IRF IRFH7934TRPBF Hexfet power mosfet Datasheet

IRFH7934PbF
HEXFET® Power MOSFET
Applications
l
l
VDSS
30V
Control MOSFET of Sync-Buck Converters
used for Notebook Processor Power
Control MOSFET for Isolated DC-DC
RDS(on) max
Qg
3.5m @VGS = 10V 20nC
:
Converters in Networking Systems
Benefits
l
l
l
l
l
l
l
l
Very low RDS(ON) at 4.5V VGS
Low Gate Charge
Fully Characterized Avalanche Voltage and
Current
100% Tested for RG
Lead-Free (Qualified up to 260°C Reflow)
RoHS compliant (Halogen Free)
Low Thermal Resistance
Large Source Lead for more reliable Soldering
Base part number
Package Type
IRFH7934PBF
PQFN 5mm x 6mm
PQFN 5X6 mm
Standard Pack
Form
Quantity
Tape and Reel
4000
Orderable part number
IRFH7934TRPBF
Absolute Maximum Ratings
Max.
Units
30
± 20
V
ID @ TA = 25°C
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Parameter
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
19
ID @ TC = 25°C
76
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
190
PD @TA = 25°C
Power Dissipation
3.1
VDS
VGS
24
c
PD @TA = 70°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
2.0
g
W/°C
0.025
-55 to + 150
°C
Thermal Resistance
Parameter
f
RθJC
Junction-to-Case
RθJA
Junction-to-Ambient
g
Notes  through are on page 10
www.irf.com © 2013 International Rectifier
1
Typ.
Max.
–––
2.9
–––
40
Units
°C/W
August 20, 2013
IRFH7934PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
ΔΒVDSS/ΔTJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.021
–––
Static Drain-to-Source On-Resistance
–––
2.9
3.5
–––
4.2
5.1
V
V/°C Reference to 25°C, ID = 1mA
mΩ
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
ΔVGS(th)
Gate Threshold Voltage Coefficient
–––
-6.5
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
110
–––
–––
Qg
IGSS
Conditions
VGS = 0V, ID = 250μA
μA
nA
S
VGS = 10V, ID = 24A
e
e
VGS = 4.5V, ID = 19A
VDS = VGS, ID = 50μA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 15V, ID = 19A
Total Gate Charge
–––
20
30
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.8
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.5
–––
Qgd
Gate-to-Drain Charge
–––
6.3
–––
Qgodr
Gate Charge Overdrive
–––
6.4
–––
Qsw
Switch Charge (Qgs2 + Qgd)
–––
8.8
–––
Qoss
RG
Output Charge
–––
15
–––
nC
Gate Resistance
–––
1.7
3.1
Ω
td(on)
Turn-On Delay Time
–––
12
–––
VDD = 15V, VGS = 4.5V
tr
Rise Time
–––
16
–––
ID = 19A
td(off)
Turn-Off Delay Time
–––
14
–––
tf
Fall Time
–––
7.5
–––
Ciss
Input Capacitance
–––
3100
–––
Coss
Output Capacitance
–––
623
–––
Crss
Reverse Transfer Capacitance
–––
241
–––
VDS = 15V
nC
VGS = 4.5V
ID = 19A
See Fig.17 & 18
ns
VDS = 16V, VGS = 0V
RG=1.8Ω
See Fig.15
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
Max.
