Rohm BU30SD2MG-MTR 1ch 200ma cmos ldo regulator Datasheet

Datasheet
CMOS LDO Regulators for Automotive Equipments
1ch 200mA
CMOS LDO Regulators
BUxxSD2-M series
●Key Specifications
„ Input Power Supply Voltage Range:
1.7V to 6.0V
„ Output Current Range:
0 to 200mA
„ Operating Temperature Range:
-40℃ to +105℃
„ Output Voltage Lineup:
1.2V,1.5V,1.8V,2.5V
2.8V,3.0V,3.3V
„ Output Voltage Accuracy:
±2.0%
„ Circuit Current:
33µA(Typ.)
„ Standby Current:
0μA (Typ.)
●General Description
BUxxSD2-M series are high-performance CMOS LDO
regulators with output current ability of up to 200-mA.
These devices have excellent noise and load response
characteristics despite of its low circuit current
consumption of 33µA. They are most appropriate for
various applications such as power supplies for logic IC,
RF, and camera modules.
●Package
SSOP5
●Features
„ High Output Voltage Accuracy: ±2.0%
(In all recommended conditions)
„ High Ripple Rejection: 68 dB (Typ, 1 kHz,)
„ Compatible with small ceramic capacitor
(Cin=Cout=0.47 µF)
„ Low Current Consumption: 33 µA
„ Output Voltage ON/OFF control
„ Built-in Over Current Protection Circuit (OCP)
„ Built-in Thermal Shutdown Circuit (TSD)
„ Package SSOP5 is similar to SOT23-5(JEDEC)
W(Typ.) x D(Typ.) x H(Max.)
2.90mm x 2.80mm x 1.25mm
●Applications
„ Automotive equipments.
„ Portable devices
„ Camera modules
„ Other electronic devices using microcontrollers or
logic circuits
„ AEC-Q100 qualified
●Typical Application Circuit
Vin
VOUT
VIN
Cin
Vout
Cout
BUxxSD2MG-M
BUxxSD2-M
On
Off
STBY
GND
Figure 1. Typical Application Circuit
○Product structure:Silicon monolithic integrated circuit
.www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
○This product is not designed protection against radioactive rays
1/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Pin Configuration
N.C.
VOUT
Lot. No
Marking
VIN GND STBY
●Pin Description
Pin No.
Symbol
Function
1
VIN
Input Pin
2
GND
GND Pin
3
STBY
Output Control Pin
(High:ON, Low:OFF)
4
N.C.
No Connect
5
VOUT
Output Pin
●Block Diagram
VIN
VIN
1
VREF
VOUT
Cin
VOUT
5
GND 2
OCP
Cout
TSD
VSTBY
STBY
3
STBY
4 N.C.
Cin(min)=0.47µF (Ceramic)
Cout(min)=0.47µF (Ceramic)
Figure 2. Block diagram
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
2/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Absolute Maximum Ratings
Parameter
Maximum Power Supply
Voltage Range
Symbol
Rating
Unit
VMAX
-0.3 to +6.5
V
(*1)
Power Dissipation
Pd
Maximum Junction
Temperature
Tjmax
+125
℃
Operating Temperature Range
Topr
-40 to +105
℃
Storage Temperature Range
Tstg
-55 to +125
℃
(*1)
mW
540
Derate by 5.6mW/℃ when operating above Ta=25℃.(When mounted on a board 70mm×70mm×1.6mm glass-epoxy board, two layer)
●Recommended Operating Ratings
Parameter
Symbol
Limit
Unit
Input Power Supply Voltage
Range
VIN
1.7 to 6.0
V
Maximum Output Current
IMAX
200
mA
●Recommended Operating Conditions
Parameter
Symbol
Input capacitor
Output capacitor
Rating
Unit
Conditions
-
µF
A ceramic capacitor is recommended.
-
µF
A ceramic capacitor is recommended.
Min.
Typ.
Max.
Cin
0.47(*2)
1.0
Cout
0.47(*2)
1.0
(*2) Set the value of the capacitor so that it does not fall below the minimum value. Take into consideration the temperature characteristics,
characteristics, and degradation with time.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3/28
DC
device
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Electrical Characteristics
(*3)
(Unless otherwise noted, Ta=-40 to 105℃, VIN=VOUT+1.0V , VSTBY=1.5V, Cin=1μF, Cout=1μF.)
Limit
PARAMETER
Symbol
Unit
Conditions
MIN.
TYP.
MAX.
Output Voltage
VOUT
Line Regulation
VDLI
VOUT
×0.98
-
VOUT
VOUT
×1.02
V
4
10
mV
6
15
mV
Load Regulation1
VDLO1
-
0.5
5
mV
Load Regulation2
VDLO2
Dropout Voltage
VDROP
Maximum Output Current
Limit Current
Short Current
Circuit Current
Circuit Current (STBY)
Ripple Rejection Ratio
IOMAX
ILMAX
ISHORT
IGND
ICCST
R.R.
