30V, 250mA TinyPower TM HT73xx-7 LDO with Protections Features General Description • Low power consumption The HT73xx-7 is a low power high voltage series of regulators implemented in CMOS technology which has the advantages of low voltage drop and low quiescent current. They allow input voltages as high as 30V and are available with several fixed output voltages ranging from 2.1V to 5.0V. • Low voltage drop • Low temperature coefficient • High input voltage – up to 30V • Output voltage accuracy: tolerance ±2% • Over current protection When the CE input is low, a fast discharge path pulls the output voltage low via an internal pull-down resistor. An internal over-current protection circuit prevents the device from damage even if the output is shorted to ground. An over-temperature protection circuit ensures the device junction temperature will not exceed a temperature of 150°C. • Over temperature protection • Chip enable/disable function • Package types: 8-pin SOP-EP, SOT89-3 and TO92-3 Applications • Battery-powered equipment • Communication equipment • Audio/Video equipment Selection Table Part No. Output Voltage HT7321-7 2.1V HT7323-7 2.3V HT7325-7 2.5V HT7327-7 2.7V HT7330-7 3.0V HT7333-7 3.3V HT7336-7 3.6V HT7340-7 4.0V HT7344-7 4.4V HT7350-7 5.0V Packages Markings 8SOP-EP TO92-3, SOT89-3 HT73xx-7 for the 8SOP-EP type. 73xx-7 marking for the TO92-3, SOT89-3 types. Note: "xx" stands for output voltages. Rev. 1.00 1 April 15, 2016 HT73xx-7 Block Diagram OTP VIN OUT OCP 300Ω Vref En CE En Soft Start GND Pin Assignment SOT89-3 OUT 1 NC 2 NC 3 NC 4 9 VIN 8 VIN 7 CE 6 NC 5 GND TO92-3 73xx-7 73xx-7 HT73xx-7 8 SOP-A (Exposed Pad) 1 2 3 GND VIN OUT 1 2 3 GND VIN OUT Pin Descriptions Pin No. Pin Name Pin Description 8SOP-EP SOT89-3 TO92-3 5 1 1 GND Ground pin 8, 9 2 2 VIN Input pin Output pin 1 3 3 OUT 7 — — CE Chip enable pin, high enable 2, 3, 4, 6 — — NC No connection Rev. 1.30 2 April 15, 2016 HT73xx-7 Absolute Maximum Ratings Parameter Value Unit VIN -0.3 to +33 V VCE -0.3 to (VIN+0.3) Operating Temperature Range, Ta o C +150 o C -65 to +165 o C Maximum Junction Temperature, TJ(MAX) Storage Temperature Range Junction-to-Ambient Thermal Resistance, θJA Power Dissipation, PD V -40 to +85 8SOP-EP 125 °C/W SOT89-3 200 °C/W TO92-3 200 °C/W 8SOP-EP 0.80 W SOT89-3 0.50 W TO92-3 0.50 W Note: PD is measured at Ta=25°C. Recommended Operating Range Value Unit VIN Parameter VOUT+2 to 30 V VCE 0 to VIN V Electrical Characteristics VIN=VOUT+2V, VCE=VIN, Ta=25oC and CIN=COUT=10μF, unless otherwise specified Test Conditions Min. Typ. Max. Unit VIN Symbol Input Voltage — — — 30 V VOUT Output Voltage Range — 2.1 — 5.0 V VO Output Voltage Accuracy IOUT=10mA -2 — 2 % IOUT Output Current — 250 — — mA |∆VOUT| Load Regulation 1mA ≤ IOUT ≤ 100mA — 45 90 mV IOUT=1mA, VOUT Change=2% (Note) — 6 15 mV IOUT=30mA, VOUT Change=2% (Note) — 120 300 mV IOUT=0mA — 2.5 4.0 μA VCE=2.0V, VIN=30V, IOUT=0mA — 3.0 5.0 μA VDIF ISS1 ISS2 Parameter Dropout Voltage Quiescent Current ISHD Shutdown Current VCE=0V — 0.1 0.5 μA ∆VOUT ∆VIN × ∆VOUT Line Regulation (VOUT+1V) ≤ VIN ≤ 30V, IOUT=1mA — 0.1 0.2 %/V ∆VOUT ∆Ta × ∆VOUT Temperature Coefficient IOUT=40mA, -40°C < Ta < 85°C — ±100 — ppm/°C ISHORT Output Short Current VIN=12V, force VOUT=0V — 250 — mA TSHD Shutdown Temperature — — 150 — o C TREC Recovery Temperature — — 25 — o C VIH Enable High Threshold CE pin, VOUT+1V ≤ VIN ≤ 30V 2.0 — — V VIL Enable Low Threshold CE pin, VOUT+1V ≤ VIN ≤ 30V — — 0.6 V RDIS Discharge Resistor CE=0V, measure at VOUT — 300 — Ω Note: The dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at VIN=VOUT+2V with a fixed load. Rev. 1.30 3 April 15, 2016 HT73xx-7 Typical Performance Characteristic Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. 