Freescale Semiconductor Technical Data Document Number: DSP56362 Rev. 4, 08/2006 DSP56362 24-Bit Audio Digital Signal Processor 1 Overview Freescale Semiconductor, Inc. designed the DSP56362 to support digital audio applications requiring digital audio compression and decompression, sound field processing, acoustic equalization, and other digital audio algorithms. The DSP56362 uses the high performance, single-clock-per-cycle DSP56300 core family of programmable CMOS digital signal processors (DSPs) combined with the audio signal processing capability of the Freescale Symphony™ DSP family, as shown in Figure 1-1. This design provides a two-fold performance increase over Freescale’s popular Symphony family of DSPs while retaining code compatibility. Significant architectural enhancements include a barrel shifter, 24-bit addressing, instruction cache, and direct memory access (DMA). The DSP56362 offers 100 million instructions per second (MIPS) using an internal 100 MHz clock at 3.3 V. Contents 1 2 3 4 5 6 A B Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Signal/Connection Descriptions . . . . . . . . . 2-1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Design Considerations . . . . . . . . . . . . . . . . 5-1 Ordering Information . . . . . . . . . . . . . . . . . . 6-1 Power Consumption Benchmark . . . . . . . . A-1 IBIS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 This document contains information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2006. All rights reserved. Overview Data Sheet Conventions This data sheet uses the following conventions: OVERBAR Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when low.) “asserted” Means that a high true (active high) signal is high or that a low true (active low) signal is low “deasserted” Means that a high true (active high) signal is low or that a low true (active low) signal is high Examples: Signal/Symbol Logic State Signal State Voltage* PIN True Asserted VIL / VOL PIN False Deasserted VIH / VOH PIN True Asserted VIH / VOH PIN False Deasserted VIL / VOL Note: *Values for VIL, VOL, VIH, and VOH are defined by individual product specifications. Host Interface ESAI SHI Peripheral Expansion Area Program RAM/ Y Data X Data Instruction RAM RAM Cache 5632 × 24 5632 × 3072 × 24 Memory ROM Program ROM 24 Expansion 30K × 24 6144 × ROM Area Bootstrap ROM 24 6144 × 24 192 × 24 YAB XAB PAB DAB XM_EB 5 24-Bit DSP56300 Core DDB YDB XDB PDB GDB Internal Data Bus Switch EXTAL Clock Generator PLL Program Interrupt Controller Program Decode Controller CLKOUT RESET PINIT/NMI YM_EB Address Generation Unit Six Channel DMA Unit 12 PIO_EB DAX (SPDIF) Triple Timer 16 PM_EB 2 18 External Address Bus Address Switch DRAM/SRAM Bus 11 Interface & I - Cache Control Control External Data Bus Switch Power Mngmnt. Data ALU Program 24 ¥ 24 + 56 Æ 56-bit MAC JTAG Address Two 56-bit Accumulators Generator OnCE™ 56-bit Barrel Shifter MODA/IRQA MODB/IRQB MODC/IRQC MODD/IRQD 24 Data 6 AA0456G Figure 1-1 DSP56362 Block Diagram DSP56362 Technical Data, Rev. 4 1-2 Freescale Semiconductor Overview 1.1 • • • Features Multimode, multichannel decoder software functionality — Dolby Digital and Pro Logic — MPEG2 5.1 — DTS — Bass management Digital audio post-processing capabilities — 3D Virtual surround sound — Lucasfilm THX5.1 — Soundfield processing — Equalization Digital Signal Processing Core — 100 MIPS with a 100 MHz clock at 3.3 V +/- 5% — Object code compatible with the DSP56000 core — Highly parallel instruction set — Data arithmetic logic unit (ALU) – Fully pipelined 24 x 24-bit parallel multiplier-accumulator (MAC) – 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing) – Conditional ALU instructions – 24-bit or 16-bit arithmetic support under software control — Program control unit (PCU) – Position independent code (PIC) support – Addressing modes optimized for DSP applications (including immediate offsets) – On-chip instruction cache controller – On-chip memory-expandable hardware stack – Nested hardware DO loops – Fast auto-return interrupts — Direct memory access (DMA) – Six DMA channels supporting internal and external accesses – One-, two-, and three- dimensional transfers (including circular buffering) – End-of-block-transfer interrupts – Triggering from interrupt lines and all peripherals — Phase-locked loop (PLL) – Software programmable PLL-based frequency synthesizer for the core clock – Allows change of low-power divide factor (DF) without loss of lock – Output clock with skew elimination — Hardware debugging support DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 1-3 Overview • – On-Chip Emulation (OnCE‘) module – Joint Action Test Group (JTAG) test access port (TAP) – Address trace mode reflects internal program RAM accesses at the external port On-Chip Memories — Modified Harvard architecture allows simultaneous access to program and data memories — 30720 x 24-bit on-chip program ROM1 (disabled in 16-bit compatibility mode) — 6144 x 24-bit on-chip X-data ROM1 — 6144 x 24-bit on-chip Y-data ROM1 — Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable . • • Instruction Cache Switch Mode Program RAM Size Instruction Cache Size Disabled Disabled 3072 × 24-bit 0 5632 × 24-bit 5632 × 24-bit Enabled Disabled 2048 × 24-bit 1024 × 24-bit 5632 × 24-bit 5632 × 24-bit Disabled Enabled 5120 × 24-bit 0 5632 × 24-bit 3584 × 24-bit Enabled Enabled 4096 × 24-bit 1024 × 24-bit 5632 × 24-bit 3584 × 24-bit X Data RAM Size Y Data RAM Size — 192 x 24-bit bootstrap ROM (disabled in sixteen-bit compatibility mode) Off-Chip Memory Expansion — Data memory expansion to 256K x 24-bit word memory for P, X, and Y memory using SRAM. — Data memory expansion to 16M x 24-bit word memory for P, X, and Y memory using DRAM. — External memory expansion port( twenty-four data pins for high speed external memory access allowing for a large number of external accesses per sample) — Chip select logic for glueless interface to SRAMs — On-chip DRAM controller for glueless interface to DRAMs Peripheral and Support Circuits — Enhanced serial audio interface (ESAI) includes: – Six serial data lines, 4 selectable as receive or transmit and 2 transmit only. – Master or slave capability – I2S, Sony, AC97, and other audio protocol implementations — Serial host interface (SHI) features: – SPI protocol with multi-master capability – I2C protocol with single-master capability – Ten-word receive FIFO – Support for 8-, 16-, and 24-bit words. — Byte-wide parallel host interface (HDI08) with DMA support — DAX features one serial transmitter capable of supporting S/PDIF, IEC958, IEC1937, CP-340, and AES/EBU digital audio formats; alternate configuration supports up to two GPIO lines 1. These ROMs may be factory programmed with data or programs provided by the application developer. DSP56362 Technical Data, Rev. 4 1-4 Freescale Semiconductor Overview • 1.2 • 1.3 — Triple timer module with single external interface or GPIO line — On-chip peripheral registers are memory mapped in data memory space Reduced Power Dissipation — Very low-power (3.3 V) CMOS design — Wait and stop low-power standby modes — Fully-static logic, operation frequency down to 0 Hz (dc) — Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent) Package 144-pin plastic thin quad flat pack (LQFP) surface-mount package Documentation Table 1-1 lists the documents that provide a complete description of the DSP56362 and are required to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, a Freescale Literature Distribution Center, or through the Freescale DSP home page on the Internet (the source for the latest information). Table 1-1 DSP56362 Documentation Document Name Description Order Number DSP56300 Family Manual Detailed description of the 56000-family architecture and the 24-bit core processor and instruction set DSP56300FM DSP56362 User’s Manual Detailed description of memory, peripherals, and interfaces DSP56362UM DSP56362 Product Brief Brief description of the chip DSP56362 Data Sheet (this document) Electrical and timing specifications; pin and package descriptions DSP56362P DSP56362 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 1-5 Overview NOTES DSP56362 Technical Data, Rev. 4 1-6 Freescale Semiconductor 2 Signal/Connection Descriptions 2.1 Signal Groupings The input and output signals of the DSP56362 are organized into functional groups, which are listed in Table 2-1 and illustrated in Figure 2-1. The DSP56362 is operated from a 3.3 V supply; however, some of the inputs can tolerate 5 V. A special notice for this feature is added to the signal descriptions of those inputs. Table 2-1 DSP56362 Functional Signal Groupings Number of Signals Detailed Description Power (VCC) 20 Table 2-2 Ground (GND) 19 Table 2-3 Clock and PLL 4 Table 2-4 18 Table 2-5 24 Table 2-6 Bus control 11 Table 2-7 Interrupt and mode control 5 Table 2-8 16 Table 2-9 5 Table 2-10 Functional Group Address bus 1 Data bus HDI08 Port A Port B2 SHI ESAI Port C3 12 Table 2-11 Digital audio transmitter (DAX) Port D4 2 Table 2-12 Timer 1 Table 2-13 JTAG/OnCE Port 6 Table 2-14 1 Port A is the external memory interface port, including the external address bus, data bus, and control signals. Port B signals are the GPIO port signals which are multiplexed with the HDI08 signals. 3 Port C signals are the GPIO port signals which are multiplexed with the ESAI signals. 4 Port D signals are the GPIO port signals which are multiplexed with the DAX signals. 2 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-1 Signal Groupings DSP56362 VCCP VCCQH VCCQL VCCA VCCD VCCC VCCH VCCS 3 4 3 4 2 2 GNDP GNDP1 GNDQ GNDA GNDD GNDC GNDH GNDS 4 4 4 2 2 EXTAL CLKOUT PCAP PINIT/NMI Power Inputs: PLL External I/O Internal Logic Address Bus Data Bus Bus Control HDI08 SHI/ESAI/DAX/Timer Grounds: PLL PLL Internal Logic Address Bus Data Bus Bus Control HDI08 SHI/ESAI/DAX/Timer 8 Host Interface (HDI08) Port1 Serial Host Interface (SHI) PLL D0–D23 AA0–AA3/ RAS0–RAS3 CAS RD WR TA BR BG BB 1. 2. I2C Mode HA0 HA2 SDA SCL HREQ SCKR FSR HCKR SCKT FST HCKT SDO5/SDI0 SDO4/SDI1 SDO3/SDI2 SDO2/SDI3 SDO1 SDO0 Port C GPIO PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 External Address Bus 24 External Data Bus 4 Enhanced Serial Audio Interface (ESAI)2 External Bus Control Digital Audio Transmitter (DAX)2 ACI ADO Timer 02 TIO0 Port B GPIO PB0–PB7 PB8 PB9 PB10 PB13 PB11 PB12 PB14 PB15 Port D GPIO PD0 PD1 Timer GPIO TIO0 TCK TDI TDO JTAG/OnC TMS E Port TRST AA0601 DE The HDI08 port supports a nonmultiplexed or a multiplexed bus, single or double data strobe (DS), and single or double host request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HDI08 signals can also be configured alternately as GPIO signals (PB0–PB15). Signals with dual designations (e.g., HAS/HAS) have configurable polarity. The ESAI signals are multiplexed with the port C GPIO signals (PC0–PC11). The DAX signals are multiplexed with the Port D GPIO signals (PD0–PD1). The timer 0 signal can be configured alternately as the timer GPIO signal (TIO0). MODA/IRQA MODB/IRQB MODC/IRQC MODD/IRQD RESET Notes: 18 Multiplexed Bus HAD0–HAD7 HAS/HAS HA8 HA9 HA10 Double DS HRD/HRD HWR/HWR Double HR HTRQ/HTRQ HRRQ/HRRQ SPI Mode MOSI SS MISO SCK HREQ Clock and Port A A0–A17 Non-Multiplexe d Bus H0–H7 HA0 HA1 HA2 HCS/HCS Single DS HRW HDS/HDS Single HR HOREQ/HOREQ HACK/HACK Interrupt/ Mode Control Figure 2-1 Signals Identified by Functional Group DSP56362 Technical Data, Rev. 4 2-2 Freescale Semiconductor Power 2.2 Power Table 2-2 Power Inputs Power Name Description VCCP PLL Power—VCCP is VCC dedicated for PLL use. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the VCC power rail. There is one VCCP input. VCCQL (4) Quiet Core (Low) Power—VCCQL is an isolated power for the core processing logic. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four VCCQ inputs. VCCQH (3) Quiet External (High) Power—VCCQH is a quiet power source for I/O lines. This input must be tied externally to all other chip power inputs. The user must provide adequate decoupling capacitors. There are three VCCQH inputs. VCCA (3) Address Bus Power—VCCA is an isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are three VCCA inputs. VCCD (4) Data Bus Power—VCCD is an isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are four VCCD inputs. VCCC (2) Bus Control Power—VCCC is an isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two VCCC inputs. VCCH Host Power—VCCH is an isolated power for the HDI08 I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There is one VCCH input. VCCS (2) SHI, ESAI, DAX, and Timer Power—VCCS is an isolated power for the SHI, ESAI, DAX, and Timer I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide adequate external decoupling capacitors. There are two VCCS inputs. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-3 Ground 2.3 Ground Table 2-3 Grounds Ground Name Description GNDP PLL Ground—GNDP is a ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. VCCP should be bypassed to GNDP by a 0.47 µF capacitor located as close as possible to the chip package. There is one GNDP connection. GNDP1 PLL Ground 1—GNDP1 is a ground dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. There is one GNDP1 connection. GNDQ (4) Quiet Ground—GNDQ is an isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GNDQ connections. GNDA (4) Address Bus Ground—GNDA is an isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GNDA connections. GNDD (4) Data Bus Ground—GNDD is an isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are four GNDD connections. GNDC (2) Bus Control Ground—GNDC is an isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GNDC connections. GNDH GNDS (2) 2.4 Host Ground—GNDH is an isolated ground for the HDI08 I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There is one GNDH connection. SHI, ESAI, DAX, and Timer Ground—GNDS is an isolated ground for the SHI, ESAI, DAX, and Timer I/O drivers. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. There are two GNDS connections. Clock and PLL Table 2-4 Clock and PLL Signals Signal Name Type State during Reset Signal Description EXTAL Input Input External Clock Input—An external clock source must be connected to EXTAL in order to supply the clock to the internal clock generator and PLL. This input cannot tolerate 5V. CLKOUT Output Chip-Driven Clock Output—CLKOUT provides an output clock synchronized to the internal core clock phase. If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL. If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL. CLKOUT is not functional at frequencies of 100 MHz and above. DSP56362 Technical Data, Rev. 4 2-4 Freescale Semiconductor External Memory Expansion Port (Port A) Table 2-4 Clock and PLL Signals (continued) Signal Name Type State during Reset Signal Description PCAP Input Input PLL Capacitor—PCAP is an input connecting an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to VCCP. If the PLL is not used, PCAP may be tied to VCC, GND, or left floating. Input PINIT/NMI Input PLL Initial/Non maskable Interrupt—During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET deassertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered non maskable interrupt (NMI) request internally synchronized to CLKOUT. PINIT/NMI cannot tolerate 5 V. 2.5 External Memory Expansion Port (Port A) When the DSP56362 enters a low-power standby mode (stop or wait), it releases bus mastership and tri-states the relevant port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS. 2.5.1 External Address Bus Table 2-5 External Address Bus Signals Signal Name Type State during Reset Signal Description A0–A17 Output Tri-Stated Address Bus—When the DSP is the bus master, A0–A17 are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A0–A17 do not change state when external memory spaces are not being accessed. 2.5.2 External Data Bus Table 2-6 External Data Bus Signals Signal Name Type State during Reset Signal Description D0–D23 Input/Output Tri-Stated Data Bus—When the DSP is the bus master, D0–D23 are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D0–D23 are tri-stated. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-5 External Memory Expansion Port (Port A) 2.5.3 External Bus Control Table 2-7 External Bus Control Signals Signal Name Type State during Reset Signal Description AA0–AA3/RA S0–RAS3 Output Tri-Stated Address Attribute or Row Address Strobe—When defined as AA, these signals can be used as chip selects or additional address lines. When defined as RAS, these signals can be used as RAS for DRAM interface. These signals are can be tri-stated outputs with programmable polarity. CAS Output Tri-Stated Column Address Strobe—When the DSP is the bus master, CAS is an active-low output used by DRAM to strobe the column address. Otherwise, if the bus mastership enable (BME) bit in the DRAM control register is cleared, the signal is tri-stated. RD Output Tri-Stated Read Enable—When the DSP is the bus master, RD is an active-low output that is asserted to read external memory on the data bus (D0–D23). Otherwise, RD is tri-stated. WR Output Tri-Stated Write Enable—When the DSP is the bus master, WR is an active-low output that is asserted to write external memory on the data bus (D0–D23). Otherwise, the signals are tri-stated. TA Input Ignored Input Transfer Acknowledge—If the DSP56362 is the bus master and there is no external bus activity, or the DSP56362 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2. . .infinity) may be added to the wait states inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the bus control register (BCR), whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles. In order to use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion, otherwise improper operation may result. TA can operate synchronously or asynchronously, depending on the setting of the TAS bit in the operating mode register (OMR). TA functionality may not be used while performing DRAM type accesses, otherwise improper operation may result. DSP56362 Technical Data, Rev. 4 2-6 Freescale Semiconductor External Memory Expansion Port (Port A) Table 2-7 External Bus Control Signals (continued) Signal Name Type State during Reset Signal Description BR Output Output Bus Request—BR is an active-low output, never tri-stated. BR is asserted when the DSP requests bus mastership. BR is deasserted when the DSP no longer needs the bus. BR may be asserted or deasserted independent of whether the DSP56362 is a bus master or a bus slave. Bus “parking” allows BR to be deasserted even though the DSP56362 is the bus master. (See the description of bus “parking” in the BB signal description.) The bus request hold (BRH) bit in the BCR allows BR to be asserted under software control even though the DSP does not need the bus. BR is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. BR is only affected by DSP requests for the external bus, never for the internal bus. During hardware reset, BR is deasserted and the arbitration is reset to the bus slave state. (deasserted) BG Input Ignored Input Bus Grant—BG is an active-low input. BG is asserted by an external bus arbitration circuit when the DSP56362 becomes the next bus master. When BG is asserted, the DSP56362 must wait until BB is deasserted before taking bus mastership. When BG is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution. The default mode of operation of this signal requires a setup and hold time referred to CLKOUT. But CLKOUT operation is not guaranteed from 100MHz and up, so the asynchronous bus arbitration must be used for clock frequencies 100MHz and above. The asynchronous bus arbitration is enabled by setting the ABE bit in the OMR register. BB Input/ Output Input Bus Busy—BB is a bidirectional active-low input/output. BB indicates that the bus is active. Only after BB is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep BB asserted after ceasing bus activity regardless of whether BR is asserted or deasserted. This is called “bus parking” and allows the current bus master to reuse the bus without rearbitration until another device requires the bus. The deassertion of BB is done by an “active pull-up” method (i.e., BB is driven high and then released and held high by an external pull-up resistor). The default mode of operation of this signal requires a setup and hold time referred to CLKOUT. But CLKOUT operation is not guaranteed from 100MHz and up, so the asynchronous bus arbitration must be used for clock frequencies 100MHz and above. The asynchronous bus arbitration is enabled by setting the ABE bit in the OMR register. BB requires an external pull-up resistor. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-7 Interrupt and Mode Control 2.6 Interrupt and Mode Control The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset. After RESET is deasserted, these inputs are hardware interrupt request lines. Table 2-8 Interrupt and Mode Control Signal Name Type State during Reset Signal Description MODA/IRQA Input Input Mode Select A/External Interrupt Request A—MODA/IRQA is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODA/IRQA selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the OMR when the RESET signal is deasserted. If IRQA is asserted synchronous to CLKOUT, multiple processors can be resynchronized using the WAIT instruction and asserting IRQA to exit the wait state. If the processor is in the stop standby state and the MODA/IRQA pin is pulled to GND, the processor will exit the stop state. This input is 5 V tolerant. MODB/IRQB Input Input Mode Select B/External Interrupt Request B—MODB/IRQB is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODB/IRQB selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQB is asserted synchronous to CLKOUT, multiple processors can be re-synchronized using the WAIT instruction and asserting IRQB to exit the wait state. This input is 5 V tolerant. MODC/IRQC Input Input Mode Select C/External Interrupt Request C—MODC/IRQC is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODC/IRQC selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQC is asserted synchronous to CLKOUT, multiple processors can be resynchronized using the WAIT instruction and asserting IRQC to exit the wait state. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-8 Freescale Semiconductor Host Interface (HDI08) Table 2-8 Interrupt and Mode Control (continued) Signal Name Type State during Reset Signal Description MODD/IRQD Input Input Mode Select D/External Interrupt Request D—MODD/IRQD is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODD/IRQD selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. If IRQD is asserted synchronous to CLKOUT, multiple processors can be resynchronized using the WAIT instruction and asserting IRQD to exit the wait state. This input is 5 V tolerant. RESET Input Input Reset—RESET is an active-low, Schmitt-trigger input. When asserted, the chip is placed in the reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. If RESET is deasserted synchronous to CLKOUT, exact start-up timing is guaranteed, allowing multiple processors to start synchronously and operate together in “lock-step.” When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted during power up. A stable EXTAL signal must be supplied while RESET is being asserted. This input is 5 V tolerant. 2.7 Host Interface (HDI08) The HDI08 provides a fast, 8-bit, parallel data port that may be connected directly to the host bus. The HDI08 supports a variety of standard buses and can be directly connected to a number of industry standard microcomputers, microprocessors, DSPs, and DMA hardware. 2.7.1 Host Port Configuration Signal functions associated with the HDI08 vary according to the interface operating mode as determined by the HDI08 port control register (HPCR). See 6.5.6 Host Port Control Register (HPCR) on page Section 6-13 for detailed descriptions of this register and (See Host Interface (HDI08) on page Section 6-1.) for descriptions of the other HDI08 configuration registers. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-9 Host Interface (HDI08) Table 2-9 Host Interface Signal Name Type State during Reset Signal Description H0–H7 Input/Output HAD0–HAD7 Input/Output Host Address—When HDI08 is programmed to interface a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the address/data bidirectional, multiplexed, tri-state bus. PB0–PB7 Input, Output, or Disconnected Port B 0–7—When the HDI08 is configured as GPIO, these signals are individually programmable as input, output, or internally disconnected. GPIO Disconnected Host Data—When the HDI08 is programmed to interface a nonmultiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional, tri-state data bus. The default state after reset for these signals is GPIO disconnected. This input is 5 V tolerant. HA0 Input HAS/HAS Input Host Address Strobe—When HDI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is the host address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable, but is configured active-low (HAS) following reset. PB8 Input, output, or disconnected Port B 8—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. GPIO Disconnected Host Address Input 0—When the HDI08 is programmed to interface a nonmultiplexed host bus and the HI function is selected, this signal is line 0 of the host address input bus. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. GPIO Disconnected Host Address Input 1—When the HDI08 is programmed to interface a nonmultiplexed host bus and the HI function is selected, this signal is line 1 of the host address (HA1) input bus. HA1 Input HA8 Input Host Address 8—When HDI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 8 of the host address (HA8) input bus. PB9 Input, Output, or Disconnected Port B 9—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-10 Freescale Semiconductor Host Interface (HDI08) Table 2-9 Host Interface (continued) Signal Name Type State during Reset Signal Description HA2 Input GPIO Disconnected Host Address Input 2—When the HDI08 is programmed to interface a non-multiplexed host bus and the HI function is selected, this signal is line 2 of the host address (HA2) input bus. HA9 Input Host Address 9—When HDI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 9 of the host address (HA9) input bus. PB10 Input, Output, or Disconnected Port B 10—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. HRW Input GPIO Disconnected Host Read/Write—When HDI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input. HRD/HRD Input Host Read Data—When HDI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the host read data strobe (HRD) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HRD) after reset. PB11 Input, Output, or Disconnected Port B 11—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. HDS/HDS Input GPIO Disconnected Host Data Strobe—When HDI08 is programmed to interface a single-data-strobe host bus and the HI function is selected, this signal is the host data strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HDS) following reset. HWR/HWR Input Host Write Data—When HDI08 is programmed to interface a double-data-strobe host bus and the HI function is selected, this signal is the host write data strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable, but is configured as active-low (HWR) following reset. PB12 Input, Output, or Disconnected Port B 12—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-11 Host Interface (HDI08) Table 2-9 Host Interface (continued) Signal Name Type State during Reset Signal Description HCS Input GPIO Disconnected Host Chip Select—When HDI08 is programmed to interface a nonmultiplexed host bus and the HI function is selected, this signal is the host chip select (HCS) input. The polarity of the chip select is programmable, but is configured active-low (HCS) after reset. Host Address 10—When HDI08 is programmed to interface a multiplexed host bus and the HI function is selected, this signal is line 10 of the host address (HA10) input bus. HA10 Input Port B 13—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. PB13 Input, Output, or Disconnected DSP56362 Technical Data, Rev. 4 2-12 Freescale Semiconductor Host Interface (HDI08) Table 2-9 Host Interface (continued) Signal Name Type State during Reset Signal Description HOREQ/HORE Output GPIO Disconnected Host Request—When HDI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the host request (HOREQ) output. The polarity of the host request is programmable, but is configured as active-low (HOREQ) following reset. The host request may be programmed as a driven or open-drain output. HTRQ/HTRQ Output Transmit Host Request—When HDI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the transmit host request (HTRQ) output. The polarity of the host request is programmable, but is configured as active-low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output. PB14 Input, Output, or Disconnected Port B 14—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. GPIO Disconnected Host Acknowledge—When HDI08 is programmed to interface a single host request host bus and the HI function is selected, this signal is the host acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable, but is configured as active-low (HACK) after reset. HACK/HACK Input HRRQ/HRRQ Output Receive Host Request—When HDI08 is programmed to interface a double host request host bus and the HI function is selected, this signal is the receive host request (HRRQ) output. The polarity of the host request is programmable, but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output. PB15 Input, Output, or Disconnected Port B 15—When the HDI08 is configured as GPIO, this signal is individually programmed as input, output, or internally disconnected. The default state after reset for this signal is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-13 Serial Host Interface 2.8 Serial Host Interface The SHI has five I/O signals that can be configured to allow the SHI to operate in either SPI or I2C mode. Table 2-10 Serial Host Interface Signals Signal Name Signal Type State during Reset SCK Input or Output Tri-Stated SCL Input or Output Signal Description SPI Serial Clock—The SCK signal is an output when the SPI is configured as a master and a Schmitt-trigger input when the SPI is configured as a slave. When the SPI is configured as a master, the SCK signal is derived from the internal SHI clock generator. When the SPI is configured as a slave, the SCK signal is an input, and the clock signal from the external master synchronizes the data transfer. The SCK signal is ignored by the SPI if it is defined as a slave and the slave select (SS) signal is not asserted. In both the master and slave SPI devices, data is shifted on one edge of the SCK signal and is sampled on the opposite edge where data is stable. Edge polarity is determined by the SPI transfer protocol. I2C Serial Clock—SCL carries the clock for I2C bus transactions in the I2C mode. SCL is a Schmitt-trigger input when configured as a slave and an open-drain output when configured as a master. SCL should be connected to VCC through a pull-up resistor. This signal is tri-stated during hardware, software, and individual reset. Thus, there is no need for an external pull-up in this state. This input is 5 V tolerant. MISO Input or Output SDA Input or Open-Drain Output Tri-Stated SPI Master-In-Slave-Out—When the SPI is configured as a master, MISO is the master data input line. The MISO signal is used in conjunction with the MOSI signal for transmitting and receiving serial data. This signal is a Schmitt-trigger input when configured for the SPI Master mode, an output when configured for the SPI Slave mode, and tri-stated if configured for the SPI Slave mode when SS is deasserted. An external pull-up resistor is not required for SPI operation. I2C Data and Acknowledge—In I2C mode, SDA is a Schmitt-trigger input when receiving and an open-drain output when transmitting. SDA should be connected to VCC through a pull-up resistor. SDA carries the data for I2C transactions. The data in SDA must be stable during the high period of SCL. The data in SDA is only allowed to change when SCL is low. When the bus is free, SDA is high. The SDA line is only allowed to change during the time SCL is high in the case of start and stop events. A high-to-low transition of the SDA line while SCL is high is a unique situation, and is defined as the start event. A low-to-high transition of SDA while SCL is high is a unique situation defined as the stop event. This signal is tri-stated during hardware, software, and individual reset. Thus, there is no need for an external pull-up in this state. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-14 Freescale Semiconductor Serial Host Interface Table 2-10 Serial Host Interface Signals (continued) Signal Name Signal Type State during Reset MOSI Input or Output Tri-Stated HA0 Input Signal Description SPI Master-Out-Slave-In—When the SPI is configured as a master, MOSI is the master data output line. The MOSI signal is used in conjunction with the MISO signal for transmitting and receiving serial data. MOSI is the slave data input line when the SPI is configured as a slave. This signal is a Schmitt-trigger input when configured for the SPI Slave mode. I2C Slave Address 0—This signal uses a Schmitt-trigger input when configured for the I2C mode. When configured for I2C slave mode, the HA0 signal is used to form the slave device address. HA0 is ignored when configured for the I2C master mode. This signal is tri-stated during hardware, software, and individual reset. Thus, there is no need for an external pull-up in this state. This input is 5 V tolerant. SS Input HA2 Input Tri-Stated SPI Slave Select—This signal is an active low Schmitt-trigger input when configured for the SPI mode. When configured for the SPI Slave mode, this signal is used to enable the SPI slave for transfer. When configured for the SPI master mode, this signal should be kept deasserted (pulled high). If it is asserted while configured as SPI master, a bus error condition is flagged. If SS is deasserted, the SHI ignores SCK clocks and keeps the MISO output signal in the high-impedance state. I2C Slave Address 2—This signal uses a Schmitt-trigger input when configured for the I2C mode. When configured for the I2C Slave mode, the HA2 signal is used to form the slave device address. HA2 is ignored in the I2C master mode. This signal is tri-stated during hardware, software, and individual reset. Thus, there is no need for an external pull-up in this state. This input is 5 V tolerant. HREQ Input or Output Tri-Stated Host Request—This signal is an active low Schmitt-trigger input when configured for the master mode but an active low output when configured for the slave mode. When configured for the slave mode, HREQ is asserted to indicate that the SHI is ready for the next data word transfer and deasserted at the first clock pulse of the new data word transfer. When configured for the master mode, HREQ is an input. When asserted by the external slave device, it will trigger the start of the data word transfer by the master. After finishing the data word transfer, the master will await the next assertion of HREQ to proceed to the next transfer. This signal is tri-stated during hardware, software, personal reset, or when the HREQ1–HREQ0 bits in the HCSR are cleared. There is no need for external pull-up in this state. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-15 Enhanced Serial Audio Interface 2.9 Enhanced Serial Audio Interface Table 2-11 Enhanced Serial Audio Interface Signals Signal Name Signal Type HCKR Input or Output GPIO Disconnected High Frequency Clock for Receiver—When programmed as an input, this signal provides a high frequency clock source for the ESAI receiver as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a high-frequency sample clock (e.g., for external digital to analog converters [DACs]) or as an additional system clock. PC2 Input, Output, or Disconnected Port C 2—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. State during Reset Signal Description The default state after reset is GPIO disconnected. This input is 5 V tolerant. HCKT Input or Output GPIO Disconnected High Frequency Clock for Transmitter—When programmed as an input, this signal provides a high frequency clock source for the ESAI transmitter as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a high frequency sample clock (e.g., for external DACs) or as an additional system clock. PC5 Input, Output, or Disconnected Port C 5—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. FSR Input or Output GPIO Disconnected Frame Sync for Receiver—This is the receiver frame sync input/output signal. In the asynchronous mode (SYN=0), the FSR pin operates as the frame sync input or output used by all the enabled receivers. In the synchronous mode (SYN=1), it operates as either the serial flag 1 pin (TEBE=0), or as the transmitter external buffer enable control (TEBE=1, RFSD=1). When this pin is configured as serial flag pin, its direction is determined by the RFSD bit in the RCCR register. When configured as the output flag OF1, this pin will reflect the value of the OF1 bit in the SAICR register, and the data in the OF1 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF1, the data value at the pin will be stored in the IF1 bit in the SAISR register, synchronized by the frame sync in normal mode or the slot in network mode. PC1 Input, Output, or Disconnected Port C 1—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-16 Freescale Semiconductor Enhanced Serial Audio Interface Table 2-11 Enhanced Serial Audio Interface Signals (continued) Signal Name Signal Type FST Input or Output GPIO Disconnected Frame Sync for Transmitter—This is the transmitter frame sync input/output signal. For synchronous mode, this signal is the frame sync for both transmitters and receivers. For asynchronous mode, FST is the frame sync for the transmitters only. The direction is determined by the transmitter frame sync direction (TFSD) bit in the ESAI transmit clock control register (TCCR). PC4 Input, Output, or Disconnected Port C 4—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. State during Reset Signal Description The default state after reset is GPIO disconnected. This input is 5 V tolerant. SCKR Input or Output GPIO Disconnected Receiver Serial Clock—SCKR provides the receiver serial bit clock for the ESAI. The SCKR operates as a clock input or output used by all the enabled receivers in the asynchronous mode (SYN=0), or as serial flag 0 pin in the synchronous mode (SYN=1). When this pin is configured as serial flag pin, its direction is determined by the RCKD bit in the RCCR register. When configured as the output flag OF0, this pin will reflect the value of the OF0 bit in the SAICR register, and the data in the OF0 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF0, the data value at the pin will be stored in the IF0 bit in the SAISR register, synchronized by the frame sync in normal mode or the slot in network mode. PC0 Input, Output, or Disconnected Port C 0—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SCKT Input or Output GPIO Disconnected Transmitter Serial Clock—This signal provides the serial bit rate clock for the ESAI. SCKT is a clock input or output used by all enabled transmitters and receivers in synchronous mode, or by all enabled transmitters in asynchronous mode. PC3 Input, Output, or Disconnected Port C 3—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SDO5 Output GPIO Disconnected Serial Data Output 5—When programmed as a transmitter, SDO5 is used to transmit data from the TX5 serial transmit shift register. SDI0 Input Serial Data Input 0—When programmed as a receiver, SDI0 is used to receive serial data into the RX0 serial receive shift register. PC6 Input, Output, or Disconnected Port C 6—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-17 Enhanced Serial Audio Interface Table 2-11 Enhanced Serial Audio Interface Signals (continued) Signal Name Signal Type SDO4 Output SDI1 Input Serial Data Input 1—When programmed as a receiver, SDI1 is used to receive serial data into the RX1 serial receive shift register. PC7 Input, Output, or Disconnected Port C 7—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. State during Reset Signal Description GPIO Disconnected Serial Data Output 4—When programmed as a transmitter, SDO4 is used to transmit data from the TX4 serial transmit shift register. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SDO3 Output GPIO Disconnected Serial Data Output 3—When programmed as a transmitter, SDO3 is used to transmit data from the TX3 serial transmit shift register. SDI2 Input Serial Data Input 2—When programmed as a receiver, SDI2 is used to receive serial data into the RX2 serial receive shift register. PC8 Input, Output, or Disconnected Port C 8—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SDO2 Output GPIO Disconnected Serial Data Output 2—When programmed as a transmitter, SDO2 is used to transmit data from the TX2 serial transmit shift register. SDI3 Input Serial Data Input 3—When programmed as a receiver, SDI3 is used to receive serial data into the RX3 serial receive shift register. PC9 Input, Output, or Disconnected Port C 9—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SDO1 Output PC10 Input, Output, or Disconnected GPIO Disconnected Serial Data Output 1—SDO1 is used to transmit data from the TX1 serial transmit shift register. Port C 10—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. SDO0 Output PC11 Input, Output, or Disconnected GPIO Disconnected Serial Data Output 0—SDO0 is used to transmit data from the TX0 serial transmit shift register. Port C 11—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-18 Freescale Semiconductor Digital Audio Interface (DAX) 2.10 Digital Audio Interface (DAX) Table 2-12 Digital Audio Interface (DAX) Signals Signal Name Type State During Reset Signal Description ACI Input Disconnected Audio Clock Input—This is the DAX clock input. When programmed to use an external clock, this input supplies the DAX clock. The external clock frequency must be 256, 384, or 512 times the audio sampling frequency (256 × Fs, 384 × Fs or 512 × Fs, respectively). PD0 Input, Output, or Disconnected Port D 0—When the DAX is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. ADO Output PD1 Input, Output, or Disconnected Disconnected Digital Audio Data Output—This signal is an audio and non-audio output in the form of AES/EBU, CP340 and IEC958 data in a biphase mark format. Port D 1—When the DAX is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. This input is 5 V tolerant. 2.11 Timer Table 2-13 Timer Signal Signal Name Type State During Reset Signal Description TIO0 Input or Output Input Timer 0 Schmitt-Trigger Input/Output—When timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a timer input/output through the timer 0 control/status register (TCSR0). If TIO0 is not being used, it is recommended to either define it as GPIO output immediately at the beginning of operation or leave it defined as GPIO input but connected it to Vcc through a pull-up resistor in order to ensure a stable logic level at the input. This input is 5 V tolerant. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 2-19 JTAG/OnCE Interface 2.12 JTAG/OnCE Interface Table 2-14 JTAG/OnCE™ Interface Signal Name Type State During Reset Signal Description TCK Input Input Test Clock—TCK is a test clock input signal used to synchronize the JTAG test logic. It has an internal pull-up resistor. This input is 5 V tolerant. TDI Input Input Test Data Input—TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant. TDO Output Tri-Stated Test Data Output—TDO is a test data serial output signal used for test instructions and data. TDO can be tri-stated and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK. TMS Input Input Test Mode Select—TMS is an input signal used to sequence the test controller’s state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor. This input is 5 V tolerant. TRST Input Input Test Reset—TRST is an active-low Schmitt-trigger input signal used to asynchronously initialize the test controller. TRST has an internal pull-up resistor. The use of TRST is not recommended for new designs. It is recommended to leave TRST disconnected. This input is 5 V tolerant. DE Input/Output Input Debug Event—DE is an open-drain, bidirectional, active-low signal providing, as an input, a means of entering the debug mode of operation from an external command controller, and, as an output, a means of acknowledging that the chip has entered the debug mode. This signal, when asserted as an input, causes the DSP56300 core to finish the current instruction being executed, save the instruction pipeline information, enter the debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters the debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor. This is not a standard part of the JTAG TAP controller. The signal connects directly to the OnCE module to initiate debug mode directly or to provide a direct external indication that the chip has entered the debug mode. All other interface with the OnCE module must occur through the JTAG port. The use of DE is not recommended for new designs. It is recommended to leave DE disconnected. This input is not 5 V tolerant. DSP56362 Technical Data, Rev. 4 2-20 Freescale Semiconductor 3 3.1 Specifications Introduction The DSP56362 is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56362 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed. Finalized specifications will be published after full characterization and device qualifications are complete. 3.2 Maximum Ratings CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled to an appropriate logic voltage level (e.g., either GND or VCC). The suggested value for a pullup or pulldown resistor is 10 kΩ. NOTE In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification will never occur in the same device that has a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist. Table 3-1 Maximum Ratings Symbol Value1, 2 Unit Supply Voltage VCC −0.3 to +4.0 V All input voltages excluding “5 V tolerant” inputs3 VIN GND −0.3 to VCC + 0.3 V All “5 V tolerant” input voltages3 VIN5 GND −0.3 to VCC + 3.95 V I 10 mA Rating1 Current drain per pin excluding VCC and GND DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-1 Thermal Characteristics Table 3-1 Maximum Ratings (continued) Rating1 Symbol Value1, 2 Unit TJ −40 to +105 °C TSTG −55 to +125 °C Operating temperature range Storage temperature 1 GND = 0 V, VCC = 3.3 V ± .16 V, TJ = 0°C to +100°C, CL = 50 pF Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device. 3 CAUTION: All “5 V Tolerant” input voltages must not be more than 3.95 V greater than the supply voltage; this restriction applies to “power on”, as well as during normal operation. In any case, the input voltages cannot be more than 5.75 V. “5 V Tolerant” inputs are inputs that tolerate 5 V. 2 3.3 Thermal Characteristics Table 3-2 Thermal Characteristics Characteristic Junction-to-ambient thermal resistance1 Junction-to-case thermal resistance2 Symbol LQFP Value Unit RθJA or θJA 45.3 °C/W RθJC or θJC 10.1 °C/W ΨJT 5.5 °C/W Thermal characterization parameter 1 Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per SEMI G38-87 in natural convection.(SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111. Measurements were done with parts mounted on thermal test boards conforming to specification EIA/JESD51-3. 2 Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature. 3.4 DC Electrical Characteristics Table 3-3 DC Electrical Characteristics1 Characteristics Supply voltage Symbol Min Typ Max Unit VCC 3.14 3.3 3.46 V Input high voltage V • D(0:23), BG, BB, TA, DE, and PINIT/NMI • MOD2/IRQ2, RESET, and TCK/TDI/TMS/ TRST/ESAI/Timer/HDI08/ SHI(SPI mode) pins VIH 2.0 — VCC VIHP 2.0 — VCC + 3.95 • SHI(I2C mode) pins VCC + 3.95 1.5 • EXTAL3 VIHX • D(0:23), BG, BB, TA, MOD2/IRQ2, RESET, PINIT/NMI • All JTAG/ESAI/Timer/HDI08/ SHI(SPI mode) pins 0.8 × VCC — VCC VIL –0.3 — 0.8 VILP –0.3 — 0.8 –0.3 — 0.3 × VCC Input low voltage V • SHI(I2C mode) pins • EXTAL 3 VILX –0.3 0.2 × VCC DSP56362 Technical Data, Rev. 4 3-2 Freescale Semiconductor AC Electrical Characteristics Table 3-3 DC Electrical Characteristics1 (continued) Characteristics Symbol Min Typ Max Unit Input leakage current IIN –10 — 10 µA High impedance (off-state) input current (@ 2.4 V / 0.4 V) ITSI –10 — 10 µA Output high voltage VOH • TTL (IOH = –0.4 µA) • CMOS (IOH = –10 µA)4 4, 5 Output low voltage VOL • TTL (IOL = 3.0 µA, open-drain pins IOL = 6.7 µA) • CMOS (IOL = 10 µA)4 V 2.4 — VCC – 0.01 — — — 4, 5 — V 0.4 0.01 µA Internal supply current6 (Operating frequency 100MHz for current measurements) • In Normal mode ICCI — 127 181 • In Wait mode ICCW — 7. 5 11 ICCS — 100 150 — 1 2.5 µA — — 10 pF 7 • In Stop mode PLL supply current Input capacitance4 1 2 3 4 5 6 7 CIN VCC = 3.3 V ± 5% V; TJ = 0°C to +100°C, CL = 50 pF Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins. Driving EXTAL to the low VIHX or the high VILX value may cause additional power consumption (DC current). To minimize power consumption, the minimum VIHX should be no lower than 0.9 VCC and the maximum VILX should be no higher than 0.1 VCC. Periodically sampled and not 100% tested. This characteristic does not apply to PCAP. Section 5.3, "Power Consumption Considerations" provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is measured with VCC = 3.3 V at TJ = 100°C. Maximum internal supply current is measured with VCC = 3.46 V at TJ = 100°C. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed to float). 3.5 AC Electrical Characteristics The timing waveforms shown in the AC electrical characteristics section are tested with a VIL maximum of 0.3 V and a VIH minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal's transition. DSP56362 output levels are measured with the production test machine VOL and VOH reference levels set at 0.4 V and 2.4 V, respectively. NOTE Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-3 Internal Clocks 3.6 Internal Clocks Table 3-4 Internal Clocks, CLKOUT Expression1, 2 Characteristics Symbol Min Typ Max Internal operation frequency and CLKOUT with PLL enabled f — (Ef × MF)/(PDF × DF) — Internal operation frequency and CLKOUT with PLL disabled f — Ef/2 — — ETC — • With PLL enabled and MF ≤ 4 0.49 × ETC × PDF × DF/MF — 0.51 × ETC × PDF × DF/MF • With PLL enabled and MF > 4 0.47 × ETC × PDF × DF/MF — 0.53 × ETC × PDF × DF/MF Internal clock and CLKOUT high period TH • With PLL disabled Internal clock and CLKOUT low period TL — ETC — • With PLL enabled and MF ≤ 4 0.49 × ETC × PDF × DF/MF — 0.51 × ETC × PDF × DF/MF • With PLL enabled and MF > 4 0.47 × ETC × PDF × DF/MF — 0.53 × ETC × PDF × DF/MF • With PLL disabled Internal clock and CLKOUT cycle time with PLL enabled TC — ETC × PDF × DF/MF — Internal clock and CLKOUT cycle time with PLL disabled TC — 2 × ETC — Instruction cycle time ICYC — TC — 1 DF = Division Factor Ef = External frequency ETC = External clock cycle MF = Multiplication Factor PDF = Predivision Factor TC = internal clock cycle 2 See the PLL and Clock Generation section in the DSP56300 Family Manual for a detailed discussion of the PLL. DSP56362 Technical Data, Rev. 4 3-4 Freescale Semiconductor EXTERNAL CLOCK OPERATION 3.7 EXTERNAL CLOCK OPERATION The DSP56362 system clock is an externally supplied square wave voltage source connected to EXTAL (Figure 3-1) VIHC Midpoint EXTAL VILC ETH ETL 2 3 4 ETC 5 5 CLKOUT With PLL Disabled 7 CLKOUT With PLL Enabled 6a 7 6b Note: The midpoint is 0.5 (VIHC + VILC). AA0459 Figure 3-1 External Clock Timing Table 3-5 Clock Operation 100 and 120 MHz Values 100 MHz No. 1 Characteristics 120 MHz Symbol Min Max Min Max 0 100.0 0 120.0 • With PLL disabled (46.7%–53.3% duty cycle)3 4.67 ns ∞ 0.00 ns ∞ 3 4.25 ns 157.0 µs 0.00 ns 157.0 µs • With PLL disabled (46.7%–53.3% duty cycle)3 4.67 ns ∞ 4.67 ns — 3 4.25 ns 157.0 µs 4.25 ns 1570.00 • With PLL disabled 10.00 ns ∞ 8.33 ns — • With PLL enabled 10.00 ns 273.1 µs 8.33 ns 273.1 µs Frequency of EXTAL (EXTAL Pin Frequency) Ef The rise and fall time of this external clock should be 3 ns maximum. 2 EXTAL input high1, 2 ETH • With PLL enabled (42.5%–57.5% duty cycle) 3 EXTAL input low1, 2 ETL • With PLL enabled (42.5%–57.5% duty cycle) 4 5 EXTAL cycle time2 ETC CLKOUT change from EXTAL fall with PLL disabled 4.3 ns 11.0 ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-5 Phase Lock Loop (PLL) Characteristics Table 3-5 Clock Operation (continued) 100 and 120 MHz Values 100 MHz No. 6 7 Characteristics Min Max CLKOUT rising edge from EXTAL rising edge with PLL enabled (MF = 1, PDF = 1, Ef > 15 MHz)4, 5 0.0 ns 1.8 ns CLKOUT falling edge from EXTAL rising edge with PLL enabled (MF = 2 or 4, PDF = 1, Ef > 15 MHz)4, 5 0.0 ns 1.8 ns CLKOUT falling edge from EXTAL falling edge with PLL enabled (MF ≤ 4, PDF ≠ 1, Ef / PDF > 15 MHz)4, 5 0.0 ns 1.8 ns • With PLL disabled 0.00 ns ∞ • With PLL enabled 0.00 ns 8.53 µs Instruction cycle time = ICYC = TC6 See Table 1 120 MHz Symbol Min Max ICYC 3-5 (46.7%–53.3% duty cycle) 8.53 µs Measured at 50% of the input transition. The maximum value for PLL enabled is given for minimum VCO and maximum MF. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met. Periodically sampled and not 100% tested. The skew is not guaranteed for any other MF value. The maximum value for PLL enabled is given for minimum VCO and maximum DF. 2 3 4 5 6 3.8 Phase Lock Loop (PLL) Characteristics Table 3-6 PLL Characteristics 100 MHz Characteristics Unit Min Max 30 200 MHz • @ MF ≤ 4 (MF × 580) − 100 (MF × 780) − 140 pF • @ MF > 4 MF × 830 MF × 1470 pF VCO frequency when PLL enabled (MF × Ef × 2/PDF) PLL external capacitor (PCAP pin to VCCP) (CPCAP)1 Note: 1 CPCAP is the value of the PLL capacitor (connected between the PCAP pin and VCCP). The recommended value in pF for CPCAP can be computed from one of the following equations: (680 × MF) – 120, for MF ≤ 4, or 1100 × MF, for MF > 4 DSP56362 Technical Data, Rev. 4 3-6 Freescale Semiconductor Reset, Stop, Mode Select, and Interrupt Timing 3.9 Reset, Stop, Mode Select, and Interrupt Timing Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1 No Expression2 Characteristics 100 MHz Unit Min Max — — 26.0 50 × ETC 500.0 — • Power on, external clock generator, PLL enabled 1000 × ETC 10.0 • Power on, internal oscillator 75000 × ETC 750 • During STOP, XTAL disabled (PCTL Bit 16 = 0) 75000 × ETC • During STOP, XTAL enabled (PCTL Bit 16 = 1) • During normal operation 8 Delay from RESET assertion to all pins at reset value3 9 Required RESET duration4 120 MHz Min Max 26.0 ns 416.7 — ns — 8.3 — µs — 625 — µs 750 — 625 — µs 2.5 × TC 25.0 — 20.8 — ns 2.5 × TC 25.0 — 20.8 — ns • Minimum 3.25 × TC + 2.0 34.5 — 29.1 • Maximum 20.25 TC + 7.50 — 211.5 TC 5.9 — ns — 10.0 ns • Power on, external clock generator, PLL disabled 10 Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion)5 ns 176.2 ns 11 Synchronous reset setup time from RESET deassertion to CLKOUT Transition 1 • Minimum • Maximum 12 Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output • Minimum 3.25 × TC + 2.0 33.5 — ns • Maximum 20.25 TC + 7.5 — 207.5 ns 13 Mode select setup time 30.0 — 30.0 ns 14 Mode select hold time 0.0 — 0.0 ns 15 Minimum edge-triggered interrupt request assertion width 6.6 — 5.5 ns 16 Minimum edge-triggered interrupt request deassertion width 6.6 — 5.5 ns 17 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid • Caused by first interrupt instruction fetch 4.25 × TC + 2.0 44.5 — 37.4 ns • Caused by first interrupt instruction execution 7.25 × TC + 2.0 74.5 — 62.4 ns 10 × TC + 5.0 105.0 — 88.3 ns 18 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-7 Reset, Stop, Mode Select, and Interrupt Timing Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1 (continued) No Expression2 Characteristics 100 MHz 120 MHz Unit Min Max Min Max 19 Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts6 (3.75 + WS) × TC – 10.94 — Note7 — Note 7 20 Delay from RD assertion to interrupt request deassertion for level sensitive fast interrupts6 (3.25 + WS) × TC – 10.94 — Note 7 — Note 7 • DRAM for all WS (WS + 3.5) × TC – 10.94 — Note 7 — Note 7 ns • SRAM WS =1 (WS + 3.5) × TC – 10.94 — Note 7 — Note 7 ns • SRAM WS=2, 3 1.75 × TC – 4.0 — Note 7 — Note 7 ns • SRAM WS ≥ 4 2.75 × TC – 4.0 — Note 7 — Note 7 ns 0.6 × TC – 0.1 5.9 4.9 — ns • Minimum 9.25 × TC + 1.0 93.5 — 78.1 — ns • Maximum 24.75 × TC + 5.0 — 252.5 — 211.2 ns 0.6 × TC − 0.1 5.9 — 4.9 — ns • PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) PLC × ETC × PDF + (128 K − PLC/2) × TC 1.3 13.6 — — ms • PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) PLC × ETC × PDF + (23.75 ± 0.5) × TC 232.5 ns 12.3 ms — — • PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay) (8.25 ± 0.5) × TC 77.5 87.5 64.6 72.9 • PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (OMR Bit 6 = 0) PLC × ETC × PDF + (128K − PLC/2) × TC 13.6 — ms • PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (OMR Bit 6 = 1) PLC × ETC × PDF + (20.5 ± 0.5) × TC 12.3 — ms • PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 5.5 × TC 55.0 — ns 21 Delay from WR assertion to interrupt request deassertion for level sensitive fast interrupts6 8 22 Synchronous interrupt setup time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2 23 Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state 24 Duration for IRQA assertion to recover from Stop state 25 Delay from IRQA assertion to fetch of first instruction (when exiting Stop)9, 3 ns 26 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)9, 3 45.8 — ns DSP56362 Technical Data, Rev. 4 3-8 Freescale Semiconductor Reset, Stop, Mode Select, and Interrupt Timing Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1 (continued) No Expression2 Characteristics 100 MHz 120 MHz Unit Min Max Min Max 27 Interrupt Requests Rate • HI08, ESAI, SHI, Timer 12TC — 120.0 — 100.0 ns • DMA 8TC — 80.0 — 66.7 ns • IRQ, NMI (edge trigger) 8TC — 80.0 — 66.7 ns • IRQ, NMI (level trigger) 12TC — 120.0 — 100.0 ns • Data read from HI08, ESAI, SHI 6TC — 60.0 — 50.0 ns • Data write to HI08, ESAI, SHI 7TC — 70.0 — 58.0 ns • Timer 2TC — 20.0 — 16.7 ns • IRQ, NMI (edge trigger) 3TC — 30.0 — 25.0 ns 4.25 × TC + 2.0 44.0 — 37.4 — ns 28 DMA Requests Rate 29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid 1 2 3 4 5 6 7 8 9 VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF Use expression to compute maximum value. Periodically sampled and not 100% tested. For an external clock generator, RESET duration is measured during the time in which RESET is asserted, VCC is valid, and the EXTAL input is active and valid. For internal oscillator, RESET duration is measured during the time in which RESET is asserted and VCC is valid. The specified timing reflects the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions. When the VCC is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration. If PLL does not lose lock. When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode. These values depend on the number of wait states (WS) selected. WS = number of wait states (measured in clock cycles, number of TC. This timing depends on several settings: For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure the oscillator is stable before executing programs. In that case, resetting the Stop delay (OMR Bit 6 = 0) will provide the proper delay. While it is possible to set OMR Bit 6 = 1, it is not recommended and these specifications do not guarantee timings for that case. For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization delay is required and recovery time will be minimal (OMR Bit 6 setting is ignored). For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time will be defined by the PCTL Bit 17 and OMR Bit 6 settings. For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery will end when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure completion. PLC value for PLL disable is 0. The maximum value for ETC is 4096 (maximum MF) divided by the desired internal frequency (i.e., for 100 MHz it is 4096/100 MHz = 40.96µs). During the stabilization period, TC, TH, and TL will not be constant, and their width may vary, so timing may vary as well. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-9 Reset, Stop, Mode Select, and Interrupt Timing VIH RESET 9 10 8 All Pins Reset Value First Fetch A0–A17 AA0460 Figure 3-2 Reset Timing CLKOUT 11 RESET 12 A0–A17 AA0461 Figure 3-3 Synchronous Reset Timing DSP56362 Technical Data, Rev. 4 3-10 Freescale Semiconductor Reset, Stop, Mode Select, and Interrupt Timing First Interrupt Instruction Execution/Fetch A0–A17 RD 20 WR 21 IRQA, IRQB, IRQC, IRQD, NMI 17 19 a) First Interrupt Instruction Execution General Purpose I/O 18 IRQA, IRQB, IRQC, IRQD, NMI b) General Purpose I/O AA0462 Figure 3-4 External Fast Interrupt Timing IRQA, IRQB, IRQC, IRQD, NMI 15 IRQA, IRQB, IRQC, IRQD, NMI 16 AA0463 Figure 3-5 External Interrupt Timing (Negative Edge-Triggered) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-11 Reset, Stop, Mode Select, and Interrupt Timing CLKOUT 22 IRQA, IRQB, IRQC, IRQD, NMI 23 A0–A17 AA0464 Figure 3-6 Synchronous Interrupt from Wait State Timing VIH RESET 13 14 MODA, MODB, MODC, MODD, PINIT VIH VIH VIL VIL IRQA, IRQB, IRQC, IRQD, NMI AA0465 Figure 3-7 Operating Mode Select Timing 24 IRQA 25 A0–A17 First Instruction Fetch AA0466 Figure 3-8 Recovery from Stop State Using IRQA DSP56362 Technical Data, Rev. 4 3-12 Freescale Semiconductor Reset, Stop, Mode Select, and Interrupt Timing 26 IRQA 25 A0–A17 First IRQA Interrupt Instruction Fetch AA0467 Figure 3-9 Recovery from Stop State Using IRQA Interrupt Service DMA Source Address A0–A17 RD WR 29 IRQA, IRQB, IRQC, IRQD, First Interrupt Instruction Execution AA1104 NMI Figure 3-10 External Memory Access (DMA Source) Timing DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-13 External Memory Expansion Port (Port A) 3.10 3.10.1 External Memory Expansion Port (Port A) SRAM Timing Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 No. Characteristics Symbol 100 Address valid and AA assertion pulse width3 tRC, tWC Expression2 (WS + 1) × TC − 4.0 100 MHz 120 MHz Unit Min Max Min Max 16.0 — 12.0 — ns 56.0 — 46.0 — ns 106.0 — 87.0 — ns 0.5 — 0.1 — ns 10.5 — 8.4 — ns 11.0 — 8.5 — ns 16.0 — 12.7 — ns 31.0 --- 25.2 — 0.5 — 0.1 — 10.5 — 8.4 — 20.5 — 16.7 — 8.5 — 6.4 — 18.5 — 14.7 — [1 ≤ WS ≤ 3] (WS + 2) × TC − 4.0 [4 ≤ WS ≤ 7] (WS + 3) × TC − 4.0 [WS ≥ 8] 101 Address and AA valid to WR assertion tAS 100 MHz: 0.25 × TC − 2.0 [WS = 1] 1.25 × TC − 2.0 [WS ≥ 4] 102 WR assertion pulse width tWP 100 MHz: 1.5 × TC − 4.0 [WS = 1] All frequencies: WS × TC − 4.0 [2 ≤ WS ≤ 3] (WS − 0.5) × TC − 4.0 [WS ≥ 4] 103 WR deassertion to address not valid tWR 100 MHz: ns 0.25 × TC − 2.0 [1 ≤ WS ≤ 3] 1.25 × TC − 2.0 [4 ≤ WS ≤ 7] 2.25 × TC − 2.0 [WS ≥ 8] All frequencies: 1.25 × TC − 4.0 [4 ≤ WS ≤ 7] 2.25 × TC − 4.0 [WS ≥ 8] DSP56362 Technical Data, Rev. 4 3-14 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued) No. Characteristics Symbol 104 Address and AA valid to input data valid tAA, tAC Expression2 100 MHz: 100 MHz 120 MHz Unit Min Max — 10.5 — 5.5 0.0 Min Max 7.6 ns — 3.4 ns — 0.0 — ns 13.5 — 10.6 — ns 4.5 — 3.2 — ns 0.5 — 0.1 — ns 10.5 — 8.4 — 20.5 — 16.7 — — — 2.5 — — — 0.0 — — — 0.0 — — — — 2.3 — — — 10.6 — — — 18.9 (WS + 0.75) × TC − 7.0 [WS ≥ 1] 105 RD assertion to input data valid tOE 100 MHz: (WS + 0.25) × TC − 7.0 [WS ≥ 1] 106 RD deassertion to data not valid (data hold time) tOHZ 107 Address valid to WR deassertion3 tAW (WS + 0.75) × TC − 4.0 [WS ≥ 1] 108 Data valid to WR deassertion (data setup time) tDS (tDW) 100 MHz: (WS − 0.25) × TC − 3.0 [WS ≥ 1] 109 Data hold time from WR deassertion tDH 100 MHz: 0.25 × TC − 2.0 [1 ≤ WS ≤ 3] 1.25 × TC − 2.0 [4 ≤ WS ≤ 7] 2.25 × TC − 2.0 [WS ≥ 8] 0.75 × TC − 3.7 110 WR assertion to data active4 ns [WS = 1] 0.25 × TC − 3.7 [2 ≤ WS ≤ 3] −0.25 × TC − 3.7 [WS ≥ 4] 111 WR deassertion to data high impedance4 0.25 × TC + 0.2 ns [1 ≤ WS ≤ 3] 1.25 × TC + 0.2 [4 ≤ WS ≤ 7] 2.25 × TC + 0.2 [WS ≥ 8] DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-15 External Memory Expansion Port (Port A) Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued) No. Characteristics Symbol 112 Previous RD deassertion to data active (write)4 Expression2 1.25 × TC − 4.0 100 MHz 120 MHz Unit Min Max Min Max — — 6.4 — — — 14.7 — — — 23.1 — 3.5 — 2.2 — 13.5 — 10.6 — 23.5 — 18.9 — 1.0 — 0.2 — 6.0 — 6.3 — 21.0 — 16.8 — 31.0 — 25.2 — 1.0 — 0.2 — ns 8.5 — 6.4 — ns 0.5 — 0.1 — ns 10.5 — 8.4 — 20.5 — 16.7 — ns [1 ≤ WS ≤ 3] 2.25 × TC − 4.0 [4 ≤ WS ≤ 7] 3.25 × TC − 4.0 [WS ≥ 8] 113 RD deassertion time 100 MHz: ns 0.75 × TC − 4.0 [1 ≤ WS ≤ 3] 1.75 × TC − 4.0 [4 ≤ WS ≤ 7] 2.75 × TC − 4.0 [WS ≥ 8] 114 WR deassertion time 100 MHz: ns 0.5 × TC − 4.0 [WS = 1] TC − 2.0 [2 ≤ WS ≤ 3] 2.5 × TC − 4.0 [4 ≤ WS ≤ 7] 3.5 × TC − 4.0 [WS ≥ 8] 115 Address valid to RD assertion 100 MHz: 0.5 × TC − 4.0 116 RD assertion pulse width 100 MHz: (WS + 0.25) × TC −4.0 117 RD deassertion to address not valid 100 MHz: 0.25 × TC − 2.0 [1 ≤ WS ≤ 3] 1.25 × TC − 2.0 [4 ≤ WS ≤ 7] 2.25 × TC − 2.0 [WS ≥ 8] DSP56362 Technical Data, Rev. 4 3-16 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued) No. Characteristics Expression2 Symbol 0.25 × TC + 2.0 118 TA setup before RD or WR deassertion5 119 TA hold after RD or WR deassertion 100 MHz 120 MHz Unit Min Max Min Max 4.5 — 4.1 — ns 0 — 0.0 — ns 1 All timings for 100 MHz are measured from 0.5 Vcc to .05 Vcc WS is the number of wait states specified in the BCR. 3 Timings 100, 107 are guaranteed by design, not tested. 4 Timing 110, 111, and 112, are not specified for 100 MHz. 5 In the case of TA negation: timing 118 is relative to the deassertion edge of RD or WR were TA to remain active. 2 100 A0–A17 AA0–AA3 117 116 113 RD 115 105 106 WR 104 119 118 TA Data In D0–D23 AA0468 Figure 3-11 SRAM Read Access DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-17 External Memory Expansion Port (Port A) 100 A0–A17 AA0–AA3 107 101 102 103 WR 114 RD 118 119 TA 108 110 111 109 112 Data Out D0–D23 AA0469 Figure 3-12 SRAM Write Access 3.10.2 DRAM Timing The selection guides provided in Figure 3-13 and Figure 3-16 should be used for primary selection only. Final selection should be based on the timing provided in the following tables. As an example, the selection guide suggests that 4 wait states must be used for 100 MHz operation when using Page Mode DRAM. However, by using the information in the appropriate table, a designer may choose to evaluate whether fewer wait states might be used by determining which timing prevents operation at 100 MHz, running the chip at a slightly lower frequency (e.g., 95 MHz), using faster DRAM (if it becomes available), and control factors such as capacitive and resistive load to improve overall system performance. DSP56362 Technical Data, Rev. 4 3-18 Freescale Semiconductor External Memory Expansion Port (Port A) Note: This figure should be used for primary selection. For exact and detailed timings see the following tables. DRAM Type (tRAC ns) 100 80 70 60 Chip Frequency 50 40 66 80 100 120 (MHz) 1 Wait States 3 Wait States 2 Wait States 4 Wait States AA0472 Figure 3-13 DRAM Page Mode Wait States Selection Guide Table 3-9 DRAM Page Mode Timings, One Wait State (Low-Power Applications)1, 2, 3 20 MHz4 No. Characteristics Symbol 131 Page mode cycle time for two consecutive accesses of the same direction tPC Page mode cycle time for mixed (read and write) accesses. 30 MHz4 Expression Unit Min Max Min Max 2 × TC 100.0 — 66.7 — 1.25 x Tc 62.5 — 41.7 — ns 132 CAS assertion to data valid (read) tCAC TC − 7.5 — 42.5 — 25.8 ns 133 Column address valid to data valid (read) tAA 1.5 × TC − 7.5 — 67.5 — 42.5 ns 134 CAS deassertion to data not valid (read hold time) tOFF 0.0 — 0.0 — ns 135 Last CAS assertion to RAS deassertion tRSH 0.75 × TC − 4.0 33.5 — 21.0 — ns 136 Previous CAS deassertion to RAS deassertion tRHCP 2 × TC − 4.0 96.0 — 62.7 — ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-19 External Memory Expansion Port (Port A) Table 3-9 DRAM Page Mode Timings, One Wait State (Low-Power Applications)1, 2, 3 (continued) 20 MHz4 No. Characteristics Symbol 3 4 5 6 Unit Max Min Max 0.75 × TC − 4.0 33.5 — 21.0 — • BRW[1:0] = 00 1.75 × TC − 6.0 81.5 — 52.3 — • BRW[1:0] = 01 3.25 × TC − 6.0 156.5 — 102.2 — • BRW[1:0] = 10 4.25 × TC − 6.0 206.5 — 135.5 — • BRW[1:0] = 11 6.25 × TC – 6.0 306.5 — 202.1 — 137 CAS assertion pulse width tCAS 138 Last CAS deassertion to RAS deassertion5 tCRP ns ns 139 CAS deassertion pulse width tCP 0.5 × TC − 4.0 21.0 — 12.7 — ns 140 Column address valid to CAS assertion tASC 0.5 × TC − 4.0 21.0 — 12.7 — ns 141 CAS assertion to column address not valid tCAH 0.75 × TC − 4.0 33.5 — 21.0 — ns 142 Last column address valid to RAS deassertion tRAL 2 × TC − 4.0 96.0 — 62.7 — ns 143 WR deassertion to CAS assertion tRCS 0.75 × TC − 3.8 33.7 — 21.2 — ns 144 CAS deassertion to WR assertion tRCH 0.25 × TC − 3.7 8.8 — 4.6 — ns 145 CAS assertion to WR deassertion tWCH 0.5 × TC − 4.2 20.8 — 12.5 — ns 146 WR assertion pulse width tWP 1.5 × TC − 4.5 70.5 — 45.5 — ns 147 Last WR assertion to RAS deassertion tRWL 1.75 × TC − 4.3 83.2 — 54.0 — ns 148 WR assertion to CAS deassertion tCWL 1.75 × TC − 4.3 83.2 — 54.0 — ns 149 Data valid to CAS assertion (Write) tDS 0.25 × TC − 4.0 8.5 — 4.3 — ns 150 CAS assertion to data not valid (write) tDH 0.75 × TC − 4.0 33.5 — 21.0 — ns 151 WR assertion to CAS assertion tWCS TC − 4.3 45.7 — 29.0 — ns 152 Last RD assertion to RAS deassertion tROH 1.5 × TC − 4.0 71.0 — 46.0 — ns 153 RD assertion to data valid tGA TC − 7.5 — 42.5 — 25.8 ns 154 RD deassertion to data not valid 6 tGZ 0.0 — 0.0 — ns 0.75 × TC − 0.3 37.2 — 24.7 — ns 0.25 × TC — 12.5 — 8.3 ns 156 WR deassertion to data high impedance 2 Expression Min 155 WR assertion to data active 1 30 MHz4 The number of wait states for Page mode access is specified in the DCR. The refresh period is specified in the DCR. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 2 × TC for read-after-read or write-after-write sequences). Reduced DSP clock speed allows use of Page Mode DRAM with one Wait state. See Figure 3-13. BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ. DSP56362 Technical Data, Rev. 4 3-20 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-10 DRAM Page Mode Timings, Two Wait States1, 2, 3, 4 80 MHz No. 131 Characteristics Page mode cycle time for two consecutive accesses of the same direction5 Symbol tPC Page mode cycle time for mixed (read and write) accesses.5 Expression Unit Min Max 3 × TC 37.5 — 2.75 x Tc 34.4 — ns 132 CAS assertion to data valid (read) tCAC 1.5 × TC − 6.5 — 12.3 ns 133 Column address valid to data valid (read) tAA 2.5 × TC − 6.5 — 24.8 ns 134 CAS deassertion to data not valid (read hold time) tOFF 0.0 — ns 135 Last CAS assertion to RAS deassertion tRSH 1.75 × TC − 4.0 17.9 — ns 136 Previous CAS deassertion to RAS deassertion tRHCP 3.25 × TC − 4.0 36.6 — ns 137 CAS assertion pulse width tCAS 1.5 × TC − 4.0 14.8 — ns 138 Last CAS deassertion to RAS deassertion6 tCRP • BRW[1:0] = 00 2.0 × TC − 6.0 19.0 — • BRW[1:0] = 01 3.5 × TC − 6.0 37.8 — • BRW[1:0] = 10 4.5 × TC − 6.0 50.3 — • BRW[1:0] = 11 6.5 × TC − 6.0 75.3 — ns 139 CAS deassertion pulse width tCP 1.25 × TC − 4.0 11.6 — ns 140 Column address valid to CAS assertion tASC TC − 4.0 8.5 — ns 141 CAS assertion to column address not valid tCAH 1.75 × TC − 4.0 17.9 — ns 142 Last column address valid to RAS deassertion tRAL 3 × TC − 4.0 33.5 — ns 143 WR deassertion to CAS assertion tRCS 1.25 × TC − 3.8 11.8 — ns 144 CAS deassertion to WR assertion tRCH 0.5 × TC − 3.7 2.6 — ns 145 CAS assertion to WR deassertion tWCH 1.5 × TC − 4.2 14.6 — ns 146 WR assertion pulse width tWP 2.5 × TC − 4.5 26.8 — ns 147 Last WR assertion to RAS deassertion tRWL 2.75 × TC − 4.3 30.1 — ns 148 WR assertion to CAS deassertion tCWL 2.5 × TC − 4.3 27.0 — ns 149 Data valid to CAS assertion (write) tDS 0.25 × TC − 3.0 0.1 — ns 150 CAS assertion to data not valid (write) tDH 1.75 × TC − 4.0 17.9 — ns 151 WR assertion to CAS assertion tWCS TC − 4.3 8.2 — ns 152 Last RD assertion to RAS deassertion tROH 2.5 × TC − 4.0 27.3 — ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-21 External Memory Expansion Port (Port A) Table 3-10 DRAM Page Mode Timings, Two Wait States1, 2, 3, 4 (continued) 80 MHz No. 1 2 3 4 5 6 7 Characteristics Symbol 153 RD assertion to data valid tGA 154 RD deassertion to data not valid7 tGZ 155 WR assertion to data active 156 WR deassertion to data high impedance Expression Unit Min Max — 15.4 ns 0.0 — ns 0.75 × TC − 0.3 9.1 — ns 0.25 × TC — 3.1 ns 1.75 × TC − 6.5 The number of wait states for Page mode access is specified in the DCR. The refresh period is specified in the DCR. The asynchronous delays specified in the expressions are valid for DSP56362. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 3 × TC for read-after-read or write-after-write sequences). There are not any fast enough DRAMs to fit to two wait states Page mode @ 100MHz. See Figure 3-13. BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ. Table 3-11 DRAM Page Mode Timings, Three Wait States1, 2, 3, 4 100 MHz No. Characteristics 131 Page mode cycle time for two consecutive accesses of the same direction Symbol tPC Page mode cycle time for mixed (read and write) accesses. 132 CAS assertion to data valid (read) tCAC Expression Unit Min Max 4 × TC 40.0 — 3.5 x Tc 35.0 — 100 MHz: — 13.0 ns — 23.0 ns 0.0 — ns ns 2 × TC − 7.0 133 Column address valid to data valid (read) tAA 100 MHz: 3 × TC − 7.0 134 CAS deassertion to data not valid (read hold time) tOFF 135 Last CAS assertion to RAS deassertion tRSH 2.5 × TC − 4.0 21.0 — ns 136 Previous CAS deassertion to RAS deassertion tRHCP 4.5 × TC − 4.0 41.0 — ns 137 CAS assertion pulse width tCAS 2 × TC − 4.0 16.0 — ns 138 Last CAS deassertion to RAS assertion5 tCRP ns • BRW[1:0] = 00 2.25 × TC − 6.0 — — • BRW[1:0] = 01 3.75 × TC − 6.0 — — • BRW[1:0] = 10 4.75 × TC − 6.0 41.5 — • BRW[1:0] = 11 6.75 × TC − 6.0 61.5 — DSP56362 Technical Data, Rev. 4 3-22 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-11 DRAM Page Mode Timings, Three Wait States1, 2, 3, 4 (continued) 100 MHz No. Characteristics Symbol Expression Unit Min Max 139 CAS deassertion pulse width tCP 1.5 × TC − 4.0 11.0 — ns 140 Column address valid to CAS assertion tASC TC − 4.0 6.0 — ns 141 CAS assertion to column address not valid tCAH 2.5 × TC − 4.0 21.0 — ns 142 Last column address valid to RAS deassertion tRAL 4 × TC − 4.0 36.0 — ns 143 WR deassertion to CAS assertion tRCS 100 MHz: 8.5 ns 3.5 ns 1.25 × TC − 4.0 144 CAS deassertion to WR assertion tRCH 100 MHz: 0.75 × TC − 4.0 145 CAS assertion to WR deassertion tWCH 2.25 × TC − 4.2 18.3 — ns 146 WR assertion pulse width tWP 3.5 × TC − 4.5 30.5 — ns 147 Last WR assertion to RAS deassertion tRWL 3.75 × TC − 4.3 33.2 — ns 148 WR assertion to CAS deassertion tCWL 3.25 × TC − 4.3 28.2 — ns 149 Data valid to CAS assertion (write) tDS 0.5 × TC − 4.0 1.0 — ns 150 CAS assertion to data not valid (write) tDH 2.5 × TC − 4.0 21.0 — ns 151 WR assertion to CAS assertion tWCS 1.25 × TC − 4.3 8.2 — ns 152 Last RD assertion to RAS deassertion tROH 3.5 × TC − 4.0 31.0 — ns 153 RD assertion to data valid tGA 100 MHz: — 18.0 ns 0.0 — ns 0.75 × TC − 0.3 7.2 — ns 0.25 × TC — 2.5 ns 2.5 × TC − 7.0 154 RD deassertion to data not valid6 tGZ 155 WR assertion to data active 156 WR deassertion to data high impedance 1 2 3 4 5 6 The number of wait states for Page mode access is specified in the DCR. The refresh period is specified in the DCR. The asynchronous delays specified in the expressions are valid for DSP56362. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 4 × TC for read-after-read or write-after-write sequences). BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of page-access. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-23 External Memory Expansion Port (Port A) Table 3-12 DRAM Page Mode Timings, Four Wait States 100 and 120MHz1, 2, 3, 4 100 MHz No. 131 Characteristics Symbol Page mode cycle time for two consecutive accesses of the same direction tPC Page mode cycle time for mixed (read and write) accesses. 132 CAS assertion to data valid (read) tCAC 120 MHz Expression Unit Min Max Min Max 5 × TC 50.0 — 41.7 4.5 × TC 45.0 — 37.5 100 MHz: — 20.5 — 15.9 ns — 30.5 — 24.2 ns 0.0 — 0.0 — ns ns 2.75 × TC − 7.0 133 Column address valid to data valid (read) tAA 100 MHz: 3.75 × TC − 7.0 134 CAS deassertion to data not valid (read hold time) tOFF 135 Last CAS assertion to RAS deassertion tRSH 3.5 × TC − 4.0 31.0 — 25.2 — ns 136 Previous CAS deassertion to RAS deassertion tRHCP 6 × TC − 4.0 56.0 — 46.0 — ns 137 CAS assertion pulse width tCAS 2.5 × TC − 4.0 21.0 — 16.8 — ns 138 Last CAS deassertion to RAS assertion5 tCRP BRW[1:0] = 00 2.75 × TC − 6.0 — — — — BRW[1:0] = 01 4.25 × TC − 6.0 — — — — BRW[1:0] = 10 5.25 × TC − 6.0 46.5 — 37.7 — BRW[1:0] = 11 7.25 × TC − 6.0 66.5 — 54.4 — ns 139 CAS deassertion pulse width tCP 2 × TC − 4.0 16.0 — 12.7 — ns 140 Column address valid to CAS assertion tASC TC − 4.0 6.0 — 4.3 — ns 141 CAS assertion to column address not valid tCAH 3.5 × TC − 4.0 31.0 — 25.2 — ns 142 Last column address valid to RAS deassertion tRAL 5 × TC − 4.0 46.0 — 37.7 — ns 143 WR deassertion to CAS assertion tRCS 100 MHz: 8.5 — 6.4 — ns 8.5 — 6.4 — ns 1.25 × TC − 4.0 144 CAS deassertion to WR assertion tRCH 100 MHz: 1.25 × TC − 4.0 tWCH 3.25 × TC − 4.2 28.3 — 22.9 — ns WR assertion pulse width tWP 4.5 × TC − 4.5 40.5 — 33.0 — ns 147 Last WR assertion to RAS deassertion tRWL 4.75 × TC − 4.3 43.2 — 35.3 — ns 148 WR assertion to CAS deassertion tCWL 3.75 × TC − 4.3 33.2 — 26.9 — ns 145 CAS assertion to WR deassertion 146 DSP56362 Technical Data, Rev. 4 3-24 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-12 DRAM Page Mode Timings, Four Wait States 100 and 120MHz1, 2, 3, 4 (continued) 100 MHz No. Characteristics Symbol 120 MHz Expression Unit Min Max Min Max 149 Data valid to CAS assertion (write) tDS 0.5 × TC − 4.0 1.0 — 0.2 — ns 150 CAS assertion to data not valid (write) tDH 3.5 × TC − 4.0 31.0 — 25.2 — ns 151 WR assertion to CAS assertion tWCS 1.25 × TC − 4.3 8.2 — 6.1 — ns 152 Last RD assertion to RAS deassertion tROH 4.5 × TC − 4.0 41.0 — 33.5 — ns 153 RD assertion to data valid tGA 100 MHz: — 25.5 — 20.1 ns 0.0 — 0.0 — ns 0.75 × TC − 0.3 7.2 — 5.9 0.25 × TC — 2.5 — 3.25 × TC − 7.0 1 2 3 4 5 6 154 RD deassertion to data not valid6 155 WR assertion to data active 156 WR deassertion to data high impedance tGZ ns 2.1 ns The number of wait states for Page mode access is specified in the DCR. The refresh period is specified in the DCR. The asynchronous delays specified in the expressions are valid for DSP56362. All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 3 × TC for read-after-read or write-after-write sequences). BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access. RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-25 External Memory Expansion Port (Port A) RAS 136 131 135 CAS 137 139 138 140 141 A0–A17 Row Add 142 Column Address Column Address 151 Last Column Address 144 143 145 147 WR 146 148 RD 155 156 150 149 D0–D23 Data Out Data Out Data Out AA0473 Figure 3-14 DRAM Page Mode Write Accesses DSP56362 Technical Data, Rev. 4 3-26 Freescale Semiconductor External Memory Expansion Port (Port A) RAS 136 131 135 CAS 137 139 140 A0–A17 Row Add Column Address 138 141 142 Last Column Address Column Address 143 WR 132 133 152 153 RD 134 154 D0–D23 Data In Data In Data In AA0474 Figure 3-15 DRAM Page Mode Read Accesses DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-27 External Memory Expansion Port (Port A) DRAM Type (tRAC ns) Note: This figure should be use for primary selection. For exact and detailed timings see the following tables. 100 80 70 60 Chip Frequency (MHz) 50 40 66 80 120 100 4 Wait States 11 Wait States 8 Wait States 15 Wait States AA0475 Figure 3-16 DRAM Out-of-Page Wait States Selection Guide Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 20 MHz4 No. Characteristics3 Symbol 30 MHz4 Expression Unit Min Max Min Max 157 Random read or write cycle time tRC 5 × TC 250.0 — 166.7 — ns 158 RAS assertion to data valid (read) tRAC 2.75 × TC − 7.5 — 130.0 — 84.2 ns 159 CAS assertion to data valid (read) tCAC 1.25 × TC − 7.5 — 55.0 — 34.2 ns 160 Column address valid to data valid (read) tAA 1.5 × TC − 7.5 — 67.5 — 42.5 ns 161 CAS deassertion to data not valid (read hold time) tOFF 0.0 — 0.0 — ns 162 RAS deassertion to RAS assertion tRP 1.75 × TC − 4.0 83.5 — 54.3 — ns 163 RAS assertion pulse width tRAS 3.25 × TC − 4.0 158.5 — 104.3 — ns 164 CAS assertion to RAS deassertion tRSH 1.75 × TC − 4.0 83.5 — 54.3 — ns DSP56362 Technical Data, Rev. 4 3-28 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued) 20 MHz4 No. Characteristics 3 Symbol 30 MHz4 Expression Unit Min Max Min Max 165 RAS assertion to CAS deassertion tCSH 2.75 × TC − 4.0 133.5 — 87.7 — ns 166 CAS assertion pulse width tCAS 1.25 × TC − 4.0 58.5 — 37.7 — ns 167 RAS assertion to CAS assertion tRCD 1.5 × TC ± 2 73.0 77.0 48.0 52.0 ns 168 RAS assertion to column address valid tRAD 1.25 × TC ± 2 60.5 64.5 39.7 43.7 ns 169 CAS deassertion to RAS assertion tCRP 2.25 × TC − 4.0 108.5 — 71.0 — ns 170 CAS deassertion pulse width tCP 1.75 × TC − 4.0 83.5 — 54.3 — ns 171 Row address valid to RAS assertion tASR 1.75 × TC − 4.0 83.5 — 54.3 — ns 172 RAS assertion to row address not valid tRAH 1.25 × TC − 4.0 58.5 — 37.7 — ns 173 Column address valid to CAS assertion tASC 0.25 × TC − 4.0 8.5 — 4.3 — ns 174 CAS assertion to column address not valid tCAH 1.75 × TC − 4.0 83.5 — 54.3 — ns 175 RAS assertion to column address not valid tAR 3.25 × TC − 4.0 158.5 — 104.3 — ns 176 Column address valid to RAS deassertion tRAL 2 × TC − 4.0 96.0 — 62.7 — ns 177 WR deassertion to CAS assertion tRCS 1.5 × TC − 3.8 71.2 — 46.2 — ns 178 CAS deassertion to WR assertion tRCH 0.75 × TC − 3.7 33.8 — 21.3 — ns 179 RAS deassertion to WR assertion tRRH 0.25 × TC − 3.7 8.8 — 4.6 — ns 180 CAS assertion to WR deassertion tWCH 1.5 × TC − 4.2 70.8 — 45.8 — ns 181 RAS assertion to WR deassertion tWCR 3 × TC − 4.2 145.8 — 95.8 — ns 182 WR assertion pulse width tWP 4.5 × TC − 4.5 220.5 — 145.5 — ns 183 WR assertion to RAS deassertion tRWL 4.75 × TC − 4.3 233.2 — 154.0 — ns 184 WR assertion to CAS deassertion tCWL 4.25 × TC − 4.3 208.2 — 137.4 — ns 185 Data valid to CAS assertion (write) tDS 2.25 × TC − 4.0 108.5 — 71.0 — ns 186 CAS assertion to data not valid (write) tDH 1.75 × TC − 4.0 83.5 — 54.3 — ns 187 RAS assertion to data not valid (write) tDHR 3.25 × TC − 4.0 158.5 — 104.3 — ns 188 WR assertion to CAS assertion tWCS 3 × TC − 4.3 145.7 — 95.7 — ns 189 CAS assertion to RAS assertion (refresh) tCSR 0.5 × TC − 4.0 21.0 — 12.7 — ns 190 RAS deassertion to CAS assertion (refresh) tRPC 1.25 × TC − 4.0 58.5 — 37.7 — ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-29 External Memory Expansion Port (Port A) Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued) 20 MHz4 No. Characteristics 3 Symbol 30 MHz4 Expression Unit Min Max Min Max tROH 4.5 × TC − 4.0 221.0 — 146.0 — ns RD assertion to data valid tGA 4 × TC − 7.5 — 192.5 — 125.8 ns 193 RD deassertion to data not valid3 tGZ 0.0 — 0.0 — ns 194 WR assertion to data active 0.75 × TC − 0.3 37.2 — 24.7 — ns 195 WR deassertion to data high impedance 0.25 × TC — 12.5 — 8.3 ns 191 RD assertion to RAS deassertion 192 1 The number of wait states for out of page access is specified in the DCR. The refresh period is specified in the DCR. 3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t OFF and not tGZ. 4 Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states. See Figure 3-16. 2 Table 3-14 DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2 No. Characteristics3 Symbol Expression4 80 MHz Unit Min Max 112.5 — ns 52.9 ns 157 Random read or write cycle time tRC 9 × TC 158 RAS assertion to data valid (read) tRAC 4.75 × TC − 6.5 159 CAS assertion to data valid (read) tCAC 2.25 × TC − 6.5 — 21.6 ns 160 Column address valid to data valid (read) tAA 3 × TC − 6.5 — 31.0 ns 161 CAS deassertion to data not valid (read hold time) tOFF 0.0 — ns 162 RAS deassertion to RAS assertion tRP 3.25 × TC − 4.0 36.6 — ns 163 RAS assertion pulse width tRAS 5.75 × TC − 4.0 67.9 — ns 164 CAS assertion to RAS deassertion tRSH 3.25 × TC − 4.0 36.6 — ns 165 RAS assertion to CAS deassertion tCSH 4.75 × TC − 4.0 55.4 — ns 166 CAS assertion pulse width tCAS 2.25 × TC − 4.0 24.1 — ns 167 RAS assertion to CAS assertion tRCD 2.5 × TC ± 2 29.3 33.3 ns 168 RAS assertion to column address valid tRAD 1.75 × TC ± 2 19.9 23.9 ns 169 CAS deassertion to RAS assertion tCRP 4.25 × TC − 4.0 49.1 — ns 170 CAS deassertion pulse width tCP 2.75 × TC − 4.0 30.4 — ns 171 Row address valid to RAS assertion tASR 3.25 × TC − 4.0 36.6 — ns DSP56362 Technical Data, Rev. 4 3-30 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-14 DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2 (continued) Characteristics3 No. Symbol Expression4 80 MHz Unit Min Max 172 RAS assertion to row address not valid tRAH 1.75 × TC − 4.0 17.9 — ns 173 Column address valid to CAS assertion tASC 0.75 × TC − 4.0 5.4 — ns 174 CAS assertion to column address not valid tCAH 3.25 × TC − 4.0 36.6 — ns 175 RAS assertion to column address not valid tAR 5.75 × TC − 4.0 67.9 — ns 176 Column address valid to RAS deassertion tRAL 4 × TC − 4.0 46.0 — ns 177 WR deassertion to CAS assertion tRCS 2 × TC − 3.8 21.2 — ns 178 CAS deassertion to WR5 assertion tRCH 1.25 × TC − 3.7 11.9 — ns 179 RAS deassertion to WR5 assertion tRRH 0.25 × TC − 3.0 0.1 — ns 180 CAS assertion to WR deassertion tWCH 3 × TC − 4.2 33.3 — ns 181 RAS assertion to WR deassertion tWCR 5.5 × TC − 4.2 64.6 — ns 182 WR assertion pulse width tWP 8.5 × TC − 4.5 101.8 — ns 183 WR assertion to RAS deassertion tRWL 8.75 × TC − 4.3 105.1 — ns 184 WR assertion to CAS deassertion tCWL 7.75 × TC − 4.3 92.6 — ns 185 Data valid to CAS assertion (write) tDS 4.75 × TC − 4.0 55.4 — ns 186 CAS assertion to data not valid (write) tDH 3.25 × TC − 4.0 36.6 — ns 187 RAS assertion to data not valid (write) tDHR 5.75 × TC − 4.0 67.9 — ns 188 WR assertion to CAS assertion tWCS 5.5 × TC − 4.3 64.5 — ns 189 CAS assertion to RAS assertion (refresh) tCSR 1.5 × TC − 4.0 14.8 — ns 190 RAS deassertion to CAS assertion (refresh) tRPC 1.75 × TC − 4.0 17.9 — ns 191 RD assertion to RAS deassertion tROH 8.5 × TC − 4.0 102.3 — ns 192 RD assertion to data valid tGA 7.5 × TC − 6.5 — 87.3 ns 193 RD deassertion to data not valid3 tGZ 0.0 0.0 — ns 194 WR assertion to data active 0.75 × TC − 0.3 9.1 — ns 195 WR deassertion to data high impedance 0.25 × TC — 3.1 ns 1 The number of wait states for out-of-page access is specified in the DCR. The refresh period is specified in the DCR. 3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t OFF and not tGZ. 4 The asynchronous delays specified in the expressions are valid for DSP56362. 5 Either t RCH or tRRH must be satisfied for read cycles. 2 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-31 External Memory Expansion Port (Port A) Table 3-15 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 100 MHz No. Characteristics3 Symbol Expression4 Unit Min Max 157 Random read or write cycle time tRC 12 × TC 120.0 — ns 158 RAS assertion to data valid (read) tRAC 6.25 × TC − 7.0 — 55.5 ns 159 CAS assertion to data valid (read) tCAC 3.75 × TC − 7.0 — 30.5 ns 160 Column address valid to data valid (read) tAA 4.5 × TC − 7.0 — 38.0 ns 161 CAS deassertion to data not valid (read hold time) tOFF 0.0 — ns 162 RAS deassertion to RAS assertion tRP 4.25 × TC − 4.0 38.5 — ns 163 RAS assertion pulse width tRAS 7.75 × TC − 4.0 73.5 — ns 164 CAS assertion to RAS deassertion tRSH 5.25 × TC − 4.0 48.5 — ns 165 RAS assertion to CAS deassertion tCSH 6.25 × TC − 4.0 58.5 — ns 166 CAS assertion pulse width tCAS 3.75 × TC − 4.0 33.5 — ns 167 RAS assertion to CAS assertion tRCD 2.5 × TC ± 4.0 21.0 29.0 ns 168 RAS assertion to column address valid tRAD 1.75 × TC ± 4.0 13.5 21.5 ns 169 CAS deassertion to RAS assertion tCRP 5.75 × TC − 4.0 53.5 — ns 170 CAS deassertion pulse width tCP 4.25 × TC − 4.0 38.5 — ns 171 Row address valid to RAS assertion tASR 4.25 × TC − 4.0 38.5 — ns 172 RAS assertion to row address not valid tRAH 1.75 × TC − 4.0 13.5 — ns 173 Column address valid to CAS assertion tASC 0.75 × TC − 4.0 3.5 — ns 174 CAS assertion to column address not valid tCAH 5.25 × TC − 4.0 48.5 — ns 175 RAS assertion to column address not valid tAR 7.75 × TC − 4.0 73.5 — ns 176 Column address valid to RAS deassertion tRAL 6 × TC − 4.0 56.0 — ns 177 WR deassertion to CAS assertion tRCS 3.0 × TC − 4.0 26.0 — ns 178 CAS deassertion to WR5 assertion tRCH 1.75 × TC − 4.0 13.5 — ns 179 RAS deassertion to WR5 assertion tRRH 0.25 × TC − 3.0 — — ns 0.25 × TC − 2.0 0.5 — 180 CAS assertion to WR deassertion tWCH 5 × TC − 4.2 45.8 — ns 181 RAS assertion to WR deassertion tWCR 7.5 × TC − 4.2 70.8 — ns DSP56362 Technical Data, Rev. 4 3-32 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-15 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 (continued) 100 MHz Characteristics3 No. Symbol Expression4 Unit Min Max 182 WR assertion pulse width tWP 11.5 × TC − 4.5 110.5 — ns 183 WR assertion to RAS deassertion tRWL 11.75 × TC − 4.3 113.2 — ns 184 WR assertion to CAS deassertion tCWL 10.25 × TC − 4.3 103.2 — ns 185 Data valid to CAS assertion (write) tDS 5.75 × TC − 4.0 53.5 — ns 186 CAS assertion to data not valid (write) tDH 5.25 × TC − 4.0 48.5 — ns 187 RAS assertion to data not valid (write) tDHR 7.75 × TC − 4.0 73.5 — ns 188 WR assertion to CAS assertion tWCS 6.5 × TC − 4.3 60.7 — ns 189 CAS assertion to RAS assertion (refresh) tCSR 1.5 × TC − 4.0 11.0 — ns 190 RAS deassertion to CAS assertion (refresh) tRPC 2.75 × TC − 4.0 23.5 — ns 191 RD assertion to RAS deassertion tROH 11.5 × TC − 4.0 111.0 — ns 192 RD assertion to data valid tGA 10 × TC − 7.0 93.0 ns 193 RD deassertion to data not valid3 tGZ 0.0 — ns 194 WR assertion to data active 0.75 × TC − 0.3 7.2 — ns 195 WR deassertion to data high impedance 0.25 × TC — 2.5 ns 1 The number of wait states for out-of-page access is specified in the DCR. The refresh period is specified in the DCR. 3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t OFF and not tGZ. 4 The asynchronous delays specified in the expressions are valid for DSP56362. 5 Either t RCH or tRRH must be satisfied for read cycles. 2 Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2 100 MHz No. Characteristics3 Symbol 120 MHz Expression Unit Min Max Min Max 157 Random read or write cycle time tRC 16 × TC 160.0 — 133.3 — ns 158 RAS assertion to data valid (read) tRAC 8.25 × TC − 5.7 — 76.8 — 63.0 ns 159 CAS assertion to data valid (read) tCAC 4.75 × TC − 5.7 — 41.8 — 33.9 ns 160 Column address valid to data valid (read) tAA 5.5 × TC − 5.7 — 49.3 40.1 ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-33 External Memory Expansion Port (Port A) Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2 (continued) 100 MHz Characteristics3 Symbol 161 CAS deassertion to data not valid (read hold time) tOFF 162 RAS deassertion to RAS assertion 163 No. 120 MHz Expression Unit Min Max Min Max 0.0 0.0 — 0.0 — ns tRP 6.25 × TC − 4.0 58.5 — 48.1 — ns RAS assertion pulse width tRAS 9.75 × TC − 4.0 93.5 — 77.2 — ns 164 CAS assertion to RAS deassertion tRSH 6.25 × TC − 4.0 58.5 — 48.1 — ns 165 RAS assertion to CAS deassertion tCSH 8.25 × TC − 4.0 78.5 — 64.7 — ns 166 CAS assertion pulse width tCAS 4.75 × TC − 4.0 43.5 — 35.6 — ns 167 RAS assertion to CAS assertion tRCD 3.5 × TC ± 2 33.0 37.0 27.2 31.2 ns 168 RAS assertion to column address valid tRAD 2.75 × TC ± 2 25.5 29.5 20.9 24.9 ns 169 CAS deassertion to RAS assertion tCRP 7.75 × TC − 4.0 73.5 — 60.6 — ns 170 CAS deassertion pulse width tCP 6.25 × TC − 4.0 58.5 — 48.1 — ns 171 Row address valid to RAS assertion tASR 6.25 × TC − 4.0 58.5 — 48.1 — ns 172 RAS assertion to row address not valid tRAH 2.75 × TC − 4.0 23.5 — 18.9 — ns 173 Column address valid to CAS assertion tASC 0.75 × TC − 4.0 3.5 — 2.2 — ns 174 CAS assertion to column address not valid tCAH 6.25 × TC − 4.0 58.5 — 48.1 — ns 175 RAS assertion to column address not valid tAR 9.75 × TC − 4.0 93.5 — 77.2 — ns 176 Column address valid to RAS deassertion tRAL 7 × TC − 4.0 66.0 — 54.3 — ns 177 WR deassertion to CAS assertion tRCS 5 × TC − 3.8 46.2 — 37.9 — ns 178 CAS deassertion to WR4 assertion tRCH 1.75 × TC − 3.7 13.8 — 10.9 — ns 179 RAS deassertion to WR4 assertion tRRH 0.25 × TC − 2.0 0.5 — 0.1 — ns 180 CAS assertion to WR deassertion tWCH 6 × TC − 4.2 55.8 — 45.8 — ns 181 RAS assertion to WR deassertion tWCR 9.5 × TC − 4.2 90.8 — 75.0 — ns 182 WR assertion pulse width tWP 15.5 × TC − 4.5 150.5 — 124.7 — ns 183 WR assertion to RAS deassertion tRWL 15.75 × TC − 4.3 153.2 — 126.9 — ns 184 WR assertion to CAS deassertion tCWL 14.25 × TC − 4.3 138.2 — 114.4 — ns 185 Data valid to CAS assertion (write) tDS 8.75 × TC − 4.0 83.5 — 68.9 — ns DSP56362 Technical Data, Rev. 4 3-34 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2 (continued) 100 MHz No. Characteristics3 Symbol 120 MHz Expression Unit Min Max Min Max 186 CAS assertion to data not valid (write) tDH 6.25 × TC − 4.0 58.5 — 48.1 — ns 187 RAS assertion to data not valid (write) tDHR 9.75 × TC − 4.0 93.5 — 77.2 — ns 188 WR assertion to CAS assertion tWCS 9.5 × TC − 4.3 90.7 — 74.9 — ns 189 CAS assertion to RAS assertion (refresh) tCSR 1.5 × TC − 4.0 11.0 — 8.5 — ns 190 RAS deassertion to CAS assertion (refresh) tRPC 4.75 × TC − 4.0 43.5 — 35.6 — ns 191 RD assertion to RAS deassertion tROH 15.5 × TC − 4.0 151.0 — 125.2 — ns 192 RD assertion to data valid tGA 14 × TC − 5.7 — 134.3 — 111.0 ns 193 RD deassertion to data not valid3 tGZ 0.0 — 0.0 — ns 194 WR assertion to data active 0.75 × TC − 0.3 7.2 — 5.9 — ns 195 WR deassertion to data high impedance 0.25 × TC — 2.5 — 2.1 ns 1 The number of wait states for out-of-page access is specified in the DCR. The refresh period is specified in the DCR. 3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t OFF and not tGZ. 4 Either t or t must be satisfied for read cycles. RCH RRH 2 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-35 External Memory Expansion Port (Port A) 157 163 162 162 165 RAS 167 164 169 168 170 166 CAS 171 173 174 175 A0–A17 Row Address Column Address 172 176 177 179 191 WR 168 160 159 RD 193 158 192 D0–D23 161 Data In AA0476 Figure 3-17 DRAM Out-of-Page Read Access DSP56362 Technical Data, Rev. 4 3-36 Freescale Semiconductor External Memory Expansion Port (Port A) 157 162 163 162 165 RAS 167 164 169 168 166 170 CAS 171 173 172 174 176 A0–A17 Row Address Column Address 181 175 188 180 182 WR 184 183 RD 187 186 185 195 194 D0–D23 Data Out AA0477 Figure 3-18 DRAM Out-of-Page Write Access DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-37 External Memory Expansion Port (Port A) 157 162 163 162 RAS 190 170 165 CAS 189 177 WR AA0478 Figure 3-19 DRAM Refresh Access 3.10.3 Synchronous Timings (SRAM) Table 3-17 External Bus Synchronous Timings (SRAM Access)1 No. Characteristics Expression2, 3 100 MHz Unit Min Max 0.25 × TC + 4.0 — 6.5 ns 0.25 × TC 2.5 — ns 198 CLKOUT high to address, and AA valid4 199 CLKOUT high to address, and AA invalid4 200 TA valid to CLKOUT high (setup time) 4.0 — ns 201 CLKOUT high to TA invalid (hold time) 0.0 — ns 202 CLKOUT high to data out active 0.25 × TC 2.5 — ns 203 CLKOUT high to data out valid 0.25 × TC + 4.0 3.3 6.5 ns 204 CLKOUT high to data out invalid 0.25 × TC 2.5 — ns 205 CLKOUT high to data out high impedance 0.25 × TC — 2.5 ns 206 Data in valid to CLKOUT high (setup) 4.0 — ns 207 CLKOUT high to data in invalid (hold) 0.0 — ns 208 CLKOUT high to RD assertion 8.2 11.5 ns 0.75 × TC + 4.0 DSP56362 Technical Data, Rev. 4 3-38 Freescale Semiconductor External Memory Expansion Port (Port A) Table 3-17 External Bus Synchronous Timings (SRAM Access)1 (continued) No. Characteristics 209 CLKOUT high to RD deassertion 210 CLKOUT high to WR assertion5 Expression2, 3 0.5 × TC + 4.3 100 MHz Unit Min Max 0.0 4.0 ns 6.3 9.3 ns 1.3 4.3 0.0 3.8 [WS = 1 or WS ≥ 4] All frequencies: [2 ≤ WS ≤ 3] 211 CLKOUT high to WR deassertion ns 1 External bus synchronous timings should be used only for reference to the clock and not for relative timings. WS is the number of wait states specified in the BCR. 3 The asynchronous delays specified in the expressions are valid for DSP56362. 4 T198 and T199 are valid for Address Trace mode if the ATE bit in the OMR is set. Use the status of BR (See T212) to determine whether the access referenced by A0–A23 is internal or external, when this mode is enabled 5 If WS > 1, WR assertion refers to the next rising edge of CLKOUT. 2 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-39 External Memory Expansion Port (Port A) CLKOUT 199 198 A0–A17 AA0–AA3 201 200 TA 211 WR 210 205 203 D0–D23 204 Data Out 202 208 209 RD 207 206 D0–D23 Data In AA0479 Figure 3-20 Synchronous Bus Timings SRAM 1 WS (BCR Controlled) DSP56362 Technical Data, Rev. 4 3-40 Freescale Semiconductor External Memory Expansion Port (Port A) CLKOUT 198 199 A0–A17 AA0–AA3 201 201 200 200 TA 211 WR 210 205 203 204 Data Out D0–D23 202 208 209 RD 207 206 Data In D0–D23 AA0480 Figure 3-21 Synchronous Bus Timings SRAM 2 WS (TA Controlled) 3.10.4 Arbitration Timings Table 3-18 Arbitration Bus Timings1 100 MHz No. Characteristics Expression Unit Min Max 212 CLKOUT high to BR assertion/deassertion2 1.0 4.0 ns 213 BG asserted/deasserted to CLKOUT high (setup) 4.0 — ns 214 CLKOUT high to BG deasserted/asserted (hold) 0.0 — ns 215 BB deassertion to CLKOUT high (input setup) 4.0 — ns 216 CLKOUT high to BB assertion (input hold) 0.0 — ns 217 CLKOUT high to BB assertion (output) 1.0 4.0 ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-41 External Memory Expansion Port (Port A) Table 3-18 Arbitration Bus Timings1 (continued) 100 MHz No. 1 2 Characteristics Expression Unit Min Max 218 CLKOUT high to BB deassertion (output) 1.0 4.0 ns 219 BB high to BB high impedance (output) — 4.5 ns 220 CLKOUT high to address and controls active 0.25 × TC 2.5 — ns 221 CLKOUT high to address and controls high impedance 0.25 × TC — 2.5 ns 222 CLKOUT high to AA active 0.25 × TC 2.5 — ns 223 CLKOUT high to AA deassertion 0.25 × TC + 4.0 3.2 6.5 ns 224 CLKOUT high to AA high impedance 0.75 × TC — 7.5 ns The asynchronous delays specified in the expressions are valid for DSP56362. T212 is valid for Address Trace mode when the ATE bit in the OMR is set. BR is deasserted for internal accesses and asserted for external accesses. CLKOUT 212 BR 214 213 BG 216 215 217 BB 220 A0–A17 RD, WR 222 AA0–AA3 AA0481 Figure 3-22 Bus Acquisition Timings DSP56362 Technical Data, Rev. 4 3-42 Freescale Semiconductor External Memory Expansion Port (Port A) CLKOUT 212 BR 214 213 BG 219 218 BB 221 A0–A17 RD, WR 224 223 AA0–AA3 AA0482 Figure 3-23 Bus Release Timings Case 1 (BRT Bit in OMR Cleared) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-43 External Memory Expansion Port (Port A) CLKOUT 212 BR 214 213 BG 219 218 BB 221 A0–A17 RD, WR 224 223 AA0–AA3 AA0483 Figure 3-24 Bus Release Timings Case 2 (BRT Bit in OMR Set) Table 3-19 Asynchronous Bus Arbitration timing 100 MHz No. Characteristics Expression 250 BB assertion window from BG input negation. 251 Delay from BB assertion to BG assertion Unit Min Max 2 .5* Tc + 5 — 20 ns 2 * Tc + 5 20 — ns Notes: 1. Bit 13 in the OMR register must be set to enter Asynchronous Arbitration mode 2. At 100 MHz it is recommended to use Asynchronous Arbitration mode. 3. If Asynchronous Arbitration mode is active, none of the timings in Table 3-19 is required. 4. In order to guarantee timings 250, and 251, it is recommended to assert BG inputs to different 56300 devices (on the same bus) in a non overlap manner as shown in Figure 3-25. DSP56362 Technical Data, Rev. 4 3-44 Freescale Semiconductor External Memory Expansion Port (Port A) BG1 BB 250 BG2 251 Figure 3-25 Asynchronous Bus Arbitration Timing BG1 BG2 250+251 Figure 3-26 Asynchronous Bus Arbitration Timing Background explanation for Asynchronous Bus Arbitration: The asynchronous bus arbitration is enabled by internal synchronization circuits on BG, and BB inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a 56300 part may assume mastership and assert BB, for some time after BG is negated. This is the reason for timing 250. Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is exposed to other 56300 components which are potential masters on the same bus. If BG input is asserted before that time, a situation of BG asserted, and BB negated, may cause another 56300 component to assume mastership at the same time. Therefore some non-overlap period between one BG input active to another BG input active, is required. Timing 251 ensures that such a situation is avoided. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-45 Parallel Host Interface (HDI08) Timing 3.11 Parallel Host Interface (HDI08) Timing Table 3-20 Host Interface (HDI08) Timing1, 2 Characteristics3 No. 317 Read data strobe assertion width4 Expression 100 MHz Unit Min Max TC + 9.9 19.9 — ns — 9.9 — ns 2.5 × TC + 6.6 31.6 — ns — 13.2 — ns 2.5 × TC + 6.6 31.6 — ns 16.5 — HACK read assertion width 318 Read data strobe deassertion width4 HACK read deassertion width 319 Read data strobe deassertion width4 after “Last Data Register” reads5, 6, or between two consecutive CVR, ICR, or ISR reads7 HACK deassertion width after “Last Data Register” reads5, 6 320 Write data strobe assertion width8HACK write assertion width 321 Write data strobe deassertion width8 HACK write deassertion width after ICR, CVR and “Last Data Register” writes5 after IVR writes, or after TXH:TXM writes (with HBE=0), or after TXL:TXM writes (with HBE=1) 322 HAS assertion width — 9.9 — ns 323 HAS deassertion to data strobe assertion9 — 0.0 — ns 324 Host data input setup time before write data strobe deassertion8 — 9.9 — ns — 3.3 — ns — 3.3 — ns — — 24.2 ns Host data input setup time before HACK write deassertion 325 Host data input hold time after write data strobe deassertion8 Host data input hold time after HACK write deassertion 326 Read data strobe assertion to output data active from high impedance4 HACK read assertion to output data active from high impedance 327 Read data strobe assertion to output data valid4 HACK read assertion to output data valid 328 Read data strobe deassertion to output data high impedance4 HACK read deassertion to output data high impedance — — 9.9 ns 329 Output data hold time after read data strobe deassertion4 — 3.3 — ns Output data hold time after HACK read deassertion 330 HCS assertion to read data strobe deassertion4 TC +9.9 19.9 — ns 331 HCS assertion to write data strobe deassertion8 — 9.9 — ns 332 HCS assertion to output data valid — — 19.1 ns DSP56362 Technical Data, Rev. 4 3-46 Freescale Semiconductor Parallel Host Interface (HDI08) Timing Table 3-20 Host Interface (HDI08) Timing1, 2 (continued) No. Characteristics 3 Expression 0.0 — ns 334 Address (AD7–AD0) setup time before HAS deassertion (HMUX=1) — 4.7 — ns 335 Address (AD7–AD0) hold time after HAS deassertion (HMUX=1) — 3.3 — ns 336 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W setup time before data strobe assertion9 — 0 — • Write 4.7 — 337 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W hold time after data strobe deassertion9 — 3.3 — ns 338 Delay from read data strobe deassertion to host request assertion for “Last Data Register” read4, 5, 10 TC 10 — ns 339 Delay from write data strobe deassertion to host request assertion for “Last Data Register” write5, 8, 10 2 × TC 20 — ns 340 Delay from data strobe assertion to host request deassertion for “Last Data Register” read or write (HROD = 0)5, 9, 10 — — 19.1 ns 341 Delay from data strobe assertion to host request deassertion for “Last Data Register” read or write (HROD = 1, open drain Host Request)5, 9, 10, 11 — — 300.0 ns 343 Delay from DMA HACK deassertion to HOREQ assertion 5 write5 ns 2 × TC + 19.1 39.1 — 1.5 × TC + 19.1 34.1 — 0.0 — — 20.2 Delay from DMA HACK assertion to HOREQ deassertion — • HROD = 05 344 Delay from DMA HACK assertion to HOREQ deassertion for “Last Data Register” read or write • HROD = 1, open drain Host Request5, 11 5 6 7 ns • Read • For other cases 4 Unit — • For “Last Data Register” 3 Max HCS hold time after data strobe deassertion9 • For “Last Data Register” read 2 Min 333 342 1 100 MHz ns — ns — 300.0 See Host Port Usage Considerations in the DSP56362 User Design Manual. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode. The “last data register” is the register at address $7, which is the last location to be read or written in data transfers. This is RXL/TXL in the little endian mode (HBE = 0), or RXH/TXH in the big endian mode (HBE = 1). This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal. This timing is applicable only if two consecutive reads from one of these registers are executed. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-47 Parallel Host Interface (HDI08) Timing 8 The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode. The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the single data strobe mode. 10 The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode. 11 In this calculation, the host request signal is pulled up by a 4.7 kΩ resistor in the open-drain mode. 9 317 318 HACK 328 327 329 326 HD7–HD0 HOREQ AA1105 Figure 3-27 Host Interrupt Vector Register (IVR) Read Timing Diagram HA0–HA2 336 337 333 330 HCS 317 HRD, HDS 318 328 332 319 327 329 326 HD0–HD7 340 338 341 HOREQ, HRRQ, HTRQ AA0484 Figure 3-28 Read Timing Diagram, Non-Multiplexed Bus DSP56362 Technical Data, Rev. 4 3-48 Freescale Semiconductor Parallel Host Interface (HDI08) Timing HA0–HA2 337 336 331 333 HCS 320 HWR, HDS 321 324 325 HD0–HD7 340 339 341 HOREQ, HRRQ, HTRQ AA0485 Figure 3-29 Write Timing Diagram, Non-Multiplexed Bus DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-49 Parallel Host Interface (HDI08) Timing HA8–HA10 336 337 322 HAS 323 317 HRD, HDS 334 318 335 319 327 328 329 HAD0–HAD7 Address Data 326 340 338 341 HOREQ, HRRQ, HTRQ AA0486 Figure 3-30 Read Timing Diagram, Multiplexed Bus DSP56362 Technical Data, Rev. 4 3-50 Freescale Semiconductor Parallel Host Interface (HDI08) Timing HA8–HA10 336 322 HAS 323 320 HWR, HDS 334 324 321 335 HAD0–HAD7 325 Data Address 340 339 341 HOREQ, HRRQ, HTRQ AA0487 Figure 3-31 Write Timing Diagram, Multiplexed Bus HOREQ (Output) 342 343 344 320 HACK (Input) 321 TXH/M/L Write 324 325 H0–H7 (Input) Data Valid Figure 3-32 Host DMA Write Timing Diagram DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-51 Serial Host Interface SPI Protocol Timing HOREQ (Output) 343 342 342 318 317 HACK (Input) RXH Read 327 H0-H7 (Output) 328 326 329 Data Valid Figure 3-33 Host DMA Read Timing Diagram 3.12 Serial Host Interface SPI Protocol Timing Table 3-21 Serial Host Interface SPI Protocol Timing 100MHz No. 140 141 142 Characteristics Mode Tolerable spike width on clock or data in Minimum serial clock cycle = tSPICC(min) Serial clock high period — Master Master Slave 143 Serial clock low period Master Slave Filter Mode Expression Unit Min Max — 0 Narrow — 50 Wide — 100 Bypassed — Bypassed 6×TC+46 106 — Narrow 6×TC+152 212 — Wide 6×TC+223 283 — Bypassed 0.5×tSPICC –10 43 — Narrow 0.5×tSPICC –10 96 — Wide 0.5×tSPICC –10 131 — Bypassed 2.5×TC+12 37 — Narrow 2.5×TC+102 127 — Wide 2.5×TC+189 214 — Bypassed 0.5×tSPICC –10 43 — Narrow 0.5×tSPICC –10 96 — Wide 0.5×tSPICC –10 131 — Bypassed 2.5×TC+12 37 — Narrow 2.5×TC+102 127 — Wide 2.5×TC+189 214 — ns ns ns ns DSP56362 Technical Data, Rev. 4 3-52 Freescale Semiconductor Serial Host Interface SPI Protocol Timing Table 3-21 Serial Host Interface SPI Protocol Timing (continued) 100MHz No. 144 146 Characteristics Mode Serial clock rise/fall time SS assertion to first SCK edge CPHA = 0 CPHA = 1 147 148 149 SCK last sampling edge to data input not valid Unit Min Max — — — 10 Slave — — — 2000 Slave Bypassed 3.5×TC+15 50 — Narrow 0 0 — Wide 0 0 — Bypassed 10 10 — Narrow 0 0 — Wide 0 0 — Bypassed 12 12 — Narrow 102 102 — Wide 189 189 — Bypassed 0 0 — Narrow MAX{(20-TC), 0} 10 — Wide MAX{(40-TC), 0} 30 — Bypassed 2.5×TC+10 35 — Narrow 2.5×TC+30 55 — Wide 2.5×TC+50 75 — slave Data input valid to SCK edge (data input set-up time) Expression Master Slave Last SCK edge to SS not asserted Filter Mode Master/ Slave Master/ Slave ns ns ns ns ns 150 SS assertion to data out active Slave — 2 2 — ns 151 SS deassertion to data high impedance Slave — 9 — 9 ns 152 SCK edge to data out valid (data out delay time) Master/ Slave Bypassed 2×TC+33 — 53 ns Narrow 2×TC+123 — 143 Wide 2×TC+210 — 230 Bypassed TC+5 15 — Narrow TC+55 65 — Wide TC+106 116 — 153 SCK edge to data out not valid (data out hold time) Master/ Slave ns 154 SS assertion to data out valid (CPHA = 0) Slave — TC+33 — 43 ns 157 First SCK sampling edge to HREQ output deassertion Slave Bypassed 2.5×TC+30 — 55 ns Narrow 2.5×TC+120 — 145 Wide 2.5×TC+217 — 242 Bypassed 2.5×TC+30 55 — Narrow 2.5×TC+80 105 — Wide 2.5×TC+136 161 — 158 Last SCK sampling edge to HREQ output not deasserted (CPHA = 1) Slave ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-53 Serial Host Interface SPI Protocol Timing Table 3-21 Serial Host Interface SPI Protocol Timing (continued) 100MHz No. Characteristics Mode Filter Mode Expression Unit Min Max 159 SS deassertion to HREQ output not deasserted (CPHA = 0) Slave — 2.5×TC+30 55 — ns 160 SS deassertion pulse width (CPHA = 0) Slave — TC+6 16 — ns 161 HREQ in assertion to first SCK edge Master Bypassed 0.5 × tSPICC + 2.5×TC+43 121 — ns Narrow 0.5 ×tSPICC + 2.5×TC+43 174 — Wide 0.5 ×tSPICC + 2.5×TC+43 209 — 162 HREQ in deassertion to last SCK sampling edge (HREQ in set-up time) (CPHA = 1) Master — 0 0 — ns 163 First SCK edge to HREQ in not asserted Master — 0 0 — ns (HREQ in hold time) Note: Periodically sampled, not 100% tested SS (Input) 143 141 142 144 144 SCK (CPOL=0 (Output) 141 142 144 143 SCK (CPOL = 1 (Output) 144 148 149 MISO (Input) MSB Valid LSB Valid 153 152 MOSI (Output) 149 148 MSB LSB 161 163 HREQ (Input) AA0271 Figure 3-34 SPI Master Timing (CPHA = 0) DSP56362 Technical Data, Rev. 4 3-54 Freescale Semiconductor Serial Host Interface SPI Protocol Timing SS (Input) 143 141 142 144 144 SCK (CPOL = 0 (Output) 142 141 144 143 SCK (CPOL = 1 (Output) 144 148 148 149 MISO (Input) 149 MSB Valid LSB Valid 152 MOSI (Output) 153 MSB LSB 161 162 163 HREQ (Input) AA0272 Figure 3-35 SPI Slave Timing (CPHA = 0) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-55 Serial Host Interface SPI Protocol Timing SS (Input) 143 141 142 144 144 SCK (CPOL = 0 (Output) 142 141 144 143 SCK (CPOL = 1 (Output) 144 148 148 149 MISO (Input) 149 MSB Valid LSB Valid 152 MOSI (Output) 153 MSB LSB 161 162 163 HREQ (Input) AA0272 Figure 3-36 SPI Master Timing (CPHA = 1) DSP56362 Technical Data, Rev. 4 3-56 Freescale Semiconductor Serial Host Interface SPI Protocol Timing SS (Input) 143 141 142 144 147 144 160 SCK (CPOL = 0) (Input) 146 141 142 143 SCK (CPOL = 1) (Input) 154 144 144 152 153 150 MISO (Output) 153 151 MSB 148 LSB 148 149 MOSI (Input) MSB Valid 149 LSB Valid 157 159 HREQ (Output) AA0273 Figure 3-37 SPI Slave Timing (CPHA = 0) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-57 Serial Host Interface SPI Protocol Timing SS (Input) 143 141 142 144 147 144 SCK (CPOL = 0) (Input) 146 142 143 SCK (CPOL = 1) (Input) 152 144 144 152 153 151 150 MISO (Output) MSB LSB 148 148 149 MOSI (Input) MSB Valid 149 LSB Valid 157 158 HREQ (Output) AA0274 Figure 3-38 SPI Slave Timing (CPHA = 1) DSP56362 Technical Data, Rev. 4 3-58 Freescale Semiconductor Serial Host Interface (SHI) I2C Protocol Timing 3.13 Serial Host Interface (SHI) I2C Protocol Timing Table 3-22 SHI I2C Protocol Timing Standard I2C* No. Symbol/ Expression Characteristics Standard Fast-Mode Unit Min Max Min Max Filters bypassed — 0 — 0 Narrow filters enabled — 50 — 50 Wide filters enabled — 100 — 100 Tolerable spike width on SCL or SDA — ns 171 SCL clock frequency FSCL — 100 — 400 kHz 172 Bus free time TBUF 4.7 — 1.3 — µs 173 Start condition set-up time TSU;STA 4.7 — 0.6 — µs 174 Start condition hold time THD;STA 4.0 — 0.6 — µs 175 SCL low period TLOW 4.7 — 1.3 — µs 176 SCL high period THIGH 4.0 — 1.3 — µs 177 SCL and SDA rise time TR — 1000 20 + 0.1 × Cb 300 ns 178 SCL and SDA fall time TF — 300 20 + 0.1 × Cb 300 ns 179 Data set-up time TSU;DAT 250 — 100 — ns 180 Data hold time THD;DAT 0.0 — 0.0 0.9 µs 181 Stop condition set-up time TSU;STO 4.0 — 0.6 — µs 182 Capacitive load for each line Cb — 400 — 400 pF 183 DSP clock frequency FDSP MHz Filters bypassed 10.6 — 28.5 — Narrow filters enabled 11.8 — 39.7 — Wide filters enabled 13.1 — 61.0 — 0.0 — 0.0 — 184 HREQ in deassertion to last SCL edge (HREQ in set-up time) 186 First SCL sampling edge to HREQ output deassertion Filters bypassed Narrow filters enabled Wide filters enabled tSU;RQI TNG;RQO 2 × TC + 30 2 × TC + 120 2 × TC + 208 ns ns — 50 — 50 — 140 — 140 — 228 — 228 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-59 Serial Host Interface (SHI) I2C Protocol Timing Table 3-22 SHI I2C Protocol Timing (continued) Standard I2C* No. Symbol/ Expression Characteristics 187 Last SCL edge to HREQ output not deasserted 188 Standard Min Max Fast-Mode Min Unit Max TAS;RQO ns Filters bypassed 2 × TC + 30 50 — 50 — Narrow filters enabled 2 × TC + 80 100 — 100 — Wide filters enabled 2 × TC + 135 155 — 155 — 0.5 × TI2CCP 4327 — 927 — — 4282 — 882 — 0.5 × TC - 21 4238 — 838 — HREQ in assertion to first SCL edge Filters bypassed Narrow filters enabled Wide filters enabled ns TAS;RQI Note: RP (min) = 1.5 k¾ 3.13.1 Programming the Serial Clock The programmed serial clock cycle, T I2CCP, is specified by the value of the HDM[5:0] and HRS bits of the HCKR (SHI clock control register). The expression for T I2CCP is T 2 I CCP = [ T C × 2 × ( HDM [ 7 :0 ] + 1 ) × ( 7 × ( 1 – HRS ) + 1 ) ] where: HRS is the prescaler rate select bit. When HRS is cleared, the fixed divide-by-eight prescaler is operational. When HRS is set, the prescaler is bypassed. HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 64 (HDM[5:0] = 0 to $3F) may be selected. In I2C mode, the user may select a value for the programmed serial clock cycle from 6 × T C ( if HDM [ 5 :0 ] = $02 and HRS = 1 ) to 4096 × T C ( if HDM [ 7 :0 ] = $FF and HRS = 0 ) The programmed serial clock cycle (TI2CCP ), SCL rise time (TR), and the filters selected should be chosen in order to achieve the desired SCL frequency, as shown in Table 3-23 DSP56362 Technical Data, Rev. 4 3-60 Freescale Semiconductor Serial Host Interface (SHI) I2C Protocol Timing . Table 3-23 SCL Serial Clock Cycle generated as Master Filters bypassed TI2CCP + 2.5 × TC + 45ns + TR Narrow filters enabled TI2CCP + 2.5 × TC + 135ns + TR Wide filters enabled TI2CCP + 2.5 × TC + 223ns + TR EXAMPLE: For DSP clock frequency of 100 MHz (i.e. TC = 10ns), operating in a standard-mode I2C environment (FSCL = 100 KHz (i.e. TSCL = 10µs), TR = 1000ns), with filters bypassed T 2 I CCP = 10µs – 2.5 × 10ns – 45ns – 1000ns = 8930ns Choosing HRS = 0 gives HDM [ 7 :0 ] = 8930ns ⁄ ( 2 × 10ns × 8 ) – 1 = 55.8 Thus the HDM[7:0] value should be programmed to $38 (=56). 171 173 176 175 SCL 177 180 178 172 179 SDA Stop Start MSB 174 LSB 186 189 182 ACK Stop 183 184 188 187 HREQ AA0275 Figure 3-39 I2C Timing DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-61 Enhanced Serial Audio Interface Timing 3.14 Enhanced Serial Audio Interface Timing Table 3-24 Enhanced Serial Audio Interface Timing 100 MHz Characteristics1, 2, 3 No. Symbol 430 Clock cycle5 tSSICC 431 Clock high period Expression Condition4 Unit ns Min Max 4 x TC 40.0 — i ck RXC:3 xTC 30 — x ck TXC:MAX [3xTC;t454] 40 x ck ns — • For internal clock 2 × TC − 10.0 10.0 — • For external clock 1.5 × TC 15.0 — 432 Clock low period ns — • For internal clock 2 × TC − 10.0 10.0 — • For external clock 1.5 × TC 15.0 — — — 37.0 x ck — 22.0 i ck a — 37.0 x ck — 22.0 i ck a — 39.0 x ck — 24.0 i ck a 433 RXC rising edge to FSR out (bl) high — 434 RXC rising edge to FSR out (bl) low — 435 RXC rising edge to FSR out (wr) high6 — 436 RXC rising edge to FSR out (wr) low6 — 437 RXC rising edge to FSR out (wl) high — 438 RXC rising edge to FSR out (wl) low — 439 Data in setup time before RXC (TXC in synchronous mode) falling edge — 440 Data in hold time after RXC falling edge — 441 FSR input (bl, wr) high before RXC falling edge6 442 FSR input (wl) high before RXC falling edge — — — — — — — — — — — 39.0 x ck — 24.0 i ck a — 36.0 x ck — 21.0 i ck a — 37.0 x ck — 22.0 i ck a 0.0 — x ck 19.0 — i ck 5.0 — x ck 3.0 — i ck 23.0 — x ck 1.0 — i ck a 1.0 — x ck 23.0 — i ck a ns ns ns ns ns ns ns ns ns ns DSP56362 Technical Data, Rev. 4 3-62 Freescale Semiconductor Enhanced Serial Audio Interface Timing Table 3-24 Enhanced Serial Audio Interface Timing (continued) No. 100 MHz Characteristics1, 2, 3 Symbol 443 FSR input hold time after RXC falling edge 444 Flags input setup before RXC falling edge 445 Flags input hold time after RXC falling edge 446 TXC rising edge to FST out (bl) high — — — — 447 TXC rising edge to FST out (bl) low — 448 TXC rising edge to FST out (wr) high6 — 449 TXC rising edge to FST out (wr) low6 — 450 TXC rising edge to FST out (wl) high — 451 TXC rising edge to FST out (wl) low — 452 TXC rising edge to data out enable from high impedance — 453 TXC rising edge to transmitter drive enable assertion — 454 TXC rising edge to data out valid — 455 TXC rising edge to data out high impedance7 — 456 TXC rising edge to transmitter drive enable deassertion7 — 457 FST input (bl, wr) setup time before TXC falling edge6 — Expression — — — — — — — — — — — 23 + 0.5 × TC 21.0 — — — Condition4 Unit ns Min Max 3.0 — x ck 0.0 — i ck a 0.0 — x ck 19.0 — i ck s 6.0 — x ck 0.0 — i ck s — 29.0 x ck — 15.0 i ck — 31.0 x ck — 17.0 i ck — 31.0 x ck — 17.0 i ck — 33.0 x ck — 19.0 i ck — 30.0 x ck — 16.0 i ck — 31.0 x ck — 17.0 i ck — 31.0 x ck — 17.0 i ck — 34.0 x ck — 20.0 i ck — 28.0 x ck — 21.0 i ck — 31.0 x ck — 16.0 i ck — 34.0 x ck — 20.0 i ck 2.0 — x ck 21.0 — i ck ns ns ns ns ns ns ns ns ns ns ns ns ns ns DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-63 Enhanced Serial Audio Interface Timing Table 3-24 Enhanced Serial Audio Interface Timing (continued) No. 2 3 4 5 6 7 Symbol Expression Min Max Condition4 Unit 458 FST input (wl) to data out enable from high impedance — — — 27.0 — ns 459 FST input (wl) to transmitter drive enable assertion — — — 31.0 — ns 460 FST input (wl) setup time before TXC falling edge — — 2.0 — x ck ns 21.0 — i ck 461 FST input hold time after TXC falling edge — 462 Flag output valid after TXC rising edge 1 100 MHz Characteristics1, 2, 3 — — — 4.0 — x ck 0.0 — i ck — 32.0 x ck — 18.0 i ck ns ns 463 HCKR/HCKT clock cycle — — 40.0 — ns 464 HCKT input rising edge to TXC output — — — 27.5 ns 465 HCKR input rising edge to RXC output — — — 27.5 ns VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that TXC and RXC are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that TXC and RXC are the same clock) bl = bit length wl = word length wr = word length relative TXC(SCKT pin) = transmit clock RXC(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock For the internal clock, the clock cycle at the pin is defined by Icyc and the ESAI control registers. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one before last bit clock of the first word in frame. Periodically sampled and not 100% tested. DSP56362 Technical Data, Rev. 4 3-64 Freescale Semiconductor Enhanced Serial Audio Interface Timing 430 TXC (Input/Output) 431 432 446 447 FST (Bit) Out 450 451 FST (Word) Out 454 454 452 455 Data Out 459 Transmitter Drive Enable FST (Bit) In Last Bit First Bit 457 453 456 461 FST (Word) In 458 461 460 Flags Out 462 See Note Note: In network mode, output flag transitions can occur at the start of each time slot within the frame. In normal mode, the output flag state is asserted for the entire frame period. AA0490 Figure 3-40 ESAI Transmitter Timing DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-65 Enhanced Serial Audio Interface Timing 430 431 RXC (Input/Output) 432 433 434 FSR (Bit) Out 437 FSR (Word) Out 438 440 439 Data In First Bit FSR (Bit) In Last Bit 443 441 FSR (Word) In 442 Flags In 444 443 445 AA0491 Figure 3-41 ESAI Receiver Timing HCKT SCKT(output) 463 464 Figure 3-42 ESAI HCKT Timing DSP56362 Technical Data, Rev. 4 3-66 Freescale Semiconductor Digital Audio Transmitter Timing HCKR 463 SCKR (output) 465 Figure 3-43 ESAI HCKR Timing 3.15 Digital Audio Transmitter Timing Table 3-25 Digital Audio Transmitter Timing 100 MHz No. Characteristic Expression ACI frequency1 1 Unit Min Max — — 50 MHz 2 × TC 20 — ns 220 ACI period 221 ACI high duration 0.5 × TC 5 — ns 222 ACI low duration 0.5 × TC 5 — ns 223 ACI rising edge to ADO valid 1.5 × TC — 15 ns In order to assure proper operation of the DAX, the ACI frequency should be less than 1/2 of the DSP56362 internal clock frequency. For example, if the DSP56362 is running at 100 MHz internally, the ACI frequency should be less than 50 MHz. ACI 220 221 222 223 ADO AA1280 Figure 3-44 Digital Audio Transmitter Timing DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-67 Timer Timing 3.16 Timer Timing Table 3-26 Timer Timing1 100 MHz No. Expression Unit Min Max 480 TIO Low 2 × TC + 2.0 22.0 — ns 481 TIO High 2 × TC + 2.0 22.0 — ns 482 Timer setup time from TIO (Input) assertion to CLKOUT rising edge 9.0 10.0 ns 483 Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution 103.5 — ns 484 CLKOUT rising edge to TIO (Output) assertion 485 1 Characteristics 10.25 × TC + 1.0 ns • Minimum 0.5 × TC + 3.5 8.5 — • Maximum 0.5 × TC + 19.8 — 24.8 CLKOUT rising edge to TIO (Output) deassertion ns • Minimum 0.5 × TC + 3.5 8.5 — • Maximum 0.5 × TC + 19.0 — 24.8 VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF TIO 480 481 AA0492 Figure 3-45 TIO Timer Event Input Restrictions CLKOUT TIO (Input) 482 Address 483 First Interrupt Instruction Execution AA0493 Figure 3-46 Timer Interrupt Generation DSP56362 Technical Data, Rev. 4 3-68 Freescale Semiconductor GPIO Timing CLKOUT TIO (Output) 484 485 AA0494 Figure 3-47 External Pulse Generation 3.17 GPIO Timing Table 3-27 GPIO Timing1 100 MHz No. 1 Characteristics Expression Unit Min Max 490 CLKOUT edge to GPIO out valid (GPIO out delay time) — 31.0 ns 491 CLKOUT edge to GPIO out not valid (GPIO out hold time) 3.0 — ns 492 GPIO In valid to CLKOUT edge (GPIO in set-up time) 12.0 — ns 493 CLKOUT edge to GPIO in not valid (GPIO in hold time) 0.0 — ns 494 Fetch to CLKOUT edge before GPIO change 6.75 × TC 67.5 — ns 495 GPIO out rise time — — 13 ns 496 GPIO out fall time — — 13 ns VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-69 JTAG Timing CLKOUT (Output) 490 491 GPIO (Output) 492 493 GPIO (Input) Valid A0–A17 494 Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO and R0 contains the address of GPIO data register. AA0495 GPIO (Output) 495 496 Figure 3-48 GPIO Timing 3.18 JTAG Timing Table 3-28 JTAG Timing1, 2 All Frequencies No. Characteristics Unit Min Max 500 TCK frequency of operation (1/(TC × 3); maximum 22 MHz) 0.0 22.0 MHz 501 TCK cycle time in Crystal mode 45.0 — ns 502 TCK clock pulse width measured at 1.5 V 20.0 — ns 503 TCK rise and fall times 0.0 3.0 ns 504 Boundary scan input data setup time 5.0 — ns 505 Boundary scan input data hold time 24.0 — ns 506 TCK low to output data valid 0.0 40.0 ns 507 TCK low to output high impedance 0.0 40.0 ns DSP56362 Technical Data, Rev. 4 3-70 Freescale Semiconductor JTAG Timing Table 3-28 JTAG Timing1, 2 (continued) All Frequencies No. 1 2 Characteristics Unit Min Max 508 TMS, TDI data setup time 5.0 — ns 509 TMS, TDI data hold time 25.0 — ns 510 TCK low to TDO data valid 0.0 44.0 ns 511 TCK low to TDO high impedance 0.0 44.0 ns 512 TRST assert time 100.0 — ns 513 TRST setup time to TCK low 40.0 — ns VCC = 3.3 V ± 0.16V; TJ = 0°C to +100°C, CL = 50 pF All timings apply to OnCE module data transfers because it uses the JTAG port as an interface. 501 TCK (Input) VIH 503 502 502 VM VM VIL 503 AA0496 Figure 3-49 Test Clock Input Timing Diagram DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-71 JTAG Timing TCK (Input) VIH VIL 504 Data Inputs 505 Input Data Valid 506 Data Outputs Output Data Valid 507 Data Outputs 506 Data Outputs Output Data Valid AA0497 Figure 3-50 Boundary Scan (JTAG) Timing Diagram TCK (Input) VIH VIL 508 TDI TMS (Input) 509 Input Data Valid 510 TDO (Output) Output Data Valid 511 TDO (Output) 510 TDO (Output) Output Data Valid AA0498 Figure 3-51 Test Access Port Timing Diagram DSP56362 Technical Data, Rev. 4 3-72 Freescale Semiconductor OnCE Module TimIng TCK (Input) 513 TRST (Input) 512 AA0499 Figure 3-52 TRST Timing Diagram 3.19 OnCE Module TimIng Table 3-29 OnCE Module Timing1 100 MHz No. 500 Characteristics Expression 1/(TC × 3), TCK frequency of operation Unit Min Max 0.0 22.0 MHz max 22.0 MHz 1 514 DE assertion time in order to enter Debug mode 1.5 × TC + 10.0 25.0 — ns 515 Response time when DSP56362 is executing NOP instructions from internal memory 5.5 × TC + 30.0 — 85.0 ns 516 Debug acknowledge assertion time 3 × TC + 10.0 40.0 — ns VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF DE 514 515 516 AA0500 Figure 3-53 OnCE—Debug Request DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 3-73 OnCE Module TimIng NOTES DSP56362 Technical Data, Rev. 4 3-74 Freescale Semiconductor 4 4.1 Packaging Pin-out and Package Information This section provides information about the available package for this product, including diagrams of the package pinouts and tables describing how the signals described in Section 2, “Signal/Connection Descriptions” are allocated for the package. The DSP56362 is available in a 144-pin LQFP package. 4.2 LQFP Package Description Top view of the LQFP package is shown in Figure 4-1 with its pin-outs. The LQFP package mechanical drawing is shown in Figure 4-2. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 4-1 VCCA A1 VCCA A5 A4 A3 A2 GNDA VCCA A9 A8 A7 A6 GNDA GNDQ A11 A10 GNDA VCCQH A14 A13 A12 VCCQL VCCD 109 73 D7 D8 D2 D1 D0 A17 A16 A15 GNDA D6 D5 D4 D3 GNDD LQFP Package Description (Top View) VCCD GNDD D9 D10 D11 D12 D13 D14 VCCD GNDD D15 D16 D17 D18 D19 CLKOUT GNDC VCCC VCCQL EXTAL GNDQ VCCQL DSP56362 GNDQ D20 VCCD GNDD D21 D22 D23 MODD MODC MODB MODA DE TRST Orientation Mark 37 CAS AA2 AA3 VCCQH GNDP1 GNDP PCAP VCCP RESET HAD0 HAD1 HAD2 HAD3 GNDH VCCH HAD4 HA9 HA8 HAS HAD7 HAD6 HAD5 HCS VCCS GNDS ADO ACI TIO0 HRW HACK HOREQ HDS SDO2 SDO3 VCCS GNDS SDO4 SDO5 FST FSR SCKT SCKR HCKT HCKR VCCQL GNDQ VCCQH SDO0 SDO1 SS HREQ 1 SCK TDO TDI TCK TMS MOSI MISO A0 BG AA0 AA1 RD WR GNDC VCCC BB BR TA PINIT nc Note: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to Table and Table 4-2 for detailed information about pin functions and signal names. 4-1 AA0301 Figure 4-1 DSP56362 Thin Quad Flat Pack (LQFP), Top View DSP56362 Technical Data, Rev. 4 4-2 Freescale Semiconductor LQFP Package Description Table 4-1 DSP56362 LQFP Signal Identification by Pin Number Signal Name1 Pin No. Signal Name1 Pin No. Signal Name1 Pin No. 1 SCK/SCL 26 GNDS 51 AA2/RAS2 2 SS/HA2 27 ADO or PD1 52 CAS 3 HREQ 28 ACI or PD0 53 DE 4 SDO0 or PC11 29 TIO0 54 GNDQ 5 SDO1 or PC10 30 HCS/HCS, HA10, or PB13 55 EXTAL 6 SDO2/SDI3 or PC9 31 HA2, HA9, or PB10 56 VCCQL 7 SDO3/SDI2 or PC8 32 HA1, HA8, or PB9 57 VCCC 8 VCCS 33 HA0, HAS/HAS, or PB8 58 GNDC 9 GNDS 34 H7, HAD7, or PB7 59 CLKOUT 10 SDO4/SDI1 or PC7 35 H6, HAD6, or PB6 60 NC (not connected) 11 SDO5/SDI0 or PC6 36 H5, HAD5, or PB5 61 PINIT/NMI 12 FST or PC4 37 H4, HAD4, or PB4 62 TA 13 FSR or PC1 38 VCCH 63 BR 14 SCKT or PC3 39 GNDH 64 BB 15 SCKR or PC0 40 H3, HAD3, or PB3 65 VCCC 16 HCKT or PC5 41 H2, HAD2, or PB2 66 GNDC 17 HCKR or PC2 42 H1, HAD1, or PB1 67 WR 18 VCCQL 43 H0, HAD0, or PB0 68 RD 19 GNDQ 44 RESET 69 AA1/RAS1 20 VCCQH 45 VCCP 70 AA0/RAS0 21 HDS/HDS, HWR/HWR, or PB12 46 PCAP 71 BG 22 HRW, HRD/HRD, or PB11 47 GNDP 72 A0 23 HACK/HACK, HRRQ/HRRQ, or PB15 48 GNDP1 73 A1 24 HOREQ/HOREQ, HTRQ/HTRQ, or PB14 49 VCCQH 74 VCCA 25 VCCS 50 AA3/RAS3 75 GNDA DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 4-3 LQFP Package Description Table 4-1 DSP56362 LQFP Signal Identification by Pin Number (continued) Signal Name1 Pin No. 1 Signal Name1 Pin No. Signal Name1 Pin No. 76 A2 99 A17 122 D16 77 A3 100 D0 123 D17 78 A4 101 D1 124 D18 79 A5 102 D2 125 D19 80 VCCA 103 VCCD 126 VCCQL 81 GNDA 104 GNDD 127 GNDQ 82 A6 105 D3 128 D20 83 A7 106 D4 129 VCCD 84 A8 107 D5 130 GNDD 85 A9 108 D6 131 D21 86 VCCA 109 D7 132 D22 87 GNDA 110 D8 133 D23 88 A10 111 VCCD 134 MODD/IRQD 89 A11 112 GNDD 135 MODC/IRQC 90 GNDQ 113 D9 136 MODB/IRQB 91 VCCQL 114 D10 137 MODA/IRQA 92 A12 115 D11 138 TRST 93 A13 116 D12 139 TDO 94 A14 117 D13 140 TDI 95 VCCQH 118 D14 141 TCK 96 GNDA 119 VCCD 142 TMS 97 A15 120 GNDD 143 MOSI/HA0 98 A16 121 D15 144 MISO/SDA Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For example, pin 34 is data line H7 in nonmultiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. DSP56362 Technical Data, Rev. 4 4-4 Freescale Semiconductor LQFP Package Description Table 4-2 DSP56362 LQFP Signal Identification by Name Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. not connected 60 D13 117 GNDP1 48 A0 72 D14 118 GNDQ 19 A1 73 D15 121 GNDQ 54 A10 88 D16 122 GNDQ 90 A11 89 D17 123 GNDQ 127 A12 92 D18 124 GNDS 9 A13 93 D19 125 GNDS 26 A14 94 D2 102 H0 43 A15 97 D20 128 H1 42 A16 98 D21 131 H2 41 A17 99 D22 132 H3 40 A2 76 D23 133 H4 37 A3 77 D3 105 H5 36 A4 78 D4 106 H6 35 A5 79 D5 107 H7 34 A6 82 D6 108 HA0 33 A7 83 D7 109 HA0 143 A8 84 D8 110 HA1 32 A9 85 D9 113 HA10 30 AA0 70 DE 53 HA2 2 AA1 69 EXTAL 55 HA2 31 AA2 51 FSR 13 HA8 32 AA3 50 FST 12 HA9 31 ACI 28 GNDA 75 HACK/HACK 23 ADO 27 GNDA 81 HAD0 43 BB 64 GNDA 87 HAD1 42 BG 71 GNDA 96 HAD2 41 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 4-5 LQFP Package Description Table 4-2 DSP56362 LQFP Signal Identification by Name (continued) Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. BR 63 GNDC 58 HAD3 40 CAS 52 GNDC 66 HAD4 37 CLKOUT 59 GNDD 104 HAD5 36 D0 100 GNDD 112 HAD6 35 D1 101 GNDD 120 HAD7 34 D10 114 GNDD 130 HAS/HAS 33 D11 115 GNDH 39 HCS/HCS 30 D12 116 GNDP 47 HDS/HDS 21 HOREQ/HOREQ 24 PB9 32 SDO3 7 HRD/HRD 22 PC0 15 SDO4 10 HREQ 3 PC1 13 SDO5 11 HRRQ/HRRQ 23 PC10 5 SS 2 HRW 22 PC11 4 TA 62 HCKR 17 PC2 17 TCK 141 HCKT 16 PC3 14 TDI 140 HTRQ/HTRQ 24 PC4 12 TDO 139 HWR/HWR 21 PC5 16 TIO0 29 IRQA 137 PC6 11 TMS 142 IRQB 136 PC7 10 TRST 138 IRQC 135 PC8 7 VCCA 74 IRQD 134 PC9 6 VCCA 80 MISO 144 PCAP 46 VCCA 86 MODA 137 PD0 28 VCCC 57 MODB 136 PD1 27 VCCC 65 MODC 135 PINIT 61 VCCD 103 MODD 134 RAS0 70 VCCD 111 MOSI 143 RAS1 69 VCCD 119 DSP56362 Technical Data, Rev. 4 4-6 Freescale Semiconductor LQFP Package Description Table 4-2 DSP56362 LQFP Signal Identification by Name (continued) Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. NMI 61 RAS2 52 VCCD 129 PB0 43 RAS3 51 VCCH 38 PB1 42 RD 68 VCCP 45 PB10 31 RESET 44 VCCQH 20 PB11 22 SCK 1 VCCQH 49 PB12 21 SCKR 15 VCCQH 95 PB13 30 SCKT 14 VCCQL 18 PB14 24 SCL 1 VCCQL 56 PB15 23 SDA 144 VCCQL 91 PB2 41 SDI0 11 VCCQL 126 PB3 40 SDI1 10 VCCS 8 PB4 37 SDI2 7 VCCS 25 PB5 36 SDI3 6 WR 67 PB6 35 SDO0 4 PB7 34 SDO1 5 PB8 33 SDO2 6 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 4-7 LQFP Package Mechanical Drawing 4.3 LQFP PACKAGE MECHANICAL DRAWING Figure 4-2 DSP56362 144-pin LQFP Package DSP56362 Technical Data, Rev. 4 4-8 Freescale Semiconductor 5 5.1 Design Considerations Thermal Design Considerations An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation: T J = T A + ( P D × R θJA ) Where: TA = ambient temperature °C RθJA = package junction-to-ambient thermal resistance °C/W PD = power dissipation in package W Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance. R θJA = R θJC + R θCA Where: RθJA = package junction-to-ambient thermal resistance °C/W RθJC = package junction-to-case thermal resistance °C/W RθCA = package case-to-ambient thermal resistance °C/W RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, RθCA. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool. The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from RθJA do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate. A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 5-1 Electrical Design Considerations • • • To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink. To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case. If the temperature of the package case (TT) is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation (TJ – TT)/PD. As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, thermal characterization parameter or ΨJT, has been defined to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy. 5.2 Electrical Design Considerations CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or VCC). The suggested value for a pullup or pulldown resistor is 10 k ohm. Use the following list of recommendations to assure correct DSP operation: • Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from the board ground to each GND pin. • Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of the package to connect the VCC power source to GND. • Ensure that capacitor leads and associated printed circuit traces that connect to the chip VCC and GND pins are less than 1.2 cm (0.5 inch) per capacitor lead. • Use at least a four-layer PCB with two inner layers for VCC and GND. • Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 15 cm (6 inches) are recommended. DSP56362 Technical Data, Rev. 4 5-2 Freescale Semiconductor Power Consumption Considerations • Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the VCC and GND circuits. All inputs must be terminated (i.e., not allowed to float) using CMOS levels, except for the pins with internal pull-up resistors (TRST, TMS, DE, TCK, and TDI). Take special care to minimize noise levels on the VCCP, GNDP, and GNDP1 pins. If multiple DSP56362 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices. RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of RESET. At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip VCC never exceeds 3.95 V. • • • • • 5.3 Power Consumption Considerations Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes. Current consumption is described by the following formula: I = C×V×f where: C = node/pin capacitance V = voltage swing f = frequency of node/pin toggle Example 1. Current Consumption For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 100 MHz clock, toggling at its maximum possible rate (50 MHz), the current consumption is I = 50 × 10 – 12 6 × 3.3 × 50 × 10 = 8.25mA The maximum internal current (ICCImax) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The typical internal current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions. For applications that require very low current consumption, do the following: • Set the EBD bit when not accessing external memory. • Minimize external memory accesses and use internal memory accesses. • Minimize the number of pins that are switching. • Minimize the capacitive load on the pins. • Connect the unused inputs to pull-up or pull-down resistors. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 5-3 PLL Performance Issues • • Disable unused peripherals. Disable unused pin activity (e.g., CLKOUT, XTAL). One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in Appendix A. Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value. 1MIPS = 1MHz = ( I typF2 – I typF1 ) × ( F2 – F1 ) where : ItypF2 = current at F2 ItypF1 = current at F1 F2 = high frequency (any specified operating frequency) F1 = low frequency (any specified operating frequency lower than F2) NOTE F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application. 5.4 PLL Performance Issues The following explanations should be considered as general observations on expected PLL behavior. There is no testing that verifies these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges. 5.4.1 Phase Skew Performance The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature, and voltage ranges. As defined in Figure 3-1, for input frequencies greater than 15 MHz and the MF ≤ 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between −1.4 ns and +3.2 ns. 5.4.2 Phase Jitter Performance The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF ≤ 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns. DSP56362 Technical Data, Rev. 4 5-4 Freescale Semiconductor Host Port Considerations 5.4.3 Frequency Jitter Performance The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5% and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%. 5.4.4 Input (EXTAL) Jitter Requirements The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed values. 5.5 Host Port Considerations Careful synchronization is required when reading multi-bit registers that are written by another asynchronous system. This synchronization is a common problem when two asynchronous systems are connected, as they are in the host interface. The following paragraphs present considerations for proper operation. 5.5.1 • • • Host Programming Considerations Unsynchronized Reading of Receive Byte Registers—When reading the receive byte registers, receive register high (RXH), receive register middle (RXM), or receive register low (RXL), the host interface programmer should use interrupts or poll the receive register data full (RXDF) flag that indicates whether data is available. This ensures that the data in the receive byte registers will be valid. Overwriting Transmit Byte Registers—The host interface programmer should not write to the transmit byte registers, transmit register high (TXH), transmit register middle (TXM), or transmit register low (TXL), unless the transmit register data empty (TXDE) bit is set, indicating that the transmit byte registers are empty. This ensures that the transmit byte registers will transfer valid data to the host receive (HRX) register. Synchronization of Status Bits from DSP to Host—HC, HOREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or cleared from inside the DSP and read by the host processor (refer to the user’s manual for descriptions of these status bits). The host can read these status bits very quickly without regard to the clock rate used by the DSP, but the state of the bit could be changing during the read operation. This is not generally a system problem, because the bit will be read correctly in the next pass of any host polling routine. However, if the host asserts HEN for more than timing number 31, with a minimum cycle time of timing number 31 + 32, then these status bits are guaranteed to be stable. Exercise care when reading status bits HF3 and HF2 as an encoded pair. If the DSP changes HF3 and HF2 from 00 to 11, there is a small probability that the host could read the bits during the transition and receive 01 or 10 instead of 11. If the combination of HF3 and HF2 has DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 5-5 Host Port Considerations • • • 5.5.2 • • significance, the host could read the wrong combination. Therefore, read the bits twice and check for consensus. Overwriting the Host Vector—The host interface programmer should change the host vector (HV) register only when the host command (HC) bit is clear. This ensures that the DSP interrupt control logic will receive a stable vector. Cancelling a Pending Host Command Exception—The host processor may elect to clear the HC bit to cancel the host command exception request at any time before it is recognized by the DSP. Because the host does not know exactly when the exception will be recognized (due to exception processing synchronization and pipeline delays), the DSP may execute the host command exception after the HC bit is cleared. For these reasons, the HV bits must not be changed at the same time that the HC bit is cleared. Variance in the Host Interface Timing—The host interface (HDI) may vary (e.g. due to the PLL lock time at reset). Therefore, a host which attempts to load (bootstrap) the DSP should first make sure that the part has completed its HI port programming (e.g., by setting the INIT bit in ICR then polling it and waiting it to be cleared, then reading the ISR or by writing the TREQ/RREQ together with the INIT and then polling INIT, ISR, and the HOREQ pin). DSP Programming Considerations Synchronization of Status Bits from Host to DSP—DMA, HF1, HF0, HCP, HTDE, and HRDF status bits are set or cleared by the host processor side of the interface. These bits are individually synchronized to the DSP clock. (Refer to the user’s manual for descriptions of these status bits.) Reading HF0 and HF1 as an Encoded Pair—Care must be exercised when reading status bits HF0 and HF1 as an encoded pair, (i.e., the four combinations 00, 01, 10, and 11 each have significance). A very small probability exists that the DSP will read the status bits synchronized during transition. Therefore, HF0 and HF1 should be read twice and checked for consensus. DSP56362 Technical Data, Rev. 4 5-6 Freescale Semiconductor 6 Ordering Information Consult a Freescale Semiconductor, Inc. sales office or authorized distributor to determine product availability and to place an order. For information on ordering this and all DSP Audio products, review the SG1004 selector guide at http://www.freescale.com. DSP56362 Technical Data, Rev. 4 Freescale Semiconductor 6-1 NOTES DSP56362 Technical Data, Rev. 4 6-2 Freescale Semiconductor Appendix A Power Consumption Benchmark The following benchmark program permits evaluation of DSP power usage in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation. ;********************************************************************;********* *********************************************************** ;* ;* CHECKS Typical Power Consumption ;******************************************************************** page 200,55,0,0,0 nolist I_VEC EQU START EQU INT_PROG INT_XDAT INT_YDAT $000000 $8000 EQU $100 EQU $0 EQU $0 ; ; ; ; ; Interrupt vectors for program debug only MAIN (external) program starting address INTERNAL program memory starting address INTERNAL X-data memory starting address INTERNAL Y-data memory starting address INCLUDE "ioequ.asm" INCLUDE "intequ.asm" list org P:START ; movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM) ; Default: 1 w.s (SRAM) ; movep #$0d0000,x:M_PCTL ; XTAL disable ; PLL enable ; CLKOUT disable ; ; Load the program ; move #INT_PROG,r0 move #PROG_START,r1 do #(PROG_END-PROG_START),PLOAD_LOOP move p:(r1)+,x0 move x0,p:(r0)+ nop PLOAD_LOOP ; ; Load the X-data ; move #INT_XDAT,r0 move #XDAT_START,r1 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor A-1 do move move XLOAD_LOOP ; ; Load the Y-data ; move move do move move YLOAD_LOOP ; jmp PROG_START move move move move ; clr clr move move move move bset ; sbr dor mac mac add mac mac move _end bra nop nop nop nop PROG_END nop nop XDAT_START ; org dc dc dc dc #(XDAT_END-XDAT_START),XLOAD_LOOP p:(r1)+,x0 x0,x:(r0)+ #INT_YDAT,r0 #YDAT_START,r1 #(YDAT_END-YDAT_START),YLOAD_LOOP p:(r1)+,x0 x0,y:(r0)+ INT_PROG #$0,r0 #$0,r4 #$3f,m0 #$3f,m4 a b #$0,x0 #$0,x1 #$0,y0 #$0,y1 #4,omr ; ebd #60,_end x0,y0,a x:(r0)+,x1 x1,y1,a x:(r0)+,x0 a,b x0,y0,a x:(r0)+,x1 x1,y1,a b1,x:$ff y:(r4)+,y1 y:(r4)+,y0 y:(r4)+,y0 sbr x:0 $262EB9 $86F2FE $E56A5F $616CAC DSP56362 Technical Data, Rev. 4 A-2 Freescale Semiconductor dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc $8FFD75 $9210A $A06D7B $CEA798 $8DFBF1 $A063D6 $6C6657 $C2A544 $A3662D $A4E762 $84F0F3 $E6F1B0 $B3829 $8BF7AE $63A94F $EF78DC $242DE5 $A3E0BA $EBAB6B $8726C8 $CA361 $2F6E86 $A57347 $4BE774 $8F349D $A1ED12 $4BFCE3 $EA26E0 $CD7D99 $4BA85E $27A43F $A8B10C $D3A55 $25EC6A $2A255B $A5F1F8 $2426D1 $AE6536 $CBBC37 $6235A4 $37F0D $63BEC2 $A5E4D3 $8CE810 $3FF09 $60E50E $CFFB2F $40753C $8262C5 $CA641A $EB3B4B $2DA928 $AB6641 $28A7E6 $4E2127 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor A-3 dc dc dc dc dc $482FD4 $7257D $E53C72 $1A8C3 $E27540 XDAT_END YDAT_START ; org dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc y:0 $5B6DA $C3F70B $6A39E8 $81E801 $C666A6 $46F8E7 $AAEC94 $24233D $802732 $2E3C83 $A43E00 $C2B639 $85A47E $ABFDDF $F3A2C $2D7CF5 $E16A8A $ECB8FB $4BED18 $43F371 $83A556 $E1E9D7 $ACA2C4 $8135AD $2CE0E2 $8F2C73 $432730 $A87FA9 $4A292E $A63CCF $6BA65C $E06D65 $1AA3A $A1B6EB $48AC48 $EF7AE1 $6E3006 $62F6C7 $6064F4 $87E41D $CB2692 $2C3863 $C6BC60 $43A519 $6139DE $ADF7BF DSP56362 Technical Data, Rev. 4 A-4 Freescale Semiconductor dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc dc $4B3E8C $6079D5 $E0F5EA $8230DB $A3B778 $2BFE51 $E0A6B6 $68FFB7 $28F324 $8F2E8D $667842 $83E053 $A1FD90 $6B2689 $85B68E $622EAF $6162BC $E4A245 YDAT_END DSP56362 Technical Data, Rev. 4 Freescale Semiconductor A-5 NOTES DSP56362 Technical Data, Rev. 4 A-6 Freescale Semiconductor Appendix B IBIS Model [IBIS ver] 2.1 [File name] 56362.ibs [File Rev] 0.0 [Date] 29/6/2000 [Component] 56362 [Manufacturer] Freescale [Package] |variable typ R_pkg 45m L_pkg 2.5nH C_pkg 1.3pF min 22m 1.1nH 1.2pF max 75m 4.3nH 1.4pF [Pin]signal_name model_name 1 sck ip5b_io 2 ss_ ip5b_io 3 hreq_ ip5b_io 4 sdo0 ip5b_io 5 sdo1 ip5b_io 6 sdoi23 ip5b_io 7 sdoi32 ip5b_io 8 svcc power 9 sgnd gnd 10 sdoi41 ip5b_io 11 sdoi50 ip5b_io 12 fst ip5b_io 13 fsr ip5b_io 14 sckt ip5b_io 15 sckr ip5b_io 16 hsckt ip5b_io 17 hsckr ip5b_io 18 qvccl power 19 gnd gnd 20 qvcch power 21 hp12 ip5b_io 22 hp11 ip5b_io 23 hp15 ip5b_io 24 hp14 ip5b_io 25 svcc power 26 sgnd gnd 27 ado ip5b_io 28 aci ip5b_io 29 tio ip5b_io 30 hp13 ip5b_io 31 hp10 ip5b_io 32 hp9 ip5b_io DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-1 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 hp8 hp7 hp6 hp5 hp4 svcc sgnd hp3 hp2 hp1 hp0 ires_ pvcc pcap pgnd pgnd1 qvcch aa3 aa2 cas_ de_ qgnd cxtldis_ qvccl cvcc cgnd clkout nmi_ ta_ br_ bb_ cvcc cgnd wr_ rd_ aa1 aa0 bg_ eab0 eab1 avcc agnd eab2 eab3 eab4 eab5 avcc agnd eab6 eab7 eab8 eab9 avcc agnd eab10 ip5b_io ip5b_io ip5b_io ip5b_io ip5b_io power gnd ip5b_io ip5b_io ip5b_io ip5b_io ip5b_i power power gnd gnd power icbc_o icbc_o icbc_o ipbw_io gnd iexlh_i power power gnd icba_o ipbw_i icbc_o icbc_o icbc_o power gnd icbc_o icbc_o icbc_o icbc_o icbc_o icba_o icba_o power gnd icba_o icba_o icba_o icba_o power gnd icba_o icba_o icba_o icba_o power gnd icba_o DSP56362 Technical Data, Rev. 4 B-2 Freescale Semiconductor 89 eab11 90 qgnd 91 qvcc 92 eab12 93 eab13 94 eab14 95 qvcch 96 agnd 97 eab15 98 eab16 99 eab17 100 edb0 101 edb1 102 edb2 103 dvcc 104 dgnd 105 edb3 106 edb4 107 edb5 108 edb6 109 edb7 110 edb8 111 dvcc 112 dgnd 113 edb9 114 edb10 115 edb11 116 edb12 117 edb13 118 edb14 119 dvcc 120 dgnd 121 edb15 122 edb16 123 edb17 124 edb18 125 edb19 126 qvccl 127 qgnd 128 edb20 129 dvcc 130 dgnd 131 edb21 132 edb22 133 edb23 134 irqd_ 135 irqc_ 136 irqb_ 137 irqa_ 138 trst_ 139 tdo 140 tdi 141 tck 142 tms 143 mosi icba_o gnd power icba_o icba_o icba_o power gnd icba_o icba_o icba_o icba_io icba_io icba_io power gnd icba_io icba_io icba_io icba_io icba_io icba_io power gnd icba_io icba_io icba_io icba_io icba_io icba_io power gnd icba_io icba_io icba_io icba_io icba_io power gnd icba_io power gnd icba_io icba_io icba_io ip5b_i ip5b_i ip5b_i ip5b_i ip5b_i ip5b_o ip5b_i ip5b_i ip5b_i ip5b_io DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-3 144 sda ip5b_io | [Model] ip5b_i Model_type Input Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [GND_clamp] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.21e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.12e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.61e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.43e+01 -4.52e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.67e+00 -9.00e-01 -9.69e-03 -1.18e+00 -7.81e-03 -7.00e-01 -2.83e-04 -5.70e-03 -8.42e-04 -5.00e-01 -1.35e-06 -4.53e-05 -1.00e-05 -3.00e-01 -1.31e-09 -3.74e-07 -8.58e-09 -1.00e-01 -2.92e-11 -3.00e-09 -3.64e-11 0.000e+00 -2.44e-11 -5.14e-10 -2.79e-11 | | [Model] ip5b_io Model_type I/O Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.21e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.12e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.61e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 DSP56362 Technical Data, Rev. 4 B-4 Freescale Semiconductor -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -7.83e+01 -4.43e+01 -1.02e+01 -5.10e-02 -3.65e-02 -2.65e-02 -1.62e-02 -5.49e-03 5.377e-03 1.516e-02 2.370e-02 3.098e-02 3.700e-02 4.175e-02 4.531e-02 4.779e-02 4.935e-02 5.013e-02 5.046e-02 5.063e-02 5.075e-02 5.085e-02 5.090e-02 4.771e-02 4.525e-02 4.657e-02 4.904e-02 5.221e-02 5.524e-02 5.634e-02 5.751e-02 5.634e-02 5.648e-02 5.664e-02 5.679e-02 5.693e-02 5.707e-02 5.722e-02 5.741e-02 5.766e-02 5.801e-02 5.824e-02 I(typ) 2.922e-04 2.881e-04 2.853e-04 2.836e-04 2.825e-04 2.819e-04 2.815e-04 2.813e-04 2.812e-04 -6.88e+01 -4.52e+01 -2.15e+01 -1.18e+00 -2.25e-02 -1.38e-02 -8.35e-03 -2.80e-03 2.744e-03 7.871e-03 1.252e-02 1.667e-02 2.026e-02 2.324e-02 2.553e-02 2.709e-02 2.803e-02 2.851e-02 2.876e-02 2.892e-02 2.904e-02 2.912e-02 2.876e-02 2.994e-02 3.321e-02 3.570e-02 3.801e-02 4.029e-02 4.253e-02 4.463e-02 4.645e-02 4.786e-02 4.881e-02 4.912e-02 4.795e-02 4.679e-02 4.688e-02 4.700e-02 4.712e-02 4.723e-02 4.733e-02 4.737e-02 I(min) 2.177e-04 2.175e-04 2.173e-04 2.172e-04 2.171e-04 2.170e-04 2.169e-04 2.167e-04 2.520e-04 -7.58e+01 -4.17e+01 -7.69e+00 -5.63e-02 -4.28e-02 -3.12e-02 -1.91e-02 -6.52e-03 6.427e-03 1.823e-02 2.869e-02 3.776e-02 4.544e-02 5.171e-02 5.660e-02 6.023e-02 6.271e-02 6.419e-02 6.494e-02 6.525e-02 6.540e-02 6.549e-02 6.555e-02 6.561e-02 6.182e-02 6.049e-02 6.178e-02 6.450e-02 6.659e-02 6.867e-02 6.970e-02 6.938e-02 6.960e-02 6.983e-02 7.005e-02 7.026e-02 7.049e-02 7.074e-02 7.105e-02 7.147e-02 7.205e-02 7.242e-02 I(max) 4.123e-04 4.021e-04 3.946e-04 3.893e-04 3.857e-04 3.834e-04 3.820e-04 3.812e-04 3.808e-04 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-5 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [GND_clamp] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 2.811e-04 2.810e-04 2.809e-04 2.808e-04 2.997e-04 1.750e-02 1.048e-02 3.487e-03 -3.40e-03 -9.69e-03 -1.52e-02 -2.02e-02 -2.46e-02 -2.84e-02 -3.14e-02 -3.37e-02 -3.55e-02 -3.68e-02 -3.78e-02 -3.85e-02 -3.91e-02 -3.96e-02 -4.01e-02 -4.04e-02 -4.08e-02 -4.11e-02 -4.14e-02 -4.17e-02 -4.32e-02 -4.08e-01 -2.73e+01 -6.13e+01 -9.54e+01 -1.38e+02 -1.89e+02 -2.40e+02 -2.91e+02 -3.42e+02 -3.93e+02 -4.44e+02 -4.95e+02 -5.21e+02 I(typ) -5.21e+02 -4.69e+02 -4.18e+02 -3.67e+02 -3.16e+02 -2.65e+02 -2.14e+02 -1.63e+02 -1.13e+02 3.078e-02 2.684e-02 2.277e-02 1.864e-02 1.447e-02 1.031e-02 6.181e-03 2.084e-03 -2.03e-03 -5.71e-03 -8.99e-03 -1.19e-02 -1.43e-02 -1.62e-02 -1.77e-02 -1.88e-02 -1.95e-02 -2.00e-02 -2.04e-02 -2.07e-02 -2.10e-02 -2.12e-02 -2.15e-02 -2.17e-02 -2.18e-02 -2.20e-02 -2.78e-02 -1.20e+00 -2.15e+01 -4.52e+01 -6.89e+01 -9.25e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.59e+02 -2.94e+02 -3.30e+02 -3.65e+02 -4.01e+02 -4.18e+02 I(min) -3.65e+02 -3.30e+02 -2.94e+02 -2.59e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.25e+01 3.806e-04 3.804e-04 3.802e-04 3.801e-04 3.799e-04 3.797e-04 3.776e-04 4.568e-03 -4.22e-03 -1.24e-02 -1.95e-02 -2.61e-02 -3.21e-02 -3.73e-02 -4.18e-02 -4.55e-02 -4.85e-02 -5.09e-02 -5.27e-02 -5.41e-02 -5.51e-02 -5.60e-02 -5.67e-02 -5.74e-02 -5.79e-02 -5.84e-02 -5.89e-02 -5.94e-02 -5.98e-02 -6.10e-02 -6.84e-02 -7.73e+00 -4.18e+01 -7.59e+01 -1.11e+02 -1.61e+02 -2.12e+02 -2.63e+02 -3.14e+02 -3.65e+02 -4.16e+02 -4.41e+02 I(max) -5.18e+02 -4.67e+02 -4.16e+02 -3.65e+02 -3.14e+02 -2.63e+02 -2.12e+02 -1.61e+02 -1.10e+02 DSP56362 Technical Data, Rev. 4 B-6 Freescale Semiconductor -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.43e+01 -4.52e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.67e+00 -9.00e-01 -9.69e-03 -1.18e+00 -7.81e-03 -7.00e-01 -2.83e-04 -5.70e-03 -8.42e-04 -5.00e-01 -1.35e-06 -4.53e-05 -1.00e-05 -3.00e-01 -1.31e-09 -3.74e-07 -8.58e-09 -1.00e-01 -2.92e-11 -3.00e-09 -3.64e-11 0.000e+00 -2.44e-11 -5.14e-10 -2.79e-11 | [Ramp] R_load = 50.00 |voltage I(typ) I(min) I(max) | | dV/dt_r 1.030/0.465 0.605/0.676 1.320/0.366 | | dV/dt_f 1.290/0.671 0.829/0.122 1.520/0.431 | | [Model] ip5b_o Model_type 3-state Polarity Non-Inverting C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.21e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.12e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.61e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.43e+01 -4.52e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.69e+00 -9.00e-01 -5.10e-02 -1.18e+00 -5.63e-02 -7.00e-01 -3.65e-02 -2.25e-02 -4.28e-02 -5.00e-01 -2.65e-02 -1.38e-02 -3.12e-02 -3.00e-01 -1.62e-02 -8.35e-03 -1.91e-02 -1.00e-01 -5.49e-03 -2.80e-03 -6.52e-03 1.000e-01 5.377e-03 2.744e-03 6.427e-03 3.000e-01 1.516e-02 7.871e-03 1.823e-02 5.000e-01 2.370e-02 1.252e-02 2.869e-02 7.000e-01 3.098e-02 1.667e-02 3.776e-02 9.000e-01 3.700e-02 2.026e-02 4.544e-02 1.100e+00 4.175e-02 2.324e-02 5.171e-02 1.300e+00 4.531e-02 2.553e-02 5.660e-02 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-7 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 4.779e-02 4.935e-02 5.013e-02 5.046e-02 5.063e-02 5.075e-02 5.085e-02 5.090e-02 4.771e-02 4.525e-02 4.657e-02 4.904e-02 5.221e-02 5.524e-02 5.634e-02 5.751e-02 5.634e-02 5.648e-02 5.664e-02 5.679e-02 5.693e-02 5.707e-02 5.722e-02 5.741e-02 5.766e-02 5.801e-02 5.824e-02 I(typ) 2.922e-04 2.881e-04 2.853e-04 2.836e-04 2.825e-04 2.819e-04 2.815e-04 2.813e-04 2.812e-04 2.811e-04 2.810e-04 2.809e-04 2.808e-04 2.997e-04 1.750e-02 1.048e-02 3.487e-03 -3.40e-03 -9.69e-03 -1.52e-02 -2.02e-02 -2.46e-02 -2.84e-02 -3.14e-02 2.709e-02 2.803e-02 2.851e-02 2.876e-02 2.892e-02 2.904e-02 2.912e-02 2.876e-02 2.994e-02 3.321e-02 3.570e-02 3.801e-02 4.029e-02 4.253e-02 4.463e-02 4.645e-02 4.786e-02 4.881e-02 4.912e-02 4.795e-02 4.679e-02 4.688e-02 4.700e-02 4.712e-02 4.723e-02 4.733e-02 4.737e-02 I(min) 2.177e-04 2.175e-04 2.173e-04 2.172e-04 2.171e-04 2.170e-04 2.169e-04 2.167e-04 2.520e-04 3.078e-02 2.684e-02 2.277e-02 1.864e-02 1.447e-02 1.031e-02 6.181e-03 2.084e-03 -2.03e-03 -5.71e-03 -8.99e-03 -1.19e-02 -1.43e-02 -1.62e-02 -1.77e-02 6.023e-02 6.271e-02 6.419e-02 6.494e-02 6.525e-02 6.540e-02 6.549e-02 6.555e-02 6.561e-02 6.182e-02 6.049e-02 6.178e-02 6.450e-02 6.659e-02 6.867e-02 6.970e-02 6.938e-02 6.960e-02 6.983e-02 7.005e-02 7.026e-02 7.049e-02 7.074e-02 7.105e-02 7.147e-02 7.205e-02 7.242e-02 I(max) 4.123e-04 4.021e-04 3.946e-04 3.893e-04 3.857e-04 3.834e-04 3.820e-04 3.812e-04 3.808e-04 3.806e-04 3.804e-04 3.802e-04 3.801e-04 3.799e-04 3.797e-04 3.776e-04 4.568e-03 -4.22e-03 -1.24e-02 -1.95e-02 -2.61e-02 -3.21e-02 -3.73e-02 -4.18e-02 DSP56362 Technical Data, Rev. 4 B-8 Freescale Semiconductor 1.500e+00 -3.37e-02 1.700e+00 -3.55e-02 1.900e+00 -3.68e-02 2.100e+00 -3.78e-02 2.300e+00 -3.85e-02 2.500e+00 -3.91e-02 2.700e+00 -3.96e-02 2.900e+00 -4.01e-02 3.100e+00 -4.04e-02 3.300e+00 -4.08e-02 3.500e+00 -4.11e-02 3.700e+00 -4.14e-02 3.900e+00 -4.17e-02 4.100e+00 -4.32e-02 4.300e+00 -4.08e-01 4.500e+00 -2.73e+01 4.700e+00 -6.13e+01 4.900e+00 -9.54e+01 5.100e+00 -1.38e+02 5.300e+00 -1.89e+02 5.500e+00 -2.40e+02 5.700e+00 -2.91e+02 5.900e+00 -3.42e+02 6.100e+00 -3.93e+02 6.300e+00 -4.44e+02 6.500e+00 -4.95e+02 6.600e+00 -5.21e+02 | [GND_clamp] |voltage I(typ) | -3.30e+00 -5.21e+02 -3.10e+00 -4.69e+02 -2.90e+00 -4.18e+02 -2.70e+00 -3.67e+02 -2.50e+00 -3.16e+02 -2.30e+00 -2.65e+02 -2.10e+00 -2.14e+02 -1.90e+00 -1.63e+02 -1.70e+00 -1.13e+02 -1.50e+00 -7.83e+01 -1.30e+00 -4.43e+01 -1.10e+00 -1.02e+01 -9.00e-01 -9.69e-03 -7.00e-01 -2.83e-04 -5.00e-01 -1.35e-06 -3.00e-01 -1.31e-09 -1.00e-01 -2.92e-11 0.000e+00 -2.44e-11 | [Ramp] R_load = 50.00 |voltage I(typ) | | -1.88e-02 -1.95e-02 -2.00e-02 -2.04e-02 -2.07e-02 -2.10e-02 -2.12e-02 -2.15e-02 -2.17e-02 -2.18e-02 -2.20e-02 -2.78e-02 -1.20e+00 -2.15e+01 -4.52e+01 -6.89e+01 -9.25e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.59e+02 -2.94e+02 -3.30e+02 -3.65e+02 -4.01e+02 -4.18e+02 I(min) -3.65e+02 -3.30e+02 -2.94e+02 -2.59e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.25e+01 -6.88e+01 -4.52e+01 -2.15e+01 -1.18e+00 -5.70e-03 -4.53e-05 -3.74e-07 -3.00e-09 -5.14e-10 I(min) -4.55e-02 -4.85e-02 -5.09e-02 -5.27e-02 -5.41e-02 -5.51e-02 -5.60e-02 -5.67e-02 -5.74e-02 -5.79e-02 -5.84e-02 -5.89e-02 -5.94e-02 -5.98e-02 -6.10e-02 -6.84e-02 -7.73e+00 -4.18e+01 -7.59e+01 -1.11e+02 -1.61e+02 -2.12e+02 -2.63e+02 -3.14e+02 -3.65e+02 -4.16e+02 -4.41e+02 I(max) -5.18e+02 -4.67e+02 -4.16e+02 -3.65e+02 -3.14e+02 -2.63e+02 -2.12e+02 -1.61e+02 -1.10e+02 -7.58e+01 -4.17e+01 -7.67e+00 -7.81e-03 -8.42e-04 -1.00e-05 -8.58e-09 -3.64e-11 -2.79e-11 I(max) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-9 dV/dt_r 1.030/0.465 0.605/0.676 1.320/0.366 | | dV/dt_f 1.290/0.671 0.829/0.122 1.520/0.431 | | [Model] icba_io Model_type I/O Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.20e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.12e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.60e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.43e+01 -4.52e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.68e+00 -9.00e-01 -2.70e-02 -1.19e+00 -2.90e-02 -7.00e-01 -1.32e-02 -1.25e-02 -1.63e-02 -5.00e-01 -9.33e-03 -4.69e-03 -1.10e-02 -3.00e-01 -5.75e-03 -2.81e-03 -6.76e-03 -1.00e-01 -1.97e-03 -9.48e-04 -2.32e-03 1.000e-01 1.945e-03 9.285e-04 2.307e-03 3.000e-01 5.507e-03 2.640e-03 6.599e-03 5.000e-01 8.649e-03 4.168e-03 1.048e-02 7.000e-01 1.136e-02 5.504e-03 1.393e-02 9.000e-01 1.364e-02 6.636e-03 1.693e-02 1.100e+00 1.547e-02 7.551e-03 1.950e-02 1.300e+00 1.688e-02 8.240e-03 2.162e-02 1.500e+00 1.299e-01 6.458e-02 2.331e-02 1.700e+00 1.366e-01 6.746e-02 1.755e-01 1.900e+00 1.404e-01 6.916e-02 1.847e-01 2.100e+00 1.423e-01 7.006e-02 1.907e-01 2.300e+00 1.433e-01 7.059e-02 1.940e-01 2.500e+00 1.440e-01 7.098e-02 1.958e-01 2.700e+00 1.445e-01 7.128e-02 1.970e-01 2.900e+00 1.450e-01 7.154e-02 1.979e-01 3.100e+00 1.454e-01 7.176e-02 1.986e-01 3.300e+00 1.458e-01 7.196e-02 1.993e-01 3.500e+00 1.461e-01 7.223e-02 1.999e-01 3.700e+00 1.464e-01 8.810e-02 2.004e-01 3.900e+00 1.469e-01 2.589e+00 2.009e-01 DSP56362 Technical Data, Rev. 4 B-10 Freescale Semiconductor 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 1.490e-01 1.501e+00 1.813e+01 3.540e+01 5.269e+01 7.541e+01 1.012e+02 1.270e+02 1.527e+02 1.785e+02 2.043e+02 2.301e+02 2.559e+02 2.688e+02 I(typ) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 6.237e+01 4.389e+01 2.662e+01 9.360e+00 4.275e-02 8.208e-03 5.635e-03 3.370e-03 1.118e-03 -1.09e-03 -3.12e-03 -4.96e-03 -6.60e-03 -8.04e-03 -9.26e-03 -1.03e-02 -1.25e-01 -1.31e-01 -1.36e-01 -1.40e-01 -1.42e-01 -1.44e-01 -1.46e-01 -1.48e-01 -1.49e-01 -1.50e-01 -1.52e-01 -1.53e-01 -1.54e-01 1.451e+01 2.658e+01 3.866e+01 5.076e+01 6.461e+01 8.261e+01 1.006e+02 1.186e+02 1.366e+02 1.546e+02 1.726e+02 1.906e+02 2.086e+02 2.176e+02 I(min) 1.905e+02 1.725e+02 1.545e+02 1.365e+02 1.185e+02 1.005e+02 8.253e+01 6.454e+01 5.068e+01 3.859e+01 2.651e+01 1.444e+01 2.518e+00 2.012e-02 3.518e-03 2.053e-03 6.789e-04 -6.56e-04 -1.86e-03 -2.93e-03 -3.87e-03 -4.66e-03 -5.30e-03 -6.55e-02 -6.93e-02 -7.19e-02 -7.38e-02 -7.53e-02 -7.65e-02 -7.76e-02 -7.85e-02 -7.93e-02 -8.00e-02 -8.06e-02 -8.13e-02 -8.84e-02 -1.26e+00 2.015e-01 2.030e-01 2.385e-01 9.563e+00 2.682e+01 4.409e+01 6.258e+01 8.836e+01 1.141e+02 1.399e+02 1.657e+02 1.915e+02 2.173e+02 2.302e+02 I(max) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 6.237e+01 4.389e+01 2.662e+01 9.362e+00 4.663e-02 1.070e-02 7.068e-03 4.233e-03 1.410e-03 -1.38e-03 -3.99e-03 -6.39e-03 -8.59e-03 -1.06e-02 -1.23e-02 -1.38e-02 -1.70e-01 -1.82e-01 -1.91e-01 -1.97e-01 -2.03e-01 -2.07e-01 -2.10e-01 -2.13e-01 -2.15e-01 -2.17e-01 -2.19e-01 -2.21e-01 -2.22e-01 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-11 4.100e+00 -1.57e-01 4.300e+00 -5.25e-01 4.500e+00 -2.74e+01 4.700e+00 -6.14e+01 4.900e+00 -9.55e+01 5.100e+00 -1.38e+02 5.300e+00 -1.89e+02 5.500e+00 -2.40e+02 5.700e+00 -2.91e+02 5.900e+00 -3.42e+02 6.100e+00 -3.93e+02 6.300e+00 -4.44e+02 6.500e+00 -4.95e+02 6.600e+00 -5.21e+02 | [GND_clamp] |voltage I(typ) | -3.30e+00 -5.20e+02 -3.10e+00 -4.69e+02 -2.90e+00 -4.18e+02 -2.70e+00 -3.67e+02 -2.50e+00 -3.16e+02 -2.30e+00 -2.65e+02 -2.10e+00 -2.14e+02 -1.90e+00 -1.63e+02 -1.70e+00 -1.13e+02 -1.50e+00 -7.83e+01 -1.30e+00 -4.43e+01 -1.10e+00 -1.02e+01 -9.00e-01 -1.22e-02 -7.00e-01 -5.18e-04 -5.00e-01 -2.43e-06 -3.00e-01 -2.33e-09 -1.00e-01 -2.10e-11 0.000e+00 -1.70e-11 | [POWER_clamp] |voltage I(typ) | -3.30e+00 2.686e+02 -3.10e+00 2.428e+02 -2.90e+00 2.170e+02 -2.70e+00 1.912e+02 -2.50e+00 1.655e+02 -2.30e+00 1.397e+02 -2.10e+00 1.139e+02 -1.90e+00 8.814e+01 -1.70e+00 6.236e+01 -1.50e+00 4.389e+01 -1.30e+00 2.662e+01 -1.10e+00 9.358e+00 -9.00e-01 3.399e-02 -7.00e-01 3.426e-04 -5.00e-01 2.840e-06 -2.16e+01 -4.53e+01 -6.89e+01 -9.26e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.59e+02 -2.94e+02 -3.30e+02 -3.65e+02 -4.01e+02 -4.19e+02 I(min) -3.65e+02 -3.30e+02 -2.94e+02 -2.59e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.25e+01 -6.88e+01 -4.52e+01 -2.15e+01 -1.18e+00 -6.62e-03 -6.64e-05 -6.35e-07 -6.31e-09 -1.95e-09 I(min) 1.905e+02 1.725e+02 1.545e+02 1.365e+02 1.185e+02 1.005e+02 8.253e+01 6.454e+01 5.068e+01 3.859e+01 2.651e+01 1.444e+01 2.517e+00 1.577e-02 7.857e-05 -2.24e-01 -2.27e-01 -2.38e-01 -7.90e+00 -4.20e+01 -7.60e+01 -1.11e+02 -1.61e+02 -2.12e+02 -2.63e+02 -3.14e+02 -3.65e+02 -4.16e+02 -4.42e+02 I(max) -5.18e+02 -4.67e+02 -4.16e+02 -3.65e+02 -3.14e+02 -2.63e+02 -2.12e+02 -1.60e+02 -1.10e+02 -7.58e+01 -4.17e+01 -7.67e+00 -1.17e-02 -1.56e-03 -1.80e-05 -1.54e-08 -2.99e-11 -1.91e-11 I(max) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 6.237e+01 4.389e+01 2.662e+01 9.359e+00 3.554e-02 9.211e-04 1.655e-05 DSP56362 Technical Data, Rev. 4 B-12 Freescale Semiconductor -3.00e-01 3.401e-09 6.836e-07 1.946e-08 -1.00e-01 6.162e-11 7.379e-09 7.622e-11 0.000e+00 5.758e-11 2.438e-09 6.240e-11 | [Ramp] R_load = 50.00 |voltage I(typ) I(min) I(max) | | dV/dt_r 1.680/0.164 1.360/0.329 1.900/0.124 | | dV/dt_f 1.690/0.219 1.310/0.442 1.880/0.155 | | [Model] icba_o Model_type 3-state Polarity Non-Inverting C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.20e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.12e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.60e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.43e+01 -4.52e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.68e+00 -9.00e-01 -2.70e-02 -1.19e+00 -2.90e-02 -7.00e-01 -1.32e-02 -1.25e-02 -1.63e-02 -5.00e-01 -9.33e-03 -4.69e-03 -1.10e-02 -3.00e-01 -5.75e-03 -2.81e-03 -6.76e-03 -1.00e-01 -1.97e-03 -9.48e-04 -2.32e-03 1.000e-01 1.945e-03 9.285e-04 2.307e-03 3.000e-01 5.507e-03 2.640e-03 6.599e-03 5.000e-01 8.649e-03 4.168e-03 1.048e-02 7.000e-01 1.136e-02 5.504e-03 1.393e-02 9.000e-01 1.364e-02 6.636e-03 1.693e-02 1.100e+00 1.547e-02 7.551e-03 1.950e-02 1.300e+00 1.688e-02 8.240e-03 2.162e-02 1.500e+00 1.299e-01 6.458e-02 2.331e-02 1.700e+00 1.366e-01 6.746e-02 1.755e-01 1.900e+00 1.404e-01 6.916e-02 1.847e-01 2.100e+00 1.423e-01 7.006e-02 1.907e-01 2.300e+00 1.433e-01 7.059e-02 1.940e-01 2.500e+00 1.440e-01 7.098e-02 1.958e-01 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-13 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 1.445e-01 1.450e-01 1.454e-01 1.458e-01 1.461e-01 1.464e-01 1.469e-01 1.490e-01 1.501e+00 1.813e+01 3.540e+01 5.269e+01 7.541e+01 1.012e+02 1.270e+02 1.527e+02 1.785e+02 2.043e+02 2.301e+02 2.559e+02 2.688e+02 I(typ) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 6.237e+01 4.389e+01 2.662e+01 9.360e+00 4.275e-02 8.208e-03 5.635e-03 3.370e-03 1.118e-03 -1.09e-03 -3.12e-03 -4.96e-03 -6.60e-03 -8.04e-03 -9.26e-03 -1.03e-02 -1.25e-01 -1.31e-01 -1.36e-01 -1.40e-01 -1.42e-01 -1.44e-01 7.128e-02 7.154e-02 7.176e-02 7.196e-02 7.223e-02 8.810e-02 2.589e+00 1.451e+01 2.658e+01 3.866e+01 5.076e+01 6.461e+01 8.261e+01 1.006e+02 1.186e+02 1.366e+02 1.546e+02 1.726e+02 1.906e+02 2.086e+02 2.176e+02 I(min) 1.905e+02 1.725e+02 1.545e+02 1.365e+02 1.185e+02 1.005e+02 8.253e+01 6.454e+01 5.068e+01 3.859e+01 2.651e+01 1.444e+01 2.518e+00 2.012e-02 3.518e-03 2.053e-03 6.789e-04 -6.56e-04 -1.86e-03 -2.93e-03 -3.87e-03 -4.66e-03 -5.30e-03 -6.55e-02 -6.93e-02 -7.19e-02 -7.38e-02 -7.53e-02 -7.65e-02 -7.76e-02 1.970e-01 1.979e-01 1.986e-01 1.993e-01 1.999e-01 2.004e-01 2.009e-01 2.015e-01 2.030e-01 2.385e-01 9.563e+00 2.682e+01 4.409e+01 6.258e+01 8.836e+01 1.141e+02 1.399e+02 1.657e+02 1.915e+02 2.173e+02 2.302e+02 I(max) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 6.237e+01 4.389e+01 2.662e+01 9.362e+00 4.663e-02 1.070e-02 7.068e-03 4.233e-03 1.410e-03 -1.38e-03 -3.99e-03 -6.39e-03 -8.59e-03 -1.06e-02 -1.23e-02 -1.38e-02 -1.70e-01 -1.82e-01 -1.91e-01 -1.97e-01 -2.03e-01 -2.07e-01 DSP56362 Technical Data, Rev. 4 B-14 Freescale Semiconductor 2.700e+00 -1.46e-01 2.900e+00 -1.48e-01 3.100e+00 -1.49e-01 3.300e+00 -1.50e-01 3.500e+00 -1.52e-01 3.700e+00 -1.53e-01 3.900e+00 -1.54e-01 4.100e+00 -1.57e-01 4.300e+00 -5.25e-01 4.500e+00 -2.74e+01 4.700e+00 -6.14e+01 4.900e+00 -9.55e+01 5.100e+00 -1.38e+02 5.300e+00 -1.89e+02 5.500e+00 -2.40e+02 5.700e+00 -2.91e+02 5.900e+00 -3.42e+02 6.100e+00 -3.93e+02 6.300e+00 -4.44e+02 6.500e+00 -4.95e+02 6.600e+00 -5.21e+02 | [GND_clamp] |voltage I(typ) | -3.30e+00 -5.20e+02 -3.10e+00 -4.69e+02 -2.90e+00 -4.18e+02 -2.70e+00 -3.67e+02 -2.50e+00 -3.16e+02 -2.30e+00 -2.65e+02 -2.10e+00 -2.14e+02 -1.90e+00 -1.63e+02 -1.70e+00 -1.13e+02 -1.50e+00 -7.83e+01 -1.30e+00 -4.43e+01 -1.10e+00 -1.02e+01 -9.00e-01 -1.22e-02 -7.00e-01 -5.18e-04 -5.00e-01 -2.43e-06 -3.00e-01 -2.33e-09 -1.00e-01 -2.10e-11 0.000e+00 -1.70e-11 | [POWER_clamp] |voltage I(typ) | -3.30e+00 2.686e+02 -3.10e+00 2.428e+02 -2.90e+00 2.170e+02 -2.70e+00 1.912e+02 -2.50e+00 1.655e+02 -2.30e+00 1.397e+02 -2.10e+00 1.139e+02 -1.90e+00 8.814e+01 -7.85e-02 -7.93e-02 -8.00e-02 -8.06e-02 -8.13e-02 -8.84e-02 -1.26e+00 -2.16e+01 -4.53e+01 -6.89e+01 -9.26e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.59e+02 -2.94e+02 -3.30e+02 -3.65e+02 -4.01e+02 -4.19e+02 I(min) -3.65e+02 -3.30e+02 -2.94e+02 -2.59e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.25e+01 -6.88e+01 -4.52e+01 -2.15e+01 -1.18e+00 -6.62e-03 -6.64e-05 -6.35e-07 -6.31e-09 -1.95e-09 I(min) 1.905e+02 1.725e+02 1.545e+02 1.365e+02 1.185e+02 1.005e+02 8.253e+01 6.454e+01 -2.10e-01 -2.13e-01 -2.15e-01 -2.17e-01 -2.19e-01 -2.21e-01 -2.22e-01 -2.24e-01 -2.27e-01 -2.38e-01 -7.90e+00 -4.20e+01 -7.60e+01 -1.11e+02 -1.61e+02 -2.12e+02 -2.63e+02 -3.14e+02 -3.65e+02 -4.16e+02 -4.42e+02 I(max) -5.18e+02 -4.67e+02 -4.16e+02 -3.65e+02 -3.14e+02 -2.63e+02 -2.12e+02 -1.60e+02 -1.10e+02 -7.58e+01 -4.17e+01 -7.67e+00 -1.17e-02 -1.56e-03 -1.80e-05 -1.54e-08 -2.99e-11 -1.91e-11 I(max) 2.686e+02 2.428e+02 2.170e+02 1.912e+02 1.655e+02 1.397e+02 1.139e+02 8.814e+01 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-15 -1.70e+00 6.236e+01 5.068e+01 6.237e+01 -1.50e+00 4.389e+01 3.859e+01 4.389e+01 -1.30e+00 2.662e+01 2.651e+01 2.662e+01 -1.10e+00 9.358e+00 1.444e+01 9.359e+00 -9.00e-01 3.399e-02 2.517e+00 3.554e-02 -7.00e-01 3.426e-04 1.577e-02 9.211e-04 -5.00e-01 2.840e-06 7.857e-05 1.655e-05 -3.00e-01 3.401e-09 6.836e-07 1.946e-08 -1.00e-01 6.162e-11 7.379e-09 7.622e-11 0.000e+00 5.758e-11 2.438e-09 6.240e-11 | [Ramp] R_load = 50.00 |voltage I(typ) I(min) I(max) | | dV/dt_r 1.680/0.164 1.360/0.329 1.900/0.124 | | dV/dt_f 1.690/0.219 1.310/0.442 1.880/0.155 | | [Model] icbc_o Model_type 3-state Polarity Non-Inverting C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.20e+02 -3.65e+02 -5.18e+02 -3.10e+00 -4.69e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.16e+02 -2.70e+00 -3.67e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.14e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.63e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.11e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.60e+02 -1.70e+00 -1.13e+02 -9.25e+01 -1.10e+02 -1.50e+00 -7.83e+01 -6.88e+01 -7.58e+01 -1.30e+00 -4.42e+01 -4.51e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.67e+00 -9.00e-01 -2.51e-02 -1.18e+00 -2.65e-02 -7.00e-01 -1.30e-02 -1.16e-02 -1.58e-02 -5.00e-01 -9.33e-03 -4.67e-03 -1.10e-02 -3.00e-01 -5.75e-03 -2.81e-03 -6.76e-03 -1.00e-01 -1.97e-03 -9.48e-04 -2.32e-03 1.000e-01 1.945e-03 9.285e-04 2.307e-03 3.000e-01 5.507e-03 2.640e-03 6.599e-03 5.000e-01 8.649e-03 4.168e-03 1.048e-02 7.000e-01 1.136e-02 5.504e-03 1.393e-02 9.000e-01 1.364e-02 6.636e-03 1.693e-02 1.100e+00 1.547e-02 7.551e-03 1.950e-02 DSP56362 Technical Data, Rev. 4 B-16 Freescale Semiconductor 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.688e-02 9.632e-02 1.012e-01 1.039e-01 1.053e-01 1.060e-01 1.065e-01 1.069e-01 1.073e-01 1.076e-01 1.078e-01 1.081e-01 1.083e-01 1.086e-01 1.103e-01 1.437e+00 1.800e+01 3.519e+01 5.241e+01 7.505e+01 1.007e+02 1.264e+02 1.522e+02 1.779e+02 2.036e+02 2.293e+02 2.550e+02 2.678e+02 I(typ) 2.677e+02 2.420e+02 2.163e+02 1.906e+02 1.649e+02 1.392e+02 1.135e+02 8.778e+01 6.208e+01 4.368e+01 2.649e+01 9.302e+00 3.838e-02 8.115e-03 5.634e-03 3.370e-03 1.118e-03 -1.09e-03 -3.12e-03 -4.96e-03 -6.60e-03 -8.04e-03 -9.26e-03 8.240e-03 4.783e-02 4.994e-02 5.118e-02 5.184e-02 5.223e-02 5.251e-02 5.274e-02 5.293e-02 5.309e-02 5.324e-02 5.344e-02 6.705e-02 2.529e+00 1.438e+01 2.638e+01 3.839e+01 5.041e+01 6.419e+01 8.210e+01 1.000e+02 1.179e+02 1.359e+02 1.538e+02 1.717e+02 1.896e+02 2.075e+02 2.165e+02 I(min) 1.896e+02 1.716e+02 1.537e+02 1.358e+02 1.179e+02 9.996e+01 8.205e+01 6.413e+01 5.035e+01 3.834e+01 2.633e+01 1.433e+01 2.477e+00 1.789e-02 3.503e-03 2.053e-03 6.789e-04 -6.56e-04 -1.86e-03 -2.93e-03 -3.87e-03 -4.66e-03 -5.30e-03 2.162e-02 2.331e-02 1.302e-01 1.369e-01 1.412e-01 1.436e-01 1.449e-01 1.458e-01 1.464e-01 1.470e-01 1.475e-01 1.479e-01 1.483e-01 1.487e-01 1.491e-01 1.503e-01 1.810e-01 9.452e+00 2.664e+01 4.384e+01 6.224e+01 8.794e+01 1.136e+02 1.394e+02 1.651e+02 1.908e+02 2.165e+02 2.293e+02 I(max) 2.677e+02 2.420e+02 2.163e+02 1.906e+02 1.649e+02 1.392e+02 1.135e+02 8.778e+01 6.208e+01 4.368e+01 2.649e+01 9.303e+00 4.183e-02 1.045e-02 7.064e-03 4.233e-03 1.410e-03 -1.38e-03 -3.99e-03 -6.39e-03 -8.59e-03 -1.06e-02 -1.23e-02 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-17 1.300e+00 -1.03e-02 1.500e+00 -9.03e-02 1.700e+00 -9.49e-02 1.900e+00 -9.84e-02 2.100e+00 -1.01e-01 2.300e+00 -1.03e-01 2.500e+00 -1.05e-01 2.700e+00 -1.06e-01 2.900e+00 -1.07e-01 3.100e+00 -1.08e-01 3.300e+00 -1.09e-01 3.500e+00 -1.10e-01 3.700e+00 -1.11e-01 3.900e+00 -1.11e-01 4.100e+00 -1.14e-01 4.300e+00 -4.76e-01 4.500e+00 -2.73e+01 4.700e+00 -6.14e+01 4.900e+00 -9.54e+01 5.100e+00 -1.38e+02 5.300e+00 -1.89e+02 5.500e+00 -2.40e+02 5.700e+00 -2.91e+02 5.900e+00 -3.42e+02 6.100e+00 -3.93e+02 6.300e+00 -4.44e+02 6.500e+00 -4.95e+02 6.600e+00 -5.20e+02 | [GND_clamp] |voltage I(typ) | -3.30e+00 -5.20e+02 -3.10e+00 -4.69e+02 -2.90e+00 -4.18e+02 -2.70e+00 -3.67e+02 -2.50e+00 -3.16e+02 -2.30e+00 -2.65e+02 -2.10e+00 -2.14e+02 -1.90e+00 -1.63e+02 -1.70e+00 -1.13e+02 -1.50e+00 -7.83e+01 -1.30e+00 -4.42e+01 -1.10e+00 -1.02e+01 -9.00e-01 -1.03e-02 -7.00e-01 -3.74e-04 -5.00e-01 -1.72e-06 -3.00e-01 -1.67e-09 -1.00e-01 -2.03e-11 0.000e+00 -1.69e-11 | [POWER_clamp] |voltage I(typ) | -3.30e+00 2.677e+02 -4.75e-02 -5.02e-02 -5.21e-02 -5.34e-02 -5.45e-02 -5.54e-02 -5.62e-02 -5.68e-02 -5.74e-02 -5.79e-02 -5.84e-02 -5.89e-02 -6.49e-02 -1.23e+00 -2.16e+01 -4.52e+01 -6.89e+01 -9.25e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.59e+02 -2.94e+02 -3.30e+02 -3.65e+02 -4.01e+02 -4.18e+02 I(min) -3.65e+02 -3.30e+02 -2.94e+02 -2.59e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.25e+01 -6.88e+01 -4.51e+01 -2.15e+01 -1.17e+00 -5.73e-03 -5.06e-05 -4.65e-07 -4.80e-09 -1.61e-09 I(min) 1.896e+02 -1.41e-02 -1.23e-01 -1.31e-01 -1.38e-01 -1.43e-01 -1.47e-01 -1.50e-01 -1.52e-01 -1.54e-01 -1.56e-01 -1.57e-01 -1.59e-01 -1.60e-01 -1.61e-01 -1.62e-01 -1.64e-01 -1.73e-01 -7.82e+00 -4.19e+01 -7.59e+01 -1.11e+02 -1.61e+02 -2.12e+02 -2.63e+02 -3.14e+02 -3.65e+02 -4.16e+02 -4.41e+02 I(max) -5.18e+02 -4.67e+02 -4.16e+02 -3.65e+02 -3.14e+02 -2.63e+02 -2.11e+02 -1.60e+02 -1.10e+02 -7.58e+01 -4.17e+01 -7.66e+00 -9.27e-03 -1.14e-03 -1.28e-05 -1.10e-08 -2.71e-11 -1.89e-11 I(max) 2.677e+02 DSP56362 Technical Data, Rev. 4 B-18 Freescale Semiconductor -3.10e+00 2.420e+02 1.716e+02 2.420e+02 -2.90e+00 2.163e+02 1.537e+02 2.163e+02 -2.70e+00 1.906e+02 1.358e+02 1.906e+02 -2.50e+00 1.649e+02 1.179e+02 1.649e+02 -2.30e+00 1.392e+02 9.996e+01 1.392e+02 -2.10e+00 1.135e+02 8.205e+01 1.135e+02 -1.90e+00 8.778e+01 6.413e+01 8.778e+01 -1.70e+00 6.208e+01 5.035e+01 6.208e+01 -1.50e+00 4.368e+01 3.834e+01 4.368e+01 -1.30e+00 2.649e+01 2.633e+01 2.649e+01 -1.10e+00 9.300e+00 1.433e+01 9.301e+00 -9.00e-01 2.962e-02 2.475e+00 3.075e-02 -7.00e-01 2.501e-04 1.354e-02 6.708e-04 -5.00e-01 2.066e-06 6.280e-05 1.204e-05 -3.00e-01 2.487e-09 5.128e-07 1.417e-08 -1.00e-01 5.672e-11 5.639e-09 6.832e-11 0.000e+00 5.334e-11 1.992e-09 5.783e-11 | [Ramp] R_load = 50.00 |voltage I(typ) I(min) I(max) | | dV/dt_r 1.570/0.200 1.210/0.411 1.810/0.149 | | dV/dt_f 1.590/0.304 1.170/0.673 1.800/0.205 | | [Model] ipbw_i Model_type Input Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [GND_clamp] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.20e+02 -3.65e+02 -5.17e+02 -3.10e+00 -4.69e+02 -3.29e+02 -4.66e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.15e+02 -2.70e+00 -3.67e+02 -2.58e+02 -3.64e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.13e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.62e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.11e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.60e+02 -1.70e+00 -1.13e+02 -9.24e+01 -1.10e+02 -1.50e+00 -7.82e+01 -6.87e+01 -7.57e+01 -1.30e+00 -4.42e+01 -4.51e+01 -4.16e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.64e+00 -9.00e-01 -7.17e-03 -1.16e+00 -4.87e-03 -7.00e-01 -1.14e-04 -4.39e-03 -3.03e-04 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-19 -5.00e-01 -4.86e-07 -2.55e-05 -2.73e-06 -3.00e-01 -5.19e-10 -1.91e-07 -2.57e-09 -1.00e-01 -1.91e-11 -2.47e-09 -2.19e-11 0.000e+00 -1.68e-11 -1.17e-09 -1.84e-11 | [POWER_clamp] |voltage I(typ) I(min) I(max) | -3.30e+00 2.667e+02 1.885e+02 2.667e+02 -3.10e+00 2.411e+02 1.707e+02 2.411e+02 -2.90e+00 2.155e+02 1.528e+02 2.155e+02 -2.70e+00 1.898e+02 1.350e+02 1.898e+02 -2.50e+00 1.642e+02 1.172e+02 1.642e+02 -2.30e+00 1.386e+02 9.935e+01 1.386e+02 -2.10e+00 1.130e+02 8.152e+01 1.130e+02 -1.90e+00 8.739e+01 6.369e+01 8.739e+01 -1.70e+00 6.178e+01 4.999e+01 6.178e+01 -1.50e+00 4.346e+01 3.806e+01 4.346e+01 -1.30e+00 2.634e+01 2.613e+01 2.634e+01 -1.10e+00 9.237e+00 1.421e+01 9.237e+00 -9.00e-01 2.454e-02 2.430e+00 2.488e-02 -7.00e-01 8.741e-05 1.104e-02 2.050e-04 -5.00e-01 6.316e-07 4.079e-05 2.961e-06 -3.00e-01 8.479e-10 2.484e-07 3.721e-09 -1.00e-01 4.420e-11 3.001e-09 4.943e-11 0.000e+00 4.215e-11 1.346e-09 4.543e-11 | | [Model] ipbw_io Model_type I/O Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [Pulldown] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.20e+02 -3.65e+02 -5.17e+02 -3.10e+00 -4.69e+02 -3.29e+02 -4.66e+02 -2.90e+00 -4.18e+02 -2.94e+02 -4.15e+02 -2.70e+00 -3.67e+02 -2.58e+02 -3.64e+02 -2.50e+00 -3.16e+02 -2.23e+02 -3.13e+02 -2.30e+00 -2.65e+02 -1.88e+02 -2.62e+02 -2.10e+00 -2.14e+02 -1.52e+02 -2.11e+02 -1.90e+00 -1.63e+02 -1.17e+02 -1.60e+02 -1.70e+00 -1.13e+02 -9.24e+01 -1.10e+02 -1.50e+00 -7.82e+01 -6.87e+01 -7.57e+01 -1.30e+00 -4.42e+01 -4.51e+01 -4.17e+01 -1.10e+00 -1.02e+01 -2.15e+01 -7.66e+00 -9.00e-01 -3.69e-02 -1.17e+00 -3.79e-02 -7.00e-01 -2.52e-02 -1.67e-02 -2.81e-02 -5.00e-01 -1.83e-02 -9.77e-03 -2.04e-02 DSP56362 Technical Data, Rev. 4 B-20 Freescale Semiconductor -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [Pullup] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 -1.11e-02 -3.77e-03 3.729e-03 1.076e-02 1.723e-02 2.311e-02 2.836e-02 3.292e-02 3.675e-02 3.979e-02 4.205e-02 4.347e-02 4.413e-02 4.445e-02 4.465e-02 4.479e-02 4.492e-02 4.502e-02 4.511e-02 4.519e-02 4.526e-02 4.536e-02 4.614e-02 1.344e+00 1.783e+01 3.495e+01 5.208e+01 7.463e+01 1.002e+02 1.259e+02 1.515e+02 1.771e+02 2.027e+02 2.283e+02 2.539e+02 2.667e+02 I(typ) 2.667e+02 2.411e+02 2.155e+02 1.898e+02 1.642e+02 1.386e+02 1.130e+02 8.739e+01 6.178e+01 4.346e+01 2.635e+01 9.243e+00 5.536e-02 2.847e-02 2.025e-02 -5.89e-03 -1.98e-03 1.940e-03 5.578e-03 8.907e-03 1.191e-02 1.455e-02 1.680e-02 1.862e-02 1.997e-02 2.085e-02 2.136e-02 2.162e-02 2.176e-02 2.186e-02 2.194e-02 2.200e-02 2.206e-02 2.211e-02 2.219e-02 3.324e-02 2.452e+00 1.423e+01 2.615e+01 3.808e+01 5.001e+01 6.371e+01 8.154e+01 9.937e+01 1.172e+02 1.350e+02 1.529e+02 1.707e+02 1.885e+02 2.064e+02 2.153e+02 I(min) 1.885e+02 1.707e+02 1.528e+02 1.350e+02 1.172e+02 9.935e+01 8.152e+01 6.369e+01 4.999e+01 3.806e+01 2.613e+01 1.421e+01 2.435e+00 2.689e-02 1.265e-02 -1.24e-02 -4.20e-03 4.177e-03 1.216e-02 1.965e-02 2.663e-02 3.305e-02 3.887e-02 4.404e-02 4.850e-02 5.223e-02 5.518e-02 5.728e-02 5.843e-02 5.899e-02 5.931e-02 5.953e-02 5.971e-02 5.986e-02 5.999e-02 6.010e-02 6.021e-02 6.032e-02 6.065e-02 8.548e-02 9.298e+00 2.640e+01 4.352e+01 6.184e+01 8.745e+01 1.131e+02 1.387e+02 1.643e+02 1.899e+02 2.155e+02 2.283e+02 I(max) 2.667e+02 2.411e+02 2.155e+02 1.898e+02 1.642e+02 1.386e+02 1.130e+02 8.739e+01 6.178e+01 4.346e+01 2.635e+01 9.245e+00 6.260e-02 3.437e-02 2.451e-02 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-21 -3.00e-01 -1.00e-01 1.000e-01 3.000e-01 5.000e-01 7.000e-01 9.000e-01 1.100e+00 1.300e+00 1.500e+00 1.700e+00 1.900e+00 2.100e+00 2.300e+00 2.500e+00 2.700e+00 2.900e+00 3.100e+00 3.300e+00 3.500e+00 3.700e+00 3.900e+00 4.100e+00 4.300e+00 4.500e+00 4.700e+00 4.900e+00 5.100e+00 5.300e+00 5.500e+00 5.700e+00 5.900e+00 6.100e+00 6.300e+00 6.500e+00 6.600e+00 | [GND_clamp] |voltage | -3.30e+00 -3.10e+00 -2.90e+00 -2.70e+00 -2.50e+00 -2.30e+00 -2.10e+00 -1.90e+00 -1.70e+00 -1.50e+00 -1.30e+00 -1.10e+00 -9.00e-01 -7.00e-01 -5.00e-01 1.208e-02 3.994e-03 -3.88e-03 -1.11e-02 -1.76e-02 -2.35e-02 -2.86e-02 -3.30e-02 -3.65e-02 -3.92e-02 -4.12e-02 -4.26e-02 -4.36e-02 -4.43e-02 -4.49e-02 -4.54e-02 -4.58e-02 -4.61e-02 -4.65e-02 -4.68e-02 -4.70e-02 -4.73e-02 -4.81e-02 -4.00e-01 -2.72e+01 -6.12e+01 -9.52e+01 -1.37e+02 -1.88e+02 -2.39e+02 -2.90e+02 -3.41e+02 -3.92e+02 -4.43e+02 -4.94e+02 -5.20e+02 I(typ) -5.20e+02 -4.69e+02 -4.18e+02 -3.67e+02 -3.16e+02 -2.65e+02 -2.14e+02 -1.63e+02 -1.13e+02 -7.82e+01 -4.42e+01 -1.02e+01 -7.17e-03 -1.14e-04 -4.86e-07 7.503e-03 2.474e-03 -2.38e-03 -6.76e-03 -1.06e-02 -1.40e-02 -1.69e-02 -1.93e-02 -2.10e-02 -2.22e-02 -2.29e-02 -2.35e-02 -2.38e-02 -2.42e-02 -2.44e-02 -2.47e-02 -2.49e-02 -2.50e-02 -2.52e-02 -2.54e-02 -2.99e-02 -1.19e+00 -2.15e+01 -4.51e+01 -6.87e+01 -9.24e+01 -1.17e+02 -1.52e+02 -1.88e+02 -2.23e+02 -2.58e+02 -2.94e+02 -3.29e+02 -3.65e+02 -4.00e+02 -4.18e+02 I(min) -3.65e+02 -3.29e+02 -2.94e+02 -2.58e+02 -2.23e+02 -1.88e+02 -1.52e+02 -1.17e+02 -9.24e+01 -6.87e+01 -4.51e+01 -2.15e+01 -1.16e+00 -4.39e-03 -2.55e-05 1.467e-02 4.868e-03 -4.76e-03 -1.37e-02 -2.20e-02 -2.95e-02 -3.63e-02 -4.23e-02 -4.75e-02 -5.17e-02 -5.51e-02 -5.77e-02 -5.97e-02 -6.11e-02 -6.22e-02 -6.31e-02 -6.38e-02 -6.44e-02 -6.49e-02 -6.54e-02 -6.58e-02 -6.62e-02 -6.66e-02 -6.72e-02 -7.21e-02 -7.70e+00 -4.17e+01 -7.57e+01 -1.10e+02 -1.60e+02 -2.11e+02 -2.62e+02 -3.13e+02 -3.64e+02 -4.15e+02 -4.41e+02 I(max) -5.17e+02 -4.66e+02 -4.15e+02 -3.64e+02 -3.13e+02 -2.62e+02 -2.11e+02 -1.60e+02 -1.10e+02 -7.57e+01 -4.16e+01 -7.64e+00 -4.87e-03 -3.03e-04 -2.73e-06 DSP56362 Technical Data, Rev. 4 B-22 Freescale Semiconductor -3.00e-01 -5.19e-10 -1.91e-07 -2.57e-09 -1.00e-01 -1.91e-11 -2.47e-09 -2.19e-11 0.000e+00 -1.68e-11 -1.17e-09 -1.84e-11 | [POWER_clamp] |voltage I(typ) I(min) I(max) | -3.30e+00 2.667e+02 1.885e+02 2.667e+02 -3.10e+00 2.411e+02 1.707e+02 2.411e+02 -2.90e+00 2.155e+02 1.528e+02 2.155e+02 -2.70e+00 1.898e+02 1.350e+02 1.898e+02 -2.50e+00 1.642e+02 1.172e+02 1.642e+02 -2.30e+00 1.386e+02 9.935e+01 1.386e+02 -2.10e+00 1.130e+02 8.152e+01 1.130e+02 -1.90e+00 8.739e+01 6.369e+01 8.739e+01 -1.70e+00 6.178e+01 4.999e+01 6.178e+01 -1.50e+00 4.346e+01 3.806e+01 4.346e+01 -1.30e+00 2.634e+01 2.613e+01 2.634e+01 -1.10e+00 9.237e+00 1.421e+01 9.237e+00 -9.00e-01 2.454e-02 2.430e+00 2.488e-02 -7.00e-01 8.741e-05 1.104e-02 2.050e-04 -5.00e-01 6.316e-07 4.079e-05 2.961e-06 -3.00e-01 8.479e-10 2.484e-07 3.721e-09 -1.00e-01 4.420e-11 3.001e-09 4.943e-11 0.000e+00 4.215e-11 1.346e-09 4.543e-11 | [Ramp] R_load = 50.00 |voltage I(typ) I(min) I(max) | | dV/dt_r 1.140/0.494 0.699/0.978 1.400/0.354 | | dV/dt_f 1.150/0.505 0.642/0.956 1.350/0.350 | | [Model] iexlh_i Model_type Input Polarity Non-Inverting Vinl= 0.8000v Vinh= 2.000v C_comp 5.00pF 5.00pF 5.00pF | | [Voltage Range] 3.3v 3v 3.6v [GND_clamp] |voltage I(typ) I(min) I(max) | -3.30e+00 -5.21e+02 -3.66e+02 -5.18e+02 -3.10e+00 -4.70e+02 -3.30e+02 -4.67e+02 -2.90e+00 -4.19e+02 -2.95e+02 -4.16e+02 -2.70e+00 -3.68e+02 -2.59e+02 -3.65e+02 -2.50e+00 -3.17e+02 -2.24e+02 -3.14e+02 -2.30e+00 -2.66e+02 -1.89e+02 -2.63e+02 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor B-23 -2.10e+00 -2.15e+02 -1.90e+00 -1.64e+02 -1.70e+00 -1.14e+02 -1.50e+00 -7.93e+01 -1.30e+00 -4.53e+01 -1.10e+00 -1.13e+01 -9.00e-01 -7.94e-03 -7.00e-01 -1.62e-06 -5.00e-01 -3.45e-10 -3.00e-01 -1.29e-11 -1.00e-01 -1.10e-11 0.000e+00 -1.01e-11 | [POWER_clamp] |voltage I(typ) | -3.30e+00 2.653e+02 -3.10e+00 2.398e+02 -2.90e+00 2.143e+02 -2.70e+00 1.888e+02 -2.50e+00 1.633e+02 -2.30e+00 1.378e+02 -2.10e+00 1.123e+02 -1.90e+00 8.682e+01 -1.70e+00 6.133e+01 -1.50e+00 4.313e+01 -1.30e+00 2.614e+01 -1.10e+00 9.145e+00 -9.00e-01 1.797e-02 -7.00e-01 3.667e-06 -5.00e-01 7.730e-10 -3.00e-01 2.293e-11 -1.00e-01 2.096e-11 0.000e+00 2.004e-11 | [End] -1.53e+02 -1.18e+02 -9.34e+01 -6.98e+01 -4.62e+01 -2.26e+01 -1.87e+00 -5.11e-03 -1.40e-05 -3.90e-08 -8.67e-10 -7.13e-10 I(min) 1.870e+02 1.693e+02 1.516e+02 1.339e+02 1.162e+02 9.847e+01 8.076e+01 6.305e+01 4.947e+01 3.766e+01 2.585e+01 1.404e+01 2.364e+00 7.589e-03 2.072e-05 5.767e-08 1.163e-09 9.618e-10 -2.12e+02 -1.61e+02 -1.11e+02 -7.68e+01 -4.28e+01 -8.78e+00 -3.77e-03 -7.69e-07 -1.72e-10 -1.38e-11 -1.19e-11 -1.10e-11 I(max) 2.653e+02 2.398e+02 2.143e+02 1.888e+02 1.633e+02 1.378e+02 1.123e+02 8.682e+01 6.133e+01 4.313e+01 2.614e+01 9.145e+00 1.797e-02 3.667e-06 7.748e-10 2.476e-11 2.278e-11 2.186e-11 DSP56362 Technical Data, Rev. 4 B-24 Freescale Semiconductor Index A ac electrical characteristics 3 Address Trace mode 3, 38, 41 applications 5 arbitration bus timings 41 B bootstrap ROM 3 Boundary Scan (JTAG Port) timing diagram 72 bus address 2 data 2 multiplexed 2 non-multiplexed 2 bus acquisition timings 42 bus release timings 43, 44 C clock external 4 operation 5 clocks internal 4 D data memory expansion 4 DAX 4, 2, 16 dc electrical characteristics 2 Debug support 3 design considerations electrical 3 PLL 4, 5 power consumption 3 thermal 1 Digital Audio Transmitter 4, 16 DRAM out of page read access 36 wait states selection guide 28 write access 37 out of page and refresh timings 11 wait states 32 15 wait states 33 4 wait states 28 8 wait states 30 Page mode read accesses 27 wait states selection guide 19 write accesses 26 Page mode timings 1 wait state 19 2 wait states 21 3 wait states 22 4 wait states 24 refresh access 38 DRAM controller 4 DSP programming 6 E electrical design considerations 3 Enhanced Serial Audio Interface 4 ESAI 4, 2 ESSI receiver timing 66, 67 timings 62 transmitter timing 65 EXTAL jitter 5 external bus control 6, 7 external bus synchronous timings (SRAM access) DSP56362 Technical Data, Rev. 4 Freescale Semiconductor Index-1 38 external clock operation 4 external interrupt timing (negative edge-triggered) 11 external level-sensitive fast interrupt timing 11 external memory access (DMA Source) timing 13 External Memory Expansion Port 14 F functional groups 2 functional signal groups 1 G General Purpose Input/Output 4 GPIO 4, 2, 19 GPIO timing 69 Ground 4 PLL 4 H HDI08 4, 2, 10, 12, 13 DSP programming 6 DSP synchronization 6 Host synchronization 5 HDI08 timing 46 Host Interface 4, 2, 10, 12, 13 Host Interface timing 46 host port configuration 9 Host Port considerations 5 Host programming 5 Host Request Double 2 Single 2 I instruction cache 3 internal clocks 4 interrupt and mode control 8 interrupt control 8 interrupt timing 7 external level-sensitive fast 11 external negative edge-triggered 11 synchronous from Wait state 12 J Jitter 5 JTAG 20 JTAG Port 3 reset timing diagram 73 timing 70, 72 M maximum ratings 1 Memory Expansion Port 3 mode control 8 Mode select timing 7 multiplexed bus 2 multiplexed bus timings read 50 write 51 N non-multiplexed bus 2 non-multiplexed bus timings read 48 write 49 DSP56362 Technical Data, Rev. 4 Index-2 Freescale Semiconductor O S off-chip memory 3 OnCE module timing 73 OnCE module 3, 20 Debug request 73 on-chip DRAM controller 4 On-Chip Emulation module 3 on-chip memory 3 operating mode select timing 12 Serial Host Interface 4, 14 SHI 4, 2, 14 signal groupings 1 signals 1 functional grouping 2 SRAM 40 Access 38 read access 17 read and write accesses 14 support 4 write access 17, 18 Stop mode 5 Stop state recovery from 12, 13 Stop timing 7 supply voltage 1 Switch mode 3 Synchronization 5 synchronous bus timings SRAM 2 wait states 41 SRAM 1 wait state (BCR controlled) 40 synchronous interrupt from Wait state timing 12 synchronous Reset timing 10 P package 144-pin TQFP 1 TQFP description 1, 3 Phase Lock Loop 6 PLL 6 Characteristics 6 performance issues 4 PLL design considerations 4, 5 PLL performance issues 5 Port A 2 Port B 2, 10, 11, 12, 13 Port C 2, 16 Port D 2, 16 power consumption design considerations 3 power management 5 program memory expansion 4 program RAM 3 R recovery from Stop state using IRQA 12, 13 RESET 9 Reset timing 7, 10 synchronous 10 ROM, bootstrap 3 T TAP 3 target applications 5 Test Access Port 3 Test Access Port timing diagram 72 Test Clock (TCLK) input timing diagram 71 thermal characteristics 2 thermal design considerations 1 Timer 4, 2, 19 event input restrictions 68 interrupt generation 68 timing 68 Timing Digital Audio Transmitter (DAX) 67 DSP56362 Technical Data, Rev. 4 Freescale Semiconductor Index-3 General Purpose I/O (GPIO) Timing 62 OnCE™ (On Chip Emulator) Timing 62 Serial Host Interface (SHI) SPI Protocol Timing 52 Serial Host Interface (SHI) Timing 52 timing interrupt 7 mode select 7 Reset 7 Stop 7 TQFP 1 pin list by number 3 pin-out drawing (top) 1 W Wait mode 5 X X data RAM 3 Y Y data RAM 3 DSP56362 Technical Data, Rev. 4 Index-4 Freescale Semiconductor DSP56362 Technical Data, Rev. 4 Freescale Semiconductor Index-5 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Document Number: DSP56362 Rev. 4 08/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.