Maxim MAX4075 Micropower, sot23, rail-to-rail, fixed-gain, gainamp/open-loop op amp Datasheet

19-1526; Rev 1; 10/99
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
Applications
Portable Battery-Powered Equipment
Instruments, Terminals, and Bar-Code Readers
Keyless Entry
Photodiode Preamps
Features
♦ Internal Gain-Setting Resistors in SOT23
Packages (MAX4074)
♦ 0.1% Gain Accuracy (RF/RG) (MAX4074/75)
♦ 54 Standard Gains Available (MAX4074/75)
♦ Open-Loop, Unity-Gain-Stable Op Amps
(MAX4076/77/78)
♦ Rail-to-Rail Outputs Drive 1kΩ Load (MAX4074/75)
♦ +2.5V to +5.5V Single Supply
♦ 34µA Supply Current (MAX4074/75)
♦ Up to 4MHz GBW Product
♦ Fault-Protected Inputs Withstand ±17V
(MAX4074/75)
♦ 200pA max Input Bias Current (MAX4076/77/78)
♦ Stable with Capacitive Loads up to 100pF
with No Isolation Resistor
Ordering Information
PART
TEMP. RANGE
PINPACKAGE
TOP
MARK
MAX4074__EUK-T
-40°C to +70°C
5 SOT23-5
**
MAX4074__ESA
-40°C to +70°C
8 SO
—
Ordering Information continued at end of data sheet.
Note: Insert the desired gain code in the blank to complete the
part number (see the Gain Selector Guide).
**See the Gain Selector Guide for a list of preferred gains and
top marks.
Smart-Card Readers
Infrared Receivers for Remote Controls
Low-Side Current-Sense Amplifiers
Pin Configurations/
Functional Diagrams
TOP VIEW
MAX4074
OUT 1
5
VCC
4
IN-
RF
VEE 2
Gain Selector Guide appears at end of data sheet.
Typical Operating Circuit appears at end of data sheet.
RG
IN+
3
†Patent pending.
GainAmp is a trademark of Maxim Integrated Products.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
SOT23-5
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
MAX4074–MAX4078†
General Description
The MAX4074–MAX4078 GainAmp™ op amp family
combines low-cost Rail-to-Rail® op amps with precision
internal gain-setting resistors. Factory-trimmed on-chip
resistors decrease design size, cost, and layout, and
provide 0.1% gain accuracy. Fixed inverting gains from
-0.25V/V to -100V/V or noninverting gains from +1.25V/V
to +101V/V are available. These devices operate from a
single +2.5V to +5.5V supply and consume just 34µA.
GainAmp amplifiers are optimally compensated for each
gain version, achieving gain bandwidth (GBW) products
up to 4MHz (AV = +25V/V to +101V/V). High-voltage
fault protection withstands ±17V at either input without
damage or excessive current draw (MAX4074/MAX4075
only).
Two versions are available in this amplifier family. The
MAX4076/MAX4077/MAX4078 are single/dual/quad
open-loop, unity-gain-stable op amps, and the
MAX4074/MAX4075 are single/dual fixed-gain op
amps. The input common-mode voltage range of the
open-loop amplifiers extends from 150mV below the
negative supply to within 1.2V of the positive supply.
The GainAmp outputs can swing rail-to-rail and drive a
1kΩ load while maintaining excellent DC accuracy
(MAX4074/MAX4075 only). The amplifiers are stable for
capacitive loads up to 100pF.
For space-critical applications, the MAX4074/MAX4076
are available in space-saving SOT23-5 packages.
