HA1630D01/02/03 Series Ultra-Small Low Voltage Operation CMOS Dual Operational Amplifier REJ03D0800-0200 Rev.2.00 Feb 07, 2007 Description The HA1630D01/02/03 are dual CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-8 and MMPAK-8 package that occupy more small area against the SOP-8. Features • Low power and single supply operation • Low input offset voltage • Low supply current (per channel) • Maximum output voltage • Low input bias current VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 15 μA Typ (HA1630D01) IDD = 50 μA Typ (HA1630D02) IDD = 100 μ/A Typ (HA1630D03) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ Ordering Information Type No. HA1630D01T HA1630D02T HA1630D03T HA1630D01MM HA1630D02MM HA1630D03MM Rev.2.00 Feb 07, 2007 page 1 of 25 Package Name Package Code TTP-8DA PTSP0008JC-B MMPAK-8 PLSP0008JC-A HA1630D01/02/03 Series Pin Arrangement VOUT1 1 VIN1(–) 2 VIN1(+) 3 VSS 4 8 VDD 7 VOUT2 − + + − 6 VIN2(–) 5 VIN2(+) Equivalent Circuit (per one channel) VDD VIN(–) VIN(+) VSS Rev.2.00 Feb 07, 2007 page 2 of 25 VOUT HA1630D01/02/03 Series Absolute Maximum Ratings (Ta = 25°C) Items Symbol Ratings Unit Note Supply voltage VDD 7 V Differential input voltage VIN(diff) –VDD to +VDD V Input voltage VIN –0.3 to +VDD V *1 Power dissipation PT 240/145 mW TTP-8DA/MMPAK-8 *2 Operating temp. Range Topr –40 to +85 °C Storage temp. Range Tstg –55 to +125 °C Notes: 1. Do not apply Input Voltage exceeding VDD or 7 V. 2. The value of PTSP0008JC-B (TTP-8DAV) / PLSP0008JC-A (MMPAK-8). It computes from heat resistance θja = 520°C/W, and 690°C/W each other. Electrical Characteristics (VDD = 3.0 V, Ta = 25°C) Items Input offset voltage Input offset current Input bias current Symbol VIO IIO IIB Min — — — Typ — (1.0) (1.0) Max 4.0 — — Unit mV pA pA Output high voltage Output source current VOH IO SOURCE VOL IO SINK Common mode input voltage range Slew rate VCM — 12 50 100 — (0.8) (1.0) (1.2) — — — — — 0.1 — — — — V μA Output low voltage Output sink current 2.9 6 25 50 — — — — –0.1 to 2.1 Voltage gain Gain bandwidth product AV BW Power supply rejection ratio Common mode rejection ratio Supply current PSRR CMRR IDD — — — 60 — — — 60 60 — — — (0.125) (0.50) (1.00) 80 (200) (680) (1200) 80 80 30 100 200 — — — — — — — — — 60 200 400 Note: SR 1. ( ) : Design specification Rev.2.00 Feb 07, 2007 page 3 of 25 V mA Test Condition Vin = 1.5 V Vin = 1.5 V Vin = 1.5 V RL = 1 MΩ VOH = 2.5 V (HA1630D01) VOH = 2.5 V (HA1630D02) VOH = 2.5 V (HA1630D03) RL = 1 MΩ VOL = 0.5 V (HA1630D01) VOL = 0.5 V (HA1630D02) VOL = 0.5 V (HA1630D03) V V/μs dB kHz dB dB μA CL = 20 pF (HA1630D01) CL = 20 pF (HA1630D02) CL = 20 pF (HA1630D03) CL = 20 pF (HA1630D01) CL = 20 pF (HA1630D02) CL = 20 pF (HA1630D03) RL = ∞ (HA1630D01) RL = ∞ (HA1630D02) RL = ∞ (HA1630D03) HA1630D01/02/03 Series Table of Graphs Electrical Characteristics Supply current IDD vs Supply voltage vs Ambient temperature Output high voltage VOH vs Output source current vs Supply voltage Output source current IO SOURCE vs Ambient temperature Output low voltage VOL vs Output sink current Output sink current IO SINK vs Ambient temperature Input offset voltage VIO Distribution vs Supply voltage vs Ambient temperature vs Ambient temperature VCM Common mode input voltage range HA1630D01 Figure HA1630D02 Figure HA1630D03 Figure 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 Test Circuit 2 4 6 5 6 1 7 Power supply rejection ratio PSRR vs Frequency 1-12 2-12 3-12 1 Common mode rejection ratio CMRR vs Frequency 1-13 2-13 3-13 7 Voltage gain & phase angle Input bias current AV vs Frequency 1-14 2-14 3-14 10 IIB SRr SRf 1-15 1-16 1-17 1-18 2-15 2-16 2-17 2-18 3-15 3-16 3-17 3-18 3 Slew Rate (rising) Slew Rate (falling) Slew rate vs Ambient temperature vs Input voltage vs Ambient temperature vs Ambient temperature Large signal transient response 1-19 2-19 3-19 Small signal transient response vs. Output voltage p-p 1-20 2-20 3-20 — 2-21 3-21 vs. Output voltage p-p vs Frequency — 1-21 2-22 2-23 3-22 3-23 vs Frequency vs Frequency 1-22 1-23 2-24 2-25 3-24 3-25 Total harmonic distortion + noise (0 dB) (40 dB) Maximum p-p output voltage Voltage noise density Channel separation Rev.2.00 Feb 07, 2007 page 4 of 25 9 8 HA1630D01/02/03 Series Main Characteristics (HA1630D01) Figure 1-1. HA1630D01 Supply Current vs. Supply Voltage Figure 1-2. HA1630D01 Supply Current vs. Ambient Temperature 50 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 50 40 30 20 10 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 40 30 20 10 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 VDD = 3.0 V 3 VDD = 1.8 V 2 1 0 6 Ta = 25°C 5 RL = 1 MΩ RL = 510 kΩ 4 3 2 1 0 5 10 15 20 Output Source Current IOSOURCE (μA) Figure 1-5. HA1630D01 Output Source Current vs. Ambient Temperature 50 Output Source Current IOSOURCE (μA) 100 Figure 1-4. HA1630D01 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 1-3. HA1630D01 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 40 30 20 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 10 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 5 of 25 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D01/02/03 Series Figure 1-7. HA1630D01 Output Sink Current vs. Ambient Temperature 2.0 2.0 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 1-6. HA1630D01 Output Low Voltage vs. Output Sink Current VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 1.5 1.0 0.5 0 0 0.5 Output Sink Current IOSINK (mA) VDD = 5.0 V 1.5 VDD = 3.0 V VDD = 1.8 V 1.0 0.5 0 −40 1.0 Percentage (%) 50 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C 3 VIN = 0.5 V 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 6 3.0 4 2 3 4 5 Supply Voltage VDD (V) Figure 1-11. HA1630D01 Common Mode Input Voltage vs. Ambient Temperature Figure 1-10. HA1630D01 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 1-9. HA1630D01 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 1-8. HA1630D01 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 6 of 25 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 1-12. HA1630D01 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 1-13. HA1630D01 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 1-14. HA1630D01 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 90 40 Phase Angle 45 20 0 Phase Margin: 50 deg −45 −20 −40 10 0 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 7 of 25 100k −90 1M Phase Angle (deg) 225 100 HA1630D01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 −40 Figure 1-16. HA1630D01 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 1-15. HA1630D01 Input Bias Current vs. Ambient Temperature −20 0 20 40 60 80 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 1-17. HA1630D01 Slew Rate (rising) vs. Ambient Temperature 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 VDD = 5.0 V Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 0.5 0.20 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.10 0.05 0 −40 0 Figure 1-18. HA1630D01 Slew Rate (falling) vs. Ambient Temperature 0.20 0.15 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 3.0 V 0.15 0.10 0.05 0 −40 VDD = 1.8 V −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 1-19. HA1630D01 Large Signal Transient Response Figure 1-20. HA1630D01 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.2.00 Feb 07, 2007 page 8 of 25 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630D01/02/03 Series Output Voltage Vout p-p (V) Figure 1-21. HA1630D01 Voltage Output p-p vs. Frequency 3.5 3.0 2.5 2.0 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k 1M Figure 1-22. HA1630D01 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 Frequency f (Hz) 10k Channel Separation C.S. (dB) Figure 1-23. HA1630D01 Channel Separation vs. Frequency 140 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 120 100 80 60 CH1→CH2 40 CH2→CH1 20 0 10 100 Rev.2.00 Feb 07, 2007 page 9 of 25 1k 10k Frequency f (Hz) 100k 1M HA1630D01/02/03 Series Main Characteristics (HA1630D02) Figure 2-1. HA1630D02 Supply Current vs. Supply Voltage 200 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 200 Figure 2-2. HA1630D02 Supply Current vs. Ambient Temperature 160 120 80 40 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 160 120 80 40 0 −40 6 6 Ta = 25°C VDD = 5.0 V 5 4 VDD = 3.0 V 3 VDD = 1.8 V 2 1 0 6 Ta = 25°C RL = 1 MΩ 5 RL = 120 kΩ 4 3 2 1 0 10 20 30 40 50 60 Output Source Current IOSOURCE (μA) Figure 2-5. HA1630D02 Output Source Current vs. Ambient Temperature 100 Output Source Current IOSOURCE (μA) 100 Figure 2-4. HA1630D02 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 2-3. HA1630D02 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 80 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 60 40 20 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 10 of 25 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D01/02/03 Series Figure 2-7. HA1630D02 Output Sink Current vs. Ambient Temperature 2.0 2.5 VDD = 5.0 V 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 2-6. HA1630D02 Output Low Voltage vs. Output Sink Current VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 1.0 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) VDD = 3.0 V 2.0 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.5 Figure 2-8. HA1630D02 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 VDD = 1.8 V, VIN = 0.9 V Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 3.0 V, VIN = 1.5 V 2 1 0 −1 VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 2-11. HA1630D02 Common Mode Input Voltage vs. Ambient Temperature Figure 2-10. HA1630D02 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 2-9. HA1630D02 Input Offset Voltage vs. Supply Voltage 50 40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 11 of 25 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 2-12. HA1630D02 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 2-13. HA1630D02 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 2-14. HA1630D02 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 90 40 20 Phase Angle 45 0 0 Phase Margin: 50 deg −45 −20 −40 10 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 12 of 25 100k 1M −90 10M Phase Angle (deg) 225 100 HA1630D01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 2-16. HA1630D02 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 2-15. HA1630D02 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 2-17. HA1630D02 Slew Rate (rising) vs. Ambient Temperature VDD = 5.0 V Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 0.8 0.7 VDD = 3.0 V VDD = 1.8 V 0.5 0.4 0.3 −40 0 Figure 2-18. HA1630D02 Slew Rate (falling) vs. Ambient Temperature 0.8 0.6 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 5.0 V 0.7 0.6 VDD = 3.0 V VDD = 1.8 V 0.5 0.4 0.3 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 2-19. HA1630D02 Large Signal Transient Response Figure 2-20. HA1630D02 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.2.00 Feb 07, 2007 page 13 of 25 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630D01/02/03 Series Figure 2-21. HA1630D02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 2-22. HA1630D02 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz 0.1 0.01 f = 100 Hz f = 1 kHz 0.001 1 f = 10 kHz f = 1 kHz 0.1 f = 100 Hz 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 2-23. HA1630D02 Voltage Output p-p vs. Frequency 3.5 