Freescale MW7IC18100GNR1 Rf ldmos wideband integrated power amplifier Datasheet

Freescale Semiconductor
Technical Data
Document Number: MW7IC18100N
Rev. 2, 4/2008
RF LDMOS Wideband Integrated
Power Amplifiers
The MW7IC18100N wideband integrated circuit is designed with on - chip
matching that makes it usable from 1805 to 2050 MHz. This multi - stage
structure is rated for 24 to 32 Volt operation and covers all typical cellular base
station modulations including GSM EDGE and CDMA.
Final Application
• Typical GSM Performance: VDD = 28 Volts, IDQ1 = 180 mA, IDQ2 = 1000 mA,
Pout = 100 Watts CW, 1805 - 1880 MHz or 1930 - 1990 MHz
Power Gain — 30 dB
Power Added Efficiency — 48%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 215 mA, IDQ2 =
800 mA, Pout = 40 Watts Avg., 1805 - 1880 MHz or 1930 - 1990 MHz
Power Gain — 31 dB
Power Added Efficiency — 35%
Spectral Regrowth @ 400 kHz Offset = - 63 dBc
Spectral Regrowth @ 600 kHz Offset = - 80 dBc
EVM — 1.5% rms
• Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW
Output Power
• Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 120 W CW
Pout.
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source Scattering Parameters
• On - Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
MW7IC18100NR1
MW7IC18100GNR1
MW7IC18100NBR1
1990 MHz, 100 W, 28 V
GSM/GSM EDGE
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618 - 02
TO - 270 WB - 14
PLASTIC
MW7IC18100NR1
CASE 1621 - 02
TO - 270 WB - 14 GULL
PLASTIC
MW7IC18100GNR1
CASE 1617 - 02
TO - 272 WB - 14
PLASTIC
MW7IC18100NBR1
NC
VDS1
NC
NC
NC
RFin
RFin
NC
VGS1
VGS2
VDS1
NC
1
2
3
4
5
6
7
8
9
10
11
12
14
RFout /VDS2
13
RFout /VDS2
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain- Source Voltage
Rating
VDSS
- 0.5, +65
Vdc
Gate- Source Voltage
VGS
- 0.5, +6
Vdc
Storage Temperature Range
Tstg
- 65 to +200
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
GSM Application
(Pout = 100 W CW)
RθJC
Stage 1, 28 Vdc, IDQ1 = 180 mA
Stage 2, 28 Vdc, IDQ2 = 1000 mA
°C/W
2.0
0.51
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
O (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W CW, IDQ1 = 180 mA, IDQ2 = 1000 mA, f = 1990 MHz.
Power Gain
Gps
27
30
31
dB
Input Return Loss
IRL
—
- 15
- 10
dB
Power Added Efficiency
PAE
45
48
—
%
Pout @ 1 dB Compression Point, CW
P1dB
100
112
—
W
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 215 mA, IDQ2 = 800 mA,
Pout = 40 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz EDGE Modulation.
Power Gain
Gps
—
31
—
dB
Power Added Efficiency
PAE
—
35
—
%
Error Vector Magnitude
EVM
—
1.5
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 63
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 80
—
dBc
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, 1930-1990 MHz Bandwidth
Gain Flatness in 60 MHz Bandwidth @ Pout = 100 W CW
GF
—
0.37
—
dB
Average Deviation from Linear Phase in 60 MHz Bandwidth
@ Pout = 100 W CW
Φ
—
0.502
—
°
Delay
—
2.57
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 100 W CW,
f = 1960 MHz, Six Sigma Window
ΔΦ
—
63.65
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.048
—
dB/°C
ΔP1dB
—
0.004
—
dBm/°C
Average Group Delay @ Pout = 100 W CW, f = 1960 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
3
+
C17
VDD1
VDD2
C1
1 NC
C10
DUT
C3
2
Z3
RF
INPUT
3 NC
Z4
C6
C7
Z12
C14
Z13
Z8
4 NC
Z2
Z1
Z5
Z6
C11
14
5 NC
Z7
C12
Z11
Z10
6
Z14
Z15
7
VGG1
VGG2
C5
8 NC
R1
9
10
R2
11
Z16
RF
OUTPUT
Quiescent Current