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
ABSOLUTE MAXIMUM RATINGS
Supply Voltages (VCC to VEE) ..................................-0.3V to +6V
Voltage Inputs (IN_)
MAX4076/MAX4077/MAX4078 .....(VCC + 0.3V) to (VEE - 0.3V)
MAX4074/MAX4075..........................................................±17V
Output Short-Circuit Duration to Either Supply (OUT_). . . . Continuous
Continuous Power Dissipation (TA = +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ............571mW
14-Pin TSSOP (derate 6.3mW/°C above +70°C) ..........500mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ..............330mW
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075
(VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values
are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Supply Voltage Range
VCC
Supply Current (per amplifier)
ICC
Input Offset Voltage
VOS
CONDITIONS
Guaranteed by PSRR test
MIN
55
34
50
RL = 1MΩ
0.2
3.5
0.3
IIN+_
0.8
AV < +25V/V
300
AV ≥ +25V/V
80
Noninverting Input Resistance
RIN_+
Positive Input Voltage Range
IN_+
Guaranteed by functional test (Note 3)
Negative Input Voltage Range
IN_-
Guaranteed by functional test (Note 3)
Power-Supply Rejection Ratio
PSRR
Closed-Loop Output Impedance
ROUT
VCC = 2.5V to 5.5V
VEE 0.15
70
pA
MΩ
V
±15
V
96
dB
0.2
Ω
5
Shorted to VEE
-22
RL = 1kΩ
mV
kΩ
VCC 1.2
Shorted to VCC
RL = 10kΩ
µA
µV/°C
1000
1000
RL = 1MΩ
2
V
37
RIN_
Output Voltage Swing (Note 4)
UNITS
5.5
VCC = 5V
Inverting Input Resistance
Output Short-Circuit Current
MAX
VCC = 3V
Input Offset Voltage Drift
Input Bias Current (Note 2)
TYP
2.5
mA
VCC - VOH
0.5
VOL - VEE
0.4
2.5
VCC - VOH
25
150
VOL - VEE
11
80
VCC - VOH
300
1000
VOL - VEE
100
600
_______________________________________________________________________________________
2.5
mV
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
(VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values
are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Power-Up Time
CONDITIONS
MIN
Output settling to 1%
Slew Rate
SR
Settling Time (to 0.01%)
Input Voltage Noise Density
en
Input Noise Current Density
Capacitive Load Stability
CLOAD
VOUT = 4V step
-3dB Bandwidth
MAX
UNITS
9
ms
100
V/ms
VOUT = 4V step
60
µs
f = 5kHz (Note 5)
150
nV/√Hz
f = 5kHz
500
fA/√Hz
No sustained oscillations
500
pF
(VEE + 25mV) < VOUT
< (VCC - 25mV),
RL = 1MΩ (Note 6)
DC Gain Accuracy
TYP
TA = +25°C
0.01
1.0
%
TA = TMIN to TMAX
1.2
AV = +1.25V/V
200
AV = +3V/V
90
BW (-3dB) AV = +5V/V
80
AV = +10V/V
90
AV = +25V/V
120
kHz
ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078
(VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values
are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
Supply Voltage Range
SYMBOL
VCC
Supply Current (per amplifier)
ICC
Input Offset Voltage
VOS
CONDITIONS
Guaranteed by PSRR test
MIN
MAX
UNITS
5.5
V
VCC = 5V
45
60
VCC = 3V
40
55
1.2
3.5mV
RL = 1MΩ
Input Offset Voltage Drift
Input Bias Current (Note 2)
TYP
2.5
1.5µV
IIBIAS
1
Input Offset Current
IOS
±0.4
Common-Mode Input Voltage
Range
IVR
Guaranteed by CMRR
0.15
µA
mV
µV/°C
200
pA
pA
VCC 1.2
V
Common-Mode Rejection Ratio
CMRR
(VCC - 1.2V) ≥ VCM ≥ -0.15V
70
95
dB
Power-Supply Rejection Ratio
PSRR
VCC = 2.5V to 5.5V
70
95
dB
Closed-Loop Output Impedance
ROUT
AV = +1V/V
0.2
Ω
Shorted to VCC
4.5
Shorted to VEE
20
Output Short-Circuit Current
Large-Signal Voltage Gain
AVOL
0.05V < VOUT < (VCC - 0.1V), RL = 1MΩ
80
117
0.25V < VOUT < (VCC - 0.3V), RL = 10kΩ
80
95
0.25V < VOUT < (VCC - 0.3V), RL = 5kΩ
80
93
mA
dB
_______________________________________________________________________________________
3
MAX4074–MAX4078
ELECTRICAL CHARACTERISTICS—MAX4074/MAX4075 (continued)
ELECTRICAL CHARACTERISTICS—MAX4076/MAX4077/MAX4078 (continued)
(VCC = +2.5V to +5.5V, VEE = 0, VIN+ = VIN- = VCC/2, RL = ∞ to VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values
are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
RL = 1MΩ
Output Voltage Swing
VOH/VOL
RL = 10kΩ
RL = 5kΩ
Gain-Bandwidth Product
TYP
MAX
VCC - VOH
MIN
0.23
2.5
VOL - VEE
0.22
2.5
VCC - VOH
12
50
VOL - VEE
7
50
VCC - VOH
100
100
VOL - VEE
100
100
GBW
Slew Rate
SR
Settling Time (to 0.01%)
Input Voltage Noise Density
en
Input Noise Current Density
Capacitive Load Stability
CLOAD
Power-Up Time
UNITS
mV
230
kHz
VOUT = 4V step
90
V/ms
VOUT = 4V step
69
µs
f = 5kHz
110
nV/√Hz
f = 5kHz
1.1
fA/√Hz
No sustained oscillations, AV = +1V/V
100
pF
Output settling to 1%
10
ms
Note 1: All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: The input common-mode range for IN_+ is guaranteed by a functional test. A similar test is done on the IN_- input. See the
Applications Information section for more information on the input voltage range of the GainAmps.