3.33 3.31 3.3 5.04 5.02 VOUT(V) VOUT(V) 5.06 -40°C 25°C 85°C 3.32 3.29 3.28 5 4.98 4.96 -40°C 25°C 85°C 4.94 3.27 4.92 3.26 4.9 3.25 4 7 10 13 16 19 22 25 28 5 31 8 11 14 17 Line Regulation: HT7333-7 (IOUT=10mA) 4 2 3.5 1.8 ISS (uA) ISS (uA) 26 29 32 4.5 2.2 1.6 1.2 -40°C 25°C 85°C 3 2.5 2 85°C 25°C -40°C 1.4 1.5 1 1 4 7 10 13 16 19 22 25 28 5 31 8 11 14 17 20 23 26 29 32 VIN(V) VIN(V) ISS vs VIN: HT7333-7 (IOUT=0mA) ISS vs VIN: HT7350-7 (IOUT=0mA) 0.5 0.5 0.4 0.4 -40°C 25°C 85°C 0.3 ISHD(uA) ISHD(uA) 23 Line Regulation: HT7350-7 (IOUT=10mA) 2.4 0.2 0.1 -40°C 25°C 85°C 0.3 0.2 0.1 0 4 7 10 13 16 V IN(V) 19 22 25 28 0 31 5 ISHD vs VIN: HT7333-7 (IOUT=0mA) 8 11 14 17 V IN(V) 20 23 26 29 32 ISHD vs VIN: HT7350-7 (IOUT=0mA) 250 250 200 ISS(uA) 200 ISS(uA) 20 VIN(V) VIN(V) 150 100 -40°C 25°C 85°C 50 150 100 -40°C 25°C 85°C 50 0 0 0 0 25 50 75 100 125 150 IOUT(mA) 175 200 225 25 ISS vs IOUT: HT7333-7 (VIN=5.3V) 75 100 125 IOUT(mA) 150 175 200 225 250 ISS vs IOUT: HT7350-7 (VIN=7.0V) 3 3 2.5 2.5 2 ISS(uA) 2 ISS(uA) 50 250 1.5 -40°C 25°C 85°C 1 0.5 1.5 -40°C 25°C 85°C 1 0.5 0 0 2.5 5.5 8.5 11.5 14.5 17.5 VCE(V) 20.5 23.5 26.5 29.5 2.5 32.5 ISS vs VCE: HT7333-7 (IOUT=0mA) Rev. 1.30 5.5 8.5 11.5 14.5 17.5 VCE(V) 20.5 23.5 26.5 29.5 32.5 ISS vs VCE: HT7350-7 (IOUT=0mA) 4 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted 700 180 600 160 -40°C 25°C 85°C 500 120 ISHD(mA) Temperature(C) 140 100 80 TSHD(+) THD(-) 60 40 400 300 200 100 20 0 5 7 9 11 13 15 17 19 VIN(V) 21 23 25 27 29 0 31 4 7 10 13 TSHD vs VIN VIN(V) 19 22 25 28 31 ISHD vs VIN 1600 1400 1400 1200 1200 1000 1000 V DIF(mV) V DIF(mV) 16 800 600 -40°C 25°C 85°C 400 200 800 600 -40°C 25°C 85°C 400 200 0 0 0 25 50 75 100 125 150 IOUT(mA) 175 200 225 0 250 Dropout Voltage: HT7333-7 Rev. 1.30 25 50 75 100 125 150 IOUT(mA) 175 200 225 250 Dropout Voltage: HT7350-7 5 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Load Transient Response: Load Transient Response: HT7333-7 (VIN=5.3V, IOUT=0mA to 40mA) HT7350-7 (VIN=7.0V, IOUT=0mA to 40mA) Load Transient Response: Load Transient Response: HT7333-7 (VIN=5.3V, IOUT=40mA to 0mA) HT7350-7 (VIN=7.0V, IOUT=40mA to 0mA) Line Trasient Response: HT7333-7 (IOUT=10mA) Line Trasient Response: HT7350-7 (IOUT=10mA) Line Trasient Response: HT7333-7 (IOUT=10mA) Line Trasient Response: HT7350-7 (IOUT=10mA) Rev. 1.30 6 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Line Trasient Response: HT7333-7 (IOUT=10mA) Line Trasient Response: HT7350-7 (IOUT=10mA) Line Trasient Response: HT7333-7 (IOUT=10mA) Line Trasient Response: HT7350-7 (IOUT=10mA) Power On Response: Power On Response: HT7333-7 (IOUT=0mA,VCE=0V to 2.7V) HT7350-7 (IOUT=0mA,VCE=0V to 2.7V) Power Off Response: Power Off Response: HT7333-7 (IOUT=0mA,VCE=2.7V to 0V) HT7350-7 (IOUT=0mA,VCE=2.7V to 0V) Rev. 1.30 7 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: Power On Response: HT7333-7 (IOUT=250mA,VCE=0V to 2.7V) HT7350-7 (IOUT=250mA,VCE=0V to 2.7V) Power Off Response: Power Off Response: HT7333-7 (IOUT=250mA,VCE=2.7V to 0V) HT7350-7 (IOUT=250mA,VCE=2.7V to 0V) Power On Response: Power On Response: HT7333-7 (IOUT=0mA, TRISE=0.1ms) HT7350-7 (IOUT=0mA, TRISE=0.1ms) Power Off Response: Power Off Response: HT7333-7 (IOUT=0mA, TFALL=0.1ms) HT7350-7 (IOUT=0mA, TFALL=0.1ms) Rev. 1.30 8 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: Power On Response: HT7333-7 (IOUT=0mA, TRISE=100ms) HT7350-7 (IOUT=0mA, TRISE=100ms) Power