200
250
-
1
400
280
180
150
110
100
85
400
100
33
68
10
700
550
370
290
220
180
150
200
80
2.0
-
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
mA
µA
µA
dB
Load Transient Response
VLOT
-
±65
-
mV
Line Transient Response
VLIT
-
±5
-
mV
VNOIS
-
30
-
TST
-
100
300
µsec
VSTBH
VSTBL
1.1
-0.2
-
VIN
0.5
V
V
ISTBY
-
-
4.0
µA
Output Noise Voltage
Startup Time
STBY Control
Voltage
ON
OFF
STBY Pin Current
IOUT=0 to 200mA,
VOUT≧2.5V, VIN=VOUT+0.5 to 6.0V
VOUT<2.5V, VIN=3.0 to 6.0V
Ta=-40 to +105℃ (*4,5,6)
IOUT=10mA
VOUT≦2.5V, VIN=3.0 to 6.0V
IOUT=10mA
VOUT>2.5V, VIN=VOUT+0.5 to 6.0V
IOUT=1 to 100mA
IOUT=1 to 200mA
1.0V≦VOUT<1.2V, IOUT=100mA
1.2V≦VOUT<1.5V, IOUT=100mA
1.5V≦VOUT<1.7V, IOUT=100mA
1.7V≦VOUT<2.1V, IOUT=100mA
2.1V≦VOUT<2.5V, IOUT=100mA
2.5V≦VOUT<2.8V, IOUT=100mA
2.8V≦VOUT, IOUT=100mA
VIN=VOUT+1.0V (*3)
Vo=VOUT×0.98, Ta=25℃
Vo=0V, Ta=25℃
IOUT=0mA
VSTBY=0V
VRR=-20dBv,fRR=1kHz,IOUT=10mA
IOUT=1 to 150mA,Trise=Tfall=1µs,
(*5)
VIN=VOUT+1.0V
VIN=VOUT+0.5 to VOUT+1.0V,
Trise=Tfall =10µs
µVrms Bandwidth 10 to 100kHz
Output Voltage settled
(*7)
within tolerances
Ta=25℃
(*3) VIN=3.5V for VOUT<2.5V.
(*4) Operating Conditions are limited by Pd.
(*5) Typical values apply for Ta=25℃.
(*6) VIN=3.0V to 6.0V for VOUT<2.5V.
(*7) Startup time=time from EN assertion to VOUT×0.98
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
1.4
1.25
1.24
1.2
Output Voltage VOUT (V)
Output Voltage VOUT (V)
1.23
1.0
IOUT=0mA
IOUT=50mA
IOUT=200mA
0.8
0.6
0.4
1.21
1.20
IOUT=0mA
IOUT=50mA
IOUT=200mA
1.19
1.18
1.17
Ta=25℃
VIN=VSTBY
0.2
1.22
Ta=25℃
VIN=VSTBY
1.16
0.0
1.15
0.0
1.0
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
0.0
50
1.25
45
1.24
40
1.23
35
30
Ta=105℃
Ta=25℃
Ta=-40℃
25
20
2.0
3.0
4.0
Input Voltage VIN (V)
15
6.0
Ta=25℃
Ta=105℃
Ta=-40℃
1.22
1.21
1.20
1.19
1.18
VIN=3.5V
VSTBY=1.5V
1.17
10
VIN=VSTBY
IOUT=0mA
5
5.0
Figure 4. Line Regulation
Output Voltage VOUT (V)
Circuit Current IGND (μA)
Figure 3. Output Voltage vs. Input Voltage
1.0
1.16
1.15
0
0.0
1.0
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
50
100
Output Current
Figure 5. Circuit Current vs. Input Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
150
IOUT
200
(mA)
Figure 6. Load Regulation
5/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
1.40
90
1.20
70
Output Voltage VOUT (V)
Circuit Current IGND (μA)
80
Ta=105℃
Ta=25℃
Ta=-40℃
60
50
40
30
VIN=3.5V
VSTBY=1.5V
20
1.00
VIN=6.0V
VIN=3.5V
VIN=3.0V
0.80
0.60
0.40
Ta=25℃
VSTBY=1.5V
0.20
10
0
0.00
0
50
100
150
Output Current IOUT (mA)
200
0
100
1.25
100
1.24
90
1.23
80
1.22
1.21
1.20
1.19
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
1.18
1.17
70
60
50
40
30
10
1.15
0
-20
0
20
40
60
Temperature Ta (℃)
80
100
-40
Figure 9. Output Voltage vs. Temperature
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