Temperature
Compensation
13
C13
C15
Z9
12 NC
C4
C16
Z1
Z2, Z5
Z3
Z4
Z6
Z7
Z8, Z9
Z10
C8
C9
C2
0.083″ x 0.505″ Microstrip
0.083″ x 0.552″ Microstrip
0.083″ x 0.252″ Microstrip
0.083″ x 0.174″ Microstrip
0.083″ x 1.261″ Microstrip
0.060″ x 0.126″ Microstrip
0.080″ x 1.569″ Microstrip
0.880″ x 0.224″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
PCB
0.880″ x 0.256″ Microstrip
0.215″ x 0.138″ Microstrip
0.215″ x 0.252″ Microstrip
0.083″ x 0.298″ Microstrip
0.083″ x 0.810″ Microstrip
0.083″ x 0.250″ Microstrip
Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55
Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz
Table 6. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1900 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8BT500XT
ATC
C6, C7, C8, C9
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C10, C11
0.2 pF Chip Capacitors
ATC100B0R2BT500XT
ATC
C12, C13
0.5 pF Chip Capacitors
ATC100B0R5BT500XT
ATC
C14
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C15
1.5 pF Chip Capacitor
ATC100B1R5BT500XT
ATC
C16
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C17
470 μF, 63 V Electrolytic Capacitor, Radial
477KXM063M
Illinois Capacitor
R1, R2
10 KΩ, 1/4 W Chip Resistors
CRCW12061001FKEA
Vishay
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
4
RF Device Data
Freescale Semiconductor
C17
C3
C10
C6
C1
C7
C12
CUT OUT AREA
C11
MW7IC18100N
Rev. 2
C15
C5
C14
C13
C2
C8
C9
R1
C4
C16
R2
Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1900 MHz
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS — 1900 MHz
50
PAE
45
31
Gps
40
30
VDD = 28 Vdc, Pout = 100 W CW
IDQ1 = 180 mA, IDQ2 = 1000 mA
29
28
27
1880
35
30
IRL
1900
1920
1940
1960
1980
2000
2020
−5
−10
−15
25
2040
IRL, INPUT RETURN
LOSS (dB)
Gps, POWER GAIN (dB)
32
55
PAE, POWER ADDED EFFICIENCY (%)
33
−20
f, FREQUENCY (MHz)
Gps
50
40
30
PAE
29
30
VDD = 28 Vdc, Pout = 40 W Avg.
IDQ1 = 215 mA, IDQ2 = 800 mA
EDGE Modulation
28
27
20
10
IRL
EVM
26
1880 1900
1920
1940
1960
1980
2000
2020
0
2040
−5
−10
−15
IRL, INPUT RETURN
LOSS (dB)
Gps, POWER GAIN (dB)
31
60
EVM, ERROR VECTOR
MAGNITUDE (% rms)
32
PAE, POWER ADDED
EFFICIENCY (%)
Figure 5. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ Pout = 100 Watts CW
−20
f, FREQUENCY (MHz)
Figure 6. Power Gain, Input Return Loss, EVM and Power
Added Efficiency versus Frequency @ Pout = 40 Watts Avg.
32
34
IDQ2 = 1500 mA
1250 mA
Gps, POWER GAIN (dB)
1000 mA
Gps, POWER GAIN (dB)
IDQ1 = 270 mA
33
31
30
750 mA
29
500 mA
28
27
32
225 mA
31
180 mA
30
29
135 mA
28
27
VDD = 28 Vdc, IDQ1 = 180 mA
f = 1960 MHz
26
90 mA
26
25
VDD = 28 Vdc, IDQ2 = 1000 mA
f = 1960 MHz
25
1
10
100
200
1
10
100
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Two - Tone Power Gain versus
Output Power @ IDQ1 = 180 mA
Figure 8. Two - Tone Power Gain versus
Output Power @ IDQ2 = 1000 mA
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1900 MHz
−10
VDD = 28 Vdc, IDQ1 = 180 mA
f1 = 1960 MHz, f2 = 1960.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−20
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ2 = 500 mA
−30
750 mA
1500 mA
−40
−50
1250 mA
1000 mA
VDD = 28 Vdc, IDQ2 = 1000 mA
f1 = 1960 MHz, f2 = 1960.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−20
−30
IDQ1 = 90 mA
135 mA
−50
225 mA
270 mA
−60
−60
1
1
200
100
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 9. Third Order Intermodulation Distortion
versus Output Power @ IDQ1 = 180 mA