Off Response: Power Off Response: HT7333-7 (IOUT=0mA, TFALL=100ms) HT7350-7 (IOUT=0mA, TFALL=100ms) Power On Response: Power On Response: HT7333-7 (IOUT=250mA, TRISE=0.1ms) HT7350-7 (IOUT=250mA, TRISE=0.1ms) Power Off Response: Power Off Response: HT7333-7 (IOUT=250mA, TFALL=0.1ms) HT7350-7 (IOUT=250mA, TFALL=0.1ms) Rev. 1.30 9 April 15, 2016 HT73xx-7 Test Condition: VIN=VOUT+2V, VCE=VIN, IOUT=10mA, CIN=10μF, COUT=10μF and Ta=25ºC, unless otherwise noted. Power On Response: Power On Response: HT7333-7 (IOUT=250mA, TRISE=100ms) HT7350-7 (IOUT=250mA, TRISE=100ms) Power Off Response: Power Off Response: HT7333-7 (IOUT=250mA, TFALL=100ms) HT7350-7 (IOUT=250mA, TFALL=100ms) Rev. 1.30 10 April 15, 2016 HT73xx-7 Maximum Power Dissipation (W) Application Information When using the HT73xx-7 regulators, it is important that the following application points are noted if correct operation is to be achieved. External Circuit It is important that external capacitors are connected to both the input and output pins. For the input pin suitable bypass capacitors as shown in the application circuits should be connected especially in situations where a battery power source is used which may have a higher impedance. For the output pin, a suitable capacitor should also be connected especially in situations where the load is of a transient nature, in which case larger capacitor values should be selected to limit any output transient voltages. where TJ(MAX) is the maximum junction temperature, Ta is the ambient temperature and θJA is the junctionto-ambient thermal resistance of the IC package in degrees per watt. The following table shows the θJA values for various package types. 200°C/W TO92-3 200°C/W 8SOP-EP 125°C/W 8SOP-EP 0.5W 0.4 SOT89-3, TO92-3 0.2 0 0 25 50 75 100 Ambient Temperature (oC) 125 150 In practical applications the regulator may be called upon to provide both steady state and transient currents due to the transient nature of the load. Although the device may be working well within its limits with its steady state current, care must be taken with transient loads which may cause the current to rise close to its maximum current value. Care must be taken with transient loads and currents as this will result in device junction temperature rises which must not exceed the maximum junction temperature. With both steady state and transient currents, the important current to consider is the average or more precisely the RMS current which is the value of current that will appear as heat generated in the device. The following diagram shows how the average current relates to the transient currents. PD(MAX) = (TJ(MAX) – Ta) / θJA θJA value °C/W 0.6 In order to keep the device within its operating limits and to maintain a regulated output voltage, the power dissipation of the device, given by P D, must not exceed the Maximum Power Dissipation, given by PD(MAX). Therefore PD ≤ PD(MAX). From the diagram it can be seen that almost all of this power is generated across the pass transistor which is acting like a variable resistor in series with the load to keep the output voltage constant. This generated power which will appear as heat, must never allow the device to exceed its maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the package, the PCB layout, the rate of the surrounding airflow and the difference between the junction and ambient temperature. The maximum power dissipation can be calculated using the following formula: SOT89-3 0.8W 0.8 Power Dissipation Calculation Thermal Considerations Package 1.0 