Kersemi IRFU2307ZPBF Automotive mosfet Datasheet

PD - 95953
IRFR2307ZPbF
IRFU2307ZPbF
AUTOMOTIVE MOSFET
Features
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
Description
HEXFET® Power MOSFET
D
RDS(on) = 16mΩ
G
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient and
reliable device for use in Automotive applications
and a wide variety of other applications.
ID = 42A
S
D-Pak
IRFR2307Z
Absolute Maximum Ratings
Parameter
ID @ T C = 25°C
VDSS = 75V
Max.
Continuous Drain Current, V GS @ 10V (Silicon Limited)
IDM
38
Continuous Drain Current, V GS @ 10V (Package Limited)
Pulsed Drain Current
c
Linear Derating Factor
Gate-to-Source Voltage
d
E AS (Thermally limited) Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
E AS (Tested )
c
IAR
Avalanche Current
E AR
TJ
Repetitive Avalanche Energy
T STG
Storage Temperature Range
210
h
Parameter
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
www.kersemi.com
j
100
mJ
A
°C
Mounting Torque, 6-32 or M3 screw
R θJA
W/°C
V
-55 to + 175
300 (1.6mm from case )
y
ij
y
10 lbf in (1.1N m)
Thermal Resistance
R θJA
0.70
± 20
mJ
Soldering Temperature, for 10 seconds
j
W
140
Operating Junction and
Junction-to-Case
110
See Fig.12a, 12b, 15, 16
g
R θJC
A
42
P D @T C = 25°C Power Dissipation
V GS
Units
53
ID @ T C = 100°C Continuous Drain Current, V GS @ 10V
ID @ T C = 25°C
I-Pak
IRFU2307Z
Typ.
Max.
–––
1.42
–––
40
–––
110
Units
°C/W
1
12/20/04
IRFR/U2307ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
75
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.072
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
12.8
16
mΩ
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 100µA
gfs
Forward Transconductance
30
–––
–––
S
VDS = 25V, ID = 32A
IDSS
Drain-to-Source Leakage Current
–––
–––
25
µA
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
50
75
Qgs
Gate-to-Source Charge
–––
14
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
19
–––
td(on)
Turn-On Delay Time
–––
16
–––
VDD = 38V
tr
Rise Time
–––
65
–––
ID = 32A
td(off)
Turn-Off Delay Time
–––
44
–––
tf
Fall Time
–––
29
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
IGSS
V
Conditions
V(BR)DSS
VGS = 0V, ID = 250µA
VGS = 10V, ID = 32A
e
VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
ID = 32A
nC
VDS = 60V
VGS = 10V
ns
nH
RG = 10 Ω
e
e
D
6mm (0.25in.)
G
from package
S
and center of die contact
Ciss
Input Capacitance
–––
2190
–––
VGS = 0V
Coss
Output Capacitance
–––
280
–––
Crss
Reverse Transfer Capacitance
–––
150
–––
Coss
Output Capacitance
–––
1070
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
190
–––
VGS = 0V, VDS = 60V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
400
–––
VGS = 0V, VDS = 0V to 60V
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
42
ISM
(Body Diode)
Pulsed Source Current
–––
–––
210
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 32A, VGS = 0V
trr
Reverse Recovery Time
–––
31
47
ns
TJ = 25°C, IF = 32A, VDD = 38V
Qrr
Reverse Recovery Charge
–––
31
47
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
showing the
integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.kersemi.com
IRFR/U2307ZPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10
1
4.5V
100
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10
4.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
0.1
100
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
80
Gfs , Forward Transconductance (S)
ID, Drain-to-Source Current(Α)
Tj = 175°C
1
100
TJ = 175°C
10
TJ = 25°C
1
VDS = 20V
TJ = 25°C
60
TJ = 175°C
40
20
VDS = 10V
380µs PULSE WIDTH
≤60µs PULSE WIDTH
0.1
0
2
4
6
8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.kersemi.com
10
0
10
20
30
40
50
60
70
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRFR/U2307ZPbF
4000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
3000
C, Capacitance(pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Ciss
2000
1000
Coss
Crss
VDS = 60V
VDS= 38V
VDS= 15V
16
12
8
4
0
0
1
ID= 32A
10
0
100
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.00
100.00
TJ = 175°C
10.00
1.00
TJ = 25°C
VGS = 0V
0.4
0.6
0.8
1.0
1.2
1.4
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
60
80
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
0.2
40
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
0.10
20
1.6
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100µsec
10
1msec
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
DC
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
wwwkersemi.com
IRFR/U2307ZPbF
60
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
LIMITED BY PACKAGE
ID , Drain Current (A)
50
40
30
20
10
0
25
50
75
100
125
150
ID = 32A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τC
τ
τ2
Ri (°C/W) τi (sec)
0.7938 0.000499
0.6257
0.005682
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
IRFR/U2307ZPbF
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
500
15V
ID
3.4A
4.6A
BOTTOM 32A
TOP
400
300
200
100
0
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
5.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 100µA
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-75
-50
-25
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.kersemi.com
IRFR/U2307ZPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 32A
100
80
60
40
20
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.kersemi.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U2307ZPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
VDS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.kersemi.com
IRFR/U2307ZPbF
D-Pak (TO-252AA) Package Outline
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120
WITH AS S EMBLY
LOT CODE 1234
AS S EMBLED ON WW 16, 1999
IN THE AS S EMBLY LINE "A"
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in as s embly line pos ition
indicates "Lead-Free"
IRFU120
12
916A
34
AS S EMBLY
LOT CODE
DATE CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
12
AS S EMBLY
LOT CODE
www.kersemi.com
34
DATE CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 9 = 1999
WEEK 16
A = AS S EMBLY SIT E CODE
9
IRFR/U2307ZPbF
I-Pak (TO-251AA) Package Outline
I-Pak (TO-251AA) Part Marking Information
E XAMPL E : T H IS IS AN IRF U 120
WIT H AS S E MB L Y
L OT CODE 5678
AS S E MB L E D ON WW 19, 1999
IN T H E AS S E MB L Y L INE "A"
INT E R NAT IONAL
R E CT IF IE R
L OGO
PAR T NU MB E R
IR F U 120
919A
56
78
AS S E MB L Y
L OT CODE
Note: "P" in as s embly line
pos ition indicates "L ead-F ree"
DAT E CODE
YE AR 9 = 1999
WE E K 19
L INE A
OR
INT E R NAT IONAL
R E CT IF IE R
L OGO
PAR T NU MB E R
IRF U120
56
AS S E MB L Y
L OT CODE
10
78
DAT E CODE
P = DE S IGNAT E S L E AD-F R E E
PR ODU CT (OPT IONAL )
YE AR 9 = 1999
WE E K 19
A = AS S E MB L Y S IT E CODE
www.kersemi.com
IRFR/U2307ZPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
„ Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.197mH
RG = 25Ω, IAS = 32A, VGS =10V. Part not
recommended for use above this value.
†
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
‡
www.kersemi.com
11
Similar pages