Note 4: For AV = -0.5V/V and AV = -0.25V/V, the output voltage swing may be limited by the input voltage range.
Note 5: Includes noise from on-chip resistors.
Note 6: The gain accuracy test is performed with the GainAmps in the noninverting configuration. The output voltage swing is limited by the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing
is limited by the valid input range, the output limits are adjusted accordingly.
Typical Operating Characteristics
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4074/MAX4075
2
2
2
1
0
-1
GAIN (dB)
AV = +1.25V/V
AV = +2.25V/V
-2
1
0
AV = +2.5V/V
-1
AV = +4V/V
-2
0
-3
-3
-4
-4
-5
-5
-5
-6
-6
-6
100k
FREQUENCY (Hz)
1M
1k
10k
100k
FREQUENCY (Hz)
1M
AV = +9V/V
-2
-4
10k
AV = +5V/V
-1
-3
1k
VOUT = 100mVp-p
3
GAIN (dB)
1
4
VOUT = 100mVp-p
3
SMALL-SIGNAL GAIN vs. FREQUENCY
4
MAX4074-8 tocc3-4
MAX4074-8 tocc1-2
VOUT = 100mVp-p
3
SMALL-SIGNAL GAIN vs. FREQUENCY
4
MAX4074-8 tocc5-6
SMALL-SIGNAL GAIN vs. FREQUENCY
4
GAIN (dB)
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
1k
10k
100k
FREQUENCY (Hz)
_______________________________________________________________________________________
1M
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
MAX4074/MAX4075
2
1
0
AV = +10V/V
-2
-3
-3
-4
-4
-5
-5
-5
-6
-6
-6
1M
1k
10k
LARGE-SIGNAL GAIN vs. FREQUENCY
1M
1k
4
MAX4074-8 toc07
VOUT = 1Vp-p
2
VOUT = 1Vp-p
3
2
2
GAIN (dB)
1
0
GAIN (dB)
1
AV = +2.25V/V
AV = +2.5V/V
-1
AV = +4V/V
-2
-2
-3
-3
-4
-4
-4
-5
-5
-5
-6
-6
-6
100k
1M
1k
10k
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
VOUT = 1Vp-p
3
2
1M
1k
VOUT = 1Vp-p
3
2
2
-2
AV = +21V/V
GAIN (dB)
0
GAIN (dB)
1
0
AV = +25V/V
-2
AV = +50V/V
-2
-3
-3
-4
-4
-4
-5
-5
-5
-6
-6
-6
10k
100k
FREQUENCY (Hz)
1M
1k
10k
100k
FREQUENCY (Hz)
1M
AV = +51V/V
-1
-3
1k
VOUT = 1Vp-p
3
0
-1
1M
LARGE-SIGNAL GAIN vs. FREQUENCY
1
AV = +10V/V
100k
4
1
-1
10k
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
4
MAX4074-8 toc10
4
100k
AV = +9V/V
FREQUENCY (Hz)
MAX4074-8 toc11
10k
AV = +5V/V
-1
-3
1k
VOUT = 1Vp-p
3
0
AV = +1.25V/V
1M
LARGE-SIGNAL GAIN vs. FREQUENCY
1
-1
100k
4
0
-2
10k
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
4
3
100k
FREQUENCY (Hz)
MAX4074-8 toc08
100k
AV = +101V/V
-2
-4
10k
AV = +51V/V
-1
-3
FREQUENCY (Hz)
GAIN (dB)
AV = +25V/V
AV = +50V/V
MAX4074-8 toc09
-2
-1
GAIN (dB)
1
0
1k
GAIN (dB)
2
1
AV = +21V/V
VOUT = 100mVp-p
3
0
-1
MAX4074-8 toc06
VOUT = 100mVp-p
3
GAIN (dB)
GAIN (dB)
2
SMALL-SIGNAL GAIN vs. FREQUENCY
4
MAX4074-8 toc05
MAX4074-8 toc04
VOUT = 100mVp-p
3
SMALL-SIGNAL GAIN vs. FREQUENCY
4
MAX4074-8 toc12
SMALL-SIGNAL GAIN vs. FREQUENCY
4
AV = +101V/V
1k
10k
100k
1M
FREQUENCY (Hz)
_______________________________________________________________________________________
5
MAX4074–MAX4078
Typical Operating Characteristics
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4074/MAX4075
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