Figure 10. Third Order Intermodulation Distortion
versus Output Power @ IDQ2 = 1000 mA
0
IMD, INTERMODULATION DISTORTION (dBc)
0
IMD, INTERMODULATION DISTORTION (dBc)
200
100
10
Pout, OUTPUT POWER (WATTS) PEP
VDD = 28 Vdc, IDQ1 = 180 mA
IDQ2 = 1000 mA, f1 = 1960 MHz, f2 = 1960.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−10
−20
−30
−40
3rd Order
−50
−60
5th Order
−70
7th Order
−80
VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 215 mA
IDQ2 = 800 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1960 MHz
−10
−20
IM3−U
IM3−L
−30
−40
IM5−U
IM5−L
−50
IM7−U
−60
IM7−L
−70
−80
1
100
10
400
10
TWO−TONE SPACING (MHz)
Figure 11. Intermodulation Distortion
Products versus Output Power
Figure 12. Intermodulation Distortion
Products versus Tone Spacing
40
P6dB = 51.74 dBm (149.27 W)
57
60
Ideal
Gps
35
56
Gps, POWER GAIN (dB)
P3dB = 51.32 dBm (135.51 W)
55
54
53 P1dB = 50.6 dBm (114.8 W)
52
Actual
51
50
VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA
Pulsed CW, 12 μsec(on), 1% Duty Cycle
f = 1960 MHz
49
48
16
1
0.1
Pout, OUTPUT POWER (WATTS) PEP
58
Pout, OUTPUT POWER (dBc)
180 mA
−40
17
18
19
20
21
22
23
24
25
TC = −30_C
25_C
25_C
30
50
40
85_C
85_C
25
30
20
20
15
VDD = 28 Vdc
IDQ1 = 180 mA
IDQ2 = 1000 mA
f = 1960 MHz
PAE
10
26
−30_C
1
10
100
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS) CW
Figure 13. Pulsed CW Output Power versus
Input Power
Figure 14. Power Gain and Power Added
Efficiency versus Output Power
10
PAE, POWER ADDED EFFICIENCY (%)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−10
0
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS — 1900 MHz
5
IDQ1 = 180 mA
IDQ2 = 1000 mA
f = 1960 MHz
EVM, ERROR VECTOR MAGNITUDE (% ms)
30
29
28
VDD = 24 V
28 V
32 V
27
50
150
100
200
3
2
Pout = 50 W Avg.
1
40 W Avg.
30 W Avg.
0
1880
1900
1920
1940
1960
1980
2000
2020
f, FREQUENCY (MHz)
Figure 15. Power Gain versus Output Power
Figure 16. EVM versus Frequency
2040
−40
SR @ 400 kHz
SPECTRAL REGROWTH @ 400 kHz (dBc)
−55
Pout = 50 W Avg.
−60
40 W Avg.
−65
30 W Avg.
VDD1 = 28 Vdc, VDD2 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 815 mA
f = 1960 MHz, EDGE Modulation
−70
−75
50 W Avg.
SR @ 600 kHz
−80
−85
1880
30 W Avg.
40 W Avg.
1900
1920
1940
1960
−50
25_C
TC = −30_C
85_C
−60
−70
2000
2020
1
2040
100
10
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 17. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 18. Spectral Regrowth at 400 kHz
versus Output Power
VDD1 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
f = 1960 MHz, EDGE Modulation
−60
VDD1 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
f = 1960 MHz, EDGE Modulation
−80
1980
−50
SPECTRAL REGROWTH @ 600 kHz (dBc)
4
Pout, OUTPUT POWER (WATTS) CW
25_C
TC = 85_C
−30_C
−70
−80
EVM, ERROR VECTOR MAGNITUDE (% ms)
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
0
VDD1 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
EDGE Modulation
80
16
VDD1 = 28 Vdc
IDQ1 = 215 mA
IDQ2 = 800 mA
f = 1960 MHz
EDGE Modulation
14
12
10
TC = 85_C
25_C
60
50
85_C
8
25_C
6
1
10
100
200
70
−30_C
PAE
40
30
20
4
2
10
EVM
0
−90
200
1
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 19. Spectral Regrowth at 600 kHz
versus Output Power
Figure 20. EVM and Power Added Efficiency
versus Output Power
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
31
0
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1900 MHz
32
0
36
S21
−10
20
−15
16
−20
1800
34
33
25_C
32
VDD = 28 Vdc, Pout = 40 W Avg.