20
1.16
-40
500
Figure 8. OCP Threshold
Circuit Current IGND (μA)
Output Voltage VOUT (V)
Figure 7. Circuit Current vs. Output Current
200
300
400
Output Current IOUT (mA)
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 10. Circuit Current vs. Temperature
6/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
1.4
100
90
Circuit Current at STBY ICCST (nA)
Output Voltage VOUT (V)
1.2
Ta=105℃
Ta=25℃
Ta=-40℃
1.0
0.8
0.6
0.4
0.2
VIN=3.5V
IOUT=0.1mA
0.0
0.00
80
70
60
50
40
30
VIN=6.0V
VSTBY=0V
20
10
0
0.25
0.50
0.75
1.00
1.25
STBY Pin Voltage VSTBY (V)
1.50
Figure 11. STBY Threshold
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 12. Circuit Current ( at STBY) vs. Temperature
2.0
STBY Pin Current ISTBY (μA)
1.8
1.6
1.4
1.2
Ta=105℃
Ta=25℃
Ta=-40℃
1.0
0.8
0.6
0.4
0.2
0.0
0.0
1.0
2.0
3.0
4.0
5.0
STBY Pin Voltage VSTBY (V)
6.0
Figure 13. STBY Pin Current vs. STBY Pin Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
7/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
50
90
45
Output Noise Voltage VNOIS (μVrms)
100
Ripple Rejection Ratio R.R. (dB)
80
70
60
50
Ta=25℃
VIN=3.5V
VRR=-20dBv
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1µF
40
30
20
10
40
35
30
25
20
Ta=25℃
VIN=3.5V
VSTBY=1.5V
Cin=Cout=1µF
Bndwidth 10 to 100kHz
15
10
5
0
0
100
1000
10000
Frequency (Hz)
100000
Figure 14. Ripple Rejection Ratio vs. Frequency
0
50
100
150
Output Current IOUT (mA)
200
Figure 15. Output Noise Voltage vs. Output Current
Output Spectral Noise Density (μV/√Hz)
10
1
0.1
Ta=25℃
VIN=3.5V
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1µF
0.01
10
100
1000
10000
Frequency (Hz)
100000
Figure 16.Output Spectral Noise Density vs. Frequency
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
8/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
100mA
1mA
100mA/div
0
20μs/div
Output Volatage(V)
Output Volatage(V)
IOUT
200
1.30
1.20
VOUT
100mV/div
1.10
VIN =3.5V,VSTBY =1.5V
150mA
1mA
20μs/div
1.20
VOUT
100mV/div
1.10
1.21
10mV/div
1.19
IOUT=10mA
Cin=Cout=1.0μF
3.0
2.0
Slew Rate=1V/μs
Figure 19. Line Transient Response
(3.0 to 3.5V)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
6.0V
1.0V/div
Output Volatage(V)
Output Volatage(V)
0.0
1ms/div
VIN =VSTBY
3.0V
1.0
Input Voltage(V)
1.0V/div 3.0
3.0V
2.0
Slew Rate =1V/μs
VOUT
0
Figure 18. Load Response
(1mA to 150mA)
1.0
1.20
100mA/div
1.30
Input Voltage(V)
3.5V
200
100
IOUT
Figure 17. Load Response
(1mA to 100mA)
VIN =VSTBY
Trise=Tfall=1μs,
Cin=Cout=1μF
Output Current(mA)
Trise =Tfall=1μs,
Cin=Cout=1μF
Output Current(mA)
VIN =3.5V,VSTBY =1.5V
0.0
1ms/div
1.21
1.20 VOUT
10mV/div
1.19
IOUT=10mA
Cin=Cout=1.0μF
Figure 20. Line Transient Response
(3.0 to 6.0V)
9/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU12SD2MG-M (Unless otherwise specified, Ta=25℃.)