-20
-20
THD (dB)
-40
-50
-60
-40
-50
-60
-70
AV = +10V/V
-80
-80
-90
-90
AV = +1.25V/V
-100
1k
10k
100k
-50
-60
AV = +1.25V/V
AV = +25V/V
-80
-90
100
1k
FREQUENCY (Hz)
10k
100k
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
FREQUENCY (Hz)
VOLTAGE SWING (Vp-p)
VOLTAGE NOISE DENSITY
vs. FREQUENCY
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
f = 10kHz
-30
-50
VOLTAGE NOISE (nV/√Hz)
-40
AV = +51V/V
-60
AV = +25V/V
-70
MAX4074-8 toc29
1000
MAX4074-8 toc28
-20
THD (dB)
AV = +10V/V
-70
AV = +51V/V
-100
100
AV = +3V/V
-40
-30
AV = +3V/V
-70
f = 10kHz
-30
THD (dB)
-30
VOUT = 1Vp-p
-10
-20
MAX4074-8 toc26
VOUT = 1Vp-p
-10
0
MAX4074-8 toc25
0
TOTAL HARMONIC DISTORTION
vs. OUTPUT VOLTAGE SWING
MAX4074-8 toc27
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
THD (dB)
AV = +3V/V
AV = +10V/V
100
AV = +1.25V/V
-80
10
-90
10
100
1k
10k 100k
1M
VOLTAGE SWING (Vp-p)
FREQUENCY (Hz)
VOLTAGE NOISE DENSITY
vs. FREQUENCY
CURRENT NOISE DENSITY
vs. FREQUENCY
AV = +25V/V
100
AV = +51V/V
10
10
10M
MAX4074 TOC31
MAX4074-8 toc30
1000
1
0.1
1
10
100
1k
10k 100k
FREQUENCY (Hz)
6
1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
CURRENT NOISE DENSITY (fA/√Hz)
0
VOLTAGE NOISE (nV/√Hz)
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
1M
10M
1
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
_______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
MAX4074/MAX4075
SMALL-SIGNAL PULSE RESPONSE
MAX4074 TOC35
MAX4074 TOC36
LARGE-SIGNAL PULSE RESPONSE
INPUT
INPUT
OUTPUT
50mV/div
AV = +1.25V/V
OUTPUT
500mV/div
AV = +1.25V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
500mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
500mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
500mV/div
AV = +10V/V
OUTPUT
50mV/div
AV = +25V/V
OUTPUT
500mV/div
AV = +25V/V
OUTPUT
50mV/div
AV = +51V/V
OUTPUT
500mV/div
AV = +51V/V
10µs/div
10µs/div
_______________________________________________________________________________________
7
MAX4074–MAX4078
Typical Operating Characteristics (continued)
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
POWER-SUPPLY REJECTION
vs. FREQUENCY
OUTPUT IMPEDANCE
vs. FREQUENCY
-40
-50
-60
-70
-80
10
1
MAX4074 TOC34
200
150
100
50
VCC - VOH
-90
-100
VOL - VEE
0.1
1k
10k
100k
0
100
1k
FREQUENCY (Hz)
10k
100k
1
INPUT BIAS CURRENT vs. TEMPERATURE
600
MAX4074/5-toc35
50
VCC - VEE = 5.5V
500
INPUT BIAS CURRENT (pA)
75
25
0
VCC - VEE = 5.5V
-25
VCC - VEE = 2.5V
-50
MAX4074/4075
400
VCC - VEE = 2.5V
300
200
VCC - VEE = 5.5V
100
0
MAX4076/77/78
-75
-200
-50 -35 -20
-5
10
25
40
55
70
85
-45 -30 -15
TEMPERATURE (°C)
400
350
300
VOLTAGE (mV)
100
75
VOH, RL = 100kΩ
0
-25
VOL, RL = 10kΩ
-50
VOL, RL = 100kΩ
VOL, RL = 1kΩ
-75
-100
-5
10
25
40
TEMPERATURE (°C)
8
55
70
85
45
60
75
90
SUPPLY CURRENT vs. TEMPERATURE
VOH, RL = 1kΩ
250
200
150
100
50
VOH, RL = 10kΩ
0
-50
-100
VOL, RL = 10kΩ
-150
-50 -35 -20
30
40.0
MAX4074/5-toc38
