Intersil HGTG11N120CN 43a, 1200v, npt series n-channel igbt Datasheet

HGTG11N120CN, HGTP11N120CN,
HGT1S11N120CNS
Data Sheet
January 2000
43A, 1200V, NPT Series N-Channel IGBT
Features
The HGTG11N120CN, HGTP11N120CN, and
HGT1S11N120CNS are Non-Punch Through (NPT) IGBT
designs. They are new members of the MOS gated high
voltage switching IGBT family. IGBTs combine the best
features of MOSFETs and bipolar transistors. This device
has the high input impedance of a MOSFET and the low onstate conduction loss of a bipolar transistor.
• 43A, 1200V, TC = 25oC
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential, such as: AC and DC motor
controls, power supplies and drivers for solenoids, relays
and contactors.
• Avalanche Rated
Formerly Developmental Type TA49291.
Ordering Information
PART NUMBER
4577.2
• 1200V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . . . . . . 340ns at TJ = 150oC
• Short Circuit Rating
• Low Conduction Loss
• Thermal Impedance SPICE Model
Temperature Compensating SABER™ Model
www.intersil.com
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Packaging
PACKAGE
HGTG11N120CN
File Number
TO-247
BRAND
JEDEC STYLE TO-247
E
G11N120CN
HGTP11N120CN
TO-220AB
11N120CN
HGT1S11N120CNS
TO-263AB
11N120CN
C
COLLECTOR
(BOTTOM SIDE
METAL)
G
NOTE: When ordering, use the entire part number. Add the suffix 9A
to obtain the TO-263AB variant in Tape and Reel, i.e.,
HGT1S11N120CNS9A.
Symbol
JEDEC TO-220AB (ALTERNATE VERSION)
C
E
C
G
G
COLLECTOR
(FLANGE)
E
JEDEC TO-263AB
COLLECTOR
(FLANGE)
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,598,461
4,682,195
4,803,533
4,888,627
4,417,385
4,605,948
4,684,413
4,809,045
4,890,143
4,430,792
4,620,211
4,694,313
4,809,047
4,901,127
1
4,443,931
4,631,564
4,717,679
4,810,665
4,904,609
4,466,176
4,639,754
4,743,952
4,823,176
4,933,740
4,516,143
4,639,762
4,783,690
4,837,606
4,963,951
4,532,534
4,641,162
4,794,432
4,860,080
4,969,027
4,587,713
4,644,637
4,801,986
4,883,767
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000
SABER™ is a trademark of Analogy, Inc.
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BVCES
Collector Current Continuous
At TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC25
At TC = 110oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC110
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICM
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGES
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGEM
Switching Safe Operating Area at TJ = 150oC (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA
Power Dissipation Total at TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Power Dissipation Derating TC > 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forward Voltage Avalanche Energy (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAV
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Lead Temperature for Soldering
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, see Tech brief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
Short Circuit Withstand Time (Note 3) at VGE = 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tSC
Short Circuit Withstand Time (Note 3) at VGE = 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tSC
HGTG11N120CN
HGTP11N120CN
HGT1S11N120CNS
UNITS
1200
V
43
22
80
±20
±30
55A at 1200V
298
2.38
80
-55 to 150
A
A
A
V
V
W
W/oC
mJ
oC
300
oC
260
8
15
oC
µs
µs
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Pulse width limited by maximum junction temperature.