VSTBY
0.0
20μs/div
2.0
1.0
0.0
Cout=0.47μF 1.0V/div
Cout=1.0μF
Cout=2.2μF
VOUT
VIN =3.5V
0.0
0V
20μs/div
2.0
1.0
0.0
VIN =3.5V
Figure 22. Startup Time
(ROUT=6Ω)
1.0
Output Volatage(V)
0V
400ms/div
0.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF 1.0V/div
VIN =3.5V
0.0
VSTBY
0V
0.0
20μs/div
2.0
1.0 VOUT
0.0
Figure 23. Discharge Time
(ROUT=none)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1.0
1.0V/div
Output Volatage(V)
1.0V/div
2.0
1.5V
STBY Pin Voltage(V)
VSTBY
STBY Pin Voltage(V)
2.0
1.5V
1.0 VOUT
Cout=0.47μF 1.0V/div
Cout=1.0μF
Cout=2.2μF
VOUT
Figure 21. Startup Time
(ROUT=none)
2.0
1.0V/div 1.0
1.5V
VSTBY
Output Volatage(V)
Output Volatage(V)
0V
2.0
STBY Pin Voltage(V)
1.0V/div 1.0
1.5V
STBY Pin Voltage(V)
2.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF 1.0V/div
VIN =3.5V
Figure 24. Discharge Time
(ROUT=6Ω)
10/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
2.0
1.85
1.8
1.84
1.6
1.83
Output Voltage VOUT (V)
Output Voltage VOUT (V)
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
1.4
1.2
IOUT=0mA
IOUT=50mA
IOUT=200mA
1.0
0.8
0.6
0.4
1.81
1.80
IOUT=0mA
IOUT=50mA
IOUT=200mA
1.79
1.78
1.77
Ta=25℃
VIN=VSTBY
0.2
1.82
Ta=25℃
VIN=VSTBY
1.76
0.0
1.75
0.0
1.0
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
0.0
Figure 25. Output Voltage vs. Input Voltage
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
Figure 26. Line Regulation
60
1.85
Ta=105℃
Ta=25℃
Ta=-40℃
1.83
40
30
20
VIN=VSTBY
IOUT=0mA
10
Ta=25℃
Ta=-40℃
Ta=105℃
1.84
Output Voltage VOUT (V)
50
Circuit Current IGND (μA)
1.0
1.82
1.81
1.80
1.79
VIN=3.5V
VSTBY=1.5V
1.78
1.77
1.76
1.75
0
0.0
1.0
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
50
100
150
200
Output Current IOUT (mA)
Figure 27. Circuit Current vs. Input Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Figure 28. Load Regulation
11/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
2.00
100
90
1.60
Output Voltage VOUT (V)
80
Circuit Current IGND (μA)
1.80
Ta=105℃
Ta=25℃
Ta=-40℃
70
60
50
40
30
VIN=3.5V
VSTBY=1.5V
20
VIN=6.0V
VIN=3.5V
VIN=3.0V
1.40
1.20
1.00
0.80
0.60
Ta=25℃
VSTBY=1.5V
0.40
10
0.20
0
0.00
0
50
100
150
Outut Current IOUT (mA)
200
0
100
1.85
100
1.84
90
1.83
80
1.82
1.81
1.80
1.79
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
1.78
1.77
500
Figure 30. OCP Threshold
Circuit Current IGND (μA)
Output Voltage VOUT (V)
Figure 29. Circuit Current vs. Output Current
200
300
400
Output Current IOUT (mA)
70
60
50
40
30
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
20
1.76
10
1.75
0
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 31. Output Voltage vs. Temperature
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 32. Circuit Current vs. Temperature
12/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
1.8
90
Ta=105℃
Ta=25℃
Ta=-40℃
1.6
Output Voltage VOUT (V)
Circuit Current at STBY ICCST (nA)
2.0
1.4
1.2
1.0
0.8
0.6
0.4
VIN=3.5V
IOUT=0.1mA
0.2
0.0
0.00
80
70
60
50
40
30
VIN=6.0V
VSTBY=0V
20
10
0
0.25
0.50
0.75
1.00
1.25
STBY Pin Voltage VSTBY (V)
1.50
Figure 33. STBY Threshold
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 34. Circuit Current (at STBY) vs. Temperature
2.0
STBY Pin Current ISTBY (μA)
1.8
1.6
1.4
1.2
Ta=105℃
Ta=25℃
Ta=-40℃
1.0
0.8
0.6
0.4
0.2
0.0
0.0
1.0
2.0
3.0
4.0
5.0
STBY Pin Voltage VSTBY (V)
6.0
Figure 35. STBY Pin Current vs. STBY Pin Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
13/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
50
90
45
Output Noise Voltage VNOIS (μVrms)
100
Ripple Rejection Ratio R.R. (dB)
80
70
60
50
Ta=25℃
VIN=3.5V
VRR=-20dBv
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1μF
40
30
20
10
40
35
30
25
20
Ta=25℃
VIN=3.5V
VSTBY=1.5V
Cin=Cout=1μF
Bndwidth 10 to 100kHz
15
10
5
0
0
100
1000
10000
Frequency (Hz)
100000
Figure 36. Ripple Rejection Ratio vs. Frequency
0
50
100
150
Output Current IOUT (mA)
200
Figure 37. Output Noise Voltage vs. Output Current
Output Spectral Noise Density (μV/√Hz)
10
1
0.1
Ta=25℃
VIN=3.5V
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1μF
0.01
10
100
1000
10000
Frequency (Hz)
100000
Figure 38.Output Spectral Noise Density vs. Frequency
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
14/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
100mA
1mA
100mA/div
0
20μs/div
1.90
1.80
VIN =3.5V,VSTBY =1.5V
VOUT
100mV/div
1.70
1mA
20μs/div
1.80
VOUT
100mV/div
1.70
1.81
10mV/div
1.79
IOUT=10mA
Cin=Cout=1.0μF
0.0
3.0
2.0
Slew Rate=1V/μs
3.0V
1.0
0.0
1ms/div
1.81
1.80 VOUT
10mV/div
1.79
Figure 41. Line Transient Response
(3.0 to 3.5V)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
6.0V
1.0V/div
Output Volatage(V)
Output Volatage(V)
1ms/div
VIN =VSTBY
Input Voltage(V)
1.0V/div
3.0
3.0V
Slew Rate=1V/μs
2.0
VOUT
0
Figure 40. Load Response
(1mA to 150mA)
1.0
1.80
100mA/div
1.90
Input Voltage(V)
3.5V
200
100
IOUT
Figure 39. Load Response
(1mA to 100mA)
VIN =VSTBY
Trise =Tfall=1μs,
Cin=Cout=1μF
150mA
Output Volatage(V)
Output Volatage(V)
IOUT
200
Output Current(mA)
Trise =Tfall=1μs,
Cin=Cout=1μF
Output Current(mA)
VIN =3.5V,VSTBY =1.5V
IOUT=10mA
Cin=Cout=1.0μF
Figure 42. Line Transient Response
(3.0 to 6.0V)
15/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU18SD2MG-M (Unless otherwise specified, Ta=25℃.)
1.0V/div
VSTBY
0.0
0V
20μs/div
2.0
1.0V/div
1.0
0.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
VOUT
VIN =3.5V
VSTBY
0.0
20μs/div
2.0
1.0V/div
1.0
0.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
VOUT
VIN =3.5V
Figure 44. Startup Time
(ROUT=9Ω)
1.0V/div
Output Volatage(V)
0V
400ms/div
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
0.0
VIN =3.5V
1.0V/div
0.0
VSTBY
0V
Figure 45. Discharge Time
(ROUT=none)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1.0
1.0V/div
Output Volatage(V)
1.0
2.0
1.5V
0.0
STBY Pin Voltage(V)
VSTBY
STBY Pin Voltage(V)
2.0
1.5V
1.0
1.0
0V
Figure 43. Startup Time
(ROUT=none)
2.0 VOUT
1.0V/div
1.5V
Output Volatage(V)
Output Volatage(V)
1.0
2.0
STBY Pin Voltage(V)
1.5V
STBY Pin Voltage(V)
2.0
20μs/div
2.0
1.0 VOUT
0.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF 1.0V/div
VIN =3.5V
Figure 46. Discharge Time
(ROUT=9Ω)
16/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
3.0
2.55
2.54
2.53
Output Voltage VOUT (V)
Output Voltage VOUT (V)
2.5
2.0
1.5
IOUT=0mA
IOUT=50mA
IOUT=200mA
1.0
2.52
2.51
2.50
IOUT=0mA
IOUT=50mA
IOUT=200mA
2.49
2.48
2.47
0.5
Ta=25℃
VIN=VSTBY
Ta=25℃
VIN=VSTBY
2.46
0.0
2.45
0.0
1.0
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
0.0
Figure 47. Output Voltage vs. Input Voltage
2.0
3.0
4.0
Input Voltage VIN (V)
5.0
6.0
Figure 48. Line Regulation
60
2.55
Ta=105℃
Ta=25℃
Ta=-40℃
2.54
40
30
20
10
Ta=25℃
Ta=-40℃
Ta=105℃
2.53
Output Voltage VOUT (V)
50
Circuit Current IGND (μA)
1.0
2.52
2.51
2.50
2.49
2.48
VIN=3.5V
VSTBY=1.5V
2.47
VIN=VSTBY
IOUT=0mA
2.46
0
2.45
0.0
1.0
2.0
3.0
4.0
IN
Input Voltage V (V)
5.0
6.0
0
100
150
200
Output Current IOUT (mA)
Figure 49. Circuit Current vs. Input Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
50
Figure 50. Load Regulation
17/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
3.00
100
90
70
Output Voltage VOUT (V)
Circuit Current IGND (μA)
2.50
Ta=105℃
Ta=25℃
Ta=-40℃
80
60
50
40
30
VIN=3.5V
VSTBY=1.5V
20
VIN=3.0V
VIN=6.0V
VIN=3.5V
2.00
1.50
1.00
0.50
Ta=25℃
VSTBY=1.5V
10
0.00
0
0
50
100
150
Outut Current IOUT (mA)
0
200
100
2.55
100
2.54
90
2.53
80
2.52
2.51
2.50
2.49
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
2.48
2.47
500
Figure 52. OCP Threshold
Circuit Current IGND (μA)
Output Voltage VOUT (V)
Figure 51. Circuit Current vs. Output Current
200
300
400
Output Current IOUT (mA)
70
60
50
40
30
20
2.46
VIN=3.5V
VSTBY=1.5V
IOUT=0.1mA
10
2.45
0
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 53. Output Voltage vs. Temperature
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
-40
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 54. Circuit Current vs. Temperature