IDQ1 = 180 mA, IDQ2 = 1000 mA
31
30
VDD = 28 Vdc
IDQ1 = 180 mA, IDQ2 = 1000 mA
1600
Gps, POWER GAIN (dB)
24
S11 (dB)
S21 (dB)
S11
12
1400
TC = −30_C
35
−5
28
2000
2200
−25
2600
2400
29
1880
85_C
1900
1920
1940
1960
1980
2000
2020
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
Figure 21. Broadband Frequency Response
Figure 22. Power Gain versus Frequency
2040
109
MTTF (HOURS)
108
1st Stage
107
2nd Stage
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 100 W CW, and PAE = 48%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 23. MTTF versus Junction Temperature
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
9
GSM TEST SIGNAL
−10
−20
Reference Power
VWB = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
−90
400 kHz
400 kHz
600 kHz
600 kHz
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 24. EDGE Spectrum
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 2040 MHz
Zin
Zload
f = 1880 MHz
f = 1880 MHz
f = 2040 MHz
VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW
f
MHz
Zin
W
Zload
W
1880
67.48 - j17.89
2.324 - j3.239
1900
60.03 - j20.86
2.234 - j3.105
1920
53.65 - j21.94
2.135 - j2.965
1940
48.13 - j21.94
2.037 - j2.818
1960
43.52 - j21.22
1.936 - j2.666
1980
39.60 - j20.00
1.851 - j2.509
2000
36.14 - j18.52
1.765 - j2.355
2020
33.19 - j16.57
1.669 - j2.193
30.96 - j14.58
1.559 - j2.012
2040
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 25. Series Equivalent Input and Load Impedance — 1900 MHz
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
11
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 180 mA, IDQ2 = 1000 mA, TC = 255C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1500
0.612
118.5
6.369
69.06
0.002
102.9
0.615
47.74
1550
0.557
104.3
11.42
18.29
0.003
85.09
0.666
- 41.54
1600
0.491
88.33
16.92
- 34.34
0.005
59.06
0.844
- 113.4
1650
0.410
70.24
23.21
- 84.03
0.005
28.40
0.931
- 163.4
1700
0.313
48.99
30.49
- 135.7
0.006
7.983
0.887
155.6
1750
0.216
21.99
32.64
168.8
0.007
- 15.63
0.700
120.3
1800
0.131
- 22.83
32.93
114.0
0.006
- 35.27
0.475
95.71
1850
0.117
- 95.13
32.62
65.01
0.006
- 53.22
0.332
82.10
1900
0.185
- 146.3
32.58
20.45
0.006
- 77.03
0.252
68.30
1950
0.253
- 177.3
32.45
- 22.53
0.007
- 98.93
0.165
47.02
2000
0.303
160.4
32.41
- 65.29
0.007
- 108.4
0.052
8.742
2050
0.328
139.5
32.33
- 108.6
0.006
- 127.3
0.070
- 154.8
2100
0.331
117.9
32.50
- 152.7
0.008
- 145.8
0.161
179.9
2150
0.273
91.65
32.84
160.2
0.008
- 169.1
0.257
165.7
2200
0.141
64.27
32.52
109.2
0.008
162.7
0.424
150.3
2250
0.050
172.7
28.92
56.72
0.009
138.3
0.641
123.4
2300
0.194
163.4
21.30
8.112
0.007
112.6
0.804
91.99
2350
0.270
139.7
14.62
- 34.53
0.007
97.74
0.879
62.03
2400
0.288
118.9
9.878
- 72.70
0.007
84.37
0.910
34.57
2450
0.274
100.6
6.771
- 107.5
0.007
70.79
0.911
8.878
2500
0.236
83.35
4.579
- 141.3
0.007
55.31
0.903
- 16.73
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
12
RF Device Data
Freescale Semiconductor
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1900 MHz
56
Ideal
P3dB = 52.72 dBm (187.06 W)