2. ICE = 20A, L = 400µH, TJ = 25oC.
3. VCE(PK) = 840V, TJ = 125oC, RG = 10Ω.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Collector to Emitter Breakdown Voltage
BVCES
IC = 250µA, VGE = 0V
1200
-
-
V
Emitter to Collector Breakdown Voltage
BVECS
IC = 10mA, VGE = 0V
15
-
-
V
-
-
250
µA
-
250
-
µA
-
-
3
mA
-
2.1
2.4
V
-
2.8
3.5
V
6.0
6.8
-
V
-
-
±250
nA
55
-
-
A
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
Gate to Emitter Threshold Voltage
ICES
VCE(SAT)
VGE(TH)
VCE = BVCES
IC = 11A,
VGE = 15V
TC = 25oC
TC = 125oC
TC = 150oC
TC = 25oC
TC = 150oC
IC = 90µA, VCE = VGE
IGES
VGE = ±20V
Switching SOA
SSOA
TJ = 150oC, RG = 10Ω, VGE = 15V,
L = 400µH, VCE(PK) = 1200V
Gate to Emitter Plateau Voltage
VGEP
IC = 11A, VCE = 0.5 BVCES
-
10.4
-
V
IC = 11A,
VCE = 0.5 BVCES
VGE = 15V
-
100
120
nC
VGE = 20V
-
130
150
nC
Gate to Emitter Leakage Current
On-State Gate Charge
QG(ON)
2
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
TC = 25oC, Unless Otherwise Specified (Continued)
Electrical Specifications
PARAMETER
SYMBOL
Current Turn-On Delay Time
td(ON)I
Current Rise Time
trI
Current Turn-Off Delay Time
td(OFF)I
Current Fall Time
tfI
TEST CONDITIONS
IGBT and Diode at TJ = 25oC
ICE = 11A
VCE = 0.8 BVCES
VGE = 15V
RG = 10Ω
L = 2mH
Test Circuit (Figure 18)
MIN
TYP
MAX
UNITS
-
23
26
ns
-
12
16
ns
-
180
240
ns
-
190
230
ns
-
0.4
0.5
mJ
Turn-On Energy (Note 4)
EON1
Turn-On Energy (Note 4)
EON2
-
0.95
1.3
mJ
Turn-Off Energy (Note 5)
EOFF
-
1.3
1.6
mJ
Current Turn-On Delay Time
td(ON)I
-
21
24
ns
-
12
16
ns
-
210
280
ns
-
340
400
ns
-
0.45
0.6
mJ
Current Rise Time
trI
Current Turn-Off Delay Time
td(OFF)I
Current Fall Time
tfI
IGBT and Diode at TJ = 150oC
ICE = 11A
VCE = 0.8 BVCES
VGE = 15V
RG = 10Ω
L = 2mH
Test Circuit (Figure 18)
Turn-On Energy (Note 4)
EON1
Turn-On Energy (Note 4)
EON2
-
1.9
2.5
mJ
Turn-Off Energy (Note 5)
EOFF
-
2.1
2.5
mJ
Thermal Resistance Junction To Case
RθJC
-
-
0.42
oC/W
NOTES:
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. EON1 is the turn-on loss of the IGBT only. EON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The diode type is specified in
Figure 18.
5. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
at the point where the collector current equals zero (ICE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
Unless Otherwise Specified
ICE , DC COLLECTOR CURRENT (A)
45
VGE = 15V
40
35
30
25
20
15
10
5
0
25
50
75
100
125
TC , CASE TEMPERATURE (oC)
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
3
150
ICE, COLLECTOR TO EMITTER CURRENT (A)
Typical Performance Curves
60
50
TJ = 150oC, RG = 10Ω, VGE = 15V, L = 400µH
40
30
20
10
0
0
200
400
600
800
1000
1200
1400
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
TJ = 150oC, RG = 10Ω, L = 2mH, V CE = 960V
TC = 75oC, VGE = 15V, IDEAL DIODE
100
50
fMAX1 = 0.05 / (td(OFF)I + td(ON)I)
fMAX2 = (PD - PC) / (EON2 + EOFF)
10 PC = CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
RØJC = 0.42oC/W, SEE NOTES
5
2
5
TC
75oC
75oC
110oC
110oC
VGE
15V
12V
15V
12V
10
25
200
20
tSC
150
10
100
5
20
12
ICE , COLLECTOR TO EMITTER CURRENT (A)
ICE, COLLECTOR TO EMITTER CURRENT (A)
TC = 25oC
30
TC = 150oC
20
10
DUTY CYCLE < 0.5%, VGE = 12V
250µs PULSE TEST
0
2
4
6
TC = 25oC
40
TC = -55oC
30
TC = 150oC
20
10
DUTY CYCLE < 0.5%, VGE = 15V
250µs PULSE TEST
0
0
8
2
4
6
8
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
3.5
5
RG = 10Ω, L = 2mH, VCE = 960V
4
EOFF, TURN-OFF ENERGY LOSS (mJ)
EON2 , TURN-ON ENERGY LOSS (mJ)
50
16
15
50
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
TJ = 150oC, VGE = 12V, VGE = 15V
3
2
1
TJ = 25oC, VGE = 12V, VGE = 15V
0
14
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
50
0
13
VGE , GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
TC = -55oC
ISC
15
ICE, COLLECTOR TO EMITTER CURRENT (A)
40
250
VCE = 840V, RG = 10Ω, TJ = 125oC
ISC , PEAK SHORT CIRCUIT CURRENT (A)
fMAX, OPERATING FREQUENCY (kHz)
200
Unless Otherwise Specified (Continued)
tSC , SHORT CIRCUIT WITHSTAND TIME (µs)
Typical Performance Curves
RG = 10Ω, L = 2mH, VCE = 960V
3.0
2.5
TJ = 150oC, VGE = 12V OR 15V
2.0
1.5
1.0
TJ = 25oC, VGE = 12V OR 15V
0.5
0
0
5
10
15
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
4
20
0
5
10
15
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
20
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
Typical Performance Curves