18/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
3.0
90
Circuit Current at STBY ICCST (nA)
Output Voltage VOUT (V)
2.5
Ta=105℃
Ta=25℃
Ta=-40℃
2.0
1.5
1.0
0.5
VIN=3.5V
IOUT=0.1mA
0.0
0.00
80
70
60
50
40
30
10
0
0.25
0.50
0.75
1.00
1.25
STBY Pin Voltage VSTBY (V)
1.50
-40
Figure 55. STBY Threshold
2.0
500
1.8
450
1.6
400
1.4
1.2
Ta=105℃
Ta=25℃
Ta=-40℃
1.0
0.8
-20
0
20
40
60
Temperature Ta (℃)
80
100
Figure 56. Circuit Current ( at STBY) vs. Temperature
Dropout Voltage VDROP (mV)
STBY Pin Current ISTBY (μA)
VIN=6.0V
VSTBY=0V
20
0.6
0.4
0.2
VIN=0.98*VOUT
VSTBY=1.5V
350
300
250
200
150
100
Ta=105℃
Ta=25℃
Ta=-40℃
50
0.0
0
0.0
1.0
2.0
3.0
4.0
5.0
STBY Pin Voltage VSTBY (V)
6.0
50
100
150
Output Current IOUT (mA)
200
Figure 58. Dropout Voltage vs. Output Current
Figure 57. STBY Pin Current vs. STBY Pin Voltage
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
19/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
50
90
45
Output Noise Voltage VNOIS (μVrms)
100
Ripple Rejection Ratio R.R. (dB)
80
70
60
50
Ta=25℃
VIN=3.5V
VRR=-20dBv
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1μF
40
30
20
10
40
35
30
25
20
Ta=25℃
VIN=3.5V
VSTBY=1.5V
Cin=Cout=1μF
Bndwidth 10 to 100kHz
15
10
5
0
0
100
1000
10000
Frequency (Hz)
100000
Figure 59. Ripple Rejection Ratio vs. Frequency
0
50
100
150
Output Current IOUT (mA)
200
Figure 60. Output Noise Voltage vs. Output Current
Output Spectral Noise Density (μV/√Hz)
10
1
0.1
Ta=25℃
VIN=3.5V
VSTBY=1.5V
IOUT=10mA
Cin=Cout=1μF
0.01
10
100
1000
10000
Frequency (Hz)
100000
Figure 61.Output Spectral Noise Density vs. Frequency
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
20/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
100
100mA
1mA
100mA/div
0
20μs/div
Output Volatage(V)
Output Volatage(V)
IOUT
200
2.60
2.50
VOUT
100mV/div
2.40
VIN =3.5V,VSTBY =1.5V
150mA
1mA
20μs/div
2.50
VOUT
100mV/div
2.40
Figure 63. Load Response
(1mA to 150mA)
1ms/div
2.51
2.50
10mV/div
2.49
IOUT=10mA
Cin=Cout=1.0μF
0.0
Output Volatage(V)
Output Volatage(V)
1.0
VIN =VSTBY
1.0V/div
3.0
2.0
Slew Rate=1V/μs
3.0V
1.0
0.0
1ms/div
2.51
VOUT
10mV/div
2.50
2.49
Figure 64. Line Transient Response
(3.0 to 3.5V)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
6.0V
Input Voltage(V)
1.0V/div
3.0
3.0V
Slew Rate=1V/μs
2.0
VOUT
0
100mA/div
2.60
Input Voltage(V)
3.5V
200
100
IOUT
Figure 62. Load Response
(1mA to 100mA)
VIN =VSTBY
Trise=Tfall=1μs,
Cin=Cout=1μF
Output Current(mA)
Trise=Tfall=1μs,
Cin=Cout=1μF
Output Current(mA)
VIN =3.5V,VSTBY =1.5V
IOUT=10mA
Cin=Cout=1.0μF
Figure 65. Line Transient Response
(3.0 to 6.0V)
21/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Reference data BU25SD2MG-M (Unless otherwise specified, Ta=25℃.)