Pout, OUTPUT POWER (dBm)
55
P2dB = 52.43 dBm (175 W)
54
P1dB = 51.93 dBm (155.89 W)
53
52
Actual
51
VDD = 28 Vdc, IDQ1 = 180 mA
IDQ2 = 1000 mA, Pulsed CW
12 μsec(on) 1% Duty Cycle
f = 1990 MHz
50
49
17
18
19
20
21
22
23
24
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V
Test Impedances per Compression Level
P3dB
Zsource
Ω
Zload
Ω
40.2 - j30.91
0.96 - j3.14
Figure 26. Pulsed CW Output Power
versus Input Power @ 28 V
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
13
+
C17
VDD1
VDD2
C1
1 NC
C10
DUT
C3
2
Z3
RF
INPUT
3 NC
Z4
C6
C7
Z12
C14
Z13
Z8
4 NC
Z2
Z1
Z5
Z6
C11
14
5 NC
Z7
C12
Z11
Z10
6
Z14
Z15
7
VGG1
VGG2
C5
8 NC
R1
9
10
R2
11
Z16
RF
OUTPUT
13
Quiescent Current
Temperature
Compensation
C13
C15
Z9
12 NC
C4
C16
Z1
Z2, Z5
Z3
Z4
Z6
Z7
Z8, Z9
Z10
C8
C9
C2
0.083″ x 0.505″ Microstrip
0.083″ x 0.552″ Microstrip
0.083″ x 0.252″ Microstrip
0.083″ x 0.174″ Microstrip
0.083″ x 1.261″ Microstrip
0.060″ x 0.126″ Microstrip
0.080″ x 1.569″ Microstrip
0.880″ x 0.224″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
PCB
0.880″ x 0.256″ Microstrip
0.215″ x 0.138″ Microstrip
0.215″ x 0.252″ Microstrip
0.083″ x 0.298″ Microstrip
0.083″ x 0.810″ Microstrip
0.083″ x 0.250″ Microstrip
Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55
Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1800 MHz
Table 8. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1800 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8BT500XT
ATC
C6, C7, C8, C9
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C10, C11
0.2 pF Chip Capacitors
ATC100B0R2BT500XT
ATC
C12, C13
0.8 pF Chip Capacitors
ATC100B0R8BT500XT
ATC
C14
1.2 pF Chip Capacitor
ATC100B1R2BT500XT
ATC
C15
1.0 pF Chip Capacitor
ATC100B1R0BT500XT
ATC
C16
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C17
470 μF, 63 V Electrolytic Capacitor, Radial
477KXM063M
Illinois Capacitor
R1, R2
10 KΩ, 1/4 W Chip Resistors
CRCW12061001FKEA
Vishay
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
14
RF Device Data
Freescale Semiconductor
C17
C3
C10
C6
C1
C7
C12
CUT OUT AREA
C11
MW7IC18100N
Rev. 2
C14
C5
C15
C13
C2
C8
C9
R1
C4
C16
R2
Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
15
TYPICAL CHARACTERISTICS — 1800 MHz
55
50
Gps, POWER GAIN (dB)
31
45
30
Gps
VDD1 = 28 Vdc, Pout = 100 W CW
IDQ1 = 180 mA, IDQ2 = 1000 mA
29
40
35
28
IRL
30
27
26
1760 1780
1800 1820
1840
1860
1880 1900
−10
−15
−20
25
1920 1940
IRL, INPUT RETURN
LOSS (dB)
PAE
PAE, POWER ADDED EFFICIENCY (%)
32
−25
f, FREQUENCY (MHz)
32
Gps
30
40
−10
PAE
30
28
20
27
IRL
10
26
EVM
25
1760 1780
1800
1820
1840
1860
1880
1900 1920
0
1940
−15
−20
−25
IRL, INPUT RETURN
LOSS (dB)
29
50
VDD1 = 28 Vdc, Pout = 40 W Avg.
IDQ1 = 215 mA, IDQ2 = 800 mA
EDGE Modulation
EVM, ERROR VECTOR
MAGNITUDE (% rms)
Gps, POWER GAIN (dB)
31
60
PAE, POWER ADDED
EFFICIENCY (%)
Figure 29. Power Gain, Input Return Loss and Power Added
Efficiency versus Frequency @ Pout = 100 Watts CW
−30
f, FREQUENCY (MHz)
Figure 30. Power Gain, Input Return Loss, EVM and Power
Added Efficiency versus Frequency @ Pout = 40 Watts Avg.