450
MAX4074/5-toc37
VOH, RL = 1kΩ
VOH, RL = 10kΩ
15
VOH AND VOL vs. TEMPERATURE
(VCC - VEE = 5.5V)
175
50
0
TEMPERATURE (°C)
VCC - VEE = 5.5V
SUPPLY CURRENT (µA)
VOH AND VOL vs. TEMPERATURE
(VCC - VEE = 2.5V)
25
VCC - VEE = 2.5V
-100
-100
125
100
RLOAD (kΩ)
INPUT OFFSET VOLTAGE vs. TEMPERATURE
150
10
FREQUENCY (Hz)
100
INPUT OFFSET VOLTAGE (µV)
1M
VOH, RL = 100kΩ
37.5
VCC - VEE = 4.0V
35.0
VCC - VEE = 3.0V
32.5
-5
10
VCC - VEE = 2.5V
VOL, RL = 100kΩ
VOL, RL = 1kΩ
-50 -35 -20
MAX4074/5-toc39
100
MAX4074/5-toc36
PSR (dB)
-30
250
100
OUTPUT SWING (mV)
OUTPUT IMPEDANCE (Ω)
-20
300
MAX4074TOC33
-10
OUTPUT VOLTAGE SWING
vs. RLOAD
1k
MAX4074 TOC32
0
VOLTAGE (mV)
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
30.0
25
40
TEMPERATURE (°C)
55
70
85
-50 -35 -20
-5
10
25
40
TEMPERATURE (°C)
_______________________________________________________________________________________
55
70
85
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
MAX4076/MAX4077/MAX4078
SMALL-SIGNAL GAIN vs. FREQUENCY
1
0
0
-1
-2
-1
-2
-3
-3
-4
-4
-5
-5
-6
-6
1k
10k
100k
1M
VOLTAGE NOISE (nV/√Hz)
2
1
10M
MAX4076-8 toc3
3
GAIN (dB)
100
10
1k
10k
100k
1M
1
10M
10
100
1k
10k 100k
1M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
CURRENT NOISE vs. FREQUENCY
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
MAX4077
CROSSTALK vs. FREQUENCY
AV = +1V/V
THD (dB)
-85
-90
CROSSTALK (dB)
-50
10
-80
-60
-70
1
10M
MAX4076-8 toc6
-40
MAX4076-8 toc4
100
MAX4076-8 toc5
GAIN (dB)
2
VOLTAGE NOISE vs. FREQUENCY
1k
MAX4076- 8 toc2
3
CURRENT NOISE (pA/√Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
4
MAX4076/7/8 toc1
4
-95
-100
-105
-110
-115
-80
-120
-90
-130
-125
1k
10k 100k
100
10M
1k
10k
FREQUENCY (Hz)
MAX4078
ALL HOSTILE CROSSTALK vs. FREQUENCY
GAIN AND PHASE
vs. FREQUENCY
THREE AMPLIFIERS DRIVEN,
ONE OUTPUT MEASURED.
-70
100k
40
GAIN
0
-80
-85
-90
-95
-100
-105
-110
1k
10k
100k
FREQUENCY (Hz)
1M
270
-10
180
-20
90
-30
0
PHASE
-40
-90
-80
-180
-120
-270
-160
-360
-200
-450
10M
1
10
100
1k
10k
100k
FREQUENCY (Hz)
10k
100k
1M
COMMON-MODE REJECTION
vs. FREQUENCY
80
-75
1k
FREQUENCY (Hz)
MAX4076-8 toc8
120
GAIN (dB)
CROSSTALK (dB)
1M
FREQUENCY (Hz)
1M
MAX4076-8 toc9
-65
100
MAX4076-8 toc7
-60
10
-40
CMR (dB)
1
PHASE (degrees)
0.1
-50
-60
-70
-80
-90
-100
1
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
_______________________________________________________________________________________
9
MAX4074–MAX4078
Typical Operating Characteristics (continued)
(VCC = +5.0V, RL = 100kΩ to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
Pin Description
PIN
MAX4074/MAX4076
MAX4075
MAX4077
MAX4078
SOT23
SO
µMAX/SO
SO/TSSOP
1
6
1, 7
1, 7, 8, 14
2
4
4
3
3
4
NAME
FUNCTION
OUT_
Amplifier Output
11
VEE
Negative Supply or Ground
3, 5
3, 5, 10, 12
IN_+
Noninverting Amplifier Input
2
2, 6
2, 6, 9, 13
IN_-
Inverting Amplifier Input
5
7
8
4
VCC
Positive Supply
—
1, 5, 8
—
—
N.C.