1.0V/div
VSTBY
1.0
0.0
0V
2.0
1.0V/div
1.5V
VSTBY
0.0
0V
20μs/div
1.0V/div
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
1.0
0.0
Output Volatage(V)
Output Volatage(V)
20μs/div
2.0
VOUT
VIN =3.5V
1.0V/div
2.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
1.0
0.0
VOUT
VIN =3.5V
Figure 66. Startup Time
(ROUT=none)
Figure 67. Startup Time
(ROUT=12.5Ω)
1.0
Output Volatage(V)
0V
400ms/div
1.0
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
0.0
VIN =3.5V
1.0V/div
0.0
VSTBY
0V
2.0 VOUT
1.0
0.0
Figure 68. Discharge Time
(ROUT=none)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1.0
1.0V/div
Output Volatage(V)
1.0V/div
2.0
1.5V
0.0
STBY Pin Voltage(V)
VSTBY
STBY Pin Voltage(V)
2.0
1.5V
2.0 VOUT
1.0
STBY Pin Voltage(V)
1.5V
STBY Pin Voltage(V)
2.0
20μs/div
Cout=0.47μF
Cout=1.0μF
Cout=2.2μF
1.0V/div
VIN =3.5V
Figure 69. Discharge Time
(ROUT=12.5Ω)
22/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Input/Output Capacitor
Capacity value of ceramic capacitor - DC bias characteristics
(Example)
10-V withstand voltage
B1characteristics
GRM188B11A105KA61D
10
0
-10
Capacitance Change [%]
It is recommended that an input capacitor is placed near pins
between the VCC pin and GND as well as an output capacitor
between the output pin and GND. The input is valid when the
power supply impedance is high or when the PCB trace has
significant length. For the output capacitor, the greater the
capacitance, the more stable the output will be depending on
the load and line voltage variations. However, please check the
actual functionality of this capacitor by mounting it on a board
for the actual application. Ceramic capacitors usually have
different, thermal and equivalent series resistance
characteristics, and may degrade gradually over continued
use.
For additional details, please check with the manufacturer,
and select the best ceramic capacitor for your application
10-V withstand voltage
B characteristics
-20
6.3-V withstand voltage
B characteristics
-30
10-V withstand voltage
F characteristics
-40
-50
-60
4-V withstand voltage
X6S characteristics
10-V withstand voltage
F characteristics
-70
-80
-90
-100
0
0.5
1
1.5
2
2.5
3
3.5
4
DC Bias Voltage [V]
Figure 70. Capacity-bias characteristics
Capacitors generally have ESR (equivalent series resistance)
and it operates stably in the ESR-IOUT area shown on the right.
Since ceramic capacitors, tantalum capacitors, electrolytic
capacitors, etc. generally have different ESR, please check the
ESR of the capacitor to be used and use it within the stability
area range shown in the right graph for evaluation of the actual
application.
100
Unstable region
10
ESR[Ω]
●Equivalent Series Resistance (ESR) of a Ceramic Capacitor
Stable region
Cin=Cout=0.47μF Ta=-40 to 105℃
1
Stable region
0.1
0.01
0
50
100
IOUT[mA]
150
200
Figure 71. Stability area characteristics
(Example)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
23/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Power Dissipation (Pd)
As for power dissipation, an estimate of heat reduction characteristics and internal power consumption of IC are shown, so
please use these for reference. Since power dissipation changes substantially depending on the implementation conditions
(board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is recommended to measure Pd
on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original IC performance, such as
causing the operation of the thermal shutdown circuit or reduction in current capability. Therefore, be sure to prepare
sufficient margin within power dissipation for usage.
Calculation of the maximum internal power consumption of IC (PMAX)
Where : VIN=Input voltage
VOUT= Output voltage IOMAX: Maximum output current)
PMAX=(VIN-VOUT)×IOMAX
○Measurement conditions
Standard ROHM Board
Layout of Board for Measurement
Top Layer (Top View)
IC Implementation Position
Bottom Layer (Top View)
Measurement State
With board implemented (Wind speed 0 m/s)
Board Material
Glass epoxy resin (Double-side board)
Board Size
Wiring Rate
70 mm x 70 mm x 1.6 mm
Top layer
Metal (GND) wiring rate: Approx. 0%
Bottom layer
Metal (GND) wiring rate: Approx. 50%
Through Hole
Diameter 0.5mm x 6 holes
Power Dissipation
0.54W
θja=185.2℃/W
Thermal Resistance
0.6
0.54W
0.5
Standard ROHM
board
Pd (W)
0.4
0.3
* Please design the margin so that
PMAX is less than Pd (PMAX<Pd) within
the usage temperature range
0.2
0.1
0
0
25
50
75
100 105
125
Ta (℃)
Figure 72. SSOP5 Power dissipation heat reduction characteristics (Reference)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
24/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●I/O Equivalence Circuits
5pin (VOUT)
2pin (GND)
3pin (STBY)
1pin (VIN)
VIN
VOUT
Figure 73. Input / Output equivalent circuit
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
25/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Operational Notes
1) Absolute maximum ratings
This product is produced with strict quality control, however it may be destroyed if operated beyond its absolute
maximum ratings. In addition, it is impossible to predict all destructive situations such as short-circuit modes, open
circuit modes, etc. T h e r e f o r e , i t i s i m p o r t a n t t o c o n s i d e r c i r c u i t p r o t e c t i o n m e a s u r e s , l i k e a d d i n g a
f u s e , i n c a s e t h e I C i s o p e r a t e d i n a s p e ci a l m o d e e x c e e d i n g t h e a b s o l u t e m a x i m u m r a t i n g s .