33
36
IDQ2 = 1500 mA
34
1000 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
32
IDQ1 = 270 mA
35
1250 mA
31
750 mA
30
500 mA
29
225 mA
33
32
180 mA
31
135 mA
30
29
28
VDD = 28 Vdc, IDQ1 = 180 mA
f = 1840 MHz
28
VDD = 28 Vdc, IDQ2 = 1000 mA
f = 1840 MHz
90 mA
27
27
26
1
10
100
200
1
10
100
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 31. Two - Tone Power Gain versus
Output Power @ IDQ1 =180 mA
Figure 32. Two - Tone Power Gain versus
Output Power @ IDQ2 = 1000 mA
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
16
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1800 MHz
−10
VDD = 28 Vdc, IDQ1 = 180 mA
f1 = 1840 MHz, f2 = 1840.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−20
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ2 = 500 mA
−30
750 mA
−40
1000 mA
1250 mA
−50
1500 mA
−60
VDD = 28 Vdc, IDQ2 = 1000 mA
f1 = 1840 MHz, f2 = 1840.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−20
−30
IDQ1 = 90 mA
135 mA
180 mA
10
200
100
1
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 34. Third Order Intermodulation Distortion
versus Output Power @ IDQ2 = 1000 mA
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 28 Vdc, IDQ1 = 180 mA
IDQ2 = 1000 mA, f1 = 1840 MHz, f2 = 1840.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−20
−30
−40
−50
3rd Order
5th Order
7th Order
−80
1
100
10
−20
IM3−L
−30
IM3−U
IM5−U
−40
IM5−L
IM7−U
IM7−L
−50
−60
0.1
1
10
50
TWO−TONE SPACING (MHz)
Figure 35. Intermodulation Distortion
Products versus Output Power
Figure 36. Intermodulation Distortion
Products versus Tone Spacing
40
60
Ideal
P6dB = 51.876 dBm (154.028 W)
57
Pout, OUTPUT POWER (dBc)
VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 180 mA
IDQ2 = 1000 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1840 MHz
Pout, OUTPUT POWER (WATTS) PEP
58
Gps
TC = −30_C
35
56
P3dB = 51.34 dBm (136.144 W)
55
54
53 P1dB = 50.539 dBm (113.21 W)
52
Actual
51
50
VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA
Pulsed CW, 12 μsec(on), 1% Duty Cycle
f = 1840 MHz
49
48
15
−10
400
Gps, POWER GAIN (dB)
IMD, INTERMODULATION DISTORTION (dBc)
0
−70
16
17
18
19
20
21
22
23
200
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 33. Third Order Intermodulation Distortion
versus Output Power @ IDQ1 = 180 mA
−60
225 mA
−50
−60
1
−10
270 mA
−40
24
25_C
50
25_C
85_C
30
85_C
25
40
30
20
20
15
VDD = 28 Vdc
IDQ1 = 180 mA
IDQ2 = 1000 mA
f = 1840 MHz
PAE
10
25
−30_C
1
10
100
Pin, INPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS) CW
Figure 37. Pulsed CW Output Power versus
Input Power
Figure 38. Power Gain and Power Added
Efficiency versus Output Power
10
PAE, POWER ADDED EFFICIENCY (%)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−10
0
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
17
TYPICAL CHARACTERISTICS — 1800 MHz
4
32
30
29
28 V
28
VDD = 24 V
32 V
27
100
50
150
200
Pout = 50 W Avg.
2
40 W Avg.
1
30 W Avg.
0
1760
1780 1800
1820
1840
1860 1880
1900
1920 1940
f, FREQUENCY (MHz)
Figure 39. Power Gain versus Output Power
Figure 40. EVM versus Frequency
−40
−60
SPECTRAL REGROWTH @ 400 kHz (dBc)
−55
Pout = 50 W Avg.