For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it is recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain an adequate margin for device reliability. The derating curves of different packages for maximum power dissipation are as follows: ILOAD ILOAD(AVG) Time Rev. 1.30 11 April 15, 2016 HT73xx-7 As the quiescent current of the device is very small it can generally be ignored and as a result the input current can be assumed to be equal to the output current. Therefore the power dissipation of the device, PD, can be calculated as the voltage drop across the input and output multiplied by the current, given by the equation, PD = (VIN – VOUT) × IIN. As the input current is also equal to the load current the power dissipation PD = (VIN – VOUT) × ILOAD. However, with transient load currents, PD = (VIN – VOUT) × ILOAD(AVG) as shown in the figure. IIN VIN VIN OUT CE VOUT ILOAD Vref Vfb GND Common Common Application Circuits Basic Circuits VIN VIN C3 C1 0.1μF 10μF OFF ON VOUT VOUT HT73xx-7 Series VCE GND C2 C4 10μF 0.1μF Common Common High Output Current Positive Voltage Regulator TR1 R1 VIN VIN C3 C1 OFF 0.1μF 10μF ON VCE GND Common Rev. 1.30 VOUT HT73xx-7 Series VOUT C2 10μF C4 0.1μF Common 12 April 15, 2016 HT73xx-7 Circuit for Increasing Output Voltage VIN VIN C1 0.1μF 10μF OFF ON HT73xx-7 Series VCE GND ISS VOUT C2 C4 10μF 0.1μF Vxx C3 VOUT R1 R2 VOUT = Vxx×(1+R2/R1) + ISS×R2 Common Common Circuit for Increasing Output Voltage VIN VIN C3 OFF ON 10μF HT73xx-7 Series GND ISS VOUT C2 C4 10μF 0.1μF Vxx 0.1μF C1 VCE VOUT R1 D1 VOUT = Vxx + VD1 Common Common Constant Current Regulator VIN VIN C1 OFF 0.1μF 10μF ON GND ISS VOUT C2 C4 10μF 0.1μF Vxx C3 VCE VOUT HT73xx-7 Series RA IOUT IOUT = Vxx / RA + ISS Common Rev. 1.30 RL Common 13 April 15, 2016 HT73xx-7 Dual Supply VIN VIN OFF ON VOUT HT73xx-7 Series VCE GND C3 0.1μF C1 OFF 10μF ON HT73xx-7 Series GND Common Rev. 1.30 C5 C6 10μF 0.1μF VOUT VIN VCE VOUT D1 VOUT C2 C4 10μF 0.1μF R1 Common 14 April 15, 2016 HT73xx-7 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/ Carton Information. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.30 15 April 15, 2016 HT73xx-7 8-pin SOP-EP Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. — A — 0.236 BSC B — 0.154 BSC — C 0.012 — 0.020 C' — 0.193 BSC — D — — 0.069 D1 0.059 — — E — 0.050 BSC — E2 0.039 — — F 0.004 — 0.010 G 0.016 — 0.050 H 0.004 — 0.010 α 0° — 8° Symbol Rev. 1.30 Dimensions in mm Min. Nom. Max. A — 6.00 BSC — B — 3.90 BSC — C 0.31 — 0.51 C' — 4.90 BSC — D — — 1.75 D1 1.50 — — E — 1.27 BSC — E2 1.00 — — F 0.10 — 0.25 G 0.40 — 1.27 H 0.10 — 0.25 α 0° — 8° 16 April 15, 2016 HT73xx-7 3-pin SOT89-3 Outline Dimensions Symbol Dimensions in inch Min. Nom. Max. A 0.173 — 0.181 B 0.053 — 0.072 C 0.090 — 0.102 D 0.035 — 0.047 E 0.155 — 0.167 F 0.014 — 0.019 G 0.017 — 0.022 H — 0.059 BSC — I 0.055 — 0.063 J 0.014 — 0.017 Symbol Rev. 1.30 Dimensions in mm Min. Nom. Max. A 4.40 — 4.60 B 1.35 — 1.83 C 2.29 — 2.60 D 0.89 — 1.20 E 3.94 — 4.25 F 0.36 — 0.48 G 0.44 — 0.56 H — 1.50 BSC — I 1.40 — 1.60 J 0.35 — 0.44 17 April 15, 2016 HT73xx-7 3-pin TO92-3 Outline Dimensions Symbol Nom. Max. A 0.173 0.180 0.205 B 0.170 — 0.210 C 0.500 0.580 — D — 0.015 BSC — E — 0.010 BSC — F — 0.050 BSC — G — 0.035 BSC — H 0.125 0.142 0.165 Symbol Rev. 1.30 Dimensions in inch Min. Dimensions in mm Min. Nom. Max. A 4.39 4.57 5.21 B 4.32 — 5.33 C 12.70 14.73 — D — 0.38 BSC — E — 2.54 BSC — F — 1.27 BSC — G — 0.89 BSC — H 3.18 3.61 4.19 18 April 15, 2016 HT73xx-7 Copyright© 2016 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw/en/home. Rev. 1.30 19 April 15, 2016