2) GND Potential
GND potential must be the lowest potential of all pins of the IC at all operating conditions. Ensure that no pins are at a
voltage below the ground pin at any time, even during transient condition.
3) Setting of Heat
Carry out the heat design that have adequate margin considering Pd of actual working states.
4) Pin Short and Mistake Fitting
When mounting the IC on the PCB, pay attention to the orientation of the IC. If there is mistake in the placement, the IC
may be burned up.
5) Actions in Strong Magnetic Field
Using the IC within a strong magnetic field may cause the IC to malfunction.
6) Mutual Impedance
Use short and wide wiring tracks for the power supply and ground to keep the mutual impedance as small as possible.
Use a capacitor to keep ripple to a minimum.
7) STBY Pin Voltage
To enable standby mode for all channels, set the STBY pin to 0.5 V or less, and for normal operation, to 1.1 V or more.
Setting STBY to a voltage between 0.5 and 1.1 V may cause malfunction and should be avoided. Keep transition time
between high and low (or vice versa) to a minimum.
Additionally, if STBY is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit,
causing a temporary voltage to remain on the output pin. If the IC is switched on again while this voltage is present,
overshoot may occur on the output. Therefore, in applications where these pins are shorted, the output should always
be completely discharged before turning the IC on.
8) Over Current Protection Circuit
Over current and short circuit protection is built-in at the output, and IC destruction is prevented at the time of load short
circuit. These protection circuits are effective in the destructive prevention by sudden accidents, please avoid
applications to where the over current protection circuit operates continuously.
9) Thermal Shutdown
This IC has Thermal Shutdown Circuit (TSD Circuit). When the temperature of IC Chip is higher than 175℃, the output
is turned off by TSD Circuit. TSD Circuit is only designed for protecting IC from thermal over load. Therefore it is not
recommended that you design application where TSD will work in normal condition.
10) Actions under Strong light
A strong light like a halogen lamp may be caused malfunction. In our testing, fluorescence light and white LED causes
little effects for the IC, but infrared light causes strong effects on the IC. The IC should be shielded from light like
sunrays or halogen lamps.
11) Output capacitor
To prevent oscillation at output, it is recommended that the IC be operated at the stable region shown in Figure 71. It
operates at the capacitance of more than 0.47μF. As capacitance is larger, stability becomes more stable and
characteristic of output load fluctuation is also improved.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
26/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Ordering Information
B
U
ROHM
Part No.
x
x
S
D
2
M
G
-
Series name
Package
SD2M:High-speed
G: SSOP5
load response
Output voltage
xx=12:1.2V
xx=15:1.5V
xx=18:1.8V
xx=25:2.5V
xx=28:2.8V
xx=30:3.0V
xx=33:3.3V
M
T
Grade
M;Automotive
Accessories
R
Packaging and forming specifications
TR:Embossed tape and reel
(SSOP5)
Low noise
Shutdown SW
●Physical Dimension Tape and Reel Information
SSOP5
5
4
1
2
0.2Min.
+0.2
1.6 −0.1
2.8±0.2
<Tape and Reel information>
+6°
4° −4°
2.9±0.2
3
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
1pin
+0.05
0.13 −0.03
1.25Max.
)
0.05±0.05
1.1±0.05
S
+0.05
0.42 −0.04
0.95
0.1
S
Direction of feed
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
●Marking Diagram
SSOP5(TOP VIEW)
Part Number Marking
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
Marking
M3
NV
M4
M5
NW
NX
NY
x
Output Voltage
1.2V typ.
1.5V typ.
1.8V typ.
2.5V typ.
2.8V typ.
3.0V typ.
3.3V typ.
x
xx
12
15
18
25
28
30
33
LOT Number
27/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
BUxxSD2-M series
●Revision History
Date
Revision
Changes
21.Dec.2012
001
New Release
19.Mar.2013
002
1)
2)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4 devices (1.5V,2.8V,3.0V,3.3V) are added to the Output Voltage Lineup.
Some graphs are added to the Reference data.
28/28
TSZ02201-0RBR0A300020-1-2
2013.03.19 Rev.002
Datasheet
Notice
General Precaution
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales
representative.
Precaution on using ROHM Products
1.
If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any
ROHM’s Products for Specific Applications.
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our
Products under any special or extraordinary environments or conditions (as exemplified below), your independent
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Notice - Rev.004
© 2013 ROHM Co., Ltd. All rights reserved.
Datasheet
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Notice - Rev.004
© 2013 ROHM Co., Ltd. All rights reserved.
Datasheet
Other Precaution
1.
The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or
concerning such information.
2.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
3.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
4.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
5.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice - Rev.004
© 2013 ROHM Co., Ltd. All rights reserved.
Similar pages