Units
–––
97
mJ
–––
19
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
Min. Typ. Max. Units
–––
–––
Conditions
MOSFET symbol
3.9
A
showing the
integral reverse
D
G
–––
190
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 19A, VGS = 0V
trr
Reverse Recovery Time
–––
20
30
ns
TJ = 25°C, IF = 19A, VDD = 15V
Qrr
Reverse Recovery Charge
–––
28
42
nC
di/dt = 325A/μs
ton
Forward Turn-On Time
c
2
S
e
eSee Fig.16
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com © 2013 International Rectifier
August 20, 2013
IRFH7934PbF
2
1000
1000
100
BOTTOM
TOP
10
2.7V
≤ 60μs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
100
BOTTOM
≤ 60μs PULSE WIDTH
Tj = 150°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
2.7V
10
1
100
TJ = 150°C
10
TJ = 25°C
1
0.1
VDS = 15V
≤ 60μs PULSE WIDTH
0.01
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
3
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
www.irf.com © 2013 International Rectifier
ID = 24A
VGS = 10V
1.5
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
August 20, 2013
IRFH7934PbF
14
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
100000
Coss = Cds + Cgd
10000
Ciss
1000
Coss
Crss
ID= 19A
12
VDS= 15V
10
8
6
4
2
0
100
1
10
0
100
20
30
40
50
60
70
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000
ISD, Reverse Drain Current (A)
10
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
100
TJ = 150°C
10
TJ = 25°C
1
VGS = 0V
0.2
0.4
0.6
0.8
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100μsec
10
1msec
DC
1
10msec
TA = 25°C
Tj = 150°C
Single Pulse
0.1
0.1
1.2
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS= 24V
www.irf.com © 2013 International Rectifier
0.1
1
10
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
August 20, 2013
100
IRFH7934PbF
4
VGS(th) Gate threshold Voltage (V)
25
ID , Drain Current (A)
20
15
10
5
2.0
ID = 50μA
1.6
1.2
0
0.8
25
50
75
100
125
150
-75
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
TJ , Ambient Temperature (°C)
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
100
Thermal Response ( ZthJC )
D = 0.50
10
0.20
0.10
0.05
0.02
0.01
1
R1
R1
τJ
0.1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
Ri (°C/W) τι (sec)
6.955975 0.065034
15.08336 5.307554
1.818966 0.00141
16.08526 0.757022
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
5
www.irf.com © 2013 International Rectifier
August 20, 2013
100
14
ID = 24A
12
10
8
6
TJ = 125°C
4
TJ = 25°C
2
0
2
3
4
5
6
7
8
9
400
EAS, Single Pulse Avalanche Energy (mJ)
( Ω)
RDS (on), Drain-to -Source On Resistance m
IRFH7934PbF
I D
2.5A
3.7A
BOTTOM 19A
TOP
300
200
100
0
10
25
VGS, Gate-to-Source Voltage (V)
50
75
VDS
VGS
+
V
- DD
IAS
20V
RD
D.U.T.
RG
DRIVER
D.U.T
RG
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
A
0.01Ω
tp
Fig 14a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
Fig 15a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
I AS
Fig 14b. Unclamped Inductive Waveforms
6
150
Fig 13. Maximum Avalanche Energy
vs. Drain Current
15V
VDS
125
Starting TJ, Junction Temperature (°C)
Fig 12. On-Resistance vs. Gate Voltage
L
100
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
www.irf.com © 2013 International Rectifier
August 20, 2013
IRFH7934PbF
6
D.U.T
Driver Gate Drive
P.W.
+
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Current Regulator
Same Type as D.U.T.
Id
Vds
Vgs
50KΩ
12V
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
7
www.irf.com © 2013 International Rectifier
Fig 18. Gate Charge Waveform
August 20, 2013
IRFH7934PbF
PQFN 5x6 Option "E" Package Details
PQFN Part Marking
INTERNATIONAL
RECTIFIER LOGO
6
DATE CODE
XXXX
ASSEMBLY SITE CODE
(Per SCOP 200-002)
PART NUMBER
XYWWX
XXXXX
MARKING CODE
(Per Marking Spec.)
PIN 1
IDENTIFIER
LOT CODE
(Eng Mode - Min. last 4 digits of EATI #)
(Prod Mode - 4 digits SPN code)
TOP MARKING (LASER)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com © 2013 International Rectifier
August 20, 2013
IRFH7934PbF
8
PQFN Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2013 International Rectifier
August 20, 2013
IRFH7934PbF
Qualification information†
Cons umer
Qualification level
(per JE DE C JE S D47F
Moisture Sensitivity Level
PQFN 5mm x 6mm
RoHS compliant
††
†††
guidelines )
MS L2
††††
†††
(per JE DE C J-S T D-020D
)
Yes
†
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
†††† Higher MSL ratings may be available for the specific package types listed here.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.535mH, RG = 25Ω, IAS = 19A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rthjc is guaranteed by design
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
Revision History
Date
08/06/2013
Comments
•Updated the package outline drawing, on page 8.
•This drawing change is related to PCN Hana-GTBF-GEM 5x6 PQFN Public.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2013 International Rectifier
August 20, 2013
Similar pages