No Connection. Not internally connected.
_______________Detailed Description
Maxim’s GainAmp fixed-gain amplifiers combine a lowcost rail-to-rail op amp with internal gain-setting resistors. Factory-trimmed on-chip resistors provide 0.1%
gain accuracy while decreasing design size, cost, and
layout. There are two versions in this amplifier family:
single/dual/quad open-loop, unity-gain-stable devices
(MAX4076/MAX4077/MAX4078), and single/dual fixedgain devices (MAX4074/MAX4075). All amplifiers feature rail-to-rail outputs and drive a 10kΩ load while
maintaining excellent DC accuracy.
Open-Loop Op Amps
The single/dual/quad MAX4076/MAX4077/MAX4078 are
low-power, open-loop op amps with rail-to-rail outputs.
These devices are compensated for unity-gain stability
and feature a GBW product of 230kHz. The commonmode range extends from 150mV below the negative
rail to within 1.2V of the positive rail. These high-performance op amps serve as the core for this family of
GainAmp fixed-gain amplifiers. Although the -3dB bandwidth will not correspond to that of a fixed-gain amplifier
in higher gain configurations, these open-loop op amps
can be used to prototype designs.
10
VCC
AV =
RF
RG
IN-
-RF
RG
AV = 1 +
RF
RG
VEE
OUT
IN+
Figure 1. Internal Gain-Setting Resistors
Internal Gain-Setting Resistors
Maxim’s proprietary laser trimming techniques allow
RF/RG values (Figure 1) that produce many different
gain configurations. These GainAmp fixed-gain amplifiers feature a negative-feedback resistor network that
is laser trimmed to provide a gain-setting feedback
ratio (RF/RG) with 0.1% typical accuracy. The standard
op amp pinouts allow the GainAmp fixed-gain amplifiers to plug directly into existing board designs, easily
replacing op amps-plus-resistor gain blocks.
______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
High-Voltage (±17V)
Input Fault Protection
The MAX4074/MAX4075 family includes ±17V input
fault protection. For normal operation, see the input
voltage range specification in the Electrical Characteristics. Overdriven inputs up to ±17V will not cause output phase reversal. A back-to-back SCR structure at
the input pins allows either input to safely swing ±17V
relative to VEE (Figure 2). Additionally, the internal op
amp inputs are diode clamped to both supply rails for
the protection of sensitive input stage circuitry. Current
through the clamp diodes is limited by a 5kΩ resistor at
the noninverting input, and by RG at the inverting input.
An IN+ or IN- fault voltage as high as ±17V causes less
than 3.5mA to flow through the input pin, protecting
both the GainAmp and the signal source from damage.
Applications Information
GainAmp fixed-gain amplifiers offer a precision, fixedgain amplifier in a small package that can be used in a
variety of circuit board designs. GainAmp fixed-gain
amplifiers can be used in many op amp circuits that
use resistive negative feedback to set gain, and do not
require other connections to the op amp inverting input.
Both inverting and noninverting op amp configurations
can be implemented easily using a GainAmp.
GainAmp Input Voltage Range
The MAX4074/MAX4075 combine both an op amp and
gain-setting feedback resistors on the same IC. The
inverting input voltage range is different from the noninverting input voltage range because the inverting input
pin is connected to the RG input series resistor. Just as
with a discrete design, take care not to saturate the
inputs/output of the core op amp to avoid signal distortions or clipping.
RF
RG
IN17V
SCR
OUT
VEE
VCC
5k
IN+
17V
SCR
VEE
MAX4074
MAX4075
VEE
NOTE: INPUT STAGE PROTECTION INCLUDES TWO 17V SCRs
AND TWO DIODES AT THE INPUT STAGE.
Figure 2. Input Protection
______________________________________________________________________________________
11
MAX4074–MAX4078
GainAmp Bandwidth
GainAmp fixed-gain amplifiers feature factory-trimmed
precision resistors to provide fixed inverting gains from
-0.25V/V to -100V/V or noninverting gains from +1.25V/V
to +101V/V. The op amp core is decompensated strategically over the gain-set options to maximize bandwidth. Open-loop decompensation increases GBW
product, ensuring that usable bandwidth is maintained
with increasing closed-loop gains. A GainAmp with a
fixed gain of AV = +25V/V has a -3dB bandwidth of
120kHz. By comparison, a unity-gain-stable op amp configured for AV = +25V/V would yield a -3dB bandwidth
of only 8kHz. Decompensation is performed at five intermediate gain sets, as shown in the Gain Selector
Guide.
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
GainAmp Signal Coupling
and Configurations
Common op amp configurations include both noninverting and inverting amplifiers. Figures 3–6 show various
single- and dual-supply circuit configurations. In singlesupply systems, use a resistor-divider to bias the noninverting input. A lowpass filter capacitor from the op amp
input to ground (Figure 5) prevents high-frequency
power-supply noise from coupling into the op amp input.
Dual-supply systems can have ground-referenced signals DC-coupled into the inverting or noninverting inputs.
MAX4074
VCC
VOUT = - VIN
( RRFG )
VEE
VIN
RG
RF
Supply Bypassing and Board Layout
All devices in this GainAmp family operate from a +2.5V
to +5.5V single supply or from ±1.25V to ±2.75V dual
supplies. For single-supply operation, bypass the power
supply with a 0.1µF capacitor to ground. For dual supplies, bypass each supply to ground. Bypass with
capacitors as close to the device as possible to minimize lead inductance and noise. A printed circuit board
with a low-inductance ground plane is recommended.
Figure 4. Dual-Supply, DC-Coupled Inverting Amplifier
MAX4074
VCC
VCC
Capacitive-Load Stability
Driving large capacitive loads can cause instability in
most low-power, rail-to-rail output amplifiers. The fixedgain amplifiers of this GainAmp family are stable with
capacitive loads up to 100pF. Stability with higher
capacitive loads can be improved by adding an isolation resistor in series with the op amp output, as shown
in Figure 7. This resistor improves the circuit’s phase
margin by isolating the load capacitor from the amplifier’s output. In Figure 8, a 220pF capacitor is driven with
a 100Ω isolation resistor exhibiting some overshoot but
no oscillation. Figures 9 and 10 show the typical smallsignal pulse responses of GainAmp fixed-gain amplifiers with 47pF and 100pF capacitive loads and no
isolation resistor
VOUT =
0.1µF
VCC
- VIN
2
( RRFG )
VIN
RG
RF
Figure 5. Single-Supply, AC-Coupled Inverting Amplifier
MAX4074
VCC
VCC
VIN
R
VOUT = VIN 1+ F
RG
(
MAX4074
)
VEE
VCC
RF
VIN
RG
RF
RG
VOUT =
-RF
(VIN)
RG
Figure 3. Single-Supply, DC-Coupled Inverting Amplifier with
Negative Input Voltage
12
Figure 6. Dual-Supply, DC-Coupled Noninverting Amplifier
______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
RG
MAX4074–MAX4078
MAX4074
INPUT
RF
VCC
RISO
INPUT
AV = +5V/V
50mV/div
OUTPUT
AV = +5V/V
500mV/div
OUTPUT
OUTPUT
CL
RL
VEE
Figure 7. Dual-Supply, Capacitive-Load-Driving Circuit
Figure 8. Small-Signal/Large-Signal Transient Response with
Excessive Capacitive Load and Isolation Resistor
______________________________________________________________________________________
13
