MC33078, MC33079 Low Noise Dual/Quad Operational Amplifiers The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes). http://onsemi.com MARKING DIAGRAMS DUAL MC33078P AWL YYWWG PDIP−8 P SUFFIX CASE 626 8 1 1 Features • • • • • • • • • • • • 8 Dual Supply Operation: $5.0 V to $18 V 8 Low Voltage Noise: 4.5 nV/ ǸHz Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 mV/°C Low Total Harmonic Distortion: 0.002% High Gain Bandwidth Product: 16 MHz High Slew Rate: 7.0 V/ms High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability Large Output Voltage Swing: +14.1 V/ −14.6 V ESD Diodes Provided on the Inputs Pb−Free Packages are Available 8 1 14 PDIP−14 P SUFFIX CASE 646 14 1 14 R2 Q9 Q5 Neg Pos J1 Amplifier Biasing D3 Q11 R7 C2 Q8 Q3 D4 Z1 Q1 R1 D2 C1 R3 R4 Q7 R6 MC33079DG AWLYWW 1 A WL, L YY, Y WW, W G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package C3 R9 Q6 Q2 SOIC−14 D SUFFIX CASE 751A VCC Q4 MC33079P AWLYYWWG 1 1 Q3 1 33078 ALYW G QUAD 14 D1 SOIC−8 D SUFFIX CASE 751 Q10 Q12 Vout ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. R5 VEE Figure 1. Representative Schematic Diagram (Each Amplifier) © Semiconductor Components Industries, LLC, 2006 October, 2006 − Rev. 7 1 Publication Order Number: MC33078/D MC33078, MC33079 PIN CONNECTIONS Output 1 DUAL QUAD CASE 626/751 CASE 646/751A 1 8 VCC − 1 + 2 Inputs 1 VEE 3 7 Output 2 − 2 + 4 Output 1 Inputs 1 6 VCC Inputs 2 5 Inputs 2 (Dual, Top View) Output 2 1 14 2 13 * 1 3 ) * ) 12 4 4 11 5 ) 10 3 * 9 )2 6 * Output 4 7 8 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V VIDR Note 1 V Input Voltage Range VIR Note 1 V Output Short Circuit Duration (Note 2) tSC Indefinite sec Supply Voltage (VCC to VEE) Input Differential Voltage Range Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg − 60 to +150 °C ESD Protection at any Pin MC33078 MC33079 − Human Body Model − Machine Model − Human Body Model − Machine Model Vesd 600 200 550 150 V Maximum Power Dissipation PD Note 2 mW Operating Temperature Range TA −40 to +85 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). http://onsemi.com 2 MC33078, MC33079 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics Symbol |VIO| Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (MC33078) TA = +25°C TA = −40° to +85°C (MC33079) TA = +25°C TA = −40° to +85°C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh DVIO/DT Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C IIB Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C IIO Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) VICR Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW) TA = +25°C TA = −40° to +85°C AVOL Min Typ Max − − − − 0.15 − 0.15 − 2.0 3.0 2.5 3.5 − 2.0 − − − 300 − 750 800 − − 25 − 150 175 ±13 ±14 − 90 85 110 − − − Unit mV mV/°C nA nA V dB Output Voltage Swing (VID = $1.0V) RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW VO + VO − VO + VO − VO + VO − − − +13.2 − +13.5 − +10.7 −11.9 +13.8 −13.7 +14.1 −14.6 − − − −13.2 − −14 V Common Mode Rejection (Vin = ±13V) CMR 80 100 − dB Power Supply Rejection (Note 3) VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V PSR 80 105 − dB +15 −20 +29 −37 − − − − − − 4.1 − 8.4 − 5.0 5.5 10 11 Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink ISC Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25°C (MC33078) TA = −40° to +85°C (MC33079) TA = +25°C (MC33079) TA = −40° to +85°C ID 3. Measured with VCC and VEE differentially varied simultaneously. http://onsemi.com 3 mA mA MC33078, MC33079 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics Symbol Min Typ Max Unit SR 5.0 7.0 − V/ms GBW 10 16 − MHz Unity Gain Bandwidth (Open Loop) BW − 9.0 − MHz Gain Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF Am − − −11 − 6.0 − − Phase Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF fm − − 55 40 − − Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Deg CS − −120 − dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%) BWp − 120 − kHz Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD − 0.002 − % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| − 37 − W Differential Input Resistance (VCM = 0 V) Rin − 175 − kW Differential Input Capacitance (VCM = 0 V) Cin − 12 − pF Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) en − 4.5 − nV/ √ Hz Equivalent Input Noise Current (f = 1.0 kHz) in − 0.5 − P, D MAXIMUM POWER DISSIPATION (mW) Channel Separation (f = 20 Hz to 20 kHz) dB 2400 I, IB INPUT BIAS CURRENT (nA) 800 2000 MC33078P & MC33079P 1600 MC33079D 1200 800 MC33078D 400 0 −55 −40 −20 VCM = 0 V TA = 25°C 600 400 200 0 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C) 0 Figure 2. Maximum Power Dissipation versus Temperature 5.0 10 15 VCC, | VEE |, SUPPLY VOLTAGE (V) 20 Figure 3. Input Bias Current versus Supply Voltage 1000 2.0 VCC = +15 V VEE = −15 V VCM = 0 V 800 V, IO INPUT OFFSET VOLTAGE (mV) I, IB INPUT BIAS CURRENT (nA) Hz√pA/ 600 400 200 0 −55 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 VCC = +15 V VEE = −15 V RS = 10 W 1.0 VCM = 0 V AV = +1 Unit 2 0 Figure 4. Input Bias Current versus Temperature Unit 3 −1.0 −2.0 −55 125 Unit 1 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 Figure 5. Input Offset Voltage versus Temperature http://onsemi.com 4 I, IB INPUT BIAS CURRENT (nA) 600 VCC = +15 V VEE = −15 V TA = 25°C 500 400 300 200 100 0 −15 −10 −5.0 0 5.0 10 15 VCM, COMMON MODE VOLTAGE (V) V ICR , INPUT COMMON MODE VOLTAGE RANGE (V) MC33078, MC33079 VCC −0 VCC −0.5 VCC −1.5 Voltage Range VEE +1.5 VEE +1.0 VEE +0 −55 VCC −5.0 125°C 125°C 25°C VEE +5.0 VEE +3.0 VEE +1.0 −55°C 0 1.0 2.0 3.0 I, CC SUPPLY CURRENT (mA) 75 100 4.0 VCC = +15 V VEE = −15 V RL < 100 W VID = 1.0 V Sink 40 Source 30 20 10 −55 Figure 9. Output Short Circuit Current versus Temperature ±15 V VCM = 0 V RL = ∞ VO = 0 V ±10 V ±5.0 V 7.0 6.0 MC33079 5.0 ±15 V 4.0 ±10 V MC33078 ±5.0 V ±4.0 V −25 Supply Voltages 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 50 Figure 8. Output Saturation Voltage versus Load Resistance to Ground 8.0 0 −55 50 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 9.0 2.0 1.0 25 RL, LOAD RESISTANCE TO GROUND (kW) 10 3.0 0 Figure 7. Input Common Mode Voltage Range versus Temperature VCC = +15 V VEE = −15 V 25°C −25 TA, AMBIENT TEMPERATURE (°C) | I|, SC OUTPUT SHORT CIRCUIT CURRENT (mA) VCC −3.0 −VCM VEE +0.5 CMR, COMMON MODE REJECTION (dB) Vsat , OUTPUT SATURATION VOLTAGE (V) −55°C VCC = +3.0 V to +15 V VEE = −3.0 V to −15 V DVIO = 5.0 mV VO = 0 V VCC −1.0 Figure 6. Input Bias Current versus Common Mode Voltage VCC −1.0 +VCM 100 D VCM 140 120 CMR = 20Log 100 80 60 40 Figure 10. Supply Current versus Temperature − ADM + D VCM D VO D VO × ADM VCC = +15 V VEE = −15 V VCM = 0 V DVCM = ±1.5 V TA = 25°C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M Figure 11. Common Mode Rejection versus Frequency http://onsemi.com 5 125 160 20 100 125 −25 10 M 140 DVO/ADM +PSR = 20Log 120 DVCC DVO/ADM −PSR = 20Log DVCC DVCC +PSR 100 GWB, GAIN BANDWIDTH PRODUCT (MHz) PSR, POWER SUPPLY REJECTION (dB) MC33078, MC33079 − ADM DVO + 80 −PSR VEE 60 40 VCC = +15 V VEE = −15 V TA = 25°C 20 0 