3.0 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V 2.5 2.0 Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k Figure 2-24. HA1630D02 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 14 of 25 1M 3.0 HA1630D01/02/03 Series Figure 2-25. HA1630D02 Channel Separation vs. Frequency Channel Separation (dB) 140 Ta = 25°C VDD = 3.0 V 120 100 CH2→CH1 80 60 CH1→CH2 40 20 0 100 Rev.2.00 Feb 07, 2007 page 15 of 25 1k 10k Frequency f (Hz) 100k 1M HA1630D01/02/03 Series Main Characteristics (HA1630D03) Figure 3-1. HA1630D03 Supply Current vs. Supply Voltage Figure 3-2. HA1630D03 Supply Current vs. Ambient Temperature 400 Ta = 25°C Supply Current IDD (μA) Supply Current IDD (μA) 400 300 200 100 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V 300 VDD = 3.0 V VDD = 1.8 V 200 100 0 −40 6 6 Ta = 25°C VDD = 5.5 V 5 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C 5 RL = 1 MΩ RL = 51 kΩ 4 3 2 1 0 50 100 150 Output Source Current IOSOURCE (μA) Figure 3-5. HA1630D03 Output Source Current vs. Ambient Temperature 200 Output Source Current IOSOURCE (μA) 100 Figure 3-4. HA1630D03 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 3-3. HA1630D03 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 150 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 100 50 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 16 of 25 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630D01/02/03 Series Figure 3-7. HA1630D03 Output Sink Current vs. Ambient Temperature 2.0 2.5 VDD = 5.0 V Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 3-6. HA1630D03 Output Low Voltage vs. Output Sink Current VDD = 5.0 V 1.5 VDD = 3.0 V VDD = 1.8 V 1.0 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) VDD = 3.0 V 2.0 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.5 Figure 3-8. HA1630D03 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V 2 1 0 −1 VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 3-11. HA1630D03 Common Mode Input Voltage vs. Ambient Temperature Figure 3-10. HA1630D03 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 3-9. HA1630D03 Input Offset Voltage vs. Supply Voltage 50 40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.2.00 Feb 07, 2007 page 17 of 25 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630D01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 3-12. HA1630D03 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 3-13. HA1630D03 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 3-14. HA1630D03 Open Loop Voltage Gain and Phase Angle vs. Frequency Open Loop Voltage Gain AVOL (dB) 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 90 40 Phase Angle 20 45 0 0 Phase Margin: 50 deg −45 −20 −40 10 100 1k 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 18 of 25 100k 1M −90 10M Phase Angle (deg) 225 100 HA1630D01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 3-16. HA1630D03 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 3-15. HA1630D03 Input Bias Current vs. Ambient Temperature 20 40 60 80 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 3-17. HA1630D03 Slew Rate (rising) vs. Ambient Temperature 1.2 VDD = 3.0 V VDD = 1.8 V 0.6 0.3 −20 0 20 40 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 60 80 100 1.2 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.9 0.6 0.3 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 3-19. HA1630D03 Large Signal Transient Response Figure 3-20. HA1630D03 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.2.00 Feb 07, 2007 page 19 of 25 3.0 1.5 VDD = 5.0 V 0.9 0 −40 0 Figure 3-18. HA1630D03 Slew Rate (falling) vs. Ambient Temperature Slew Rate SRf (V/μs) Slew Rate SRr (V/μs) 1.5 Ta = 25°C VDD = 3.0 V 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630D01/02/03 Series Figure 3-21. HA1630D03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 3-22. HA1630D03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 0.1 f = 10 kHz 0.01 f = 100 Hz f = 1 kHz 0.001 1 f = 10 kHz f = 1 kHz 0.1 f = 100 Hz 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 3-23. HA1630D03 Voltage Output p-p vs. Frequency 3.5 3.0 2.5 2.0 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k 1M Figure 3-24. HA1630D03 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.2.00 Feb 07, 2007 page 20 of 25 3.0 HA1630D01/02/03 Series Figure 3-25. HA1630D03 Channel Separation vs. Frequency Channel Separation (dB) 140 Ta = 25°C VDD = 3.0 V 120 100 80 CH2→CH1 60 CH1→CH2 40 20 0 10 100 Rev.2.00 Feb 07, 2007 page 21 of 25 1k 10k Frequency f (Hz) 100k 1M HA1630D01/02/03 Series Test Circuits 1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VIO VDD VIO = VO − RF RS 2 × RS R S + RF PSRR − + VO RS VDD VDD PSRR = −20log 2 VO1 − VO2 VDD1 − VDD2 × RS RS + RF Measure VO corresponding to VDD1 = 1.8 V and VDD2 = 5.5 V 2. Supply Current, IDD 3. Input Bias Current, IIB VDD VDD A − + − + VDD VDD 2 2 4. Output High Voltage, VOH VOH VDD RL = 1 MΩ VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 VIN2 VO RL 5. Output Low Voltage, VOL VOL VDD RL = 1 MΩ VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V − + VIN1 VIN2 Rev.2.00 Feb 07, 2007 page 22 of 25 RL VO A HA1630D01/02/03 Series 6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD IOSOURCE VO = VDD − 0.5 V VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 A IOSINK VIN2 VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V VO 7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD CMRR RF RS RS VO1 − VO2 CMRR = −20log − + VIN1 − VIN2 VO RF × RS R S + RF Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V VDD VIN 2 8. Total Harmonic Distortion, THD VDD RF Gain Variable RS THD VDD Gain Variable 1 + RF / RS = 100 freq = 100 Hz, 1 kHz, 10 kHz Gain = +1 − + − + VO VIN VO VIN VSS VSS 9. Slew Rate, SR 10. Gain, AV & Phase, GBW VDD VDD RF RS − + − + VO 1 MΩ 20 pF VSS Rev.2.00 Feb 07, 2007 page 23 of 25 VO 1 MΩ RS VSS 20 pF HA1630D01/02/03 Series Package Dimensions JEITA Package Code P-TSSOP8-4.4x3-0.65 RENESAS Code PTSP0008JC-B *1 Previous Code TTP-8DAV MASS[Typ.] 0.034g D F 8 5 NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. c HE *2 E bp Terminal cross section ( Ni/Pd/Au plating ) Reference Dimension in Millimeters Symbol Index mark L1 1 4 e *3 bp x M θ A1 A Z L Detail F y Package Name MMPAK-8 JEITA Package Code P-LSOP8-2.8 x 2.95 - 0.65 RENESAS Code PLSP0008JC-A Previous Code ⎯ 0.13 +0.12 -0.03 0.6 0 to 0.1 0.65 0.1 M 0.3 1.1 ± 0.1 1.95 0.1 Rev.2.00 Feb 07, 2007 page 24 of 25 0.2 +0.1 -0.05 Min Nom Max 3.00 3.30 4.40 0.03 0.07 0.10 1.10 0.15 0.20 0.25 0.10 0.15 0.20 0° 8° 6.20 6.40 6.60 0.65 0.13 0.10 0.805 0.40 0.50 0.60 1.00 Unit: mm 2.8 ± 0.1 4.0 ± 0.3 2.95 ± 0.2 MASS[Typ.] 0.02 g D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 HA1630D01/02/03 Series Taping & Reel Specification [Taping] W 12 12 P 8 4.0 Ao 6.9 3.15 Bo 3.6 4.35 Ko 1.7 — E 1.75 — F 5.5 5.5 4.0 φ 1.5 2.0 D1 1.5 1.05 Maximum Storage No. 3,000 pcs/reel 3,000 pcs/reel Unit: mm 1.75 Package Code TSSOP-8 MMPAK-8 Cover Tape W B0 F A0 K0 D1 P Tape withdraw direction Tape width 12 12 W1 17.4 17.0 W2 13.4 13.0 A 330 178 φA [Reel] Package TSSOP-8 MMPAK-8 φ13.0 ± 0.5 W1 [Ordering Information] Ordering Unit 3,000 pcs 2.0 2.0 W2 Mark Indication TSSOP-8 MMPAK-8 Product Name 0D01: HA1630D01 0D02: HA1630D02 0D03: HA1630D03 0 D 0 1 D 0 1 Product Name D01: HA1630D01 D02: HA1630D02 D03: HA1630D03 Trace Code Trace Code Rev.2.00 Feb 07, 2007 page 25 of 25 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com ) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2007. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .7.0