shipping† NVMFS5C645NLT1G 5C645L DFN5 (Pb−Free) 1500 / Tape & Reel NVMFS5C645NLWFT1G 645LWF DFN5 (Pb−Free, Wettable Flanks) 1500 / Tape & Reel NVMFS5C645NLT3G 5C645L DFN5 (Pb−Free) 5000 / Tape & Reel NVMFS5C645NLWFT3G 645LWF DFN5 (Pb−Free, Wettable Flanks) 5000 / Tape & Reel NVMFS5C645NLAFT1G 5C645L DFN5 (Pb−Free) 1500 / Tape & Reel NVMFS5C645NLWFAFT1G 645LWF DFN5 (Pb−Free, Wettable Flanks) 1500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. www.onsemi.com 5 NVMFS5C645NL PACKAGE DIMENSIONS DFN5 5x6, 1.27P (SO−8FL) CASE 488AA ISSUE M 2X 0.20 C D 2 A B D1 2X 0.20 C 2 2 3 DIM A A1 b c D D1 D2 E E1 E2 e G K L L1 M q 4X E1 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. q E c A1 4 TOP VIEW C SEATING PLANE DETAIL A 0.10 C A 0.10 C SIDE VIEW 0.10 8X b C A B 0.05 c DETAIL A RECOMMENDED SOLDERING FOOTPRINT* e/2 2X 0.495 e L 1 MILLIMETERS MIN NOM MAX 0.90 1.00 1.10 0.00 −−− 0.05 0.33 0.41 0.51 0.23 0.28 0.33 5.15 5.00 5.30 4.70 4.90 5.10 3.80 4.00 4.20 6.00 6.15 6.30 5.70 5.90 6.10 3.45 3.65 3.85 1.27 BSC 0.51 0.575 0.71 1.20 1.35 1.50 0.51 0.575 0.71 0.125 REF 3.00 3.40 3.80 0_ −−− 12 _ STYLE 1: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 4.560 2X 1.530 4 K PIN 5 (EXPOSED PAD) G 3.200 E2 L1 4.530 M D2 1.330 2X 0.905 1 BOTTOM VIEW 0.965 4X 1.000 4X 0.750 1.270 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NVMFS5C645NL/D