Unless Otherwise Specified (Continued)
40
50
RG = 10Ω, L = 2mH, VCE = 960V
TJ = 25oC, TJ = 150oC, VGE = 12V
35
40
trI , RISE TIME (ns)
tdI , TURN-ON DELAY TIME (ns)
RG = 10Ω, L = 2mH, VCE = 960V
30
25
20
TJ = 25oC, TJ = 150oC, VGE = 12V
30
20
10
TJ = 25oC OR TJ = 150oC, VGE = 15V
TJ = 25oC, TJ = 150oC, VGE = 15V
15
0
0
10
5
15
20
0
5
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
20
700
RG = 10Ω, L = 2mH, VCE = 960V
RG = 10Ω, L = 2mH, VCE = 960V
450
600
400
tfI , FALL TIME (ns)
td(OFF)I , TURN-OFF DELAY TIME (ns)
15
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
500
VGE = 12V, VGE = 15V, TJ = 150oC
350
300
250
500
TJ = 150oC, VGE = 12V OR 15V
400
300
200
200
150
TJ = 25oC, VGE = 12V OR 15V
VGE = 12V, VGE = 15V, TJ = 25oC
100
100
0
10
5
15
0
20
ICE , COLLECTOR TO EMITTER CURRENT (A)
20
VGE , GATE TO EMITTER VOLTAGE (V)
DUTY CYCLE < 0.5%, VCE = 20V
250µs PULSE TEST
80
60
TC = 25oC
40
0
TC = 150oC
7
8
9
TC = -55oC
10
11
12
13
VGE, GATE TO EMITTER VOLTAGE (V)
FIGURE 13. TRANSFER CHARACTERISTIC
5
14
15
20
FIGURE 12. FALL vs COLLECTOR TO EMITTER CURRENT
100
20
10
5
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
ICE , COLLECTOR TO EMITTER CURRENT (A)
10
ICE , COLLECTOR TO EMITTER CURRENT (A)
15
IG(REF) = 1mA, RL = 54.5Ω, TC = 25oC
15
VCE = 1200V
VCE = 800V
10
VCE = 400V
5
0
0
20
40
60
80
100
QG , GATE CHARGE (nC)
FIGURE 14. GATE CHARGE WAVEFORMS
120
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
Unless Otherwise Specified (Continued)
4
C, CAPACITANCE (nF)
FREQUENCY = 1MHz
3
CIES
2
1
COES
0
CRES
0
5
10
15
20
25
ICE , COLLECTOR TO EMITTER CURRENT (A)
Typical Performance Curves
15
DUTY CYCLE < 0.5%, TC = 110oC
250µs PULSE TEST
12
VGE = 15V
9
VGE = 10V
6
3
0
0
1
VCE , COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER
VOLTAGE
ZθJC , NORMALIZED THERMAL RESPONSE
2
3
4
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE
100
0.5
0.2
t1
0.1
10-1
PD
0.05
t2
0.02
DUTY FACTOR, D = t1 / t2
PEAK TJ = (PD X ZθJC X RθJC) + TC
0.01
10-2 -5
10
SINGLE PULSE
10-4
10-3
10-2
10-1
100
t1 , RECTANGULAR PULSE DURATION (s)
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE
Test Circuit and Waveforms
HGTG11N120CND
90%
10%
VGE
EON2
EOFF
L = 2mH
VCE
RG = 10Ω
90%
+
-
ICE
VDD = 960V
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT
6
10%
td(OFF)I
tfI
trI
td(ON)I
FIGURE 19. SWITCHING TEST WAVEFORMS
HGTG11N120CN, HGTP11N120CN, HGT1S11N120CNS
Handling Precautions for IGBTs
Operating Frequency Information
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler’s body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
Operating frequency information for a typical device
(Figure 3) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (ICE) plots are possible using
the information shown for a typical unit in Figures 5, 6, 7, 8, 9
and 11. The operating frequency plot (Figure 3) of a typical
device shows fMAX1 or fMAX2; whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD™ LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of VGEM. Exceeding the rated VGE can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate
open-circuited or floating should be avoided. These
conditions can result in turn-on of the device due to
voltage buildup on the input capacitor due to leakage
currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener diode from gate to emitter. If gate
protection is required an external Zener is recommended.
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. td(OFF)I and td(ON)I are defined in Figure 19.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than TJM. td(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2). The
allowable dissipation (PD) is defined by PD = (TJM - TC)/RθJC .
The sum of device switching and conduction losses must
not exceed PD. A 50% duty factor was used (Figure 3) and
the conduction losses (PC) are approximated by
PC = (VCE x ICE)/2.
EON2 and EOFF are defined in the switching waveforms
shown in Figure 19. EON2 is the integral of the
instantaneous power loss (ICE x VCE) during turn-on and
EOFF is the integral of the instantaneous power loss
(ICE x VCE) during turn-off. All tail losses are included in the
calculation for EOFF; i.e., the collector current equals zero
(ICE = 0).
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
7
ECCOSORBD™ is a Trademark of Emerson and Cumming, Inc.
Similar pages