SR @ 400 kHz
40 W Avg.
−65
VDD1 = 28 Vdc, VDD2 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 815 mA
f = 1840 MHz, EDGE Modulation
30 W Avg.
−70
−75
SR @ 600 kHz
30 W Avg.
50 W Avg.
−80
40 W Avg.
−85
1760
1800
1820 1840
−50
25_C
TC = −30_C
85_C
−60
−70
1860
1880
1900
1920 1940
100
10
1
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 41. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
Figure 42. Spectral Regrowth at 400 kHz
versus Output Power
VDD1 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
f = 1840 MHz, EDGE Modulation
−60
VDD1 = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
f = 1840 MHz, EDGE Modulation
−80
1780
−50
SPECTRAL REGROWTH @ 600 kHz (dBc)
3
Pout, OUTPUT POWER (WATTS) CW
−30_C
TC = 85_C
25_C
−70
−80
EVM, ERROR VECTOR MAGNITUDE (% ms)
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
0
VDD = 28 Vdc
IDQ1 = 215 mA, IDQ2 = 800 mA
EDGE Modulation
70
14
VDD1 = 28 Vdc
IDQ1 = 215 mA
IDQ2 = 800 mA
f = 1840 MHz
EDGE Modulation
12
10
25_C
85_C
1
10
100
200
60
TC = −30_C
50
25_C
85_C
40
8
−30_C
6
PAE
30
20
4
2
10
EVM
0
−90
200
1
10
100
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 43. Spectral Regrowth at 600 kHz
versus Output Power
Figure 44. EVM and Power Added Efficiency
versus Output Power
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
31
EVM, ERROR VECTOR MAGNITUDE (% ms)
IDQ1 = 180 mA
IDQ2 = 1000 mA
f = 1840 MHz
0
200
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
18
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1800 MHz
37
Gps, POWER GAIN (dB)
36
TC = −30_C
35
34
25_C
33
32
VDD = 28 Vdc, Pout = 40 W Avg.
IDQ1 = 180 mA, IDQ2 = 1000 mA
31
85_C
30
29
1760 1780
1800
1820
1840
1860
1880
1900
1920 1940
f, FREQUENCY (MHz)
Figure 45. Power Gain versus Frequency
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
19
f = 1760 MHz
Zo = 75 Ω
Zin
f = 1920 MHz
Zload
f = 1760 MHz
f = 1920 MHz
VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW
f
MHz
Zin
W
Zload
W
1760
71.78 + j40.05
2.983 - j3.974
1780
79.83 + j31.13
2.872 - j3.861
1800
84.35 + j19.44
2.757 - j3.745
1820
84.75 + j7.234
2.636 - j3.639
1840
81.21 - j4.076
2.535 - j3.506
1860
74.76 - j12.32
2.434 - j3.376
1880
67.49 - j17.89
2.324 - j3.239
1900
60.03 - j20.86
2.234 - j3.105
53.65 - j21.94
2.135 - j2.965
1920
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
20
RF Device Data
Freescale Semiconductor
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1800 MHz
56
Ideal
P3dB = 52.46 dBm (176.19 W)
Pout, OUTPUT POWER (dBm)
55
54
P2dB = 52.19 dBm (165.57 W)
53
P1dB = 51.72 dBm (148.59 W)
52
Actual
51
VDD = 28 Vdc, IDQ1 = 180 mA
IDQ2 = 1000 mA, Pulsed CW
12 μsec(on) 1% Duty Cycle
f = 1880 MHz
50
49
17
18
19
20
22
21
23
24
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V
Test Impedances per Compression Level
P3dB
Zsource
Ω
Zload
Ω
83.04 - j2.44
1.36 - j3.19
Figure 47. Pulsed CW Output Power
versus Input Power @ 28 V
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
21
PACKAGE DIMENSIONS
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
22
RF Device Data
Freescale Semiconductor
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
23
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
24
RF Device Data
Freescale Semiconductor
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
25
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
26
RF Device Data
Freescale Semiconductor
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
27
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
28
RF Device Data
Freescale Semiconductor
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
29
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
30
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
May 2007
• Initial Release of Data Sheet
1
June 2007
• Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature
rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is
increased to 225°C.
2
Apr. 2008
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C
in Capable Plastic Package bullet, p. 1, 2
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2
• Updated PCB information to show more specific material details, Figs. 3, 27, Test Circuit Schematic, p. 4,
14
• Updated Part Numbers in Tables 6, 8, Component Designations and Values, to RoHS compliant part
numbers, p. 4, 14
• Replaced Case Outline 1617 - 01 with 1617 - 02, Issue A, p. 22 - 24. Revised cross - hatched area for
exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and
Max values for dimension A1 to 0.99 and 1.09, respectively.
• Replaced Case Outline 1618 - 01 with 1618 - 02, Issue A, p. 25 - 27. Added pin numbers 1, 12, 13, and 14
and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5
designation from Sheet 2.
• Replaced Case Outline 1621 - 01 with 1621 - 02, Issue A, p. 28 - 30. Added pin numbers 1, 12, 13, and 14
and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5
designation from Sheet 2.
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
RF Device Data
Freescale Semiconductor
31
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007, 2008. All rights reserved.
MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1
Document Number: MW7IC18100N
Rev. 2, 4/2008
32
RF Device Data
Freescale Semiconductor
Similar pages