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 30 20 10 0 10 M 1.0 M RL = 10 kW CL = 0 pF f = 100 kHz TA = 25°C 0 20 20 20 TA = 25°C 15 VO , OUTPUT VOLTAGE (Vp) GWB, GAIN BANDWIDTH PRODUCT (MHz) 15 Figure 13. Gain Bandwidth Product versus Supply Voltage 15 10 VCC = +15 V VEE = −15 V f = 100 kHz RL = 10 kW CL = 0 pF 5.0 0 −55 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) RL = 10 kW RL = 2.0 kW 5.0 0 −5.0 RL = 2.0 kW −10 RL = 10 kW −15 100 −20 125 VO − 0 A, VOL OPEN LOOP VOLTAGE GAIN (dB) 30 25 20 VCC = +15 V VCC = −15 V RL = 2.0 kW AV = +1.0 THD ≤ 1.0% TA = 25°C 10 5.0 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) 20 Figure 15. Maximum Output Voltage versus Supply Voltage 35 15 VO + 10 Figure 14. Gain Bandwidth Product versus Temperature VO , OUTPUT VOLTAGE (Vpp ) 10 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 12. Power Supply Rejection versus Frequency 0 5.0 110 100 90 80 10 M RL = 2.0 kW f ≤ 10 Hz DVO = 2/3 (VCC −VEE) TA = 25°C 0 Figure 16. Output Voltage versus Frequency 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 17. Open Loop Voltage Gain versus Supply Voltage http://onsemi.com 6 20 110 50 105 | Z|, Ω O OUTPUT IMPEDANCE () VCC = +15 V VEE = −15 V RL = 2.0 kW f ≤ 10 Hz DVO = −10 V to +10 V 100 95 90 −55 −25 0 25 50 75 CS, CHANNEL SEPARATION (dB) 20 10 AV = 1000 125 AV = 10 100 k Figure 19. Output Impedance versus Frequency Drive Channel VCC = +15 V VEE = −15 V RL = 2.0 KW DVOD = 20 Vpp TA = 25°C 150 140 MC33079 100 W 10 kW − 120 VOM + 100 W DVOA CS = 20 Log DVOM 100 10 100 1.0 k f, FREQUENCY (Hz) 10 k VCC = +15 V VEE = −15 V VO = 1.0 Vrms TA = 25°C 0.1 VO + 2.0 kW 0.001 100 k 10 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 21. Total Harmonic Distortion versus Frequency 10 SR, SLEW RATE (V/μ s) AV = 100 RA 0.05 Vin Vin = 2/3 (VCC −VEE) TA = 25°C 9.0 AV = 1000 0.1 − + 10 kW VO 2.0 kW AV = 10 AV = 1.0 0.005 − 0.01 1.0 0.01 10 M 1.0 Figure 20. Channel Separation versus Frequency VCC = +15 V VEE = −15 V 0.5 f = 2.0 kHz TA = 25°C AV = 1.0 1.0 M Figure 18. Open Loop Voltage Gain versus Temperature Measurement Channel THD, TOTAL HARMONIC DISTORTION (%) 10 k AV = 100 f, FREQUENCY (Hz) MC33078 110 30 TA, AMBIENT TEMPERATURE (°C) 160 130 100 VCC = +15 V VEE = −15 V VO = 0 V TA = 25°C 40 0 1.0 k THD, TOTAL HARMONIC DISTORTION (%) A, VOL OPEN LOOP VOLTAGE GAIN (dB) MC33078, MC33079 Falling 8.0 7.0 Rising 6.0 5.0 4.0 − 3.0 DVin 2.0 + VO 2.0 kW 1.0 0.001 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms) 8.0 0 9.0 4 Figure 22. Total Harmonic Distortion versus Output Voltage 6 8 10 12 14 16 VCC |VEE| , SUPPLY VOLTAGE (V) 18 Figure 23. Slew Rate versus Supply Voltage http://onsemi.com 7 20 VCC = +15 V VEE = −15 V DVin = 20 V 8.0 Falling Rising 6.0 − DVin 4.0 2.0 −55 −25 VO + 2.0 kW 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 120 100 80 40 135 20 Phase 25°C 20 −55°C 8.0 30 125°C 125°C 6.0 40 4.0 50 VCC = +15 V VEE = −15 V VO = 0 V 0 e, nV/ √ Hz n INPUT REFERRED NOISE VOLTAGE () 1 25°C −55°C 60 1.0 M 10 DVin 125°C VO + 25°C CL −55 °C 60 40 VCC = +15 V VEE = −15 V DVin = 100 mV 0 10 70 1000 100 100 1.0 k 10 k CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF) Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance Figure 27. Overshoot versus Output Load Capacitance 10 VCC = +15 V VEE = −15 V TA = 25°C 50 30 20 10 8.0 5.0 Voltage 3.0 2.0 Current 1.0 100 180 10 M Gain 100 80 10 1.0 k 10 k 100 k f, FREQUENCY (Hz) 20 1.0 k 10 k 0.1 100 k Vn, REFERRED NOISE VOLTAGE nV/ ( √ Hz) 2.0 100 − 80 os, OVERSHOOT (%) CL 10 10 φ m, PHASE MARGIN (DEGREES) VO + 2.0 kW 10 100 in, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz ) A, m OPEN LOOP GAIN MARGIN (dB) 12 Vin 90 Figure 25. Voltage Gain and Phase versus Frequency 0 − Phase Gain Figure 24. Slew Rate versus Temperature 14 45 60 0 1.0 125 0 VCC = +15 V VEE = −15 V RL = 2.0 kW TA = 25°C φ, EXCESS PHASE (DEGREES) SR, SLEW RATE (V/s) μ 10 A, VOL OPEN LOOP VOLTAGE GAIN (dB) MC33078, MC33079 1000 100 VCC = +15 V VEE = −15 V f = 1.0 kHz TA = 25°C Vn(total) = Ǹ(inRs)2 ) en2 ) 4KTRS 10 1.0 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) RS, SOURCE RESISTANCE (W) Figure 28. Input Referred Noise Voltage and Current versus Frequency Figure 29. Total Input Referred Noise Voltage versus Source Resistance http://onsemi.com 8 MC33078, MC33079 14 Am, GAIN MARGIN (dB) 12 R1 8.0 6.0 4.0 2.0 0 60 Gain 10 R2 50 Phase − + φ m , PHASE MARGIN (DEGREES) 70 40 VO 30 VCC = +15 V VEE = −15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25°C 20 10 10 100 1.0 k 10 k 0 100 k RT, DIFFERENTIAL SOURCE RESISTANCE (W) V, O OUTPUT VOLTAGE (5.0 V/DIV) V, O OUTPUT VOLTAGE (5.0 V/DIV) Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance VCC = +15 V VEE = −15 V AV = −1.0 RL = 2.0 kW CL = 100 pF TA = 25°C t, TIME (2.0 ms/DIV) t, TIME (2.0 ms/DIV) Figure 32. Non−inverting Amplifier Slew Rate e, n INPUT NOISE VOLTAGE (100 nV/DIV) Figure 31. Inverting Amplifier Slew Rate V, O OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25°C VCC = +15 V VEE = −15 V RL = 2.0 kW CL = 100 pF AV = +1.0 TA = 25°C t, TIME (200 ms/DIV) VCC = +15 V VEE = −15 V BW = 0.1 Hz to 10 Hz TA = 25°C t, TIME (1.0 sec/DIV) Figure 33. Non−inverting Amplifier Overshoot Figure 34. Low Frequency Noise Voltage versus Time http://onsemi.com 9 MC33078, MC33079 0.1 mF 10 W 100 kW − 2.0 kW + D.U.T. + 1/2 4.7 mF 4.3 kW MC33078 − 100 kW Voltage Gain = 50,000 22 mF Scope ×1 Rin = 1.0 MW 2.2 mF 110 kW 24.3 kW 0.1 mF Note: All capacitors are non−polarized. Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp−p) ORDERING INFORMATION Device MC33078D Package SOIC−8 MC33078DG SOIC−8 (Pb−Free) MC33078DR2 SOIC−8 MC33078DR2G MC33078P Shipping † SOIC−8 (Pb−Free) 98 Units / Rail 2500 / Tape & Reel PDIP−8 MC33078PG PDIP−8 (Pb−Free) MC33079D SOIC−14 MC33079DG SOIC−14 (Pb−Free) MC33079DR2 SOIC−14 MC33079DR2G SOIC−14 (Pb−Free) MC33079P PDIP−14 MC33079PG PDIP−14 (Pb−Free) 50 Units / Rail 55 Units / Rail 2500 / Tape & Reel 25 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 10 MC33078, MC33079 PACKAGE DIMENSIONS PDIP−8 P SUFFIX CASE 626−05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 −B− 1 4 F −A− NOTE 2 L C J −T− N SEATING PLANE D H M K G 0.13 (0.005) M T A M B M http://onsemi.com 11 DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040 MC33078, MC33079 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AH −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 1 0.25 (0.010) M Y M 4 −Y− K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8 _ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC33078, MC33079 PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C −T− SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 13 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10 _ 0.38 1.01 MC33078, MC33079 SOIC−14 CASE 751A−03 ISSUE H NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 14 8 −B− P 7 PL 0.25 (0.010) M 7 1 G −T− D 14 PL 0.25 (0.010) T B S A DIM A B C D F G J K M P R J M K M F R X 45 _ C SEATING PLANE B M S MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 SOLDERING FOOTPRINT* 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC33078/D