MAX4074–MAX4078
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
INPUT
INPUT
OUTPUT
50mV/div
AV = +1.25V/V
OUTPUT
50mV/div
AV = +1.25V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +3V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +5V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
50mV/div
AV = +10V/V
OUTPUT
50mV/div
AV = +25V/V
OUTPUT
50mV/div
AV = +25V/V
OUTPUT
50mV/div
AV = +51V/V
OUTPUT
50mV/div
AV = +51V/V
10µs/div
Figure 9. GainAmp Small-Signal Pulse Response (CL = 340pF,
RL = 100kΩ)
14
10µs/div
Figure 10. GainAmp Small-Signal Pulse Response (CL = 940pF,
RL = 100kΩ)
______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
GAIN
CODE
INVERTING
GAIN (V/V)
NONINVERTING
GAIN (V/V)
-3dB BW
(kHz)
TOP MARK
AB
0.25
1.25
200
ADJB
AC
0.5
1.5
136
ADJC
AD
1
2
102
ADJD
AE
1.25
2.25
70
ADJE
AF
1.5
2.5
180
ADJF
AG
2
3
135
ADJG
AH
2.5
3.5
116
ADJH
AJ
3
4
90
ADJI
AK
4
5
80
ADJJ
AL
5
6
71
ADJK
AM
6
7
61
ADJL
AN
8
9
50
ADJM
AO
9
10
90
ADJN
BA
10
11
79
ADJO
BB
12.5
13.5
64
ADJP
BC
15
16
54
ADJQ
BD
20
21
40
ADJR
BE
24
25
120
ADJS
BF
25
26
106
ADJT
BG
30
31
89
ADJU
BH
40
41
67
ADJV
BJ
49
50
50
ADJW
BK
50
51
82
ADJX
BL
60
61
66
ADJY
BM
79
80
50
ADJZ
BN
99
100
40
ADKA
CA
100
101
38
ADKB
Note: Bold indicates preferred gains. These gain versions are available as samples and in small quantities.
______________________________________________________________________________________
15
MAX4074–MAX4078
Gain Selector Guide
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
MAX4074–MAX4078
Pin Configurations/Functional Diagrams
TOP VIEW
MAX4074
MAX4076
MAX4076
OUT 1
7 VCC
VEE 2
IN+ 3
6 OUT
IN+ 3
VEE 4
5 N.C.
IN- 2
-
5 VCC
+
8 N.C.
N.C. 1
IN- 2
-
8 N.C.
N.C. 1
7 VCC
+
+
4
IN-
IN+ 3
6 OUT
VEE 4
5
SOT23-5
SO
SO
MAX4077
OUTA 1
8 VCC
OUTA 1
MAX4078
VCC
7
OUTB
OUTA 1
14 OUTD
RG
RF
+
-
+
INA+ 3
RG
VEE 4
INA- 2
6 INB-
INA+ 3
6
INB-
INB+
VEE 4
5
INB+
5
+
13 IND12 IND+
VCC 4
11 VEE
INB+ 5
10 INC+
INB- 6
+
-
µMAX/SO
+
INA+ 3
-
µMAX/SO
+
INA- 2
-
7 OUTB
-
-
-
+
-
8
RF
+
MAX4075
INA- 2
9 INC8 OUTC
OUTB 7
SO/TSSOP
16
N.C.
______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
TOP
MARK
TEMP. RANGE
PINPACKAGE
MAX4075__EUA
-40°C to +70°C
8 µMAX
—
MAX4075__ESA
-40°C to +70°C
8 SO
—
MAX4076EUK-T
-40°C to +70°C
5 SOT23-5
**
MAX4076ESA
-40°C to +70°C
8 SO
—
MAX4077EUA
-40°C to +70°C
8 µMAX
—
MAX4077ESA
-40°C to +70°C
8 SO
—
MAX4078EUD
-40°C to +70°C
14 TSSOP
—
MAX4078ESD
-40°C to +70°C
14 SO
—
PART
___________________Chip Information
TRANSISTOR COUNTS
MAX4074: 180
MAX4077: 340
MAX4075: 360
MAX4078: 332
MAX4076: 180
Typical Operating Circuit
Note: Insert the desired gain code in the blank to complete the
part number (see the Gain Selector Guide).
**See the Gain Selector Guide for a list of preferred gains and
top marks.
+5V
VCC
VCC
0.1µF
VCC
MAX4074
IN+
0.1µF
OUT
INPUT
0.1µF
INRF
RG
VEE
______________________________________________________________________________________
17
MAX4074–MAX4078
Ordering Information (continued)
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
SOT5L.EPS
MAX4074–MAX4078
Package Information
18
______________________________________________________________________________________
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
TSSOP.EPS
______________________________________________________________________________________
19
MAX4074–MAX4078
Package Information (continued)
Micropower, SOT23, Rail-to-Rail,
Fixed-Gain, GainAmp/Open-Loop Op Amps
SOICN.EPS
8LUMAXD.EPS
MAX4074–MAX4078
Package Information (continued)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages