BFP420F Low Noise Silicon Bipolar RF Transistor Data Sheet Revision 1.1, 2012-11-07 RF & Protection Devices Edition 2012-11-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BFP420F BFP420F, Low Noise Silicon Bipolar RF Transistor Revision History: 2012-11-07, Revision 1.1 Previous Revision: Rev. 1.0 Page Subjects (major changes since last revision) This datasheet replaces the revision from 2012-01-30. The product itself has not been changed and the device characteristics remain unchanged. Only the product description and information available in the datasheet has been expanded and updated. Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 3 Revision 1.1, 2012-11-07 BFP420F Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 5.1 5.2 5.3 5.4 5.5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Dependent AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristic DC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristic AC Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Package Information TSFP-4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Data Sheet 4 11 11 11 12 18 21 Revision 1.1, 2012-11-07 BFP420F List of Figures List of Figures Figure 4-1 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Figure 5-6 Figure 5-7 Figure 5-8 Figure 5-9 Figure 5-10 Figure 5-11 Figure 5-12 Figure 5-13 Figure 5-14 Figure 5-15 Figure 5-16 Figure 5-17 Figure 5-18 Figure 5-19 Figure 5-20 Figure 5-21 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Data Sheet Total Power Dissipation Ptot = f (Ts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BFP420F Testing Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector Current vs. Collector Emitter Voltage IC = f (VCE), IB = Parameter in μA . . . . . . . . . . . . DC Current Gain hFE = f (IC), VCE = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector Current vs. Base Emitter Voltage IC = f (VBE), VCE = 3 V. . . . . . . . . . . . . . . . . . . . . . . . . Base Current vs. Base Emitter Forward Voltage IB = f (VBE), VCE = 3 V . . . . . . . . . . . . . . . . . . . . Base Current vs. Base Emitter Reverse Voltage IB = f (VEB), VCE = 3 V . . . . . . . . . . . . . . . . . . . . Collector Emitter Breakdown Voltage VCER = f (RBE), IC = 1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . Transition Frequency fT = f (IC), f = 2 GHz, VCE = Parameter in V . . . . . . . . . . . . . . . . . . . . . . . . . 3rd Order Intercept Point OIP3 = f (IC), ZS = ZL= 50 Ω, VCE, f = Parameters . . . . . . . . . . . . . . . . . 3rd Order Intercept Point at output OIP3 [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz . . . . . . Compression Point at output OP1dB [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz . . . . . . . . . . Collector Base Capacitance CCB = f (VCB), f = 1 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain Gma, Gms, IS21I² = f (f), VCE = 3 V, IC = 15 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Power Gain Gmax = f (IC), VCE = 3 V, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . . . . Maximum Power Gain Gmax = f (VCE), IC = 15 mA, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . Input Matching S11 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source Impedance for Minimum Noise Figure Zopt = f (f), VCE = 3 V, IC = 4 / 15 mA . . . . . . . . . . . Output Matching S22 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise Figure NFmin = f (f), VCE = 3 V, IC = 4 / 16 mA, ZS = Zopt . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise Figure NFmin = f (IC), VCE = 3 V, ZS = Zopt, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . . . Noise Figure NF50 = f (IC), VCE = 3 V, ZS = 50 Ω, f = Parameter in GHz . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marking Description (Marking BFP420F: AMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 10 12 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 29 29 29 29 Revision 1.1, 2012-11-07 BFP420F List of Tables List of Tables Table 3-1 Table 4-1 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 5-5 Table 5-6 Table 5-7 Table 5-8 Table 5-9 Table 5-10 Data Sheet Maximum Ratings at TA = 25 °C (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 General AC Characteristics at TA = 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC Characteristics, f = 150 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 AC Characteristics, f = 450 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AC Characteristics, f = 900 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AC Characteristics, f = 1500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AC Characteristics, f = 1900 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC Characteristics, f = 2400 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC Characteristics, f = 3500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AC Characteristics, f = 5500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 Revision 1.1, 2012-11-07 BFP420F Product Brief 1 Product Brief The BFP420F is a low noise wideband NPN bipolar RF transistor. The collector design supports voltages up to VCEO = 4.5 V and currents up to IC = 60 mA. The device is especially suited for mobile applications in which low power consumption is a key requirement. The typical transition frequency is approximately 25 GHz, hence the device offers high power gain at frequencies up to 4.5 GHz in amplifier applications. The device is housed in a thin small flat plastic package with visible leads. Data Sheet 7 Revision 1.1, 2012-11-07 BFP420F Features 2 • • • • • • • • • Features General purpose low noise NPN bipolar RF transistor Based on Infineon´s reliable very high volume 25 GHz silicon bipolar technology 0.95 dB minimum noise figure typical at 900 MHz, 3 V, 4 mA 16.5 dB maximum gain (Gma) typical at 2.4 GHz, 3 V, 15 mA 28 dBm OIP3 typical at 2.4 GHz, 4 V, 40 mA 16.5 dBm OP1dB typical at 2.4 GHz, 4 V, 40 mA Popular in discrete oscillators Thin, small, flat, Pb-free (RoHS compliant) and Halogen-free package with visible leads Qualification report according to AEC-Q101 available Applications As Low Noise Amplifier (LNA) in • • • Satellite communication systems: Navigation systems (GPS, Glonass), satellite radio (SDARs, DAB) Multimedia applications such as mobile/portable TV, CATV, FM Radio ISM applications like RKE, AMR and Zigbee, as well as for emerging wireless applications As discrete active mixer in RF Frontends As active device in discrete oscillators Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions Product Name Package BFP420F TSFP-4-1 Data Sheet Pin Configuration 1=B 2=E 8 3=C Marking 4=E AMs Revision 1.1, 2012-11-07 BFP420F Maximum Ratings 3 Maximum Ratings Table 3-1 Maximum Ratings at TA = 25 °C (unless otherwise specified) Parameter Symbol Collector emitter voltage Values Min. Max. – – 4.5 4.1 Unit V VCEO Note / Test Condition Open base TA = 25 °C TA = -55 °C Collector base voltage VCBO – 15 V Open emitter Collector emitter voltage VCES – 15 V E-B short circuited Emitter base voltage VEBO – 1.5 V Open collector Base current IB – 9 mA – IC – 60 mA – Ptot – 210 mW TS ≤ 100 °C Junction temperature TJ – 150 °C – Storage temperature TStg -55 150 °C – Collector current Total power dissipation 1) 1) TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the pcb. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Data Sheet 9 Revision 1.1, 2012-11-07 BFP420F Thermal Characteristics 4 Thermal Characteristics Table 4-1 Thermal Resistance Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. 1) Junction - soldering point RthJS – 240 – K/W – 1)For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation) 260 240 220 200 180 Ptot [mW] 160 140 120 100 80 60 40 20 0 0 25 50 75 TS [°C] 100 125 150 Figure 4-1 Total Power Dissipation Ptot = f (Ts) Data Sheet 10 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 5 Electrical Characteristics 5.1 DC Characteristics Table 5-1 DC Characteristics at TA = 25 °C Parameter Symbol Collector emitter breakdown voltage V(BR)CEO Values Min. Typ. Max. 4.5 5.5 – Unit Note / Test Condition V IC = 1 mA, IB = 0 Open base Collector emitter leakage current ICES – – – 1 10 30 μA nA VCE = 15 V, VBE = 0 VCE = 3 V, VBE = 0 E-B short circuited Collector base leakage current ICBO – 1 30 nA VCB = 3 V, IE = 0 Open emitter Emitter base leakage current IEBO – 10 100 nA VEB = 0.5 V, IC = 0 Open collector DC current gain hFE 60 95 130 VCE = 4 V, IC = 5 mA Pulse measured 5.2 General AC Characteristics Table 5-2 General AC Characteristics at TA = 25 °C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Transition frequency fT 18 25 – GHz VCE = 3 V, IC = 30 mA f = 2 GHz Collector base capacitance CCB – 0.15 0.3 pF VCB = 2 V, VBE = 0 f = 1 MHz Emitter grounded Collector emitter capacitance CCE – 0.46 – pF VCE = 2 V, VBE = 0 f = 1 MHz Base grounded Emitter base capacitance CEB – 0.55 – pF VEB = 0.5 V, VCB = 0 f = 1 MHz Collector grounded Data Sheet 11 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 5.3 Frequency Dependent AC Characteristics Measurement setup is a test fixture with Bias T’s in a 50 Ω system, TA = 25 °C VC Top View Bias -T OUT C E VB E B Bias-T (Pin 1) IN Figure 5-1 BFP420F Testing Circuit Table 5-3 AC Characteristics, f = 150 MHz Parameter Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Data Sheet Symbol Gms Gms Gms S21 S21 S21 NFmin Gass NFmin Gass Values Min. Typ. Max. – – – 30 34.5 37 – – – 22 30 33 – – – 0.9 24 – – 1.4 29 – – Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA – – – – – VCE = 3 V, IC = 15 mA – – dB OIP3 OP1dB – – 21 7 – – OIP3 OP1dB – 25 15.5 – – 12 ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics Table 5-4 AC Characteristics, f = 450 MHz Parameter Symbol Values Min. Typ. Max. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Gms Gms Gms – – – 25 29 31 – – – Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point S21 S21 S21 – – – 21 27 28.5 – – – Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Table 5-5 NFmin Gass – – 0.9 22.5 – – NFmin Gass – – 1.4 27 – – Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA dB OIP3 OP1dB OIP3 OP1dB – – 21.5 8 – 26.5 16.5 – – ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA – – AC Characteristics, f = 900 MHz Parameter Symbol Values Min. Typ. Max. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Gms Gms Gms – – – 22 25 26.5 – – – Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point S21 S21 S21 – – – 19 23 24 – – – Data Sheet Unit 13 Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics Table 5-5 AC Characteristics, f = 900 MHz (cont’d) Parameter Symbol Values Min. Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Table 5-6 Note / Test Condition dB ZS = ZSoptN VCE = 3 V, IC = 4 mA Max. NFmin Gass – – 0.95 20 – – NFmin Gass – – 1.4 23 – – VCE = 3 V, IC = 15 mA dB OIP3 OP1dB OIP3 OP1dB 23.5 8 – – 27.5 17 – – – ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA – – AC Characteristics, f = 1500 MHz Parameter Symbol Values Min. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Data Sheet Typ. Unit Gms Gms Gma S21 S21 S21 – – – Typ. 19 22 22 – – – 16 19 19,5 Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA Max. – – – – – – NFmin Gass – – 1 16.5 – – NFmin Gass – – 1.5 19 – – VCE = 3 V, IC = 15 mA dB OIP3 OP1dB – – 22.5 7 – – OIP3 OP1dB – – 27.5 16 – – 14 ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics Table 5-7 AC Characteristics, f = 1900 MHz Parameter Symbol Values Min. Typ. Max. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Gms Gma Gma – – – 18 19.5 19 – – – Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point S21 S21 S21 – – – 14 16.5 17 – – – Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Table 5-8 NFmin Gass – – 1.1 15 – – NFmin Gass – – 1.5 17 – – Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA dB OIP3 OP1dB OIP3 OP1dB – – 24 9 – 28 17 – – ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA – – AC Characteristics, f = 2400 MHz Parameter Symbol Values Min. Typ. Max. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Gms Gma Gma – – – 16.5 16.5 16.5 – – – Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point S21 S21 S21 – – – 12 14.5 15 – – – Data Sheet Unit 15 Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics Table 5-8 AC Characteristics, f = 2400 MHz (cont’d) Parameter Symbol Values Min. Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Table 5-9 Note / Test Condition dB ZS = ZSoptN VCE = 3 V, IC = 4 mA Max. NFmin Gass – – 1.2 12.5 – – NFmin Gass – – 1.6 15 – – VCE = 3 V, IC = 15 mA dB OIP3 OP1dB OIP3 OP1dB 24.5 8.5 – – 28 16.5 – – – ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA – – AC Characteristics, f = 3500 MHz Parameter Symbol Values Min. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output Data Sheet Typ. Unit Gma Gma Gma S21 S21 S21 – – – Typ. 11.5 12.5 13 – – – 9 11 11.5 Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA Max. – – – – – – NFmin Gass – – 1.6 10 – – NFmin Gass – – 1.8 11.5 – – VCE = 3 V, IC = 15 mA dB OIP3 OP1dB – – 22 8 – – OIP3 OP1dB – 26 17 – – 16 ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics Table 5-10 AC Characteristics, f = 5500 MHz Parameter Symbol Values Min. Typ. Max. Maximum Power Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point Gma Gma Gma – – – 7.5 8.5 9 – – – Transducer Gain @ low noise operating point @ recommended trade off oper. point @ max. linearity operating point S21 S21 S21 – – – 5.5 7 8 – – – Noise Figure @ low noise operating point Minimum noise figure Associated gain @ recommended trade off oper. point Minimum noise figure Associated gain Linearity @ recommended trade off oper. point 3rd order intercept point at output 1 dB gain compression point at output @ max. linearity operating point 3rd order intercept point at output 1 dB gain compression point at output NFmin Gass – – 2.2 5 – – NFmin Gass – – 2.3 8 – – Unit Note / Test Condition dB ZS = ZSoptG, ZL = ZLoptG VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZL = 50 Ω VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA dB ZS = ZSoptN VCE = 3 V, IC = 4 mA VCE = 3 V, IC = 15 mA dB OIP3 OP1dB – – 22 8.5 – – – 26 17 OIP3 OP1dB – – ZS = ZL = 50 Ω VCE = 3 V, IC = 15 mA VCE = 4 V, IC = 40 mA Notes 1. Gms = IS21 / S12I for k < 1; Gma = IS21 / S12I(k-(k2-1)1/2) for k > 1 2. In order to get the NFmin values stated in this chapter the test fixture losses have been subtracted from all measured results. 3. OIP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.2 MHz to 12 GHz. Data Sheet 17 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 5.4 Characteristic DC Diagrams 65 I = 725µA B I = 675µA B IB = 625µA I = 575µA B IB = 525µA I = 475µA B I = 425µA B IB = 375µA IB = 325µA IB = 275µA I = 225µA B I = 175µA 60 55 50 45 IC [mA] 40 35 30 25 20 B 15 IB = 125µA 10 I = 75µA B 5 0 IB = 25µA 0 1 2 3 V CE 4 5 6 [V] Figure 5-2 Collector Current vs. Collector Emitter Voltage IC = f (VCE), IB = Parameter in μA 2 hFE 10 1 10 −1 10 0 1 10 10 I C 2 10 [mA] Figure 5-3 DC Current Gain hFE = f (IC), VCE = 3 V Data Sheet 18 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 2 10 1 10 0 10 IC [mA] −1 10 −2 10 −3 10 −4 10 −5 10 0.5 0.6 0.7 0.8 V BE 0.9 1 [V] Figure 5-4 Collector Current vs. Base Emitter Voltage IC = f (VBE), VCE = 3 V 0 10 −1 10 −2 10 IB [mA] −3 10 −4 10 −5 10 −6 10 −7 10 0.5 0.6 0.7 0.8 V BE 0.9 1 [V] Figure 5-5 Base Current vs. Base Emitter Forward Voltage IB = f (VBE), VCE = 3 V Data Sheet 19 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics −6 10 −7 10 −8 IB [A] 10 −9 10 −10 10 −11 10 0.3 0.5 0.7 0.9 VEB [V] 1.1 1.3 1.5 Figure 5-6 Base Current vs. Base Emitter Reverse Voltage IB = f (VEB), VCE = 3 V 8 C 7.5 B E VCER [V] 7 RBE 6.5 6 5.5 5 4 10 5 6 10 10 R BE 7 10 [Ω] Figure 5-7 Collector Emitter Breakdown Voltage VCER = f (RBE), IC = 1 mA Data Sheet 20 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 5.5 Characteristic AC Diagrams 28 26 4.00V 3.00V 24 22 2.00V 20 fT [GHz] 18 16 14 1.00V 12 10 8 6 4 2 0 0 10 20 30 40 I [mA] C 50 60 70 OIP3 [dBm] Figure 5-8 Transition Frequency fT = f (IC), f = 2 GHz, VCE = Parameter in V 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 −2 −4 3V, 900MHz 4V, 900MHz 3V, 1900MHz 4V, 1900MHz 0 10 20 30 IC [mA] 40 50 60 Figure 5-9 3rd Order Intercept Point OIP3 = f (IC), ZS = ZL= 50 Ω, VCE, f = Parameters Data Sheet 21 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 18 24 22 23 17 50 21 55 25 20 1415 19 16 60 25 26 24 28 23 35 30 27 17 25 26 20 24 21 19 15 22 20 10 1 18 7 5 28 27 25 IC [mA] 40 22 2 1 14 13 12 15 18 16 20 19 45 27 26 26 25 23 1.5 2 25 24 23 22 21 20 19 1 27 21 20 2.5 VCE [V] 3 24 23 22 3.5 4 15 15 14 8 30 14 13 25 20 10 2 1 5 0 1 6 4 11 5 10 7 3 1.5 12 9 8 2 1 0 2 13 12 9 7 10 16 13 16 7 9 10 11 12 13 4 6 35 5 IC [mA] 40 15 17 3 50 45 15 14 8 5 55 12 9 10 6 4 60 7 Figure 5-10 3rd Order Intercept Point at output OIP3 [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz 4 6 5 8 11 10 9 8 7 3 2.5 VCE [V] 2 1 0 3 4 6 5 3 3.5 11 7 2 1 0 4 Figure 5-11 Compression Point at output OP1dB [dBm]= f (IC, VCE), ZS = ZL= 50 Ω, f = 1900 MHz Data Sheet 22 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 0.3 CCB [pF] 0.24 0.18 0.12 0.06 0 0 0.5 1 1.5 2 V CB 2.5 3 3.5 4 [V] Figure 5-12 Collector Base Capacitance CCB = f (VCB), f = 1 MHz 40 35 30 Gms G [dB] 25 20 G ma 15 |S |2 21 10 5 0 0 1 2 3 f [GHz] 4 5 6 Figure 5-13 Gain Gma, Gms, IS21I² = f (f), VCE = 3 V, IC = 15 mA Data Sheet 23 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 39 0.15GHz 36 33 0.45GHz 30 G [dB] 27 0.90GHz 24 21 1.50GHz 18 1.90GHz 2.40GHz 15 12 3.50GHz 9 5.50GHz 6 3 0 10 20 30 40 I [mA] C 50 60 70 80 Figure 5-14 Maximum Power Gain Gmax = f (IC), VCE = 3 V, f = Parameter in GHz 39 36 0.15GHz 33 30 0.45GHz G [dB] 27 0.90GHz 24 1.50GHz 1.90GHz 21 18 2.40GHz 15 3.50GHz 12 9 5.50GHz 6 3 0 1 2 3 VCE [V] 4 5 6 Figure 5-15 Maximum Power Gain Gmax = f (VCE), IC = 15 mA, f = Parameter in GHz Data Sheet 24 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 1 1.5 0.5 2 0.4 3 0.3 4 0.2 5 0.03 to 6 GHz 0.1 10 step: 1 GHz 4 mA 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 15 mA 40 mA −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 5-16 Input Matching S11 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA 1 1.5 0.5 2 0.4 3 0.3 2.4GHz 4 3.5GHz 0.2 5 1.9GHz 0.9GHz 0.1 10 0.45GHz 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 I = 4.0mA c −0.1 −10 Ic = 15mA −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 5-17 Source Impedance for Minimum Noise Figure Zopt = f (f), VCE = 3 V, IC = 4 / 15 mA Data Sheet 25 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 1 1.5 0.5 2 0.4 3 0.3 4 0.2 5 0.03 to 6 GHz 0.1 10 step: 1 GHz 4 mA 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 15 mA 40 mA −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 5-18 Output Matching S22 = f (f), VCE = 3 V, IC = 4 / 15 / 40 mA 2 1.8 1.6 NFmin [dB] 1.4 1.2 1 0.8 I = 16mA C 0.6 I = C 4mA 0.4 0.2 0 0 0.5 1 1.5 2 f [GHz] 2.5 3 3.5 4 Figure 5-19 Noise Figure NFmin = f (f), VCE = 3 V, IC = 4 / 16 mA, ZS = Zopt Data Sheet 26 Revision 1.1, 2012-11-07 BFP420F Electrical Characteristics 2.6 2.4 2.2 2 NFmin [dB] 1.8 1.6 1.4 f = 3.5GHz 1.2 f = 2.4GHz 1 f = 1.9GHz 0.8 f = 0.9GHz 0.6 f = 0.45GHz 0.4 0 5 10 15 20 Ic [mA] 25 30 35 Figure 5-20 Noise Figure NFmin = f (IC), VCE = 3 V, ZS = Zopt, f = Parameter in GHz 3.4 3.2 3 2.8 2.6 NF50 [dB] 2.4 2.2 2 1.8 1.6 f = 3.5GHz 1.4 f = 2.4GHz 1.2 f = 1.9GHz 1 f = 0.9GHz 0.8 0.6 f = 0.45GHz 0 5 10 15 20 Ic [mA] 25 30 35 Figure 5-21 Noise Figure NF50 = f (IC), VCE = 3 V, ZS = 50 Ω, f = Parameter in GHz Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves. TA = 25 °C. Data Sheet 27 Revision 1.1, 2012-11-07 BFP420F Simulation Data 6 Simulation Data For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please consult our website and download the latest versions before actually starting your design. You find the BFP420F SPICE GP model on the official homepage of Infineon RF transistors in MWO- and ADSformat, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC- and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device. The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP420F SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted. Data Sheet 28 Revision 1.1, 2012-11-07 BFP420F Package Information TSFP-4-1 7 Package Information TSFP-4-1 0.2 ±0.05 2 10° MAX. 1 3 1.2 ±0.05 0.2 ±0.05 4 0.55 ±0.04 0.8 ±0.05 1.4 ±0.05 0.2 ±0.05 0.15 ±0.05 0.5 ±0.05 0.5 ±0.05 TSFP-4-1, -2-PO V04 Figure 7-1 Package Outline 0.9 0.45 0.35 0.5 0.5 TSFP-4-1, -2-FP V04 Figure 7-2 Package Footprint Figure 7-3 Marking Description (Marking BFP420F: AMs) 0.2 Pin 1 8 1.4 4 0.7 1.55 TSFP-4-1, -2-TP V05 Figure 7-4 Tape Dimensions Data Sheet 29 Revision 1.1, 2012-11-07 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG