Freescale DSP56362UM 24-bit audio digital signal processor Datasheet

Freescale Semiconductor
Technical Data
Document Number: DSP56362
Rev. 4, 08/2006
DSP56362
24-Bit Audio Digital Signal Processor
1
Overview
Freescale Semiconductor, Inc. designed the DSP56362
to support digital audio applications requiring digital
audio compression and decompression, sound field
processing, acoustic equalization, and other digital audio
algorithms. The DSP56362 uses the high performance,
single-clock-per-cycle DSP56300 core family of
programmable CMOS digital signal processors (DSPs)
combined with the audio signal processing capability of
the Freescale Symphony™ DSP family, as shown in
Figure 1-1. This design provides a two-fold performance
increase over Freescale’s popular Symphony family of
DSPs while retaining code compatibility. Significant
architectural enhancements include a barrel shifter,
24-bit addressing, instruction cache, and direct memory
access (DMA). The DSP56362 offers 100 million
instructions per second (MIPS) using an internal 100
MHz clock at 3.3 V.
Contents
1
2
3
4
5
6
A
B
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Signal/Connection Descriptions . . . . . . . . . 2-1
Specifications . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Design Considerations . . . . . . . . . . . . . . . . 5-1
Ordering Information . . . . . . . . . . . . . . . . . . 6-1
Power Consumption Benchmark . . . . . . . . A-1
IBIS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
This document contains information on a new product. Specifications and information herein are subject to change without notice.
© Freescale Semiconductor, Inc., 2006. All rights reserved.
Overview
Data Sheet Conventions
This data sheet uses the following conventions:
OVERBAR
Used to indicate a signal that is active when pulled low (For example, the RESET pin is active
when low.)
“asserted”
Means that a high true (active high) signal is high or that a low true (active low) signal is low
“deasserted”
Means that a high true (active high) signal is low or that a low true (active low) signal is high
Examples:
Signal/Symbol
Logic State
Signal State
Voltage*
PIN
True
Asserted
VIL / VOL
PIN
False
Deasserted
VIH / VOH
PIN
True
Asserted
VIH / VOH
PIN
False
Deasserted
VIL / VOL
Note: *Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.
Host
Interface
ESAI
SHI
Peripheral
Expansion Area
Program RAM/
Y Data
X Data
Instruction
RAM
RAM
Cache
5632 × 24 5632 ×
3072 × 24
Memory
ROM
Program ROM
24
Expansion
30K × 24
6144 ×
ROM
Area
Bootstrap ROM
24
6144 × 24
192 × 24
YAB
XAB
PAB
DAB
XM_EB
5
24-Bit
DSP56300
Core
DDB
YDB
XDB
PDB
GDB
Internal
Data
Bus
Switch
EXTAL
Clock
Generator
PLL
Program
Interrupt
Controller
Program
Decode
Controller
CLKOUT
RESET
PINIT/NMI
YM_EB
Address
Generation
Unit
Six Channel
DMA Unit
12
PIO_EB
DAX
(SPDIF)
Triple
Timer
16
PM_EB
2
18
External
Address
Bus
Address
Switch
DRAM/SRAM
Bus
11
Interface
&
I - Cache Control
Control
External
Data Bus
Switch
Power
Mngmnt.
Data ALU
Program 24 ¥ 24 + 56 Æ 56-bit MAC
JTAG
Address
Two 56-bit Accumulators
Generator
OnCE™
56-bit Barrel Shifter
MODA/IRQA
MODB/IRQB
MODC/IRQC
MODD/IRQD
24
Data
6
AA0456G
Figure 1-1 DSP56362 Block Diagram
DSP56362 Technical Data, Rev. 4
1-2
Freescale Semiconductor
Overview
1.1
•
•
•
Features
Multimode, multichannel decoder software functionality
— Dolby Digital and Pro Logic
— MPEG2 5.1
— DTS
— Bass management
Digital audio post-processing capabilities
— 3D Virtual surround sound
— Lucasfilm THX5.1
— Soundfield processing
— Equalization
Digital Signal Processing Core
— 100 MIPS with a 100 MHz clock at 3.3 V +/- 5%
— Object code compatible with the DSP56000 core
— Highly parallel instruction set
— Data arithmetic logic unit (ALU)
– Fully pipelined 24 x 24-bit parallel multiplier-accumulator (MAC)
– 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)
– Conditional ALU instructions
– 24-bit or 16-bit arithmetic support under software control
— Program control unit (PCU)
– Position independent code (PIC) support
– Addressing modes optimized for DSP applications (including immediate offsets)
– On-chip instruction cache controller
– On-chip memory-expandable hardware stack
– Nested hardware DO loops
– Fast auto-return interrupts
— Direct memory access (DMA)
– Six DMA channels supporting internal and external accesses
– One-, two-, and three- dimensional transfers (including circular buffering)
– End-of-block-transfer interrupts
– Triggering from interrupt lines and all peripherals
— Phase-locked loop (PLL)
– Software programmable PLL-based frequency synthesizer for the core clock
– Allows change of low-power divide factor (DF) without loss of lock
– Output clock with skew elimination
— Hardware debugging support
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
1-3
Overview
•
– On-Chip Emulation (OnCE‘) module
– Joint Action Test Group (JTAG) test access port (TAP)
– Address trace mode reflects internal program RAM accesses at the external port
On-Chip Memories
— Modified Harvard architecture allows simultaneous access to program and data memories
— 30720 x 24-bit on-chip program ROM1 (disabled in 16-bit compatibility mode)
— 6144 x 24-bit on-chip X-data ROM1
— 6144 x 24-bit on-chip Y-data ROM1
— Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable
.
•
•
Instruction
Cache
Switch
Mode
Program RAM
Size
Instruction
Cache Size
Disabled
Disabled
3072 × 24-bit
0
5632 × 24-bit
5632 × 24-bit
Enabled
Disabled
2048 × 24-bit
1024 × 24-bit
5632 × 24-bit
5632 × 24-bit
Disabled
Enabled
5120 × 24-bit
0
5632 × 24-bit
3584 × 24-bit
Enabled
Enabled
4096 × 24-bit
1024 × 24-bit
5632 × 24-bit
3584 × 24-bit
X Data RAM Size Y Data RAM Size
— 192 x 24-bit bootstrap ROM (disabled in sixteen-bit compatibility mode)
Off-Chip Memory Expansion
— Data memory expansion to 256K x 24-bit word memory for P, X, and Y memory using SRAM.
— Data memory expansion to 16M x 24-bit word memory for P, X, and Y memory using DRAM.
— External memory expansion port( twenty-four data pins for high speed external memory access
allowing for a large number of external accesses per sample)
— Chip select logic for glueless interface to SRAMs
— On-chip DRAM controller for glueless interface to DRAMs
Peripheral and Support Circuits
— Enhanced serial audio interface (ESAI) includes:
– Six serial data lines, 4 selectable as receive or transmit and 2 transmit only.
– Master or slave capability
– I2S, Sony, AC97, and other audio protocol implementations
— Serial host interface (SHI) features:
– SPI protocol with multi-master capability
– I2C protocol with single-master capability
– Ten-word receive FIFO
– Support for 8-, 16-, and 24-bit words.
— Byte-wide parallel host interface (HDI08) with DMA support
— DAX features one serial transmitter capable of supporting S/PDIF, IEC958, IEC1937, CP-340,
and AES/EBU digital audio formats; alternate configuration supports up to two GPIO lines
1. These ROMs may be factory programmed with data or programs provided by the application developer.
DSP56362 Technical Data, Rev. 4
1-4
Freescale Semiconductor
Overview
•
1.2
•
1.3
— Triple timer module with single external interface or GPIO line
— On-chip peripheral registers are memory mapped in data memory space
Reduced Power Dissipation
— Very low-power (3.3 V) CMOS design
— Wait and stop low-power standby modes
— Fully-static logic, operation frequency down to 0 Hz (dc)
— Optimized power management circuitry (instruction-dependent, peripheral-dependent, and
mode-dependent)
Package
144-pin plastic thin quad flat pack (LQFP) surface-mount package
Documentation
Table 1-1 lists the documents that provide a complete description of the DSP56362 and are required to
design properly with the part. Documentation is available from a local Freescale distributor, a Freescale
semiconductor sales office, a Freescale Literature Distribution Center, or through the Freescale DSP home
page on the Internet (the source for the latest information).
Table 1-1 DSP56362 Documentation
Document Name
Description
Order Number
DSP56300 Family Manual
Detailed description of the 56000-family architecture
and the 24-bit core processor and instruction set
DSP56300FM
DSP56362 User’s Manual
Detailed description of memory, peripherals, and
interfaces
DSP56362UM
DSP56362 Product Brief
Brief description of the chip
DSP56362 Data Sheet
(this document)
Electrical and timing specifications; pin and package
descriptions
DSP56362P
DSP56362
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
1-5
Overview
NOTES
DSP56362 Technical Data, Rev. 4
1-6
Freescale Semiconductor
2
Signal/Connection Descriptions
2.1
Signal Groupings
The input and output signals of the DSP56362 are organized into functional groups, which are listed in
Table 2-1 and illustrated in Figure 2-1.
The DSP56362 is operated from a 3.3 V supply; however, some of the inputs can tolerate 5 V. A special
notice for this feature is added to the signal descriptions of those inputs.
Table 2-1 DSP56362 Functional Signal Groupings
Number of
Signals
Detailed
Description
Power (VCC)
20
Table 2-2
Ground (GND)
19
Table 2-3
Clock and PLL
4
Table 2-4
18
Table 2-5
24
Table 2-6
Bus control
11
Table 2-7
Interrupt and mode control
5
Table 2-8
16
Table 2-9
5
Table 2-10
Functional Group
Address bus
1
Data bus
HDI08
Port A
Port B2
SHI
ESAI
Port C3
12
Table 2-11
Digital audio transmitter (DAX)
Port D4
2
Table 2-12
Timer
1
Table 2-13
JTAG/OnCE Port
6
Table 2-14
1
Port A is the external memory interface port, including the external address bus, data bus, and control signals.
Port B signals are the GPIO port signals which are multiplexed with the HDI08 signals.
3 Port C signals are the GPIO port signals which are multiplexed with the ESAI signals.
4
Port D signals are the GPIO port signals which are multiplexed with the DAX signals.
2
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-1
Signal Groupings
DSP56362
VCCP
VCCQH
VCCQL
VCCA
VCCD
VCCC
VCCH
VCCS
3
4
3
4
2
2
GNDP
GNDP1
GNDQ
GNDA
GNDD
GNDC
GNDH
GNDS
4
4
4
2
2
EXTAL
CLKOUT
PCAP
PINIT/NMI
Power Inputs:
PLL
External I/O
Internal Logic
Address Bus
Data Bus
Bus Control
HDI08
SHI/ESAI/DAX/Timer
Grounds:
PLL
PLL
Internal Logic
Address Bus
Data Bus
Bus Control
HDI08
SHI/ESAI/DAX/Timer
8
Host
Interface
(HDI08)
Port1
Serial
Host
Interface
(SHI)
PLL
D0–D23
AA0–AA3/
RAS0–RAS3
CAS
RD
WR
TA
BR
BG
BB
1.
2.
I2C Mode
HA0
HA2
SDA
SCL
HREQ
SCKR
FSR
HCKR
SCKT
FST
HCKT
SDO5/SDI0
SDO4/SDI1
SDO3/SDI2
SDO2/SDI3
SDO1
SDO0
Port C GPIO
PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
PC8
PC9
PC10
PC11
External
Address Bus
24
External
Data Bus
4
Enhanced
Serial
Audio
Interface
(ESAI)2
External
Bus
Control
Digital Audio
Transmitter (DAX)2
ACI
ADO
Timer 02
TIO0
Port B
GPIO
PB0–PB7
PB8
PB9
PB10
PB13
PB11
PB12
PB14
PB15
Port D GPIO
PD0
PD1
Timer GPIO
TIO0
TCK
TDI
TDO
JTAG/OnC
TMS
E Port
TRST
AA0601
DE
The HDI08 port supports a nonmultiplexed or a multiplexed bus, single or double data strobe (DS), and single or
double host request (HR) configurations. Since each of these modes is configured independently, any
combination of these modes is possible. These HDI08 signals can also be configured alternately as GPIO
signals (PB0–PB15). Signals with dual designations (e.g., HAS/HAS) have configurable polarity.
The ESAI signals are multiplexed with the port C GPIO signals (PC0–PC11). The DAX signals are multiplexed
with the Port D GPIO signals (PD0–PD1). The timer 0 signal can be configured alternately as the timer GPIO
signal (TIO0).
MODA/IRQA
MODB/IRQB
MODC/IRQC
MODD/IRQD
RESET
Notes:
18
Multiplexed
Bus
HAD0–HAD7
HAS/HAS
HA8
HA9
HA10
Double DS
HRD/HRD
HWR/HWR
Double HR
HTRQ/HTRQ
HRRQ/HRRQ
SPI Mode
MOSI
SS
MISO
SCK
HREQ
Clock and
Port A
A0–A17
Non-Multiplexe
d Bus
H0–H7
HA0
HA1
HA2
HCS/HCS
Single DS
HRW
HDS/HDS
Single HR
HOREQ/HOREQ
HACK/HACK
Interrupt/
Mode
Control
Figure 2-1 Signals Identified by Functional Group
DSP56362 Technical Data, Rev. 4
2-2
Freescale Semiconductor
Power
2.2
Power
Table 2-2 Power Inputs
Power Name
Description
VCCP
PLL Power—VCCP is VCC dedicated for PLL use. The voltage should be well-regulated and the
input should be provided with an extremely low impedance path to the VCC power rail. There is one
VCCP input.
VCCQL (4)
Quiet Core (Low) Power—VCCQL is an isolated power for the core processing logic. This input must
be tied externally to all other chip power inputs. The user must provide adequate external decoupling
capacitors. There are four VCCQ inputs.
VCCQH (3)
Quiet External (High) Power—VCCQH is a quiet power source for I/O lines. This input must be tied
externally to all other chip power inputs. The user must provide adequate decoupling capacitors.
There are three VCCQH inputs.
VCCA (3)
Address Bus Power—VCCA is an isolated power for sections of the address bus I/O drivers. This
input must be tied externally to all other chip power inputs. The user must provide adequate external
decoupling capacitors. There are three VCCA inputs.
VCCD (4)
Data Bus Power—VCCD is an isolated power for sections of the data bus I/O drivers. This input must
be tied externally to all other chip power inputs. The user must provide adequate external decoupling
capacitors. There are four VCCD inputs.
VCCC (2)
Bus Control Power—VCCC is an isolated power for the bus control I/O drivers. This input must be
tied externally to all other chip power inputs. The user must provide adequate external decoupling
capacitors. There are two VCCC inputs.
VCCH
Host Power—VCCH is an isolated power for the HDI08 I/O drivers. This input must be tied externally
to all other chip power inputs. The user must provide adequate external decoupling capacitors.
There is one VCCH input.
VCCS (2)
SHI, ESAI, DAX, and Timer Power—VCCS is an isolated power for the SHI, ESAI, DAX, and Timer
I/O drivers. This input must be tied externally to all other chip power inputs. The user must provide
adequate external decoupling capacitors. There are two VCCS inputs.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-3
Ground
2.3
Ground
Table 2-3 Grounds
Ground Name
Description
GNDP
PLL Ground—GNDP is a ground dedicated for PLL use. The connection should be provided with an
extremely low-impedance path to ground. VCCP should be bypassed to GNDP by a 0.47 µF capacitor
located as close as possible to the chip package. There is one GNDP connection.
GNDP1
PLL Ground 1—GNDP1 is a ground dedicated for PLL use. The connection should be provided with an
extremely low-impedance path to ground. There is one GNDP1 connection.
GNDQ (4)
Quiet Ground—GNDQ is an isolated ground for the internal processing logic. This connection must be
tied externally to all other chip ground connections. The user must provide adequate external decoupling
capacitors. There are four GNDQ connections.
GNDA (4)
Address Bus Ground—GNDA is an isolated ground for sections of the address bus I/O drivers. This
connection must be tied externally to all other chip ground connections. The user must provide adequate
external decoupling capacitors. There are four GNDA connections.
GNDD (4)
Data Bus Ground—GNDD is an isolated ground for sections of the data bus I/O drivers. This connection
must be tied externally to all other chip ground connections. The user must provide adequate external
decoupling capacitors. There are four GNDD connections.
GNDC (2)
Bus Control Ground—GNDC is an isolated ground for the bus control I/O drivers. This connection must
be tied externally to all other chip ground connections. The user must provide adequate external
decoupling capacitors. There are two GNDC connections.
GNDH
GNDS (2)
2.4
Host Ground—GNDH is an isolated ground for the HDI08 I/O drivers. This connection must be tied
externally to all other chip ground connections. The user must provide adequate external decoupling
capacitors. There is one GNDH connection.
SHI, ESAI, DAX, and Timer Ground—GNDS is an isolated ground for the SHI, ESAI, DAX, and Timer
I/O drivers. This connection must be tied externally to all other chip ground connections. The user must
provide adequate external decoupling capacitors. There are two GNDS connections.
Clock and PLL
Table 2-4 Clock and PLL Signals
Signal Name
Type
State during Reset
Signal Description
EXTAL
Input
Input
External Clock Input—An external clock source must be connected to EXTAL
in order to supply the clock to the internal clock generator and PLL.
This input cannot tolerate 5V.
CLKOUT
Output
Chip-Driven
Clock Output—CLKOUT provides an output clock synchronized to the internal
core clock phase.
If the PLL is enabled and both the multiplication and division factors equal one,
then CLKOUT is also synchronized to EXTAL.
If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.
CLKOUT is not functional at frequencies of 100 MHz and above.
DSP56362 Technical Data, Rev. 4
2-4
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 2-4 Clock and PLL Signals (continued)
Signal Name
Type
State during Reset
Signal Description
PCAP
Input
Input
PLL Capacitor—PCAP is an input connecting an off-chip capacitor to the PLL
filter. Connect one capacitor terminal to PCAP and the other terminal to VCCP.
If the PLL is not used, PCAP may be tied to VCC, GND, or left floating.
Input
PINIT/NMI
Input
PLL Initial/Non maskable Interrupt—During assertion of RESET, the value of
PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register,
determining whether the PLL is enabled or disabled. After RESET deassertion
and during normal instruction processing, the PINIT/NMI Schmitt-trigger input
is a negative-edge-triggered non maskable interrupt (NMI) request internally
synchronized to CLKOUT.
PINIT/NMI cannot tolerate 5 V.
2.5
External Memory Expansion Port (Port A)
When the DSP56362 enters a low-power standby mode (stop or wait), it releases bus mastership and
tri-states the relevant port A signals: A0–A17, D0–D23, AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS.
2.5.1
External Address Bus
Table 2-5 External Address Bus Signals
Signal Name
Type
State during Reset
Signal Description
A0–A17
Output
Tri-Stated
Address Bus—When the DSP is the bus master, A0–A17 are
active-high outputs that specify the address for external program and
data memory accesses. Otherwise, the signals are tri-stated. To
minimize power dissipation, A0–A17 do not change state when
external memory spaces are not being accessed.
2.5.2
External Data Bus
Table 2-6 External Data Bus Signals
Signal Name
Type
State during Reset
Signal Description
D0–D23
Input/Output
Tri-Stated
Data Bus—When the DSP is the bus master, D0–D23 are active-high,
bidirectional input/outputs that provide the bidirectional data bus for
external program and data memory accesses. Otherwise, D0–D23 are
tri-stated.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-5
External Memory Expansion Port (Port A)
2.5.3
External Bus Control
Table 2-7 External Bus Control Signals
Signal Name
Type
State during Reset
Signal Description
AA0–AA3/RA
S0–RAS3
Output
Tri-Stated
Address Attribute or Row Address Strobe—When defined as AA, these
signals can be used as chip selects or additional address lines. When
defined as RAS, these signals can be used as RAS for DRAM interface.
These signals are can be tri-stated outputs with programmable polarity.
CAS
Output
Tri-Stated
Column Address Strobe—When the DSP is the bus master, CAS is an
active-low output used by DRAM to strobe the column address. Otherwise,
if the bus mastership enable (BME) bit in the DRAM control register is
cleared, the signal is tri-stated.
RD
Output
Tri-Stated
Read Enable—When the DSP is the bus master, RD is an active-low output
that is asserted to read external memory on the data bus (D0–D23).
Otherwise, RD is tri-stated.
WR
Output
Tri-Stated
Write Enable—When the DSP is the bus master, WR is an active-low
output that is asserted to write external memory on the data bus (D0–D23).
Otherwise, the signals are tri-stated.
TA
Input
Ignored Input
Transfer Acknowledge—If the DSP56362 is the bus master and there is
no external bus activity, or the DSP56362 is not the bus master, the TA input
is ignored. The TA input is a data transfer acknowledge (DTACK) function
that can extend an external bus cycle indefinitely. Any number of wait states
(1, 2. . .infinity) may be added to the wait states inserted by the BCR by
keeping TA deasserted. In typical operation, TA is deasserted at the start of
a bus cycle, is asserted to enable completion of the bus cycle, and is
deasserted before the next bus cycle. The current bus cycle completes one
clock period after TA is asserted synchronous to CLKOUT. The number of
wait states is determined by the TA input or by the bus control register
(BCR), whichever is longer. The BCR can be used to set the minimum
number of wait states in external bus cycles.
In order to use the TA functionality, the BCR must be programmed to at least
one wait state. A zero wait state access cannot be extended by TA
deassertion, otherwise improper operation may result. TA can operate
synchronously or asynchronously, depending on the setting of the TAS bit in
the operating mode register (OMR).
TA functionality may not be used while performing DRAM type accesses,
otherwise improper operation may result.
DSP56362 Technical Data, Rev. 4
2-6
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 2-7 External Bus Control Signals (continued)
Signal Name
Type
State during Reset
Signal Description
BR
Output
Output
Bus Request—BR is an active-low output, never tri-stated. BR is asserted
when the DSP requests bus mastership. BR is deasserted when the DSP
no longer needs the bus. BR may be asserted or deasserted independent
of whether the DSP56362 is a bus master or a bus slave. Bus “parking”
allows BR to be deasserted even though the DSP56362 is the bus master.
(See the description of bus “parking” in the BB signal description.) The bus
request hold (BRH) bit in the BCR allows BR to be asserted under software
control even though the DSP does not need the bus. BR is typically sent to
an external bus arbitrator that controls the priority, parking, and tenure of
each master on the same external bus. BR is only affected by DSP requests
for the external bus, never for the internal bus. During hardware reset, BR is
deasserted and the arbitration is reset to the bus slave state.
(deasserted)
BG
Input
Ignored Input
Bus Grant—BG is an active-low input. BG is asserted by an external bus
arbitration circuit when the DSP56362 becomes the next bus master. When
BG is asserted, the DSP56362 must wait until BB is deasserted before
taking bus mastership. When BG is deasserted, bus mastership is typically
given up at the end of the current bus cycle. This may occur in the middle of
an instruction that requires more than one external bus cycle for execution.
The default mode of operation of this signal requires a setup and hold time
referred to CLKOUT. But CLKOUT operation is not guaranteed from
100MHz and up, so the asynchronous bus arbitration must be used for clock
frequencies 100MHz and above. The asynchronous bus arbitration is
enabled by setting the ABE bit in the OMR register.
BB
Input/
Output
Input
Bus Busy—BB is a bidirectional active-low input/output. BB indicates that
the bus is active. Only after BB is deasserted can the pending bus master
become the bus master (and then assert the signal again). The bus master
may keep BB asserted after ceasing bus activity regardless of whether BR
is asserted or deasserted. This is called “bus parking” and allows the current
bus master to reuse the bus without rearbitration until another device
requires the bus. The deassertion of BB is done by an “active pull-up”
method (i.e., BB is driven high and then released and held high by an
external pull-up resistor).
The default mode of operation of this signal requires a setup and hold time
referred to CLKOUT. But CLKOUT operation is not guaranteed from
100MHz and up, so the asynchronous bus arbitration must be used for clock
frequencies 100MHz and above. The asynchronous bus arbitration is
enabled by setting the ABE bit in the OMR register.
BB requires an external pull-up resistor.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-7
Interrupt and Mode Control
2.6
Interrupt and Mode Control
The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset.
After RESET is deasserted, these inputs are hardware interrupt request lines.
Table 2-8 Interrupt and Mode Control
Signal Name
Type
State during Reset
Signal Description
MODA/IRQA
Input
Input
Mode Select A/External Interrupt Request A—MODA/IRQA is an
active-low Schmitt-trigger input, internally synchronized to the DSP clock.
MODA/IRQA selects the initial chip operating mode during hardware reset
and becomes a level-sensitive or negative-edge-triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC, and MODD select one of 16 initial chip operating modes,
latched into the OMR when the RESET signal is deasserted. If IRQA is
asserted synchronous to CLKOUT, multiple processors can be
resynchronized using the WAIT instruction and asserting IRQA to exit the
wait state. If the processor is in the stop standby state and the
MODA/IRQA pin is pulled to GND, the processor will exit the stop state.
This input is 5 V tolerant.
MODB/IRQB
Input
Input
Mode Select B/External Interrupt Request B—MODB/IRQB is an
active-low Schmitt-trigger input, internally synchronized to the DSP clock.
MODB/IRQB selects the initial chip operating mode during hardware reset
and becomes a level-sensitive or negative-edge-triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC, and MODD select one of 16 initial chip operating modes,
latched into OMR when the RESET signal is deasserted. If IRQB is
asserted synchronous to CLKOUT, multiple processors can be
re-synchronized using the WAIT instruction and asserting IRQB to exit the
wait state.
This input is 5 V tolerant.
MODC/IRQC
Input
Input
Mode Select C/External Interrupt Request C—MODC/IRQC is an
active-low Schmitt-trigger input, internally synchronized to the DSP clock.
MODC/IRQC selects the initial chip operating mode during hardware reset
and becomes a level-sensitive or negative-edge-triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC, and MODD select one of 16 initial chip operating modes,
latched into OMR when the RESET signal is deasserted. If IRQC is
asserted synchronous to CLKOUT, multiple processors can be
resynchronized using the WAIT instruction and asserting IRQC to exit the
wait state.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-8
Freescale Semiconductor
Host Interface (HDI08)
Table 2-8 Interrupt and Mode Control (continued)
Signal Name
Type
State during Reset
Signal Description
MODD/IRQD
Input
Input
Mode Select D/External Interrupt Request D—MODD/IRQD is an
active-low Schmitt-trigger input, internally synchronized to the DSP clock.
MODD/IRQD selects the initial chip operating mode during hardware reset
and becomes a level-sensitive or negative-edge-triggered, maskable
interrupt request input during normal instruction processing. MODA,
MODB, MODC, and MODD select one of 16 initial chip operating modes,
latched into OMR when the RESET signal is deasserted. If IRQD is
asserted synchronous to CLKOUT, multiple processors can be
resynchronized using the WAIT instruction and asserting IRQD to exit the
wait state.
This input is 5 V tolerant.
RESET
Input
Input
Reset—RESET is an active-low, Schmitt-trigger input. When asserted,
the chip is placed in the reset state and the internal phase generator is
reset. The Schmitt-trigger input allows a slowly rising input (such as a
capacitor charging) to reset the chip reliably. If RESET is deasserted
synchronous to CLKOUT, exact start-up timing is guaranteed, allowing
multiple processors to start synchronously and operate together in
“lock-step.” When the RESET signal is deasserted, the initial chip
operating mode is latched from the MODA, MODB, MODC, and MODD
inputs. The RESET signal must be asserted during power up. A stable
EXTAL signal must be supplied while RESET is being asserted.
This input is 5 V tolerant.
2.7
Host Interface (HDI08)
The HDI08 provides a fast, 8-bit, parallel data port that may be connected directly to the host bus. The
HDI08 supports a variety of standard buses and can be directly connected to a number of industry standard
microcomputers, microprocessors, DSPs, and DMA hardware.
2.7.1
Host Port Configuration
Signal functions associated with the HDI08 vary according to the interface operating mode as determined
by the HDI08 port control register (HPCR). See 6.5.6 Host Port Control Register (HPCR) on
page Section 6-13 for detailed descriptions of this register and (See Host Interface (HDI08) on
page Section 6-1.) for descriptions of the other HDI08 configuration registers.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-9
Host Interface (HDI08)
Table 2-9 Host Interface
Signal Name
Type
State during Reset
Signal Description
H0–H7
Input/Output
HAD0–HAD7
Input/Output
Host Address—When HDI08 is programmed to interface a
multiplexed host bus and the HI function is selected, these
signals are lines 0–7 of the address/data bidirectional,
multiplexed, tri-state bus.
PB0–PB7
Input, Output, or
Disconnected
Port B 0–7—When the HDI08 is configured as GPIO, these
signals are individually programmable as input, output, or
internally disconnected.
GPIO Disconnected Host Data—When the HDI08 is programmed to interface a
nonmultiplexed host bus and the HI function is selected, these
signals are lines 0–7 of the bidirectional, tri-state data bus.
The default state after reset for these signals is GPIO
disconnected.
This input is 5 V tolerant.
HA0
Input
HAS/HAS
Input
Host Address Strobe—When HDI08 is programmed to
interface a multiplexed host bus and the HI function is selected,
this signal is the host address strobe (HAS) Schmitt-trigger input.
The polarity of the address strobe is programmable, but is
configured active-low (HAS) following reset.
PB8
Input, output, or
disconnected
Port B 8—When the HDI08 is configured as GPIO, this signal is
individually programmed as input, output, or internally
disconnected.
GPIO Disconnected Host Address Input 0—When the HDI08 is programmed to
interface a nonmultiplexed host bus and the HI function is
selected, this signal is line 0 of the host address input bus.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
GPIO Disconnected Host Address Input 1—When the HDI08 is programmed to
interface a nonmultiplexed host bus and the HI function is
selected, this signal is line 1 of the host address (HA1) input bus.
HA1
Input
HA8
Input
Host Address 8—When HDI08 is programmed to interface a
multiplexed host bus and the HI function is selected, this signal
is line 8 of the host address (HA8) input bus.
PB9
Input, Output, or
Disconnected
Port B 9—When the HDI08 is configured as GPIO, this signal is
individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-10
Freescale Semiconductor
Host Interface (HDI08)
Table 2-9 Host Interface (continued)
Signal Name
Type
State during Reset
Signal Description
HA2
Input
GPIO Disconnected Host Address Input 2—When the HDI08 is programmed to
interface a non-multiplexed host bus and the HI function is
selected, this signal is line 2 of the host address (HA2) input bus.
HA9
Input
Host Address 9—When HDI08 is programmed to interface a
multiplexed host bus and the HI function is selected, this signal
is line 9 of the host address (HA9) input bus.
PB10
Input, Output, or
Disconnected
Port B 10—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
HRW
Input
GPIO Disconnected Host Read/Write—When HDI08 is programmed to interface a
single-data-strobe host bus and the HI function is selected, this
signal is the Host Read/Write (HRW) input.
HRD/HRD
Input
Host Read Data—When HDI08 is programmed to interface a
double-data-strobe host bus and the HI function is selected, this
signal is the host read data strobe (HRD) Schmitt-trigger input.
The polarity of the data strobe is programmable, but is configured
as active-low (HRD) after reset.
PB11
Input, Output, or
Disconnected
Port B 11—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
HDS/HDS
Input
GPIO Disconnected Host Data Strobe—When HDI08 is programmed to interface a
single-data-strobe host bus and the HI function is selected, this
signal is the host data strobe (HDS) Schmitt-trigger input. The
polarity of the data strobe is programmable, but is configured as
active-low (HDS) following reset.
HWR/HWR
Input
Host Write Data—When HDI08 is programmed to interface a
double-data-strobe host bus and the HI function is selected, this
signal is the host write data strobe (HWR) Schmitt-trigger input.
The polarity of the data strobe is programmable, but is configured
as active-low (HWR) following reset.
PB12
Input, Output, or
Disconnected
Port B 12—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-11
Host Interface (HDI08)
Table 2-9 Host Interface (continued)
Signal Name
Type
State during Reset
Signal Description
HCS
Input
GPIO Disconnected Host Chip Select—When HDI08 is programmed to interface a
nonmultiplexed host bus and the HI function is selected, this
signal is the host chip select (HCS) input. The polarity of the chip
select is programmable, but is configured active-low (HCS) after
reset.
Host Address 10—When HDI08 is programmed to interface a
multiplexed host bus and the HI function is selected, this signal
is line 10 of the host address (HA10) input bus.
HA10
Input
Port B 13—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
PB13
Input, Output, or
Disconnected
DSP56362 Technical Data, Rev. 4
2-12
Freescale Semiconductor
Host Interface (HDI08)
Table 2-9 Host Interface (continued)
Signal Name
Type
State during Reset
Signal Description
HOREQ/HORE
Output
GPIO Disconnected Host Request—When HDI08 is programmed to interface a
single host request host bus and the HI function is selected, this
signal is the host request (HOREQ) output. The polarity of the
host request is programmable, but is configured as active-low
(HOREQ) following reset. The host request may be programmed
as a driven or open-drain output.
HTRQ/HTRQ
Output
Transmit Host Request—When HDI08 is programmed to
interface a double host request host bus and the HI function is
selected, this signal is the transmit host request (HTRQ) output.
The polarity of the host request is programmable, but is
configured as active-low (HTRQ) following reset. The host
request may be programmed as a driven or open-drain output.
PB14
Input, Output, or
Disconnected
Port B 14—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
GPIO Disconnected Host Acknowledge—When HDI08 is programmed to interface
a single host request host bus and the HI function is selected,
this signal is the host acknowledge (HACK) Schmitt-trigger input.
The polarity of the host acknowledge is programmable, but is
configured as active-low (HACK) after reset.
HACK/HACK
Input
HRRQ/HRRQ
Output
Receive Host Request—When HDI08 is programmed to
interface a double host request host bus and the HI function is
selected, this signal is the receive host request (HRRQ) output.
The polarity of the host request is programmable, but is
configured as active-low (HRRQ) after reset. The host request
may be programmed as a driven or open-drain output.
PB15
Input, Output, or
Disconnected
Port B 15—When the HDI08 is configured as GPIO, this signal
is individually programmed as input, output, or internally
disconnected.
The default state after reset for this signal is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-13
Serial Host Interface
2.8
Serial Host Interface
The SHI has five I/O signals that can be configured to allow the SHI to operate in either SPI or I2C mode.
Table 2-10 Serial Host Interface Signals
Signal Name
Signal Type
State during
Reset
SCK
Input or Output
Tri-Stated
SCL
Input or Output
Signal Description
SPI Serial Clock—The SCK signal is an output when the SPI is
configured as a master and a Schmitt-trigger input when the SPI is
configured as a slave. When the SPI is configured as a master, the
SCK signal is derived from the internal SHI clock generator. When the
SPI is configured as a slave, the SCK signal is an input, and the clock
signal from the external master synchronizes the data transfer. The
SCK signal is ignored by the SPI if it is defined as a slave and the slave
select (SS) signal is not asserted. In both the master and slave SPI
devices, data is shifted on one edge of the SCK signal and is sampled
on the opposite edge where data is stable. Edge polarity is determined
by the SPI transfer protocol.
I2C Serial Clock—SCL carries the clock for I2C bus transactions in the
I2C mode. SCL is a Schmitt-trigger input when configured as a slave
and an open-drain output when configured as a master. SCL should
be connected to VCC through a pull-up resistor.
This signal is tri-stated during hardware, software, and individual
reset. Thus, there is no need for an external pull-up in this state.
This input is 5 V tolerant.
MISO
Input or Output
SDA
Input or Open-Drain
Output
Tri-Stated
SPI Master-In-Slave-Out—When the SPI is configured as a master,
MISO is the master data input line. The MISO signal is used in
conjunction with the MOSI signal for transmitting and receiving serial
data. This signal is a Schmitt-trigger input when configured for the SPI
Master mode, an output when configured for the SPI Slave mode, and
tri-stated if configured for the SPI Slave mode when SS is deasserted.
An external pull-up resistor is not required for SPI operation.
I2C Data and Acknowledge—In I2C mode, SDA is a Schmitt-trigger
input when receiving and an open-drain output when transmitting.
SDA should be connected to VCC through a pull-up resistor. SDA
carries the data for I2C transactions. The data in SDA must be stable
during the high period of SCL. The data in SDA is only allowed to
change when SCL is low. When the bus is free, SDA is high. The SDA
line is only allowed to change during the time SCL is high in the case
of start and stop events. A high-to-low transition of the SDA line while
SCL is high is a unique situation, and is defined as the start event. A
low-to-high transition of SDA while SCL is high is a unique situation
defined as the stop event.
This signal is tri-stated during hardware, software, and individual
reset. Thus, there is no need for an external pull-up in this state.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-14
Freescale Semiconductor
Serial Host Interface
Table 2-10 Serial Host Interface Signals (continued)
Signal Name
Signal Type
State during
Reset
MOSI
Input or Output
Tri-Stated
HA0
Input
Signal Description
SPI Master-Out-Slave-In—When the SPI is configured as a master,
MOSI is the master data output line. The MOSI signal is used in
conjunction with the MISO signal for transmitting and receiving serial
data. MOSI is the slave data input line when the SPI is configured as
a slave. This signal is a Schmitt-trigger input when configured for the
SPI Slave mode.
I2C Slave Address 0—This signal uses a Schmitt-trigger input when
configured for the I2C mode. When configured for I2C slave mode, the
HA0 signal is used to form the slave device address. HA0 is ignored
when configured for the I2C master mode.
This signal is tri-stated during hardware, software, and individual
reset. Thus, there is no need for an external pull-up in this state.
This input is 5 V tolerant.
SS
Input
HA2
Input
Tri-Stated
SPI Slave Select—This signal is an active low Schmitt-trigger input
when configured for the SPI mode. When configured for the SPI Slave
mode, this signal is used to enable the SPI slave for transfer. When
configured for the SPI master mode, this signal should be kept
deasserted (pulled high). If it is asserted while configured as SPI
master, a bus error condition is flagged. If SS is deasserted, the SHI
ignores SCK clocks and keeps the MISO output signal in the
high-impedance state.
I2C Slave Address 2—This signal uses a Schmitt-trigger input when
configured for the I2C mode. When configured for the I2C Slave mode,
the HA2 signal is used to form the slave device address. HA2 is
ignored in the I2C master mode.
This signal is tri-stated during hardware, software, and individual
reset. Thus, there is no need for an external pull-up in this state.
This input is 5 V tolerant.
HREQ
Input or Output
Tri-Stated
Host Request—This signal is an active low Schmitt-trigger input when
configured for the master mode but an active low output when
configured for the slave mode.
When configured for the slave mode, HREQ is asserted to indicate
that the SHI is ready for the next data word transfer and deasserted at
the first clock pulse of the new data word transfer. When configured for
the master mode, HREQ is an input. When asserted by the external
slave device, it will trigger the start of the data word transfer by the
master. After finishing the data word transfer, the master will await the
next assertion of HREQ to proceed to the next transfer.
This signal is tri-stated during hardware, software, personal reset, or
when the HREQ1–HREQ0 bits in the HCSR are cleared. There is no
need for external pull-up in this state.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-15
Enhanced Serial Audio Interface
2.9
Enhanced Serial Audio Interface
Table 2-11 Enhanced Serial Audio Interface Signals
Signal
Name
Signal Type
HCKR
Input or Output
GPIO Disconnected High Frequency Clock for Receiver—When programmed as an
input, this signal provides a high frequency clock source for the ESAI
receiver as an alternate to the DSP core clock. When programmed as
an output, this signal can serve as a high-frequency sample clock
(e.g., for external digital to analog converters [DACs]) or as an
additional system clock.
PC2
Input, Output, or
Disconnected
Port C 2—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
State during Reset
Signal Description
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
HCKT
Input or Output
GPIO Disconnected High Frequency Clock for Transmitter—When programmed as an
input, this signal provides a high frequency clock source for the ESAI
transmitter as an alternate to the DSP core clock. When programmed
as an output, this signal can serve as a high frequency sample clock
(e.g., for external DACs) or as an additional system clock.
PC5
Input, Output, or
Disconnected
Port C 5—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
FSR
Input or Output
GPIO Disconnected Frame Sync for Receiver—This is the receiver frame sync
input/output signal. In the asynchronous mode (SYN=0), the FSR pin
operates as the frame sync input or output used by all the enabled
receivers. In the synchronous mode (SYN=1), it operates as either the
serial flag 1 pin (TEBE=0), or as the transmitter external buffer enable
control (TEBE=1, RFSD=1).
When this pin is configured as serial flag pin, its direction is
determined by the RFSD bit in the RCCR register. When configured
as the output flag OF1, this pin will reflect the value of the OF1 bit in
the SAICR register, and the data in the OF1 bit will show up at the pin
synchronized to the frame sync in normal mode or the slot in network
mode. When configured as the input flag IF1, the data value at the pin
will be stored in the IF1 bit in the SAISR register, synchronized by the
frame sync in normal mode or the slot in network mode.
PC1
Input, Output, or
Disconnected
Port C 1—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-16
Freescale Semiconductor
Enhanced Serial Audio Interface
Table 2-11 Enhanced Serial Audio Interface Signals (continued)
Signal
Name
Signal Type
FST
Input or Output
GPIO Disconnected Frame Sync for Transmitter—This is the transmitter frame sync
input/output signal. For synchronous mode, this signal is the frame
sync for both transmitters and receivers. For asynchronous mode, FST
is the frame sync for the transmitters only. The direction is determined
by the transmitter frame sync direction (TFSD) bit in the ESAI transmit
clock control register (TCCR).
PC4
Input, Output, or
Disconnected
Port C 4—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
State during Reset
Signal Description
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SCKR
Input or Output
GPIO Disconnected Receiver Serial Clock—SCKR provides the receiver serial bit clock
for the ESAI. The SCKR operates as a clock input or output used by
all the enabled receivers in the asynchronous mode (SYN=0), or as
serial flag 0 pin in the synchronous mode (SYN=1).
When this pin is configured as serial flag pin, its direction is
determined by the RCKD bit in the RCCR register. When configured
as the output flag OF0, this pin will reflect the value of the OF0 bit in
the SAICR register, and the data in the OF0 bit will show up at the pin
synchronized to the frame sync in normal mode or the slot in network
mode. When configured as the input flag IF0, the data value at the pin
will be stored in the IF0 bit in the SAISR register, synchronized by the
frame sync in normal mode or the slot in network mode.
PC0
Input, Output, or
Disconnected
Port C 0—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SCKT
Input or Output
GPIO Disconnected Transmitter Serial Clock—This signal provides the serial bit rate
clock for the ESAI. SCKT is a clock input or output used by all enabled
transmitters and receivers in synchronous mode, or by all enabled
transmitters in asynchronous mode.
PC3
Input, Output, or
Disconnected
Port C 3—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SDO5
Output
GPIO Disconnected Serial Data Output 5—When programmed as a transmitter, SDO5 is
used to transmit data from the TX5 serial transmit shift register.
SDI0
Input
Serial Data Input 0—When programmed as a receiver, SDI0 is used
to receive serial data into the RX0 serial receive shift register.
PC6
Input, Output, or
Disconnected
Port C 6—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-17
Enhanced Serial Audio Interface
Table 2-11 Enhanced Serial Audio Interface Signals (continued)
Signal
Name
Signal Type
SDO4
Output
SDI1
Input
Serial Data Input 1—When programmed as a receiver, SDI1 is used
to receive serial data into the RX1 serial receive shift register.
PC7
Input, Output, or
Disconnected
Port C 7—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
State during Reset
Signal Description
GPIO Disconnected Serial Data Output 4—When programmed as a transmitter, SDO4 is
used to transmit data from the TX4 serial transmit shift register.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SDO3
Output
GPIO Disconnected Serial Data Output 3—When programmed as a transmitter, SDO3 is
used to transmit data from the TX3 serial transmit shift register.
SDI2
Input
Serial Data Input 2—When programmed as a receiver, SDI2 is used
to receive serial data into the RX2 serial receive shift register.
PC8
Input, Output, or
Disconnected
Port C 8—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SDO2
Output
GPIO Disconnected Serial Data Output 2—When programmed as a transmitter, SDO2 is
used to transmit data from the TX2 serial transmit shift register.
SDI3
Input
Serial Data Input 3—When programmed as a receiver, SDI3 is used
to receive serial data into the RX3 serial receive shift register.
PC9
Input, Output, or
Disconnected
Port C 9—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SDO1
Output
PC10
Input, Output, or
Disconnected
GPIO Disconnected Serial Data Output 1—SDO1 is used to transmit data from the TX1
serial transmit shift register.
Port C 10—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
SDO0
Output
PC11
Input, Output, or
Disconnected
GPIO Disconnected Serial Data Output 0—SDO0 is used to transmit data from the TX0
serial transmit shift register.
Port C 11—When the ESAI is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-18
Freescale Semiconductor
Digital Audio Interface (DAX)
2.10
Digital Audio Interface (DAX)
Table 2-12 Digital Audio Interface (DAX) Signals
Signal
Name
Type
State During Reset
Signal Description
ACI
Input
Disconnected
Audio Clock Input—This is the DAX clock input. When programmed
to use an external clock, this input supplies the DAX clock. The
external clock frequency must be 256, 384, or 512 times the audio
sampling frequency (256 × Fs, 384 × Fs or 512 × Fs, respectively).
PD0
Input, Output, or
Disconnected
Port D 0—When the DAX is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
ADO
Output
PD1
Input, Output, or
Disconnected
Disconnected
Digital Audio Data Output—This signal is an audio and non-audio
output in the form of AES/EBU, CP340 and IEC958 data in a biphase
mark format.
Port D 1—When the DAX is configured as GPIO, this signal is
individually programmable as input, output, or internally disconnected.
The default state after reset is GPIO disconnected.
This input is 5 V tolerant.
2.11
Timer
Table 2-13 Timer Signal
Signal
Name
Type
State During Reset
Signal Description
TIO0
Input or Output
Input
Timer 0 Schmitt-Trigger Input/Output—When timer 0 functions as
an external event counter or in measurement mode, TIO0 is used as
input. When timer 0 functions in watchdog, timer, or pulse modulation
mode, TIO0 is used as output.
The default mode after reset is GPIO input. This can be changed to
output or configured as a timer input/output through the timer 0
control/status register (TCSR0). If TIO0 is not being used, it is
recommended to either define it as GPIO output immediately at the
beginning of operation or leave it defined as GPIO input but connected
it to Vcc through a pull-up resistor in order to ensure a stable logic level
at the input.
This input is 5 V tolerant.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
2-19
JTAG/OnCE Interface
2.12
JTAG/OnCE Interface
Table 2-14 JTAG/OnCE™ Interface
Signal
Name
Type
State During Reset
Signal Description
TCK
Input
Input
Test Clock—TCK is a test clock input signal used to synchronize the JTAG
test logic. It has an internal pull-up resistor.
This input is 5 V tolerant.
TDI
Input
Input
Test Data Input—TDI is a test data serial input signal used for test
instructions and data. TDI is sampled on the rising edge of TCK and has an
internal pull-up resistor.
This input is 5 V tolerant.
TDO
Output
Tri-Stated
Test Data Output—TDO is a test data serial output signal used for test
instructions and data. TDO can be tri-stated and is actively driven in the
shift-IR and shift-DR controller states. TDO changes on the falling edge of
TCK.
TMS
Input
Input
Test Mode Select—TMS is an input signal used to sequence the test
controller’s state machine. TMS is sampled on the rising edge of TCK and
has an internal pull-up resistor.
This input is 5 V tolerant.
TRST
Input
Input
Test Reset—TRST is an active-low Schmitt-trigger input signal used to
asynchronously initialize the test controller. TRST has an internal pull-up
resistor.
The use of TRST is not recommended for new designs. It is recommended
to leave TRST disconnected.
This input is 5 V tolerant.
DE
Input/Output
Input
Debug Event—DE is an open-drain, bidirectional, active-low signal
providing, as an input, a means of entering the debug mode of operation
from an external command controller, and, as an output, a means of
acknowledging that the chip has entered the debug mode. This signal, when
asserted as an input, causes the DSP56300 core to finish the current
instruction being executed, save the instruction pipeline information, enter
the debug mode, and wait for commands to be entered from the debug serial
input line. This signal is asserted as an output for three clock cycles when
the chip enters the debug mode as a result of a debug request or as a result
of meeting a breakpoint condition. The DE has an internal pull-up resistor.
This is not a standard part of the JTAG TAP controller. The signal connects
directly to the OnCE module to initiate debug mode directly or to provide a
direct external indication that the chip has entered the debug mode. All other
interface with the OnCE module must occur through the JTAG port.
The use of DE is not recommended for new designs. It is recommended to
leave DE disconnected.
This input is not 5 V tolerant.
DSP56362 Technical Data, Rev. 4
2-20
Freescale Semiconductor
3
3.1
Specifications
Introduction
The DSP56362 is fabricated in high density CMOS with Transistor-Transistor Logic (TTL) compatible
inputs and outputs. The DSP56362 specifications are preliminary and are from design simulations, and
may not be fully tested or guaranteed. Finalized specifications will be published after full characterization
and device qualifications are complete.
3.2
Maximum Ratings
CAUTION
This device contains circuitry protecting against damage due to high static
voltage or electrical fields. However, normal precautions should be taken to
avoid exceeding maximum voltage ratings. Reliability of operation is
enhanced if unused inputs are pulled to an appropriate logic voltage level
(e.g., either GND or VCC). The suggested value for a pullup or pulldown
resistor is 10 kΩ.
NOTE
In the calculation of timing requirements, adding a maximum value of one
specification to a minimum value of another specification does not yield a
reasonable sum. A maximum specification is calculated using a worst case
variation of process parameter values in one direction. The minimum
specification is calculated using the worst case for the same parameters in
the opposite direction. Therefore, a “maximum” value for a specification
will never occur in the same device that has a “minimum” value for another
specification; adding a maximum to a minimum represents a condition that
can never exist.
Table 3-1 Maximum Ratings
Symbol
Value1, 2
Unit
Supply Voltage
VCC
−0.3 to +4.0
V
All input voltages excluding “5 V tolerant” inputs3
VIN
GND
−0.3 to VCC + 0.3
V
All “5 V tolerant” input voltages3
VIN5
GND −0.3 to VCC + 3.95
V
I
10
mA
Rating1
Current drain per pin excluding VCC and GND
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-1
Thermal Characteristics
Table 3-1 Maximum Ratings (continued)
Rating1
Symbol
Value1, 2
Unit
TJ
−40 to +105
°C
TSTG
−55 to +125
°C
Operating temperature range
Storage temperature
1
GND = 0 V, VCC = 3.3 V ± .16 V, TJ = 0°C to +100°C, CL = 50 pF
Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond
the maximum rating may affect device reliability or cause permanent damage to the device.
3
CAUTION: All “5 V Tolerant” input voltages must not be more than 3.95 V greater than the supply voltage; this restriction
applies to “power on”, as well as during normal operation. In any case, the input voltages cannot be more than 5.75 V. “5 V
Tolerant” inputs are inputs that tolerate 5 V.
2
3.3
Thermal Characteristics
Table 3-2 Thermal Characteristics
Characteristic
Junction-to-ambient thermal resistance1
Junction-to-case thermal
resistance2
Symbol
LQFP Value
Unit
RθJA or θJA
45.3
°C/W
RθJC or θJC
10.1
°C/W
ΨJT
5.5
°C/W
Thermal characterization parameter
1
Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per SEMI
G38-87 in natural convection.(SEMI is Semiconductor Equipment and Materials International, 805 East Middlefield Rd.,
Mountain View, CA 94043, (415) 964-5111.
Measurements were done with parts mounted on thermal test boards conforming to specification EIA/JESD51-3.
2
Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that
the cold plate temperature is used for the case temperature.
3.4
DC Electrical Characteristics
Table 3-3 DC Electrical Characteristics1
Characteristics
Supply voltage
Symbol
Min
Typ
Max
Unit
VCC
3.14
3.3
3.46
V
Input high voltage
V
• D(0:23), BG, BB, TA, DE, and PINIT/NMI
•
MOD2/IRQ2,
RESET, and TCK/TDI/TMS/
TRST/ESAI/Timer/HDI08/ SHI(SPI mode) pins
VIH
2.0
—
VCC
VIHP
2.0
—
VCC + 3.95
• SHI(I2C mode) pins
VCC + 3.95
1.5
• EXTAL3
VIHX
• D(0:23), BG, BB, TA, MOD2/IRQ2, RESET, PINIT/NMI
• All JTAG/ESAI/Timer/HDI08/ SHI(SPI mode) pins
0.8 × VCC
—
VCC
VIL
–0.3
—
0.8
VILP
–0.3
—
0.8
–0.3
—
0.3 × VCC
Input low voltage
V
• SHI(I2C mode) pins
• EXTAL
3
VILX
–0.3
0.2 × VCC
DSP56362 Technical Data, Rev. 4
3-2
Freescale Semiconductor
AC Electrical Characteristics
Table 3-3 DC Electrical Characteristics1 (continued)
Characteristics
Symbol
Min
Typ
Max
Unit
Input leakage current
IIN
–10
—
10
µA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)
ITSI
–10
—
10
µA
Output high voltage
VOH
• TTL (IOH = –0.4 µA)
• CMOS (IOH = –10 µA)4
4, 5
Output low voltage
VOL
• TTL (IOL = 3.0 µA, open-drain pins IOL = 6.7 µA)
• CMOS (IOL = 10 µA)4
V
2.4
—
VCC – 0.01
—
—
—
4, 5
—
V
0.4
0.01
µA
Internal supply current6 (Operating frequency 100MHz
for current measurements)
• In Normal mode
ICCI
—
127
181
• In Wait mode
ICCW
—
7. 5
11
ICCS
—
100
150
—
1
2.5
µA
—
—
10
pF
7
• In Stop mode
PLL supply current
Input capacitance4
1
2
3
4
5
6
7
CIN
VCC = 3.3 V ± 5% V; TJ = 0°C to +100°C, CL = 50 pF
Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.
Driving EXTAL to the low VIHX or the high VILX value may cause additional power consumption (DC current). To
minimize power consumption, the minimum VIHX should be no lower than 0.9 VCC and the maximum VILX should be no higher
than 0.1 VCC.
Periodically sampled and not 100% tested.
This characteristic does not apply to PCAP.
Section 5.3, "Power Consumption Considerations" provides a formula to compute the estimated current
requirements in Normal mode. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float).
Measurements are based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are
90% of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is
measured with VCC = 3.3 V at TJ = 100°C. Maximum internal supply current is measured with VCC = 3.46 V at TJ = 100°C.
In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed to
float).
3.5
AC Electrical Characteristics
The timing waveforms shown in the AC electrical characteristics section are tested with a VIL maximum
of 0.3 V and a VIH minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels
shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input
signal, are measured in production with respect to the 50% point of the respective input signal's transition.
DSP56362 output levels are measured with the production test machine VOL and VOH reference levels set
at 0.4 V and 2.4 V, respectively.
NOTE
Although the minimum value for the frequency of EXTAL is 0 MHz, the
device AC test conditions are 15 MHz and rated speed.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-3
Internal Clocks
3.6
Internal Clocks
Table 3-4 Internal Clocks, CLKOUT
Expression1, 2
Characteristics
Symbol
Min
Typ
Max
Internal operation frequency and CLKOUT
with PLL enabled
f
—
(Ef × MF)/(PDF × DF)
—
Internal operation frequency and CLKOUT
with PLL disabled
f
—
Ef/2
—
—
ETC
—
• With PLL enabled and MF ≤ 4
0.49 × ETC × PDF ×
DF/MF
—
0.51 × ETC × PDF ×
DF/MF
• With PLL enabled and MF > 4
0.47 × ETC × PDF ×
DF/MF
—
0.53 × ETC × PDF ×
DF/MF
Internal clock and CLKOUT high period
TH
• With PLL disabled
Internal clock and CLKOUT low period
TL
—
ETC
—
• With PLL enabled and MF ≤ 4
0.49 × ETC × PDF ×
DF/MF
—
0.51 × ETC × PDF ×
DF/MF
• With PLL enabled and MF > 4
0.47 × ETC × PDF ×
DF/MF
—
0.53 × ETC × PDF ×
DF/MF
• With PLL disabled
Internal clock and CLKOUT cycle time with
PLL enabled
TC
—
ETC × PDF × DF/MF
—
Internal clock and CLKOUT cycle time with
PLL disabled
TC
—
2 × ETC
—
Instruction cycle time
ICYC
—
TC
—
1
DF = Division Factor
Ef = External frequency
ETC = External clock cycle
MF = Multiplication Factor
PDF = Predivision Factor
TC = internal clock cycle
2 See the PLL and Clock Generation section in the DSP56300 Family Manual for a detailed discussion of the PLL.
DSP56362 Technical Data, Rev. 4
3-4
Freescale Semiconductor
EXTERNAL CLOCK OPERATION
3.7
EXTERNAL CLOCK OPERATION
The DSP56362 system clock is an externally supplied square wave voltage source connected to EXTAL
(Figure 3-1)
VIHC
Midpoint
EXTAL
VILC
ETH
ETL
2
3
4
ETC
5
5
CLKOUT With
PLL Disabled
7
CLKOUT With
PLL Enabled
6a
7
6b
Note: The midpoint is 0.5 (VIHC + VILC).
AA0459
Figure 3-1 External Clock Timing
Table 3-5 Clock Operation 100 and 120 MHz Values
100 MHz
No.
1
Characteristics
120 MHz
Symbol
Min
Max
Min
Max
0
100.0
0
120.0
• With PLL disabled (46.7%–53.3% duty cycle)3
4.67 ns
∞
0.00 ns
∞
3
4.25 ns
157.0 µs
0.00 ns
157.0 µs
• With PLL disabled (46.7%–53.3% duty cycle)3
4.67 ns
∞
4.67 ns
—
3
4.25 ns
157.0 µs
4.25 ns
1570.00
• With PLL disabled
10.00 ns
∞
8.33 ns
—
• With PLL enabled
10.00 ns 273.1 µs
8.33 ns
273.1 µs
Frequency of EXTAL (EXTAL Pin Frequency)
Ef
The rise and fall time of this external clock should be 3 ns
maximum.
2
EXTAL input high1, 2
ETH
• With PLL enabled (42.5%–57.5% duty cycle)
3
EXTAL input low1, 2
ETL
• With PLL enabled (42.5%–57.5% duty cycle)
4
5
EXTAL cycle time2
ETC
CLKOUT change from EXTAL fall with PLL disabled
4.3 ns
11.0 ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-5
Phase Lock Loop (PLL) Characteristics
Table 3-5 Clock Operation (continued) 100 and 120 MHz Values
100 MHz
No.
6
7
Characteristics
Min
Max
CLKOUT rising edge from EXTAL rising edge with PLL
enabled (MF = 1, PDF = 1, Ef > 15 MHz)4, 5
0.0 ns
1.8 ns
CLKOUT falling edge from EXTAL rising edge with PLL
enabled (MF = 2 or 4, PDF = 1, Ef > 15 MHz)4, 5
0.0 ns
1.8 ns
CLKOUT falling edge from EXTAL falling edge with PLL
enabled (MF ≤ 4, PDF ≠ 1, Ef / PDF > 15 MHz)4, 5
0.0 ns
1.8 ns
• With PLL disabled
0.00 ns
∞
• With PLL enabled
0.00 ns
8.53 µs
Instruction cycle time = ICYC = TC6
See Table
1
120 MHz
Symbol
Min
Max
ICYC
3-5 (46.7%–53.3% duty cycle)
8.53 µs
Measured at 50% of the input transition.
The maximum value for PLL enabled is given for minimum VCO and maximum MF.
The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low
time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower
clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and
low time requirements are met.
Periodically sampled and not 100% tested.
The skew is not guaranteed for any other MF value.
The maximum value for PLL enabled is given for minimum VCO and maximum DF.
2
3
4
5
6
3.8
Phase Lock Loop (PLL) Characteristics
Table 3-6 PLL Characteristics
100 MHz
Characteristics
Unit
Min
Max
30
200
MHz
• @ MF ≤ 4
(MF × 580) − 100
(MF × 780) − 140
pF
• @ MF > 4
MF × 830
MF × 1470
pF
VCO frequency when PLL enabled (MF × Ef × 2/PDF)
PLL external capacitor (PCAP pin to VCCP) (CPCAP)1
Note:
1
CPCAP is the value of the PLL capacitor (connected between the PCAP pin and VCCP). The recommended value in pF for
CPCAP can be computed from one of the following equations:
(680 × MF) – 120, for MF ≤ 4, or
1100 × MF, for MF > 4
DSP56362 Technical Data, Rev. 4
3-6
Freescale Semiconductor
Reset, Stop, Mode Select, and Interrupt Timing
3.9
Reset, Stop, Mode Select, and Interrupt Timing
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1
No
Expression2
Characteristics
100 MHz
Unit
Min
Max
—
—
26.0
50 × ETC
500.0
—
• Power on, external clock generator, PLL enabled
1000 × ETC
10.0
• Power on, internal oscillator
75000 × ETC
750
• During STOP, XTAL disabled (PCTL Bit 16 = 0)
75000 × ETC
• During STOP, XTAL enabled (PCTL Bit 16 = 1)
• During normal operation
8
Delay from RESET assertion to all pins at reset value3
9
Required RESET duration4
120 MHz
Min
Max
26.0
ns
416.7
—
ns
—
8.3
—
µs
—
625
—
µs
750
—
625
—
µs
2.5 × TC
25.0
—
20.8
—
ns
2.5 × TC
25.0
—
20.8
—
ns
• Minimum
3.25 × TC + 2.0
34.5
—
29.1
• Maximum
20.25 TC + 7.50
—
211.5
TC
5.9
—
ns
—
10.0
ns
• Power on, external clock generator, PLL disabled
10 Delay from asynchronous RESET deassertion to first
external address output (internal reset deassertion)5
ns
176.2
ns
11 Synchronous reset setup time from RESET
deassertion to CLKOUT Transition 1
• Minimum
• Maximum
12 Synchronous reset deasserted, delay time from the
CLKOUT Transition 1 to the first external address
output
• Minimum
3.25 × TC + 2.0
33.5
—
ns
• Maximum
20.25 TC + 7.5
—
207.5
ns
13 Mode select setup time
30.0
—
30.0
ns
14 Mode select hold time
0.0
—
0.0
ns
15 Minimum edge-triggered interrupt request assertion
width
6.6
—
5.5
ns
16 Minimum edge-triggered interrupt request deassertion
width
6.6
—
5.5
ns
17 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to
external memory access address out valid
• Caused by first interrupt instruction fetch
4.25 × TC + 2.0
44.5
—
37.4
ns
• Caused by first interrupt instruction execution
7.25 × TC + 2.0
74.5
—
62.4
ns
10 × TC + 5.0
105.0
—
88.3
ns
18 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to
general-purpose transfer output valid caused by first
interrupt instruction execution
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-7
Reset, Stop, Mode Select, and Interrupt Timing
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1 (continued)
No
Expression2
Characteristics
100 MHz
120 MHz
Unit
Min
Max
Min
Max
19 Delay from address output valid caused by first interrupt
instruction execute to interrupt request deassertion for
level sensitive fast interrupts6
(3.75 + WS) × TC –
10.94
—
Note7
—
Note 7
20 Delay from RD assertion to interrupt request
deassertion for level sensitive fast interrupts6
(3.25 + WS) × TC –
10.94
—
Note 7
—
Note 7
• DRAM for all WS
(WS + 3.5) × TC –
10.94
—
Note 7
—
Note 7
ns
• SRAM WS =1
(WS + 3.5) × TC –
10.94
—
Note 7
—
Note 7
ns
• SRAM WS=2, 3
1.75 × TC – 4.0
—
Note 7
—
Note 7
ns
• SRAM WS ≥ 4
2.75 × TC – 4.0
—
Note 7
—
Note 7
ns
0.6 × TC – 0.1
5.9
4.9
—
ns
• Minimum
9.25 × TC + 1.0
93.5
—
78.1
—
ns
• Maximum
24.75 × TC + 5.0
—
252.5
—
211.2
ns
0.6 × TC − 0.1
5.9
—
4.9
—
ns
• PLL is not active during Stop (PCTL Bit 17 = 0) and
Stop delay is enabled (OMR Bit 6 = 0)
PLC × ETC × PDF +
(128 K − PLC/2) × TC
1.3
13.6
—
—
ms
• PLL is not active during Stop (PCTL Bit 17 = 0) and
Stop delay is not enabled (OMR Bit 6 = 1)
PLC × ETC × PDF +
(23.75 ± 0.5) × TC
232.5 ns
12.3 ms
—
—
• PLL is active during Stop (PCTL Bit 17 = 1) (Implies
No Stop Delay)
(8.25 ± 0.5) × TC
77.5
87.5
64.6
72.9
• PLL is not active during Stop (PCTL Bit 17 = 0) and
Stop delay is enabled (OMR Bit 6 = 0)
PLC × ETC × PDF +
(128K − PLC/2) × TC
13.6
—
ms
• PLL is not active during Stop (PCTL Bit 17 = 0) and
Stop delay is not enabled (OMR Bit 6 = 1)
PLC × ETC × PDF +
(20.5 ± 0.5) × TC
12.3
—
ms
• PLL is active during Stop (PCTL Bit 17 = 1) (implies
no Stop delay)
5.5 × TC
55.0
—
ns
21 Delay from WR assertion to interrupt request
deassertion for level sensitive fast interrupts6 8
22 Synchronous interrupt setup time from IRQA, IRQB,
IRQC, IRQD, NMI assertion to the CLKOUT Transition 2
23 Synchronous interrupt delay time from the CLKOUT
Transition 2 to the first external address output valid
caused by the first instruction fetch after coming out of
Wait Processing state
24 Duration for IRQA assertion to recover from Stop state
25 Delay from IRQA assertion to fetch of first instruction
(when exiting Stop)9, 3
ns
26 Duration of level sensitive IRQA assertion to ensure
interrupt service (when exiting Stop)9, 3
45.8
—
ns
DSP56362 Technical Data, Rev. 4
3-8
Freescale Semiconductor
Reset, Stop, Mode Select, and Interrupt Timing
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing 100 and 120 MHz Values1 (continued)
No
Expression2
Characteristics
100 MHz
120 MHz
Unit
Min
Max
Min
Max
27 Interrupt Requests Rate
• HI08, ESAI, SHI, Timer
12TC
—
120.0
—
100.0
ns
• DMA
8TC
—
80.0
—
66.7
ns
• IRQ, NMI (edge trigger)
8TC
—
80.0
—
66.7
ns
• IRQ, NMI (level trigger)
12TC
—
120.0
—
100.0
ns
• Data read from HI08, ESAI, SHI
6TC
—
60.0
—
50.0
ns
• Data write to HI08, ESAI, SHI
7TC
—
70.0
—
58.0
ns
• Timer
2TC
—
20.0
—
16.7
ns
• IRQ, NMI (edge trigger)
3TC
—
30.0
—
25.0
ns
4.25 × TC + 2.0
44.0
—
37.4
—
ns
28 DMA Requests Rate
29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to
external memory (DMA source) access address out
valid
1
2
3
4
5
6
7
8
9
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
Use expression to compute maximum value.
Periodically sampled and not 100% tested.
For an external clock generator, RESET duration is measured during the time in which RESET is asserted, VCC is valid, and the
EXTAL input is active and valid. For internal oscillator, RESET duration is measured during the time in which RESET is asserted
and VCC is valid. The specified timing reflects the crystal oscillator stabilization time after power-up. This number is affected both
by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions. When
the VCC is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device
circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize
this state to the shortest possible duration.
If PLL does not lose lock.
When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to
prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when
using fast interrupts. Long interrupts are recommended when using Level-sensitive mode.
These values depend on the number of wait states (WS) selected.
WS = number of wait states (measured in clock cycles, number of TC.
This timing depends on several settings: For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and
oscillator disabled during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure the oscillator is stable before
executing programs. In that case, resetting the Stop delay (OMR Bit 6 = 0) will provide the proper delay. While it is possible to
set OMR Bit 6 = 1, it is not recommended and these specifications do not guarantee timings for that case.
For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization
delay is required and recovery time will be minimal (OMR Bit 6 setting is ignored).
For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time will be defined by
the PCTL Bit 17 and OMR Bit 6 settings.
For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The
PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel
with the stop delay counter, and stop recovery will end when the last of these two events occurs. The stop delay counter
completes count or PLL lock procedure completion. PLC value for PLL disable is 0.
The maximum value for ETC is 4096 (maximum MF) divided by the desired internal frequency
(i.e., for 100 MHz it is 4096/100 MHz = 40.96µs). During the stabilization period, TC, TH, and TL will not be constant, and their
width may vary, so timing may vary as well.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-9
Reset, Stop, Mode Select, and Interrupt Timing
VIH
RESET
9
10
8
All Pins
Reset Value
First Fetch
A0–A17
AA0460
Figure 3-2 Reset Timing
CLKOUT
11
RESET
12
A0–A17
AA0461
Figure 3-3 Synchronous Reset Timing
DSP56362 Technical Data, Rev. 4
3-10
Freescale Semiconductor
Reset, Stop, Mode Select, and Interrupt Timing
First Interrupt Instruction
Execution/Fetch
A0–A17
RD
20
WR
21
IRQA, IRQB,
IRQC, IRQD,
NMI
17
19
a) First Interrupt Instruction Execution
General
Purpose
I/O
18
IRQA, IRQB,
IRQC, IRQD,
NMI
b) General Purpose I/O
AA0462
Figure 3-4 External Fast Interrupt Timing
IRQA, IRQB,
IRQC, IRQD,
NMI
15
IRQA, IRQB,
IRQC, IRQD,
NMI
16
AA0463
Figure 3-5 External Interrupt Timing (Negative Edge-Triggered)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-11
Reset, Stop, Mode Select, and Interrupt Timing
CLKOUT
22
IRQA, IRQB,
IRQC, IRQD,
NMI
23
A0–A17
AA0464
Figure 3-6 Synchronous Interrupt from Wait State Timing
VIH
RESET
13
14
MODA, MODB,
MODC, MODD,
PINIT
VIH
VIH
VIL
VIL
IRQA, IRQB,
IRQC, IRQD, NMI
AA0465
Figure 3-7 Operating Mode Select Timing
24
IRQA
25
A0–A17
First Instruction Fetch
AA0466
Figure 3-8 Recovery from Stop State Using IRQA
DSP56362 Technical Data, Rev. 4
3-12
Freescale Semiconductor
Reset, Stop, Mode Select, and Interrupt Timing
26
IRQA
25
A0–A17
First IRQA Interrupt Instruction Fetch
AA0467
Figure 3-9 Recovery from Stop State Using IRQA Interrupt Service
DMA Source Address
A0–A17
RD
WR
29
IRQA, IRQB,
IRQC, IRQD,
First Interrupt Instruction Execution
AA1104
NMI
Figure 3-10 External Memory Access (DMA Source) Timing
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-13
External Memory Expansion Port (Port A)
3.10
3.10.1
External Memory Expansion Port (Port A)
SRAM Timing
Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1
No.
Characteristics
Symbol
100 Address valid and AA assertion pulse width3
tRC, tWC
Expression2
(WS + 1) × TC − 4.0
100 MHz
120 MHz
Unit
Min
Max
Min
Max
16.0
—
12.0
—
ns
56.0
—
46.0
—
ns
106.0
—
87.0
—
ns
0.5
—
0.1
—
ns
10.5
—
8.4
—
ns
11.0
—
8.5
—
ns
16.0
—
12.7
—
ns
31.0
---
25.2
—
0.5
—
0.1
—
10.5
—
8.4
—
20.5
—
16.7
—
8.5
—
6.4
—
18.5
—
14.7
—
[1 ≤ WS ≤ 3]
(WS + 2) × TC − 4.0
[4 ≤ WS ≤ 7]
(WS + 3) × TC − 4.0
[WS ≥ 8]
101 Address and AA valid to WR assertion
tAS
100 MHz:
0.25 × TC − 2.0
[WS = 1]
1.25 × TC − 2.0
[WS ≥ 4]
102 WR assertion pulse width
tWP
100 MHz:
1.5 × TC − 4.0
[WS = 1]
All frequencies:
WS × TC − 4.0
[2 ≤ WS ≤ 3]
(WS − 0.5) × TC − 4.0
[WS ≥ 4]
103 WR deassertion to address not valid
tWR
100 MHz:
ns
0.25 × TC − 2.0
[1 ≤ WS ≤ 3]
1.25 × TC − 2.0
[4 ≤ WS ≤ 7]
2.25 × TC − 2.0
[WS ≥ 8]
All frequencies:
1.25 × TC − 4.0
[4 ≤ WS ≤ 7]
2.25 × TC − 4.0
[WS ≥ 8]
DSP56362 Technical Data, Rev. 4
3-14
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued)
No.
Characteristics
Symbol
104 Address and AA valid to input data valid
tAA, tAC
Expression2
100 MHz:
100 MHz
120 MHz
Unit
Min
Max
—
10.5
—
5.5
0.0
Min
Max
7.6
ns
—
3.4
ns
—
0.0
—
ns
13.5
—
10.6
—
ns
4.5
—
3.2
—
ns
0.5
—
0.1
—
ns
10.5
—
8.4
—
20.5
—
16.7
—
—
—
2.5
—
—
—
0.0
—
—
—
0.0
—
—
—
—
2.3
—
—
—
10.6
—
—
—
18.9
(WS + 0.75) × TC − 7.0
[WS ≥ 1]
105 RD assertion to input data valid
tOE
100 MHz:
(WS + 0.25) × TC − 7.0
[WS ≥ 1]
106 RD deassertion to data not valid (data hold
time)
tOHZ
107 Address valid to WR deassertion3
tAW
(WS + 0.75) × TC − 4.0
[WS ≥ 1]
108 Data valid to WR deassertion (data setup
time)
tDS (tDW)
100 MHz:
(WS − 0.25) × TC − 3.0
[WS ≥ 1]
109 Data hold time from WR deassertion
tDH
100 MHz:
0.25 × TC − 2.0
[1 ≤ WS ≤ 3]
1.25 × TC − 2.0
[4 ≤ WS ≤ 7]
2.25 × TC − 2.0
[WS ≥ 8]
0.75 × TC − 3.7
110 WR assertion to data active4
ns
[WS = 1]
0.25 × TC − 3.7
[2 ≤ WS ≤ 3]
−0.25 × TC − 3.7
[WS ≥ 4]
111 WR deassertion to data high
impedance4
0.25 × TC + 0.2
ns
[1 ≤ WS ≤ 3]
1.25 × TC + 0.2
[4 ≤ WS ≤ 7]
2.25 × TC + 0.2
[WS ≥ 8]
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-15
External Memory Expansion Port (Port A)
Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued)
No.
Characteristics
Symbol
112 Previous RD deassertion to data active
(write)4
Expression2
1.25 × TC − 4.0
100 MHz
120 MHz
Unit
Min
Max
Min
Max
—
—
6.4
—
—
—
14.7
—
—
—
23.1
—
3.5
—
2.2
—
13.5
—
10.6
—
23.5
—
18.9
—
1.0
—
0.2
—
6.0
—
6.3
—
21.0
—
16.8
—
31.0
—
25.2
—
1.0
—
0.2
—
ns
8.5
—
6.4
—
ns
0.5
—
0.1
—
ns
10.5
—
8.4
—
20.5
—
16.7
—
ns
[1 ≤ WS ≤ 3]
2.25 × TC − 4.0
[4 ≤ WS ≤ 7]
3.25 × TC − 4.0
[WS ≥ 8]
113 RD deassertion time
100 MHz:
ns
0.75 × TC − 4.0
[1 ≤ WS ≤ 3]
1.75 × TC − 4.0
[4 ≤ WS ≤ 7]
2.75 × TC − 4.0
[WS ≥ 8]
114 WR deassertion time
100 MHz:
ns
0.5 × TC − 4.0
[WS = 1]
TC − 2.0
[2 ≤ WS ≤ 3]
2.5 × TC − 4.0
[4 ≤ WS ≤ 7]
3.5 × TC − 4.0
[WS ≥ 8]
115 Address valid to RD assertion
100 MHz:
0.5 × TC − 4.0
116 RD assertion pulse width
100 MHz:
(WS + 0.25) × TC −4.0
117 RD deassertion to address not valid
100 MHz:
0.25 × TC − 2.0
[1 ≤ WS ≤ 3]
1.25 × TC − 2.0
[4 ≤ WS ≤ 7]
2.25 × TC − 2.0
[WS ≥ 8]
DSP56362 Technical Data, Rev. 4
3-16
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-8 SRAM Read and Write Accesses 100 and 120 MHz1 (continued)
No.
Characteristics
Expression2
Symbol
0.25 × TC + 2.0
118 TA setup before RD or WR deassertion5
119 TA hold after RD or WR deassertion
100 MHz
120 MHz
Unit
Min
Max
Min
Max
4.5
—
4.1
—
ns
0
—
0.0
—
ns
1
All timings for 100 MHz are measured from 0.5 Vcc to .05 Vcc
WS is the number of wait states specified in the BCR.
3
Timings 100, 107 are guaranteed by design, not tested.
4
Timing 110, 111, and 112, are not specified for 100 MHz.
5
In the case of TA negation: timing 118 is relative to the deassertion edge of RD or WR were TA to remain active.
2
100
A0–A17
AA0–AA3
117
116
113
RD
115
105
106
WR
104
119
118
TA
Data
In
D0–D23
AA0468
Figure 3-11 SRAM Read Access
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-17
External Memory Expansion Port (Port A)
100
A0–A17
AA0–AA3
107
101
102
103
WR
114
RD
118
119
TA
108
110
111
109
112
Data
Out
D0–D23
AA0469
Figure 3-12 SRAM Write Access
3.10.2
DRAM Timing
The selection guides provided in Figure 3-13 and Figure 3-16 should be used for primary selection only.
Final selection should be based on the timing provided in the following tables. As an example, the selection
guide suggests that 4 wait states must be used for 100 MHz operation when using Page Mode DRAM.
However, by using the information in the appropriate table, a designer may choose to evaluate whether
fewer wait states might be used by determining which timing prevents operation at 100 MHz, running the
chip at a slightly lower frequency (e.g., 95 MHz), using faster DRAM (if it becomes available), and control
factors such as capacitive and resistive load to improve overall system performance.
DSP56362 Technical Data, Rev. 4
3-18
Freescale Semiconductor
External Memory Expansion Port (Port A)
Note: This figure should be used for primary selection. For
exact and detailed timings see the following tables.
DRAM Type
(tRAC ns)
100
80
70
60
Chip Frequency
50
40
66
80
100
120
(MHz)
1 Wait States
3 Wait States
2 Wait States
4 Wait States
AA0472
Figure 3-13 DRAM Page Mode Wait States Selection Guide
Table 3-9 DRAM Page Mode Timings, One Wait State (Low-Power Applications)1, 2, 3
20 MHz4
No.
Characteristics
Symbol
131 Page mode cycle time for two consecutive
accesses of the same direction
tPC
Page mode cycle time for mixed (read and write)
accesses.
30 MHz4
Expression
Unit
Min
Max
Min
Max
2 × TC
100.0
—
66.7
—
1.25 x Tc
62.5
—
41.7
—
ns
132 CAS assertion to data valid (read)
tCAC
TC − 7.5
—
42.5
—
25.8
ns
133 Column address valid to data valid (read)
tAA
1.5 × TC − 7.5
—
67.5
—
42.5
ns
134 CAS deassertion to data not valid (read hold
time)
tOFF
0.0
—
0.0
—
ns
135 Last CAS assertion to RAS deassertion
tRSH
0.75 × TC − 4.0
33.5
—
21.0
—
ns
136 Previous CAS deassertion to RAS deassertion
tRHCP
2 × TC − 4.0
96.0
—
62.7
—
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-19
External Memory Expansion Port (Port A)
Table 3-9 DRAM Page Mode Timings, One Wait State (Low-Power Applications)1, 2, 3 (continued)
20 MHz4
No.
Characteristics
Symbol
3
4
5
6
Unit
Max
Min
Max
0.75 × TC − 4.0
33.5
—
21.0
—
• BRW[1:0] = 00
1.75 × TC − 6.0
81.5
—
52.3
—
• BRW[1:0] = 01
3.25 × TC − 6.0
156.5
—
102.2
—
• BRW[1:0] = 10
4.25 × TC − 6.0
206.5
—
135.5
—
• BRW[1:0] = 11
6.25 × TC – 6.0
306.5
—
202.1
—
137 CAS assertion pulse width
tCAS
138 Last CAS deassertion to RAS deassertion5
tCRP
ns
ns
139 CAS deassertion pulse width
tCP
0.5 × TC − 4.0
21.0
—
12.7
—
ns
140 Column address valid to CAS assertion
tASC
0.5 × TC − 4.0
21.0
—
12.7
—
ns
141 CAS assertion to column address not valid
tCAH
0.75 × TC − 4.0
33.5
—
21.0
—
ns
142 Last column address valid to RAS deassertion
tRAL
2 × TC − 4.0
96.0
—
62.7
—
ns
143 WR deassertion to CAS assertion
tRCS
0.75 × TC − 3.8
33.7
—
21.2
—
ns
144 CAS deassertion to WR assertion
tRCH
0.25 × TC − 3.7
8.8
—
4.6
—
ns
145 CAS assertion to WR deassertion
tWCH
0.5 × TC − 4.2
20.8
—
12.5
—
ns
146 WR assertion pulse width
tWP
1.5 × TC − 4.5
70.5
—
45.5
—
ns
147 Last WR assertion to RAS deassertion
tRWL
1.75 × TC − 4.3
83.2
—
54.0
—
ns
148 WR assertion to CAS deassertion
tCWL
1.75 × TC − 4.3
83.2
—
54.0
—
ns
149 Data valid to CAS assertion (Write)
tDS
0.25 × TC − 4.0
8.5
—
4.3
—
ns
150 CAS assertion to data not valid (write)
tDH
0.75 × TC − 4.0
33.5
—
21.0
—
ns
151 WR assertion to CAS assertion
tWCS
TC − 4.3
45.7
—
29.0
—
ns
152 Last RD assertion to RAS deassertion
tROH
1.5 × TC − 4.0
71.0
—
46.0
—
ns
153 RD assertion to data valid
tGA
TC − 7.5
—
42.5
—
25.8
ns
154 RD deassertion to data not valid 6
tGZ
0.0
—
0.0
—
ns
0.75 × TC − 0.3
37.2
—
24.7
—
ns
0.25 × TC
—
12.5
—
8.3
ns
156 WR deassertion to data high impedance
2
Expression
Min
155 WR assertion to data active
1
30 MHz4
The number of wait states for Page mode access is specified in the DCR.
The refresh period is specified in the DCR.
All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 2 × TC for
read-after-read or write-after-write sequences).
Reduced DSP clock speed allows use of Page Mode DRAM with one Wait state. See Figure 3-13.
BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page
access.
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ.
DSP56362 Technical Data, Rev. 4
3-20
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-10 DRAM Page Mode Timings, Two Wait States1, 2, 3, 4
80 MHz
No.
131
Characteristics
Page mode cycle time for two consecutive accesses of the
same direction5
Symbol
tPC
Page mode cycle time for mixed (read and write) accesses.5
Expression
Unit
Min
Max
3 × TC
37.5
—
2.75 x Tc
34.4
—
ns
132
CAS assertion to data valid (read)
tCAC
1.5 × TC − 6.5
—
12.3
ns
133
Column address valid to data valid (read)
tAA
2.5 × TC − 6.5
—
24.8
ns
134
CAS deassertion to data not valid (read hold time)
tOFF
0.0
—
ns
135
Last CAS assertion to RAS deassertion
tRSH
1.75 × TC − 4.0
17.9
—
ns
136
Previous CAS deassertion to RAS deassertion
tRHCP
3.25 × TC − 4.0
36.6
—
ns
137
CAS assertion pulse width
tCAS
1.5 × TC − 4.0
14.8
—
ns
138
Last CAS deassertion to RAS deassertion6
tCRP
• BRW[1:0] = 00
2.0 × TC − 6.0
19.0
—
• BRW[1:0] = 01
3.5 × TC − 6.0
37.8
—
• BRW[1:0] = 10
4.5 × TC − 6.0
50.3
—
• BRW[1:0] = 11
6.5 × TC − 6.0
75.3
—
ns
139
CAS deassertion pulse width
tCP
1.25 × TC − 4.0
11.6
—
ns
140
Column address valid to CAS assertion
tASC
TC − 4.0
8.5
—
ns
141
CAS assertion to column address not valid
tCAH
1.75 × TC − 4.0
17.9
—
ns
142
Last column address valid to RAS deassertion
tRAL
3 × TC − 4.0
33.5
—
ns
143
WR deassertion to CAS assertion
tRCS
1.25 × TC − 3.8
11.8
—
ns
144
CAS deassertion to WR assertion
tRCH
0.5 × TC − 3.7
2.6
—
ns
145
CAS assertion to WR deassertion
tWCH
1.5 × TC − 4.2
14.6
—
ns
146
WR assertion pulse width
tWP
2.5 × TC − 4.5
26.8
—
ns
147
Last WR assertion to RAS deassertion
tRWL
2.75 × TC − 4.3
30.1
—
ns
148
WR assertion to CAS deassertion
tCWL
2.5 × TC − 4.3
27.0
—
ns
149
Data valid to CAS assertion (write)
tDS
0.25 × TC − 3.0
0.1
—
ns
150
CAS assertion to data not valid (write)
tDH
1.75 × TC − 4.0
17.9
—
ns
151
WR assertion to CAS assertion
tWCS
TC − 4.3
8.2
—
ns
152
Last RD assertion to RAS deassertion
tROH
2.5 × TC − 4.0
27.3
—
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-21
External Memory Expansion Port (Port A)
Table 3-10 DRAM Page Mode Timings, Two Wait States1, 2, 3, 4 (continued)
80 MHz
No.
1
2
3
4
5
6
7
Characteristics
Symbol
153
RD assertion to data valid
tGA
154
RD deassertion to data not valid7
tGZ
155
WR assertion to data active
156
WR deassertion to data high impedance
Expression
Unit
Min
Max
—
15.4
ns
0.0
—
ns
0.75 × TC − 0.3
9.1
—
ns
0.25 × TC
—
3.1
ns
1.75 × TC − 6.5
The number of wait states for Page mode access is specified in the DCR.
The refresh period is specified in the DCR.
The asynchronous delays specified in the expressions are valid for DSP56362.
All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 3 × TC for
read-after-read or write-after-write sequences).
There are not any fast enough DRAMs to fit to two wait states Page mode @ 100MHz. See Figure 3-13.
BRW[1:0] (DRAM Control Register bits) defines the number of wait states that should be inserted in each DRAM out-of-page
access.
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ.
Table 3-11 DRAM Page Mode Timings, Three Wait States1, 2, 3, 4
100 MHz
No.
Characteristics
131 Page mode cycle time for two consecutive accesses of the
same direction
Symbol
tPC
Page mode cycle time for mixed (read and write) accesses.
132 CAS assertion to data valid (read)
tCAC
Expression
Unit
Min
Max
4 × TC
40.0
—
3.5 x Tc
35.0
—
100 MHz:
—
13.0
ns
—
23.0
ns
0.0
—
ns
ns
2 × TC − 7.0
133 Column address valid to data valid (read)
tAA
100 MHz:
3 × TC − 7.0
134 CAS deassertion to data not valid (read hold time)
tOFF
135 Last CAS assertion to RAS deassertion
tRSH
2.5 × TC − 4.0
21.0
—
ns
136 Previous CAS deassertion to RAS deassertion
tRHCP
4.5 × TC − 4.0
41.0
—
ns
137 CAS assertion pulse width
tCAS
2 × TC − 4.0
16.0
—
ns
138 Last CAS deassertion to RAS assertion5
tCRP
ns
• BRW[1:0] = 00
2.25 × TC − 6.0
—
—
• BRW[1:0] = 01
3.75 × TC − 6.0
—
—
• BRW[1:0] = 10
4.75 × TC − 6.0
41.5
—
• BRW[1:0] = 11
6.75 × TC − 6.0
61.5
—
DSP56362 Technical Data, Rev. 4
3-22
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-11 DRAM Page Mode Timings, Three Wait States1, 2, 3, 4 (continued)
100 MHz
No.
Characteristics
Symbol
Expression
Unit
Min
Max
139 CAS deassertion pulse width
tCP
1.5 × TC − 4.0
11.0
—
ns
140 Column address valid to CAS assertion
tASC
TC − 4.0
6.0
—
ns
141 CAS assertion to column address not valid
tCAH
2.5 × TC − 4.0
21.0
—
ns
142 Last column address valid to RAS deassertion
tRAL
4 × TC − 4.0
36.0
—
ns
143 WR deassertion to CAS assertion
tRCS
100 MHz:
8.5
ns
3.5
ns
1.25 × TC − 4.0
144 CAS deassertion to WR assertion
tRCH
100 MHz:
0.75 × TC − 4.0
145 CAS assertion to WR deassertion
tWCH
2.25 × TC − 4.2
18.3
—
ns
146 WR assertion pulse width
tWP
3.5 × TC − 4.5
30.5
—
ns
147 Last WR assertion to RAS deassertion
tRWL
3.75 × TC − 4.3
33.2
—
ns
148 WR assertion to CAS deassertion
tCWL
3.25 × TC − 4.3
28.2
—
ns
149 Data valid to CAS assertion (write)
tDS
0.5 × TC − 4.0
1.0
—
ns
150 CAS assertion to data not valid (write)
tDH
2.5 × TC − 4.0
21.0
—
ns
151 WR assertion to CAS assertion
tWCS
1.25 × TC − 4.3
8.2
—
ns
152 Last RD assertion to RAS deassertion
tROH
3.5 × TC − 4.0
31.0
—
ns
153 RD assertion to data valid
tGA
100 MHz:
—
18.0
ns
0.0
—
ns
0.75 × TC − 0.3
7.2
—
ns
0.25 × TC
—
2.5
ns
2.5 × TC − 7.0
154 RD deassertion to data not valid6
tGZ
155 WR assertion to data active
156 WR deassertion to data high impedance
1
2
3
4
5
6
The number of wait states for Page mode access is specified in the DCR.
The refresh period is specified in the DCR.
The asynchronous delays specified in the expressions are valid for DSP56362.
All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 4 × TC for
read-after-read or write-after-write sequences).
BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of
page-access.
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-23
External Memory Expansion Port (Port A)
Table 3-12 DRAM Page Mode Timings, Four Wait States 100 and 120MHz1, 2, 3, 4
100 MHz
No.
131
Characteristics
Symbol
Page mode cycle time for two consecutive accesses
of the same direction
tPC
Page mode cycle time for mixed (read and write)
accesses.
132
CAS assertion to data valid (read)
tCAC
120 MHz
Expression
Unit
Min
Max
Min
Max
5 × TC
50.0
—
41.7
4.5 × TC
45.0
—
37.5
100 MHz:
—
20.5
—
15.9
ns
—
30.5
—
24.2
ns
0.0
—
0.0
—
ns
ns
2.75 × TC − 7.0
133
Column address valid to data valid (read)
tAA
100 MHz:
3.75 × TC − 7.0
134
CAS deassertion to data not valid (read hold time)
tOFF
135
Last CAS assertion to RAS deassertion
tRSH
3.5 × TC − 4.0
31.0
—
25.2
—
ns
136
Previous CAS deassertion to RAS deassertion
tRHCP
6 × TC − 4.0
56.0
—
46.0
—
ns
137
CAS assertion pulse width
tCAS
2.5 × TC − 4.0
21.0
—
16.8
—
ns
138
Last CAS deassertion to RAS assertion5
tCRP
BRW[1:0] = 00
2.75 × TC − 6.0
—
—
—
—
BRW[1:0] = 01
4.25 × TC − 6.0
—
—
—
—
BRW[1:0] = 10
5.25 × TC − 6.0
46.5
—
37.7
—
BRW[1:0] = 11
7.25 × TC − 6.0
66.5
—
54.4
—
ns
139
CAS deassertion pulse width
tCP
2 × TC − 4.0
16.0
—
12.7
—
ns
140
Column address valid to CAS assertion
tASC
TC − 4.0
6.0
—
4.3
—
ns
141
CAS assertion to column address not valid
tCAH
3.5 × TC − 4.0
31.0
—
25.2
—
ns
142
Last column address valid to RAS deassertion
tRAL
5 × TC − 4.0
46.0
—
37.7
—
ns
143
WR deassertion to CAS assertion
tRCS
100 MHz:
8.5
—
6.4
—
ns
8.5
—
6.4
—
ns
1.25 × TC − 4.0
144
CAS deassertion to WR assertion
tRCH
100 MHz:
1.25 × TC − 4.0
tWCH
3.25 × TC − 4.2
28.3
—
22.9
—
ns
WR assertion pulse width
tWP
4.5 × TC − 4.5
40.5
—
33.0
—
ns
147
Last WR assertion to RAS deassertion
tRWL
4.75 × TC − 4.3
43.2
—
35.3
—
ns
148
WR assertion to CAS deassertion
tCWL
3.75 × TC − 4.3
33.2
—
26.9
—
ns
145
CAS assertion to WR deassertion
146
DSP56362 Technical Data, Rev. 4
3-24
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-12 DRAM Page Mode Timings, Four Wait States 100 and 120MHz1, 2, 3, 4 (continued)
100 MHz
No.
Characteristics
Symbol
120 MHz
Expression
Unit
Min
Max
Min
Max
149
Data valid to CAS assertion (write)
tDS
0.5 × TC − 4.0
1.0
—
0.2
—
ns
150
CAS assertion to data not valid (write)
tDH
3.5 × TC − 4.0
31.0
—
25.2
—
ns
151
WR assertion to CAS assertion
tWCS
1.25 × TC − 4.3
8.2
—
6.1
—
ns
152
Last RD assertion to RAS deassertion
tROH
4.5 × TC − 4.0
41.0
—
33.5
—
ns
153
RD assertion to data valid
tGA
100 MHz:
—
25.5
—
20.1
ns
0.0
—
0.0
—
ns
0.75 × TC − 0.3
7.2
—
5.9
0.25 × TC
—
2.5
—
3.25 × TC − 7.0
1
2
3
4
5
6
154
RD deassertion to data not valid6
155
WR assertion to data active
156
WR deassertion to data high impedance
tGZ
ns
2.1
ns
The number of wait states for Page mode access is specified in the DCR.
The refresh period is specified in the DCR.
The asynchronous delays specified in the expressions are valid for DSP56362.
All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 3 × TC for
read-after-read or write-after-write sequences).
BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page
access.
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-25
External Memory Expansion Port (Port A)
RAS
136
131
135
CAS
137
139
138
140
141
A0–A17
Row
Add
142
Column
Address
Column
Address
151
Last Column
Address
144
143
145
147
WR
146
148
RD
155
156
150
149
D0–D23
Data Out
Data Out
Data Out
AA0473
Figure 3-14 DRAM Page Mode Write Accesses
DSP56362 Technical Data, Rev. 4
3-26
Freescale Semiconductor
External Memory Expansion Port (Port A)
RAS
136
131
135
CAS
137
139
140
A0–A17
Row
Add
Column
Address
138
141
142
Last Column
Address
Column
Address
143
WR
132
133
152
153
RD
134
154
D0–D23
Data In
Data In
Data In
AA0474
Figure 3-15 DRAM Page Mode Read Accesses
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-27
External Memory Expansion Port (Port A)
DRAM Type
(tRAC ns)
Note: This figure should be use for primary selection. For exact
and detailed timings see the following tables.
100
80
70
60
Chip Frequency
(MHz)
50
40
66
80
120
100
4 Wait States
11 Wait States
8 Wait States
15 Wait States
AA0475
Figure 3-16 DRAM Out-of-Page Wait States Selection Guide
Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2
20 MHz4
No.
Characteristics3
Symbol
30 MHz4
Expression
Unit
Min
Max
Min
Max
157
Random read or write cycle time
tRC
5 × TC
250.0
—
166.7
—
ns
158
RAS assertion to data valid (read)
tRAC
2.75 × TC − 7.5
—
130.0
—
84.2
ns
159
CAS assertion to data valid (read)
tCAC
1.25 × TC − 7.5
—
55.0
—
34.2
ns
160
Column address valid to data valid (read)
tAA
1.5 × TC − 7.5
—
67.5
—
42.5
ns
161
CAS deassertion to data not valid (read hold
time)
tOFF
0.0
—
0.0
—
ns
162
RAS deassertion to RAS assertion
tRP
1.75 × TC − 4.0
83.5
—
54.3
—
ns
163
RAS assertion pulse width
tRAS
3.25 × TC − 4.0
158.5
—
104.3
—
ns
164
CAS assertion to RAS deassertion
tRSH
1.75 × TC − 4.0
83.5
—
54.3
—
ns
DSP56362 Technical Data, Rev. 4
3-28
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued)
20 MHz4
No.
Characteristics
3
Symbol
30 MHz4
Expression
Unit
Min
Max
Min
Max
165
RAS assertion to CAS deassertion
tCSH
2.75 × TC − 4.0
133.5
—
87.7
—
ns
166
CAS assertion pulse width
tCAS
1.25 × TC − 4.0
58.5
—
37.7
—
ns
167
RAS assertion to CAS assertion
tRCD
1.5 × TC ± 2
73.0
77.0
48.0
52.0
ns
168
RAS assertion to column address valid
tRAD
1.25 × TC ± 2
60.5
64.5
39.7
43.7
ns
169
CAS deassertion to RAS assertion
tCRP
2.25 × TC − 4.0
108.5
—
71.0
—
ns
170
CAS deassertion pulse width
tCP
1.75 × TC − 4.0
83.5
—
54.3
—
ns
171
Row address valid to RAS assertion
tASR
1.75 × TC − 4.0
83.5
—
54.3
—
ns
172
RAS assertion to row address not valid
tRAH
1.25 × TC − 4.0
58.5
—
37.7
—
ns
173
Column address valid to CAS assertion
tASC
0.25 × TC − 4.0
8.5
—
4.3
—
ns
174
CAS assertion to column address not valid
tCAH
1.75 × TC − 4.0
83.5
—
54.3
—
ns
175
RAS assertion to column address not valid
tAR
3.25 × TC − 4.0
158.5
—
104.3
—
ns
176
Column address valid to RAS deassertion
tRAL
2 × TC − 4.0
96.0
—
62.7
—
ns
177
WR deassertion to CAS assertion
tRCS
1.5 × TC − 3.8
71.2
—
46.2
—
ns
178
CAS deassertion to WR assertion
tRCH
0.75 × TC − 3.7
33.8
—
21.3
—
ns
179
RAS deassertion to WR assertion
tRRH
0.25 × TC − 3.7
8.8
—
4.6
—
ns
180
CAS assertion to WR deassertion
tWCH
1.5 × TC − 4.2
70.8
—
45.8
—
ns
181
RAS assertion to WR deassertion
tWCR
3 × TC − 4.2
145.8
—
95.8
—
ns
182
WR assertion pulse width
tWP
4.5 × TC − 4.5
220.5
—
145.5
—
ns
183
WR assertion to RAS deassertion
tRWL
4.75 × TC − 4.3
233.2
—
154.0
—
ns
184
WR assertion to CAS deassertion
tCWL
4.25 × TC − 4.3
208.2
—
137.4
—
ns
185
Data valid to CAS assertion (write)
tDS
2.25 × TC − 4.0
108.5
—
71.0
—
ns
186
CAS assertion to data not valid (write)
tDH
1.75 × TC − 4.0
83.5
—
54.3
—
ns
187
RAS assertion to data not valid (write)
tDHR
3.25 × TC − 4.0
158.5
—
104.3
—
ns
188
WR assertion to CAS assertion
tWCS
3 × TC − 4.3
145.7
—
95.7
—
ns
189
CAS assertion to RAS assertion (refresh)
tCSR
0.5 × TC − 4.0
21.0
—
12.7
—
ns
190
RAS deassertion to CAS assertion (refresh)
tRPC
1.25 × TC − 4.0
58.5
—
37.7
—
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-29
External Memory Expansion Port (Port A)
Table 3-13 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued)
20 MHz4
No.
Characteristics
3
Symbol
30 MHz4
Expression
Unit
Min
Max
Min
Max
tROH
4.5 × TC − 4.0
221.0
—
146.0
—
ns
RD assertion to data valid
tGA
4 × TC − 7.5
—
192.5
—
125.8
ns
193
RD deassertion to data not valid3
tGZ
0.0
—
0.0
—
ns
194
WR assertion to data active
0.75 × TC − 0.3
37.2
—
24.7
—
ns
195
WR deassertion to data high impedance
0.25 × TC
—
12.5
—
8.3
ns
191
RD assertion to RAS deassertion
192
1
The number of wait states for out of page access is specified in the DCR.
The refresh period is specified in the DCR.
3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t
OFF and not tGZ.
4 Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states. See Figure 3-16.
2
Table 3-14 DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2
No.
Characteristics3
Symbol
Expression4
80 MHz
Unit
Min
Max
112.5
—
ns
52.9
ns
157
Random read or write cycle time
tRC
9 × TC
158
RAS assertion to data valid (read)
tRAC
4.75 × TC − 6.5
159
CAS assertion to data valid (read)
tCAC
2.25 × TC − 6.5
—
21.6
ns
160
Column address valid to data valid (read)
tAA
3 × TC − 6.5
—
31.0
ns
161
CAS deassertion to data not valid (read hold time)
tOFF
0.0
—
ns
162
RAS deassertion to RAS assertion
tRP
3.25 × TC − 4.0
36.6
—
ns
163
RAS assertion pulse width
tRAS
5.75 × TC − 4.0
67.9
—
ns
164
CAS assertion to RAS deassertion
tRSH
3.25 × TC − 4.0
36.6
—
ns
165
RAS assertion to CAS deassertion
tCSH
4.75 × TC − 4.0
55.4
—
ns
166
CAS assertion pulse width
tCAS
2.25 × TC − 4.0
24.1
—
ns
167
RAS assertion to CAS assertion
tRCD
2.5 × TC ± 2
29.3
33.3
ns
168
RAS assertion to column address valid
tRAD
1.75 × TC ± 2
19.9
23.9
ns
169
CAS deassertion to RAS assertion
tCRP
4.25 × TC − 4.0
49.1
—
ns
170
CAS deassertion pulse width
tCP
2.75 × TC − 4.0
30.4
—
ns
171
Row address valid to RAS assertion
tASR
3.25 × TC − 4.0
36.6
—
ns
DSP56362 Technical Data, Rev. 4
3-30
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-14 DRAM Out-of-Page and Refresh Timings, Eight Wait States1, 2 (continued)
Characteristics3
No.
Symbol
Expression4
80 MHz
Unit
Min
Max
172
RAS assertion to row address not valid
tRAH
1.75 × TC − 4.0
17.9
—
ns
173
Column address valid to CAS assertion
tASC
0.75 × TC − 4.0
5.4
—
ns
174
CAS assertion to column address not valid
tCAH
3.25 × TC − 4.0
36.6
—
ns
175
RAS assertion to column address not valid
tAR
5.75 × TC − 4.0
67.9
—
ns
176
Column address valid to RAS deassertion
tRAL
4 × TC − 4.0
46.0
—
ns
177
WR deassertion to CAS assertion
tRCS
2 × TC − 3.8
21.2
—
ns
178
CAS deassertion to WR5 assertion
tRCH
1.25 × TC − 3.7
11.9
—
ns
179
RAS deassertion to WR5 assertion
tRRH
0.25 × TC − 3.0
0.1
—
ns
180
CAS assertion to WR deassertion
tWCH
3 × TC − 4.2
33.3
—
ns
181
RAS assertion to WR deassertion
tWCR
5.5 × TC − 4.2
64.6
—
ns
182
WR assertion pulse width
tWP
8.5 × TC − 4.5
101.8
—
ns
183
WR assertion to RAS deassertion
tRWL
8.75 × TC − 4.3
105.1
—
ns
184
WR assertion to CAS deassertion
tCWL
7.75 × TC − 4.3
92.6
—
ns
185
Data valid to CAS assertion (write)
tDS
4.75 × TC − 4.0
55.4
—
ns
186
CAS assertion to data not valid (write)
tDH
3.25 × TC − 4.0
36.6
—
ns
187
RAS assertion to data not valid (write)
tDHR
5.75 × TC − 4.0
67.9
—
ns
188
WR assertion to CAS assertion
tWCS
5.5 × TC − 4.3
64.5
—
ns
189
CAS assertion to RAS assertion (refresh)
tCSR
1.5 × TC − 4.0
14.8
—
ns
190
RAS deassertion to CAS assertion (refresh)
tRPC
1.75 × TC − 4.0
17.9
—
ns
191
RD assertion to RAS deassertion
tROH
8.5 × TC − 4.0
102.3
—
ns
192
RD assertion to data valid
tGA
7.5 × TC − 6.5
—
87.3
ns
193
RD deassertion to data not valid3
tGZ
0.0
0.0
—
ns
194
WR assertion to data active
0.75 × TC − 0.3
9.1
—
ns
195
WR deassertion to data high impedance
0.25 × TC
—
3.1
ns
1
The number of wait states for out-of-page access is specified in the DCR.
The refresh period is specified in the DCR.
3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t
OFF and not tGZ.
4 The asynchronous delays specified in the expressions are valid for DSP56362.
5 Either t
RCH or tRRH must be satisfied for read cycles.
2
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-31
External Memory Expansion Port (Port A)
Table 3-15 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2
100 MHz
No.
Characteristics3
Symbol
Expression4
Unit
Min
Max
157
Random read or write cycle time
tRC
12 × TC
120.0
—
ns
158
RAS assertion to data valid (read)
tRAC
6.25 × TC − 7.0
—
55.5
ns
159
CAS assertion to data valid (read)
tCAC
3.75 × TC − 7.0
—
30.5
ns
160
Column address valid to data valid (read)
tAA
4.5 × TC − 7.0
—
38.0
ns
161
CAS deassertion to data not valid (read hold time)
tOFF
0.0
—
ns
162
RAS deassertion to RAS assertion
tRP
4.25 × TC − 4.0
38.5
—
ns
163
RAS assertion pulse width
tRAS
7.75 × TC − 4.0
73.5
—
ns
164
CAS assertion to RAS deassertion
tRSH
5.25 × TC − 4.0
48.5
—
ns
165
RAS assertion to CAS deassertion
tCSH
6.25 × TC − 4.0
58.5
—
ns
166
CAS assertion pulse width
tCAS
3.75 × TC − 4.0
33.5
—
ns
167
RAS assertion to CAS assertion
tRCD
2.5 × TC ± 4.0
21.0
29.0
ns
168
RAS assertion to column address valid
tRAD
1.75 × TC ± 4.0
13.5
21.5
ns
169
CAS deassertion to RAS assertion
tCRP
5.75 × TC − 4.0
53.5
—
ns
170
CAS deassertion pulse width
tCP
4.25 × TC − 4.0
38.5
—
ns
171
Row address valid to RAS assertion
tASR
4.25 × TC − 4.0
38.5
—
ns
172
RAS assertion to row address not valid
tRAH
1.75 × TC − 4.0
13.5
—
ns
173
Column address valid to CAS assertion
tASC
0.75 × TC − 4.0
3.5
—
ns
174
CAS assertion to column address not valid
tCAH
5.25 × TC − 4.0
48.5
—
ns
175
RAS assertion to column address not valid
tAR
7.75 × TC − 4.0
73.5
—
ns
176
Column address valid to RAS deassertion
tRAL
6 × TC − 4.0
56.0
—
ns
177
WR deassertion to CAS assertion
tRCS
3.0 × TC − 4.0
26.0
—
ns
178
CAS deassertion to WR5 assertion
tRCH
1.75 × TC − 4.0
13.5
—
ns
179
RAS deassertion to WR5 assertion
tRRH
0.25 × TC − 3.0
—
—
ns
0.25 × TC − 2.0
0.5
—
180
CAS assertion to WR deassertion
tWCH
5 × TC − 4.2
45.8
—
ns
181
RAS assertion to WR deassertion
tWCR
7.5 × TC − 4.2
70.8
—
ns
DSP56362 Technical Data, Rev. 4
3-32
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-15 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 (continued)
100 MHz
Characteristics3
No.
Symbol
Expression4
Unit
Min
Max
182
WR assertion pulse width
tWP
11.5 × TC − 4.5
110.5
—
ns
183
WR assertion to RAS deassertion
tRWL
11.75 × TC − 4.3
113.2
—
ns
184
WR assertion to CAS deassertion
tCWL
10.25 × TC − 4.3
103.2
—
ns
185
Data valid to CAS assertion (write)
tDS
5.75 × TC − 4.0
53.5
—
ns
186
CAS assertion to data not valid (write)
tDH
5.25 × TC − 4.0
48.5
—
ns
187
RAS assertion to data not valid (write)
tDHR
7.75 × TC − 4.0
73.5
—
ns
188
WR assertion to CAS assertion
tWCS
6.5 × TC − 4.3
60.7
—
ns
189
CAS assertion to RAS assertion (refresh)
tCSR
1.5 × TC − 4.0
11.0
—
ns
190
RAS deassertion to CAS assertion (refresh)
tRPC
2.75 × TC − 4.0
23.5
—
ns
191
RD assertion to RAS deassertion
tROH
11.5 × TC − 4.0
111.0
—
ns
192
RD assertion to data valid
tGA
10 × TC − 7.0
93.0
ns
193
RD deassertion to data not valid3
tGZ
0.0
—
ns
194
WR assertion to data active
0.75 × TC − 0.3
7.2
—
ns
195
WR deassertion to data high impedance
0.25 × TC
—
2.5
ns
1
The number of wait states for out-of-page access is specified in the DCR.
The refresh period is specified in the DCR.
3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t
OFF and not tGZ.
4 The asynchronous delays specified in the expressions are valid for DSP56362.
5 Either t
RCH or tRRH must be satisfied for read cycles.
2
Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2
100 MHz
No.
Characteristics3
Symbol
120 MHz
Expression
Unit
Min
Max
Min
Max
157
Random read or write cycle time
tRC
16 × TC
160.0
—
133.3
—
ns
158
RAS assertion to data valid (read)
tRAC
8.25 × TC − 5.7
—
76.8
—
63.0
ns
159
CAS assertion to data valid (read)
tCAC
4.75 × TC − 5.7
—
41.8
—
33.9
ns
160
Column address valid to data valid (read)
tAA
5.5 × TC − 5.7
—
49.3
40.1
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-33
External Memory Expansion Port (Port A)
Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2 (continued)
100 MHz
Characteristics3
Symbol
161
CAS deassertion to data not valid (read hold
time)
tOFF
162
RAS deassertion to RAS assertion
163
No.
120 MHz
Expression
Unit
Min
Max
Min
Max
0.0
0.0
—
0.0
—
ns
tRP
6.25 × TC − 4.0
58.5
—
48.1
—
ns
RAS assertion pulse width
tRAS
9.75 × TC − 4.0
93.5
—
77.2
—
ns
164
CAS assertion to RAS deassertion
tRSH
6.25 × TC − 4.0
58.5
—
48.1
—
ns
165
RAS assertion to CAS deassertion
tCSH
8.25 × TC − 4.0
78.5
—
64.7
—
ns
166
CAS assertion pulse width
tCAS
4.75 × TC − 4.0
43.5
—
35.6
—
ns
167
RAS assertion to CAS assertion
tRCD
3.5 × TC ± 2
33.0
37.0
27.2
31.2
ns
168
RAS assertion to column address valid
tRAD
2.75 × TC ± 2
25.5
29.5
20.9
24.9
ns
169
CAS deassertion to RAS assertion
tCRP
7.75 × TC − 4.0
73.5
—
60.6
—
ns
170
CAS deassertion pulse width
tCP
6.25 × TC − 4.0
58.5
—
48.1
—
ns
171
Row address valid to RAS assertion
tASR
6.25 × TC − 4.0
58.5
—
48.1
—
ns
172
RAS assertion to row address not valid
tRAH
2.75 × TC − 4.0
23.5
—
18.9
—
ns
173
Column address valid to CAS assertion
tASC
0.75 × TC − 4.0
3.5
—
2.2
—
ns
174
CAS assertion to column address not valid
tCAH
6.25 × TC − 4.0
58.5
—
48.1
—
ns
175
RAS assertion to column address not valid
tAR
9.75 × TC − 4.0
93.5
—
77.2
—
ns
176
Column address valid to RAS deassertion
tRAL
7 × TC − 4.0
66.0
—
54.3
—
ns
177
WR deassertion to CAS assertion
tRCS
5 × TC − 3.8
46.2
—
37.9
—
ns
178
CAS deassertion to WR4 assertion
tRCH
1.75 × TC − 3.7
13.8
—
10.9
—
ns
179
RAS deassertion to WR4 assertion
tRRH
0.25 × TC − 2.0
0.5
—
0.1
—
ns
180
CAS assertion to WR deassertion
tWCH
6 × TC − 4.2
55.8
—
45.8
—
ns
181
RAS assertion to WR deassertion
tWCR
9.5 × TC − 4.2
90.8
—
75.0
—
ns
182
WR assertion pulse width
tWP
15.5 × TC − 4.5
150.5
—
124.7
—
ns
183
WR assertion to RAS deassertion
tRWL
15.75 × TC − 4.3
153.2
—
126.9
—
ns
184
WR assertion to CAS deassertion
tCWL
14.25 × TC − 4.3
138.2
—
114.4
—
ns
185
Data valid to CAS assertion (write)
tDS
8.75 × TC − 4.0
83.5
—
68.9
—
ns
DSP56362 Technical Data, Rev. 4
3-34
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-16 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States 100 and 120MHz1, 2 (continued)
100 MHz
No.
Characteristics3
Symbol
120 MHz
Expression
Unit
Min
Max
Min
Max
186
CAS assertion to data not valid (write)
tDH
6.25 × TC − 4.0
58.5
—
48.1
—
ns
187
RAS assertion to data not valid (write)
tDHR
9.75 × TC − 4.0
93.5
—
77.2
—
ns
188
WR assertion to CAS assertion
tWCS
9.5 × TC − 4.3
90.7
—
74.9
—
ns
189
CAS assertion to RAS assertion (refresh)
tCSR
1.5 × TC − 4.0
11.0
—
8.5
—
ns
190
RAS deassertion to CAS assertion (refresh)
tRPC
4.75 × TC − 4.0
43.5
—
35.6
—
ns
191
RD assertion to RAS deassertion
tROH
15.5 × TC − 4.0
151.0
—
125.2
—
ns
192
RD assertion to data valid
tGA
14 × TC − 5.7
—
134.3
—
111.0
ns
193
RD deassertion to data not valid3
tGZ
0.0
—
0.0
—
ns
194
WR assertion to data active
0.75 × TC − 0.3
7.2
—
5.9
—
ns
195
WR deassertion to data high impedance
0.25 × TC
—
2.5
—
2.1
ns
1
The number of wait states for out-of-page access is specified in the DCR.
The refresh period is specified in the DCR.
3 RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is t
OFF and not tGZ.
4 Either t
or
t
must
be
satisfied
for
read
cycles.
RCH
RRH
2
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-35
External Memory Expansion Port (Port A)
157
163
162
162
165
RAS
167
164
169
168
170
166
CAS
171
173
174
175
A0–A17
Row Address
Column Address
172
176
177
179
191
WR
168
160
159
RD
193
158
192
D0–D23
161
Data
In
AA0476
Figure 3-17 DRAM Out-of-Page Read Access
DSP56362 Technical Data, Rev. 4
3-36
Freescale Semiconductor
External Memory Expansion Port (Port A)
157
162
163
162
165
RAS
167
164
169
168
166
170
CAS
171
173
172
174
176
A0–A17
Row Address
Column Address
181
175
188
180
182
WR
184
183
RD
187
186
185
195
194
D0–D23
Data Out
AA0477
Figure 3-18 DRAM Out-of-Page Write Access
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-37
External Memory Expansion Port (Port A)
157
162
163
162
RAS
190
170
165
CAS
189
177
WR
AA0478
Figure 3-19 DRAM Refresh Access
3.10.3
Synchronous Timings (SRAM)
Table 3-17 External Bus Synchronous Timings (SRAM Access)1
No.
Characteristics
Expression2, 3
100 MHz
Unit
Min
Max
0.25 × TC + 4.0
—
6.5
ns
0.25 × TC
2.5
—
ns
198
CLKOUT high to address, and AA valid4
199
CLKOUT high to address, and AA invalid4
200
TA valid to CLKOUT high (setup time)
4.0
—
ns
201
CLKOUT high to TA invalid (hold time)
0.0
—
ns
202
CLKOUT high to data out active
0.25 × TC
2.5
—
ns
203
CLKOUT high to data out valid
0.25 × TC + 4.0
3.3
6.5
ns
204
CLKOUT high to data out invalid
0.25 × TC
2.5
—
ns
205
CLKOUT high to data out high impedance
0.25 × TC
—
2.5
ns
206
Data in valid to CLKOUT high (setup)
4.0
—
ns
207
CLKOUT high to data in invalid (hold)
0.0
—
ns
208
CLKOUT high to RD assertion
8.2
11.5
ns
0.75 × TC + 4.0
DSP56362 Technical Data, Rev. 4
3-38
Freescale Semiconductor
External Memory Expansion Port (Port A)
Table 3-17 External Bus Synchronous Timings (SRAM Access)1 (continued)
No.
Characteristics
209
CLKOUT high to RD deassertion
210
CLKOUT high to WR assertion5
Expression2, 3
0.5 × TC + 4.3
100 MHz
Unit
Min
Max
0.0
4.0
ns
6.3
9.3
ns
1.3
4.3
0.0
3.8
[WS = 1 or
WS ≥ 4]
All frequencies:
[2 ≤ WS ≤ 3]
211
CLKOUT high to WR deassertion
ns
1
External bus synchronous timings should be used only for reference to the clock and not for relative timings.
WS is the number of wait states specified in the BCR.
3 The asynchronous delays specified in the expressions are valid for DSP56362.
4 T198 and T199 are valid for Address Trace mode if the ATE bit in the OMR is set. Use the status of BR (See T212) to
determine whether the access referenced by A0–A23 is internal or external, when this mode is enabled
5 If WS > 1, WR assertion refers to the next rising edge of CLKOUT.
2
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-39
External Memory Expansion Port (Port A)
CLKOUT
199
198
A0–A17
AA0–AA3
201
200
TA
211
WR
210
205
203
D0–D23
204
Data Out
202
208
209
RD
207
206
D0–D23
Data In
AA0479
Figure 3-20 Synchronous Bus Timings SRAM 1 WS (BCR Controlled)
DSP56362 Technical Data, Rev. 4
3-40
Freescale Semiconductor
External Memory Expansion Port (Port A)
CLKOUT
198
199
A0–A17
AA0–AA3
201
201
200
200
TA
211
WR
210
205
203
204
Data Out
D0–D23
202
208
209
RD
207
206
Data In
D0–D23
AA0480
Figure 3-21 Synchronous Bus Timings SRAM 2 WS (TA Controlled)
3.10.4
Arbitration Timings
Table 3-18 Arbitration Bus Timings1
100 MHz
No.
Characteristics
Expression
Unit
Min
Max
212
CLKOUT high to BR assertion/deassertion2
1.0
4.0
ns
213
BG asserted/deasserted to CLKOUT high (setup)
4.0
—
ns
214
CLKOUT high to BG deasserted/asserted (hold)
0.0
—
ns
215
BB deassertion to CLKOUT high (input setup)
4.0
—
ns
216
CLKOUT high to BB assertion (input hold)
0.0
—
ns
217
CLKOUT high to BB assertion (output)
1.0
4.0
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-41
External Memory Expansion Port (Port A)
Table 3-18 Arbitration Bus Timings1 (continued)
100 MHz
No.
1
2
Characteristics
Expression
Unit
Min
Max
218
CLKOUT high to BB deassertion (output)
1.0
4.0
ns
219
BB high to BB high impedance (output)
—
4.5
ns
220
CLKOUT high to address and controls active
0.25 × TC
2.5
—
ns
221
CLKOUT high to address and controls high impedance
0.25 × TC
—
2.5
ns
222
CLKOUT high to AA active
0.25 × TC
2.5
—
ns
223
CLKOUT high to AA deassertion
0.25 × TC + 4.0
3.2
6.5
ns
224
CLKOUT high to AA high impedance
0.75 × TC
—
7.5
ns
The asynchronous delays specified in the expressions are valid for DSP56362.
T212 is valid for Address Trace mode when the ATE bit in the OMR is set. BR is deasserted for internal accesses and
asserted for external accesses.
CLKOUT
212
BR
214
213
BG
216
215
217
BB
220
A0–A17
RD, WR
222
AA0–AA3
AA0481
Figure 3-22 Bus Acquisition Timings
DSP56362 Technical Data, Rev. 4
3-42
Freescale Semiconductor
External Memory Expansion Port (Port A)
CLKOUT
212
BR
214
213
BG
219
218
BB
221
A0–A17
RD, WR
224
223
AA0–AA3
AA0482
Figure 3-23 Bus Release Timings Case 1 (BRT Bit in OMR Cleared)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-43
External Memory Expansion Port (Port A)
CLKOUT
212
BR
214
213
BG
219
218
BB
221
A0–A17
RD, WR
224
223
AA0–AA3
AA0483
Figure 3-24 Bus Release Timings Case 2 (BRT Bit in OMR Set)
Table 3-19 Asynchronous Bus Arbitration timing
100 MHz
No.
Characteristics
Expression
250
BB assertion window from BG input negation.
251
Delay from BB assertion to BG assertion
Unit
Min
Max
2 .5* Tc + 5
—
20
ns
2 * Tc + 5
20
—
ns
Notes:
1. Bit 13 in the OMR register must be set to enter Asynchronous Arbitration mode
2. At 100 MHz it is recommended to use Asynchronous Arbitration mode.
3. If Asynchronous Arbitration mode is active, none of the timings in Table 3-19 is required.
4. In order to guarantee timings 250, and 251, it is recommended to assert BG inputs to different 56300 devices (on the
same bus) in a non overlap manner as shown in Figure 3-25.
DSP56362 Technical Data, Rev. 4
3-44
Freescale Semiconductor
External Memory Expansion Port (Port A)
BG1
BB
250
BG2
251
Figure 3-25 Asynchronous Bus Arbitration Timing
BG1
BG2
250+251
Figure 3-26 Asynchronous Bus Arbitration Timing
Background explanation for Asynchronous Bus Arbitration:
The asynchronous bus arbitration is enabled by internal synchronization circuits on BG, and BB inputs.
These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a
result of this delay, a 56300 part may assume mastership and assert BB, for some time after BG is negated.
This is the reason for timing 250.
Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is
exposed to other 56300 components which are potential masters on the same bus. If BG input is asserted
before that time, a situation of BG asserted, and BB negated, may cause another 56300 component to
assume mastership at the same time. Therefore some non-overlap period between one BG input active to
another BG input active, is required. Timing 251 ensures that such a situation is avoided.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-45
Parallel Host Interface (HDI08) Timing
3.11
Parallel Host Interface (HDI08) Timing
Table 3-20 Host Interface (HDI08) Timing1, 2
Characteristics3
No.
317
Read data strobe assertion width4
Expression
100 MHz
Unit
Min
Max
TC + 9.9
19.9
—
ns
—
9.9
—
ns
2.5 × TC + 6.6
31.6
—
ns
—
13.2
—
ns
2.5 × TC + 6.6
31.6
—
ns
16.5
—
HACK read assertion width
318
Read data strobe deassertion width4
HACK read deassertion width
319
Read data strobe deassertion width4 after “Last Data Register”
reads5, 6, or between two consecutive CVR, ICR, or ISR reads7
HACK deassertion width after “Last Data Register” reads5, 6
320
Write data strobe assertion width8HACK write assertion width
321
Write data strobe deassertion width8
HACK write deassertion width
after ICR, CVR and “Last Data Register” writes5
after IVR writes, or
after TXH:TXM writes (with HBE=0), or
after TXL:TXM writes (with HBE=1)
322
HAS assertion width
—
9.9
—
ns
323
HAS deassertion to data strobe assertion9
—
0.0
—
ns
324
Host data input setup time before write data strobe deassertion8
—
9.9
—
ns
—
3.3
—
ns
—
3.3
—
ns
—
—
24.2
ns
Host data input setup time before HACK write deassertion
325
Host data input hold time after write data strobe deassertion8
Host data input hold time after HACK write deassertion
326
Read data strobe assertion to output data active from high
impedance4
HACK read assertion to output data active from high impedance
327
Read data strobe assertion to output data valid4
HACK read assertion to output data valid
328
Read data strobe deassertion to output data high impedance4
HACK read deassertion to output data high impedance
—
—
9.9
ns
329
Output data hold time after read data strobe deassertion4
—
3.3
—
ns
Output data hold time after HACK read deassertion
330
HCS assertion to read data strobe deassertion4
TC +9.9
19.9
—
ns
331
HCS assertion to write data strobe deassertion8
—
9.9
—
ns
332
HCS assertion to output data valid
—
—
19.1
ns
DSP56362 Technical Data, Rev. 4
3-46
Freescale Semiconductor
Parallel Host Interface (HDI08) Timing
Table 3-20 Host Interface (HDI08) Timing1, 2 (continued)
No.
Characteristics
3
Expression
0.0
—
ns
334
Address (AD7–AD0) setup time before HAS deassertion
(HMUX=1)
—
4.7
—
ns
335
Address (AD7–AD0) hold time after HAS deassertion (HMUX=1)
—
3.3
—
ns
336
A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W setup time before
data strobe assertion9
—
0
—
• Write
4.7
—
337
A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W hold time after
data strobe deassertion9
—
3.3
—
ns
338
Delay from read data strobe deassertion to host request
assertion for “Last Data Register” read4, 5, 10
TC
10
—
ns
339
Delay from write data strobe deassertion to host request
assertion for “Last Data Register” write5, 8, 10
2 × TC
20
—
ns
340
Delay from data strobe assertion to host request deassertion for
“Last Data Register” read or write (HROD = 0)5, 9, 10
—
—
19.1
ns
341
Delay from data strobe assertion to host request deassertion for
“Last Data Register” read or write (HROD = 1, open drain Host
Request)5, 9, 10, 11
—
—
300.0
ns
343
Delay from DMA HACK deassertion to HOREQ assertion
5
write5
ns
2 × TC + 19.1
39.1
—
1.5 × TC + 19.1
34.1
—
0.0
—
—
20.2
Delay from DMA HACK assertion to HOREQ deassertion
—
• HROD = 05
344
Delay from DMA HACK assertion to HOREQ deassertion for
“Last Data Register” read or write
• HROD = 1, open drain Host Request5, 11
5
6
7
ns
• Read
• For other cases
4
Unit
—
• For “Last Data Register”
3
Max
HCS hold time after data strobe deassertion9
• For “Last Data Register” read
2
Min
333
342
1
100 MHz
ns
—
ns
—
300.0
See Host Port Usage Considerations in the DSP56362 User Design Manual.
In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode.
The “last data register” is the register at address $7, which is the last location to be read or written in data transfers. This is
RXL/TXL in the little endian mode (HBE = 0), or RXH/TXH in the big endian mode (HBE = 1).
This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers
without first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal.
This timing is applicable only if two consecutive reads from one of these registers are executed.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-47
Parallel Host Interface (HDI08) Timing
8
The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.
The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the single
data strobe mode.
10
The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode.
11
In this calculation, the host request signal is pulled up by a 4.7 kΩ resistor in the open-drain mode.
9
317
318
HACK
328
327
329
326
HD7–HD0
HOREQ
AA1105
Figure 3-27 Host Interrupt Vector Register (IVR) Read Timing Diagram
HA0–HA2
336
337
333
330
HCS
317
HRD, HDS
318
328
332
319
327
329
326
HD0–HD7
340
338
341
HOREQ,
HRRQ,
HTRQ
AA0484
Figure 3-28 Read Timing Diagram, Non-Multiplexed Bus
DSP56362 Technical Data, Rev. 4
3-48
Freescale Semiconductor
Parallel Host Interface (HDI08) Timing
HA0–HA2
337
336
331
333
HCS
320
HWR, HDS
321
324
325
HD0–HD7
340
339
341
HOREQ, HRRQ, HTRQ
AA0485
Figure 3-29 Write Timing Diagram, Non-Multiplexed Bus
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-49
Parallel Host Interface (HDI08) Timing
HA8–HA10
336
337
322
HAS
323
317
HRD, HDS
334
318
335
319
327
328
329
HAD0–HAD7
Address
Data
326
340
338
341
HOREQ, HRRQ, HTRQ
AA0486
Figure 3-30 Read Timing Diagram, Multiplexed Bus
DSP56362 Technical Data, Rev. 4
3-50
Freescale Semiconductor
Parallel Host Interface (HDI08) Timing
HA8–HA10
336
322
HAS
323
320
HWR, HDS
334
324
321
335
HAD0–HAD7
325
Data
Address
340
339
341
HOREQ, HRRQ, HTRQ
AA0487
Figure 3-31 Write Timing Diagram, Multiplexed Bus
HOREQ
(Output)
342
343
344
320
HACK
(Input)
321
TXH/M/L
Write
324
325
H0–H7
(Input)
Data
Valid
Figure 3-32 Host DMA Write Timing Diagram
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-51
Serial Host Interface SPI Protocol Timing
HOREQ
(Output)
343
342
342
318
317
HACK
(Input)
RXH
Read
327
H0-H7
(Output)
328
326
329
Data
Valid
Figure 3-33 Host DMA Read Timing Diagram
3.12
Serial Host Interface SPI Protocol Timing
Table 3-21 Serial Host Interface SPI Protocol Timing
100MHz
No.
140
141
142
Characteristics
Mode
Tolerable spike width on clock or data in
Minimum serial clock cycle = tSPICC(min)
Serial clock high period
—
Master
Master
Slave
143
Serial clock low period
Master
Slave
Filter Mode
Expression
Unit
Min
Max
—
0
Narrow
—
50
Wide
—
100
Bypassed
—
Bypassed
6×TC+46
106
—
Narrow
6×TC+152
212
—
Wide
6×TC+223
283
—
Bypassed
0.5×tSPICC –10
43
—
Narrow
0.5×tSPICC –10
96
—
Wide
0.5×tSPICC –10
131
—
Bypassed
2.5×TC+12
37
—
Narrow
2.5×TC+102
127
—
Wide
2.5×TC+189
214
—
Bypassed
0.5×tSPICC –10
43
—
Narrow
0.5×tSPICC –10
96
—
Wide
0.5×tSPICC –10
131
—
Bypassed
2.5×TC+12
37
—
Narrow
2.5×TC+102
127
—
Wide
2.5×TC+189
214
—
ns
ns
ns
ns
DSP56362 Technical Data, Rev. 4
3-52
Freescale Semiconductor
Serial Host Interface SPI Protocol Timing
Table 3-21 Serial Host Interface SPI Protocol Timing (continued)
100MHz
No.
144
146
Characteristics
Mode
Serial clock rise/fall time
SS assertion to first SCK edge CPHA = 0
CPHA = 1
147
148
149
SCK last sampling edge to data input not
valid
Unit
Min
Max
—
—
—
10
Slave
—
—
—
2000
Slave
Bypassed
3.5×TC+15
50
—
Narrow
0
0
—
Wide
0
0
—
Bypassed
10
10
—
Narrow
0
0
—
Wide
0
0
—
Bypassed
12
12
—
Narrow
102
102
—
Wide
189
189
—
Bypassed
0
0
—
Narrow
MAX{(20-TC), 0}
10
—
Wide
MAX{(40-TC), 0}
30
—
Bypassed
2.5×TC+10
35
—
Narrow
2.5×TC+30
55
—
Wide
2.5×TC+50
75
—
slave
Data input valid to SCK edge (data input
set-up time)
Expression
Master
Slave
Last SCK edge to SS not asserted
Filter Mode
Master/
Slave
Master/
Slave
ns
ns
ns
ns
ns
150
SS assertion to data out active
Slave
—
2
2
—
ns
151
SS deassertion to data high impedance
Slave
—
9
—
9
ns
152
SCK edge to data out valid (data out delay
time)
Master/
Slave
Bypassed
2×TC+33
—
53
ns
Narrow
2×TC+123
—
143
Wide
2×TC+210
—
230
Bypassed
TC+5
15
—
Narrow
TC+55
65
—
Wide
TC+106
116
—
153
SCK edge to data out not valid
(data out hold time)
Master/
Slave
ns
154
SS assertion to data out valid (CPHA = 0)
Slave
—
TC+33
—
43
ns
157
First SCK sampling edge to HREQ output
deassertion
Slave
Bypassed
2.5×TC+30
—
55
ns
Narrow
2.5×TC+120
—
145
Wide
2.5×TC+217
—
242
Bypassed
2.5×TC+30
55
—
Narrow
2.5×TC+80
105
—
Wide
2.5×TC+136
161
—
158
Last SCK sampling edge to HREQ output
not deasserted (CPHA = 1)
Slave
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-53
Serial Host Interface SPI Protocol Timing
Table 3-21 Serial Host Interface SPI Protocol Timing (continued)
100MHz
No.
Characteristics
Mode
Filter Mode
Expression
Unit
Min
Max
159
SS deassertion to HREQ output not
deasserted (CPHA = 0)
Slave
—
2.5×TC+30
55
—
ns
160
SS deassertion pulse width (CPHA = 0)
Slave
—
TC+6
16
—
ns
161
HREQ in assertion to first SCK edge
Master
Bypassed
0.5 × tSPICC +
2.5×TC+43
121
—
ns
Narrow
0.5 ×tSPICC +
2.5×TC+43
174
—
Wide
0.5 ×tSPICC +
2.5×TC+43
209
—
162
HREQ in deassertion to last SCK sampling
edge (HREQ in set-up time) (CPHA = 1)
Master
—
0
0
—
ns
163
First SCK edge to HREQ in not asserted
Master
—
0
0
—
ns
(HREQ in hold time)
Note: Periodically sampled, not 100% tested
SS
(Input)
143
141
142
144
144
SCK (CPOL=0
(Output)
141
142
144
143
SCK (CPOL = 1
(Output)
144
148
149
MISO
(Input)
MSB
Valid
LSB
Valid
153
152
MOSI
(Output)
149
148
MSB
LSB
161
163
HREQ
(Input)
AA0271
Figure 3-34 SPI Master Timing (CPHA = 0)
DSP56362 Technical Data, Rev. 4
3-54
Freescale Semiconductor
Serial Host Interface SPI Protocol Timing
SS
(Input)
143
141
142
144
144
SCK (CPOL = 0
(Output)
142
141
144
143
SCK (CPOL = 1
(Output)
144
148
148
149
MISO
(Input)
149
MSB
Valid
LSB
Valid
152
MOSI
(Output)
153
MSB
LSB
161
162
163
HREQ
(Input)
AA0272
Figure 3-35 SPI Slave Timing (CPHA = 0)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-55
Serial Host Interface SPI Protocol Timing
SS
(Input)
143
141
142
144
144
SCK (CPOL = 0
(Output)
142
141
144
143
SCK (CPOL = 1
(Output)
144
148
148
149
MISO
(Input)
149
MSB
Valid
LSB
Valid
152
MOSI
(Output)
153
MSB
LSB
161
162
163
HREQ
(Input)
AA0272
Figure 3-36 SPI Master Timing (CPHA = 1)
DSP56362 Technical Data, Rev. 4
3-56
Freescale Semiconductor
Serial Host Interface SPI Protocol Timing
SS
(Input)
143
141
142
144
147
144
160
SCK (CPOL = 0)
(Input)
146
141
142
143
SCK (CPOL = 1)
(Input)
154
144
144
152
153
150
MISO
(Output)
153
151
MSB
148
LSB
148
149
MOSI
(Input)
MSB
Valid
149
LSB
Valid
157
159
HREQ
(Output)
AA0273
Figure 3-37 SPI Slave Timing (CPHA = 0)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-57
Serial Host Interface SPI Protocol Timing
SS
(Input)
143
141
142
144
147
144
SCK (CPOL = 0)
(Input)
146
142
143
SCK (CPOL = 1)
(Input)
152
144
144
152
153
151
150
MISO
(Output)
MSB
LSB
148
148
149
MOSI
(Input)
MSB
Valid
149
LSB
Valid
157
158
HREQ
(Output)
AA0274
Figure 3-38 SPI Slave Timing (CPHA = 1)
DSP56362 Technical Data, Rev. 4
3-58
Freescale Semiconductor
Serial Host Interface (SHI) I2C Protocol Timing
3.13
Serial Host Interface (SHI) I2C Protocol Timing
Table 3-22 SHI I2C Protocol Timing
Standard I2C*
No.
Symbol/
Expression
Characteristics
Standard
Fast-Mode
Unit
Min
Max
Min
Max
Filters bypassed
—
0
—
0
Narrow filters enabled
—
50
—
50
Wide filters enabled
—
100
—
100
Tolerable spike width on SCL or SDA
—
ns
171
SCL clock frequency
FSCL
—
100
—
400
kHz
172
Bus free time
TBUF
4.7
—
1.3
—
µs
173
Start condition set-up time
TSU;STA
4.7
—
0.6
—
µs
174
Start condition hold time
THD;STA
4.0
—
0.6
—
µs
175
SCL low period
TLOW
4.7
—
1.3
—
µs
176
SCL high period
THIGH
4.0
—
1.3
—
µs
177
SCL and SDA rise time
TR
—
1000
20 + 0.1 × Cb
300
ns
178
SCL and SDA fall time
TF
—
300
20 + 0.1 × Cb
300
ns
179
Data set-up time
TSU;DAT
250
—
100
—
ns
180
Data hold time
THD;DAT
0.0
—
0.0
0.9
µs
181
Stop condition set-up time
TSU;STO
4.0
—
0.6
—
µs
182
Capacitive load for each line
Cb
—
400
—
400
pF
183
DSP clock frequency
FDSP
MHz
Filters bypassed
10.6
—
28.5
—
Narrow filters enabled
11.8
—
39.7
—
Wide filters enabled
13.1
—
61.0
—
0.0
—
0.0
—
184
HREQ in deassertion to last SCL edge
(HREQ in set-up time)
186
First SCL sampling edge to HREQ output
deassertion
Filters bypassed
Narrow filters enabled
Wide filters enabled
tSU;RQI
TNG;RQO
2 × TC + 30
2 × TC + 120
2 × TC + 208
ns
ns
—
50
—
50
—
140
—
140
—
228
—
228
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-59
Serial Host Interface (SHI) I2C Protocol Timing
Table 3-22 SHI I2C Protocol Timing (continued)
Standard I2C*
No.
Symbol/
Expression
Characteristics
187
Last SCL edge to HREQ output not
deasserted
188
Standard
Min
Max
Fast-Mode
Min
Unit
Max
TAS;RQO
ns
Filters bypassed
2 × TC + 30
50
—
50
—
Narrow filters enabled
2 × TC + 80
100
—
100
—
Wide filters enabled
2 × TC + 135
155
—
155
—
0.5 × TI2CCP
4327
—
927
—
—
4282
—
882
—
0.5 × TC - 21
4238
—
838
—
HREQ in assertion to first SCL edge
Filters bypassed
Narrow filters enabled
Wide filters enabled
ns
TAS;RQI
Note: RP (min) = 1.5 k¾
3.13.1
Programming the Serial Clock
The programmed serial clock cycle, T I2CCP, is specified by the value of the HDM[5:0] and HRS bits of
the HCKR (SHI clock control register).
The expression for T I2CCP is
T
2
I CCP
= [ T C × 2 × ( HDM [ 7 :0 ] + 1 ) × ( 7 × ( 1 – HRS ) + 1 ) ]
where:
HRS is the prescaler rate select bit.
When HRS is cleared, the fixed divide-by-eight prescaler is operational.
When HRS is set, the prescaler is bypassed.
HDM[7:0] are the divider modulus select bits.
A divide ratio from 1 to 64 (HDM[5:0] = 0 to $3F) may be selected.
In I2C mode, the user may select a value for the programmed serial clock cycle from
6 × T C ( if HDM [ 5 :0 ] = $02 and HRS = 1 )
to
4096 × T C ( if HDM [ 7 :0 ] = $FF and HRS = 0 )
The programmed serial clock cycle (TI2CCP ), SCL rise time (TR), and the filters selected should be chosen
in order to achieve the desired SCL frequency, as shown in Table 3-23
DSP56362 Technical Data, Rev. 4
3-60
Freescale Semiconductor
Serial Host Interface (SHI) I2C Protocol Timing
.
Table 3-23 SCL Serial Clock Cycle generated as Master
Filters bypassed
TI2CCP + 2.5 × TC + 45ns + TR
Narrow filters enabled
TI2CCP + 2.5 × TC + 135ns + TR
Wide filters enabled
TI2CCP + 2.5 × TC + 223ns + TR
EXAMPLE:
For DSP clock frequency of 100 MHz (i.e. TC = 10ns), operating in a standard-mode I2C environment
(FSCL = 100 KHz (i.e. TSCL = 10µs), TR = 1000ns), with filters bypassed
T
2
I CCP
= 10µs – 2.5 × 10ns – 45ns – 1000ns = 8930ns
Choosing HRS = 0 gives
HDM [ 7 :0 ] = 8930ns ⁄ ( 2 × 10ns × 8 ) – 1 = 55.8
Thus the HDM[7:0] value should be programmed to $38 (=56).
171
173
176
175
SCL
177
180
178
172
179
SDA
Stop Start
MSB
174
LSB
186
189
182
ACK
Stop
183
184
188
187
HREQ
AA0275
Figure 3-39 I2C Timing
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-61
Enhanced Serial Audio Interface Timing
3.14
Enhanced Serial Audio Interface Timing
Table 3-24 Enhanced Serial Audio Interface Timing
100 MHz
Characteristics1, 2, 3
No.
Symbol
430 Clock cycle5
tSSICC
431 Clock high period
Expression
Condition4
Unit
ns
Min
Max
4 x TC
40.0
—
i ck
RXC:3 xTC
30
—
x ck
TXC:MAX [3xTC;t454]
40
x ck
ns
—
• For internal clock
2 × TC − 10.0
10.0
—
• For external clock
1.5 × TC
15.0
—
432 Clock low period
ns
—
• For internal clock
2 × TC − 10.0
10.0
—
• For external clock
1.5 × TC
15.0
—
—
—
37.0
x ck
—
22.0
i ck a
—
37.0
x ck
—
22.0
i ck a
—
39.0
x ck
—
24.0
i ck a
433 RXC rising edge to FSR out (bl) high
—
434 RXC rising edge to FSR out (bl) low
—
435 RXC rising edge to FSR out (wr) high6
—
436 RXC rising edge to FSR out (wr) low6
—
437 RXC rising edge to FSR out (wl) high
—
438 RXC rising edge to FSR out (wl) low
—
439 Data in setup time before RXC (TXC in
synchronous mode) falling edge
—
440 Data in hold time after RXC falling edge
—
441 FSR input (bl, wr) high before RXC falling edge6
442 FSR input (wl) high before RXC falling edge
—
—
—
—
—
—
—
—
—
—
—
39.0
x ck
—
24.0
i ck a
—
36.0
x ck
—
21.0
i ck a
—
37.0
x ck
—
22.0
i ck a
0.0
—
x ck
19.0
—
i ck
5.0
—
x ck
3.0
—
i ck
23.0
—
x ck
1.0
—
i ck a
1.0
—
x ck
23.0
—
i ck a
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
DSP56362 Technical Data, Rev. 4
3-62
Freescale Semiconductor
Enhanced Serial Audio Interface Timing
Table 3-24 Enhanced Serial Audio Interface Timing (continued)
No.
100 MHz
Characteristics1, 2, 3
Symbol
443 FSR input hold time after RXC falling edge
444 Flags input setup before RXC falling edge
445 Flags input hold time after RXC falling edge
446 TXC rising edge to FST out (bl) high
—
—
—
—
447 TXC rising edge to FST out (bl) low
—
448 TXC rising edge to FST out (wr) high6
—
449 TXC rising edge to FST out (wr) low6
—
450 TXC rising edge to FST out (wl) high
—
451 TXC rising edge to FST out (wl) low
—
452 TXC rising edge to data out enable from high
impedance
—
453 TXC rising edge to transmitter drive enable
assertion
—
454 TXC rising edge to data out valid
—
455 TXC rising edge to data out high impedance7
—
456 TXC rising edge to transmitter drive enable
deassertion7
—
457 FST input (bl, wr) setup time before TXC falling
edge6
—
Expression
—
—
—
—
—
—
—
—
—
—
—
23 + 0.5 × TC 21.0
—
—
—
Condition4
Unit
ns
Min
Max
3.0
—
x ck
0.0
—
i ck a
0.0
—
x ck
19.0
—
i ck s
6.0
—
x ck
0.0
—
i ck s
—
29.0
x ck
—
15.0
i ck
—
31.0
x ck
—
17.0
i ck
—
31.0
x ck
—
17.0
i ck
—
33.0
x ck
—
19.0
i ck
—
30.0
x ck
—
16.0
i ck
—
31.0
x ck
—
17.0
i ck
—
31.0
x ck
—
17.0
i ck
—
34.0
x ck
—
20.0
i ck
—
28.0
x ck
—
21.0
i ck
—
31.0
x ck
—
16.0
i ck
—
34.0
x ck
—
20.0
i ck
2.0
—
x ck
21.0
—
i ck
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-63
Enhanced Serial Audio Interface Timing
Table 3-24 Enhanced Serial Audio Interface Timing (continued)
No.
2
3
4
5
6
7
Symbol
Expression
Min
Max
Condition4
Unit
458 FST input (wl) to data out enable from high
impedance
—
—
—
27.0
—
ns
459 FST input (wl) to transmitter drive enable
assertion
—
—
—
31.0
—
ns
460 FST input (wl) setup time before TXC falling
edge
—
—
2.0
—
x ck
ns
21.0
—
i ck
461 FST input hold time after TXC falling edge
—
462 Flag output valid after TXC rising edge
1
100 MHz
Characteristics1, 2, 3
—
—
—
4.0
—
x ck
0.0
—
i ck
—
32.0
x ck
—
18.0
i ck
ns
ns
463 HCKR/HCKT clock cycle
—
—
40.0
—
ns
464 HCKT input rising edge to TXC output
—
—
—
27.5
ns
465 HCKR input rising edge to RXC output
—
—
—
27.5
ns
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode (asynchronous implies that TXC and RXC are two different clocks)
i ck s = internal clock, synchronous mode (synchronous implies that TXC and RXC are the same clock)
bl = bit length
wl = word length
wr = word length relative
TXC(SCKT pin) = transmit clock
RXC(SCKR pin) = receive clock
FST(FST pin) = transmit frame sync
FSR(FSR pin) = receive frame sync
HCKT(HCKT pin) = transmit high frequency clock
HCKR(HCKR pin) = receive high frequency clock
For the internal clock, the clock cycle at the pin is defined by Icyc and the ESAI control registers.
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one
before last bit clock of the first word in frame.
Periodically sampled and not 100% tested.
DSP56362 Technical Data, Rev. 4
3-64
Freescale Semiconductor
Enhanced Serial Audio Interface Timing
430
TXC
(Input/Output)
431
432
446
447
FST (Bit)
Out
450
451
FST (Word)
Out
454
454
452
455
Data Out
459
Transmitter
Drive Enable
FST (Bit) In
Last Bit
First Bit
457
453
456
461
FST (Word) In
458
461
460
Flags Out
462
See Note
Note: In network mode, output flag transitions can occur at the start of each time slot within the
frame. In normal mode, the output flag state is asserted for the entire frame period.
AA0490
Figure 3-40 ESAI Transmitter Timing
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-65
Enhanced Serial Audio Interface Timing
430
431
RXC
(Input/Output)
432
433
434
FSR (Bit)
Out
437
FSR (Word)
Out
438
440
439
Data In
First Bit
FSR (Bit)
In
Last Bit
443
441
FSR (Word)
In
442
Flags In
444
443
445
AA0491
Figure 3-41 ESAI Receiver Timing
HCKT
SCKT(output)
463
464
Figure 3-42 ESAI HCKT Timing
DSP56362 Technical Data, Rev. 4
3-66
Freescale Semiconductor
Digital Audio Transmitter Timing
HCKR
463
SCKR (output)
465
Figure 3-43 ESAI HCKR Timing
3.15
Digital Audio Transmitter Timing
Table 3-25 Digital Audio Transmitter Timing
100 MHz
No.
Characteristic
Expression
ACI frequency1
1
Unit
Min
Max
—
—
50
MHz
2 × TC
20
—
ns
220
ACI period
221
ACI high duration
0.5 × TC
5
—
ns
222
ACI low duration
0.5 × TC
5
—
ns
223
ACI rising edge to ADO valid
1.5 × TC
—
15
ns
In order to assure proper operation of the DAX, the ACI frequency should be less than 1/2 of the DSP56362 internal
clock frequency. For example, if the DSP56362 is running at 100 MHz internally, the ACI frequency should be less than
50 MHz.
ACI
220
221
222
223
ADO
AA1280
Figure 3-44 Digital Audio Transmitter Timing
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-67
Timer Timing
3.16
Timer Timing
Table 3-26 Timer Timing1
100 MHz
No.
Expression
Unit
Min
Max
480
TIO Low
2 × TC + 2.0
22.0
—
ns
481
TIO High
2 × TC + 2.0
22.0
—
ns
482
Timer setup time from TIO (Input) assertion to CLKOUT rising edge
9.0
10.0
ns
483
Synchronous timer delay time from CLKOUT rising edge to the
external memory access address out valid caused by first interrupt
instruction execution
103.5
—
ns
484
CLKOUT rising edge to TIO (Output) assertion
485
1
Characteristics
10.25 × TC + 1.0
ns
• Minimum
0.5 × TC + 3.5
8.5
—
• Maximum
0.5 × TC + 19.8
—
24.8
CLKOUT rising edge to TIO (Output) deassertion
ns
• Minimum
0.5 × TC + 3.5
8.5
—
• Maximum
0.5 × TC + 19.0
—
24.8
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
TIO
480
481
AA0492
Figure 3-45 TIO Timer Event Input Restrictions
CLKOUT
TIO (Input)
482
Address
483
First Interrupt Instruction Execution
AA0493
Figure 3-46 Timer Interrupt Generation
DSP56362 Technical Data, Rev. 4
3-68
Freescale Semiconductor
GPIO Timing
CLKOUT
TIO (Output)
484
485
AA0494
Figure 3-47 External Pulse Generation
3.17
GPIO Timing
Table 3-27 GPIO Timing1
100 MHz
No.
1
Characteristics
Expression
Unit
Min
Max
490
CLKOUT edge to GPIO out valid (GPIO out delay time)
—
31.0
ns
491
CLKOUT edge to GPIO out not valid (GPIO out hold time)
3.0
—
ns
492
GPIO In valid to CLKOUT edge (GPIO in set-up time)
12.0
—
ns
493
CLKOUT edge to GPIO in not valid (GPIO in hold time)
0.0
—
ns
494
Fetch to CLKOUT edge before GPIO change
6.75 × TC
67.5
—
ns
495
GPIO out rise time
—
—
13
ns
496
GPIO out fall time
—
—
13
ns
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-69
JTAG Timing
CLKOUT
(Output)
490
491
GPIO
(Output)
492
493
GPIO
(Input)
Valid
A0–A17
494
Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO
and R0 contains the address of GPIO data register.
AA0495
GPIO
(Output)
495
496
Figure 3-48 GPIO Timing
3.18
JTAG Timing
Table 3-28 JTAG Timing1, 2
All Frequencies
No.
Characteristics
Unit
Min
Max
500
TCK frequency of operation (1/(TC × 3); maximum 22 MHz)
0.0
22.0
MHz
501
TCK cycle time in Crystal mode
45.0
—
ns
502
TCK clock pulse width measured at 1.5 V
20.0
—
ns
503
TCK rise and fall times
0.0
3.0
ns
504
Boundary scan input data setup time
5.0
—
ns
505
Boundary scan input data hold time
24.0
—
ns
506
TCK low to output data valid
0.0
40.0
ns
507
TCK low to output high impedance
0.0
40.0
ns
DSP56362 Technical Data, Rev. 4
3-70
Freescale Semiconductor
JTAG Timing
Table 3-28 JTAG Timing1, 2 (continued)
All Frequencies
No.
1
2
Characteristics
Unit
Min
Max
508
TMS, TDI data setup time
5.0
—
ns
509
TMS, TDI data hold time
25.0
—
ns
510
TCK low to TDO data valid
0.0
44.0
ns
511
TCK low to TDO high impedance
0.0
44.0
ns
512
TRST assert time
100.0
—
ns
513
TRST setup time to TCK low
40.0
—
ns
VCC = 3.3 V ± 0.16V; TJ = 0°C to +100°C, CL = 50 pF
All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.
501
TCK
(Input)
VIH
503
502
502
VM
VM
VIL
503
AA0496
Figure 3-49 Test Clock Input Timing Diagram
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-71
JTAG Timing
TCK
(Input)
VIH
VIL
504
Data
Inputs
505
Input Data Valid
506
Data
Outputs
Output Data Valid
507
Data
Outputs
506
Data
Outputs
Output Data Valid
AA0497
Figure 3-50 Boundary Scan (JTAG) Timing Diagram
TCK
(Input)
VIH
VIL
508
TDI
TMS
(Input)
509
Input Data Valid
510
TDO
(Output)
Output Data Valid
511
TDO
(Output)
510
TDO
(Output)
Output Data Valid
AA0498
Figure 3-51 Test Access Port Timing Diagram
DSP56362 Technical Data, Rev. 4
3-72
Freescale Semiconductor
OnCE Module TimIng
TCK
(Input)
513
TRST
(Input)
512
AA0499
Figure 3-52 TRST Timing Diagram
3.19
OnCE Module TimIng
Table 3-29 OnCE Module Timing1
100 MHz
No.
500
Characteristics
Expression
1/(TC × 3),
TCK frequency of operation
Unit
Min
Max
0.0
22.0
MHz
max 22.0 MHz
1
514
DE assertion time in order to enter Debug mode
1.5 × TC + 10.0
25.0
—
ns
515
Response time when DSP56362 is executing NOP
instructions from internal memory
5.5 × TC + 30.0
—
85.0
ns
516
Debug acknowledge assertion time
3 × TC + 10.0
40.0
—
ns
VCC = 3.3 V ± 0.16 V; TJ = 0°C to +100°C, CL = 50 pF
DE
514
515
516
AA0500
Figure 3-53 OnCE—Debug Request
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
3-73
OnCE Module TimIng
NOTES
DSP56362 Technical Data, Rev. 4
3-74
Freescale Semiconductor
4
4.1
Packaging
Pin-out and Package Information
This section provides information about the available package for this product, including diagrams of the
package pinouts and tables describing how the signals described in Section 2, “Signal/Connection
Descriptions” are allocated for the package. The DSP56362 is available in a 144-pin LQFP package.
4.2
LQFP Package Description
Top view of the LQFP package is shown in Figure 4-1 with its pin-outs. The LQFP package mechanical
drawing is shown in Figure 4-2.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
4-1
VCCA
A1
VCCA
A5
A4
A3
A2
GNDA
VCCA
A9
A8
A7
A6
GNDA
GNDQ
A11
A10
GNDA
VCCQH
A14
A13
A12
VCCQL
VCCD
109
73
D7
D8
D2
D1
D0
A17
A16
A15
GNDA
D6
D5
D4
D3
GNDD
LQFP Package Description
(Top View)
VCCD
GNDD
D9
D10
D11
D12
D13
D14
VCCD
GNDD
D15
D16
D17
D18
D19
CLKOUT
GNDC
VCCC
VCCQL
EXTAL
GNDQ
VCCQL
DSP56362
GNDQ
D20
VCCD
GNDD
D21
D22
D23
MODD
MODC
MODB
MODA
DE
TRST
Orientation Mark
37
CAS
AA2
AA3
VCCQH
GNDP1
GNDP
PCAP
VCCP
RESET
HAD0
HAD1
HAD2
HAD3
GNDH
VCCH
HAD4
HA9
HA8
HAS
HAD7
HAD6
HAD5
HCS
VCCS
GNDS
ADO
ACI
TIO0
HRW
HACK
HOREQ
HDS
SDO2
SDO3
VCCS
GNDS
SDO4
SDO5
FST
FSR
SCKT
SCKR
HCKT
HCKR
VCCQL
GNDQ
VCCQH
SDO0
SDO1
SS
HREQ
1
SCK
TDO
TDI
TCK
TMS
MOSI
MISO
A0
BG
AA0
AA1
RD
WR
GNDC
VCCC
BB
BR
TA
PINIT
nc
Note: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to Table
and Table 4-2 for detailed information about pin functions and signal names.
4-1
AA0301
Figure 4-1 DSP56362 Thin Quad Flat Pack (LQFP), Top View
DSP56362 Technical Data, Rev. 4
4-2
Freescale Semiconductor
LQFP Package Description
Table 4-1 DSP56362 LQFP Signal Identification by Pin Number
Signal Name1
Pin No.
Signal Name1
Pin No.
Signal Name1
Pin No.
1
SCK/SCL
26
GNDS
51
AA2/RAS2
2
SS/HA2
27
ADO or PD1
52
CAS
3
HREQ
28
ACI or PD0
53
DE
4
SDO0 or PC11
29
TIO0
54
GNDQ
5
SDO1 or PC10
30
HCS/HCS, HA10, or PB13
55
EXTAL
6
SDO2/SDI3 or PC9
31
HA2, HA9, or PB10
56
VCCQL
7
SDO3/SDI2 or PC8
32
HA1, HA8, or PB9
57
VCCC
8
VCCS
33
HA0, HAS/HAS, or PB8
58
GNDC
9
GNDS
34
H7, HAD7, or PB7
59
CLKOUT
10
SDO4/SDI1 or PC7
35
H6, HAD6, or PB6
60
NC (not connected)
11
SDO5/SDI0 or PC6
36
H5, HAD5, or PB5
61
PINIT/NMI
12
FST or PC4
37
H4, HAD4, or PB4
62
TA
13
FSR or PC1
38
VCCH
63
BR
14
SCKT or PC3
39
GNDH
64
BB
15
SCKR or PC0
40
H3, HAD3, or PB3
65
VCCC
16
HCKT or PC5
41
H2, HAD2, or PB2
66
GNDC
17
HCKR or PC2
42
H1, HAD1, or PB1
67
WR
18
VCCQL
43
H0, HAD0, or PB0
68
RD
19
GNDQ
44
RESET
69
AA1/RAS1
20
VCCQH
45
VCCP
70
AA0/RAS0
21
HDS/HDS, HWR/HWR, or
PB12
46
PCAP
71
BG
22
HRW, HRD/HRD, or PB11
47
GNDP
72
A0
23
HACK/HACK, HRRQ/HRRQ,
or PB15
48
GNDP1
73
A1
24
HOREQ/HOREQ,
HTRQ/HTRQ, or PB14
49
VCCQH
74
VCCA
25
VCCS
50
AA3/RAS3
75
GNDA
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
4-3
LQFP Package Description
Table 4-1 DSP56362 LQFP Signal Identification by Pin Number (continued)
Signal Name1
Pin No.
1
Signal Name1
Pin No.
Signal Name1
Pin No.
76
A2
99
A17
122
D16
77
A3
100
D0
123
D17
78
A4
101
D1
124
D18
79
A5
102
D2
125
D19
80
VCCA
103
VCCD
126
VCCQL
81
GNDA
104
GNDD
127
GNDQ
82
A6
105
D3
128
D20
83
A7
106
D4
129
VCCD
84
A8
107
D5
130
GNDD
85
A9
108
D6
131
D21
86
VCCA
109
D7
132
D22
87
GNDA
110
D8
133
D23
88
A10
111
VCCD
134
MODD/IRQD
89
A11
112
GNDD
135
MODC/IRQC
90
GNDQ
113
D9
136
MODB/IRQB
91
VCCQL
114
D10
137
MODA/IRQA
92
A12
115
D11
138
TRST
93
A13
116
D12
139
TDO
94
A14
117
D13
140
TDI
95
VCCQH
118
D14
141
TCK
96
GNDA
119
VCCD
142
TMS
97
A15
120
GNDD
143
MOSI/HA0
98
A16
121
D15
144
MISO/SDA
Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual
functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted, but act as interrupt
lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as
HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the function for a
specific configuration. For example, pin 34 is data line H7 in nonmultiplexed bus mode, data/address line HAD7 in multiplexed
bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin.
DSP56362 Technical Data, Rev. 4
4-4
Freescale Semiconductor
LQFP Package Description
Table 4-2 DSP56362 LQFP Signal Identification by Name
Signal Name
Pin No.
Signal Name
Pin No.
Signal Name
Pin No.
not connected
60
D13
117
GNDP1
48
A0
72
D14
118
GNDQ
19
A1
73
D15
121
GNDQ
54
A10
88
D16
122
GNDQ
90
A11
89
D17
123
GNDQ
127
A12
92
D18
124
GNDS
9
A13
93
D19
125
GNDS
26
A14
94
D2
102
H0
43
A15
97
D20
128
H1
42
A16
98
D21
131
H2
41
A17
99
D22
132
H3
40
A2
76
D23
133
H4
37
A3
77
D3
105
H5
36
A4
78
D4
106
H6
35
A5
79
D5
107
H7
34
A6
82
D6
108
HA0
33
A7
83
D7
109
HA0
143
A8
84
D8
110
HA1
32
A9
85
D9
113
HA10
30
AA0
70
DE
53
HA2
2
AA1
69
EXTAL
55
HA2
31
AA2
51
FSR
13
HA8
32
AA3
50
FST
12
HA9
31
ACI
28
GNDA
75
HACK/HACK
23
ADO
27
GNDA
81
HAD0
43
BB
64
GNDA
87
HAD1
42
BG
71
GNDA
96
HAD2
41
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
4-5
LQFP Package Description
Table 4-2 DSP56362 LQFP Signal Identification by Name (continued)
Signal Name
Pin No.
Signal Name
Pin No.
Signal Name
Pin No.
BR
63
GNDC
58
HAD3
40
CAS
52
GNDC
66
HAD4
37
CLKOUT
59
GNDD
104
HAD5
36
D0
100
GNDD
112
HAD6
35
D1
101
GNDD
120
HAD7
34
D10
114
GNDD
130
HAS/HAS
33
D11
115
GNDH
39
HCS/HCS
30
D12
116
GNDP
47
HDS/HDS
21
HOREQ/HOREQ
24
PB9
32
SDO3
7
HRD/HRD
22
PC0
15
SDO4
10
HREQ
3
PC1
13
SDO5
11
HRRQ/HRRQ
23
PC10
5
SS
2
HRW
22
PC11
4
TA
62
HCKR
17
PC2
17
TCK
141
HCKT
16
PC3
14
TDI
140
HTRQ/HTRQ
24
PC4
12
TDO
139
HWR/HWR
21
PC5
16
TIO0
29
IRQA
137
PC6
11
TMS
142
IRQB
136
PC7
10
TRST
138
IRQC
135
PC8
7
VCCA
74
IRQD
134
PC9
6
VCCA
80
MISO
144
PCAP
46
VCCA
86
MODA
137
PD0
28
VCCC
57
MODB
136
PD1
27
VCCC
65
MODC
135
PINIT
61
VCCD
103
MODD
134
RAS0
70
VCCD
111
MOSI
143
RAS1
69
VCCD
119
DSP56362 Technical Data, Rev. 4
4-6
Freescale Semiconductor
LQFP Package Description
Table 4-2 DSP56362 LQFP Signal Identification by Name (continued)
Signal Name
Pin No.
Signal Name
Pin No.
Signal Name
Pin No.
NMI
61
RAS2
52
VCCD
129
PB0
43
RAS3
51
VCCH
38
PB1
42
RD
68
VCCP
45
PB10
31
RESET
44
VCCQH
20
PB11
22
SCK
1
VCCQH
49
PB12
21
SCKR
15
VCCQH
95
PB13
30
SCKT
14
VCCQL
18
PB14
24
SCL
1
VCCQL
56
PB15
23
SDA
144
VCCQL
91
PB2
41
SDI0
11
VCCQL
126
PB3
40
SDI1
10
VCCS
8
PB4
37
SDI2
7
VCCS
25
PB5
36
SDI3
6
WR
67
PB6
35
SDO0
4
PB7
34
SDO1
5
PB8
33
SDO2
6
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
4-7
LQFP Package Mechanical Drawing
4.3
LQFP PACKAGE MECHANICAL DRAWING
Figure 4-2 DSP56362 144-pin LQFP Package
DSP56362 Technical Data, Rev. 4
4-8
Freescale Semiconductor
5
5.1
Design Considerations
Thermal Design Considerations
An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation:
T J = T A + ( P D × R θJA )
Where:
TA
= ambient temperature °C
RθJA = package junction-to-ambient thermal resistance °C/W
PD
= power dissipation in package W
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and
a case-to-ambient thermal resistance.
R θJA = R θJC + R θCA
Where:
RθJA = package junction-to-ambient thermal resistance °C/W
RθJC = package junction-to-case thermal resistance °C/W
RθCA = package case-to-ambient thermal resistance °C/W
RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to
change the case-to-ambient thermal resistance, RθCA. For example, the user can change the air flow around
the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or
otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the
device thermal performance may need the additional modeling capability of a system level thermal
simulation tool.
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which
the package is mounted. Again, if the estimations obtained from RθJA do not satisfactorily answer whether
the thermal performance is adequate, a system level model may be appropriate.
A complicating factor is the existence of three common ways for determining the junction-to-case thermal
resistance in plastic packages.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
5-1
Electrical Design Considerations
•
•
•
To minimize temperature variation across the surface, the thermal resistance is measured from the
junction to the outside surface of the package (case) closest to the chip mounting area when that
surface has a proper heat sink.
To define a value approximately equal to a junction-to-board thermal resistance, the thermal
resistance is measured from the junction to where the leads are attached to the case.
If the temperature of the package case (TT) is determined by a thermocouple, the thermal resistance
is computed using the value obtained by the equation
(TJ – TT)/PD.
As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the
first definition. From a practical standpoint, that value is also suitable for determining the junction
temperature from a case thermocouple reading in forced convection environments. In natural convection,
using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple
reading on the case of the package will estimate a junction temperature slightly hotter than actual
temperature. Hence, the new thermal metric, thermal characterization parameter or ΨJT, has been defined
to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature in natural convection
when using the surface temperature of the package. Remember that surface temperature readings of
packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and
to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge
thermocouple wire and bead to the top center of the package with thermally conductive epoxy.
5.2
Electrical Design Considerations
CAUTION
This device contains circuitry protecting against damage due to high static
voltage or electrical fields. However, normal precautions should be taken to
avoid exceeding maximum voltage ratings. Reliability of operation is
enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,
either GND or VCC). The suggested value for a pullup or pulldown resistor
is 10 k ohm.
Use the following list of recommendations to assure correct DSP operation:
• Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from
the board ground to each GND pin.
• Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of
the package to connect the VCC power source to GND.
• Ensure that capacitor leads and associated printed circuit traces that connect to the chip VCC and
GND pins are less than 1.2 cm (0.5 inch) per capacitor lead.
• Use at least a four-layer PCB with two inner layers for VCC and GND.
• Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.
This recommendation particularly applies to the address and data buses as well as the IRQA,
IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 15 cm
(6 inches) are recommended.
DSP56362 Technical Data, Rev. 4
5-2
Freescale Semiconductor
Power Consumption Considerations
•
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating
capacitance. This is especially critical in systems with higher capacitive loads that could create
higher transient currents in the VCC and GND circuits.
All inputs must be terminated (i.e., not allowed to float) using CMOS levels, except for the pins
with internal pull-up resistors (TRST, TMS, DE, TCK, and TDI).
Take special care to minimize noise levels on the VCCP, GNDP, and GNDP1 pins.
If multiple DSP56362 devices are on the same board, check for cross-talk or excessive spikes on
the supplies due to synchronous operation of the devices.
RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied
before deassertion of RESET.
At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip VCC
never exceeds 3.95 V.
•
•
•
•
•
5.3
Power Consumption Considerations
Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current
consumption are described in this section. Most of the current consumed by CMOS devices is alternating
current (ac), which is charging and discharging the capacitances of the pins and internal nodes.
Current consumption is described by the following formula:
I = C×V×f
where:
C
= node/pin capacitance
V
= voltage swing
f
= frequency of node/pin toggle
Example 1. Current Consumption
For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 100 MHz clock, toggling
at its maximum possible rate (50 MHz), the current consumption is
I = 50 × 10
– 12
6
× 3.3 × 50 × 10 = 8.25mA
The maximum internal current (ICCImax) value reflects the typical possible switching of the internal buses
on best-case operation conditions, which is not necessarily a real application case. The typical internal
current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions.
For applications that require very low current consumption, do the following:
• Set the EBD bit when not accessing external memory.
• Minimize external memory accesses and use internal memory accesses.
• Minimize the number of pins that are switching.
• Minimize the capacitive load on the pins.
• Connect the unused inputs to pull-up or pull-down resistors.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
5-3
PLL Performance Issues
•
•
Disable unused peripherals.
Disable unused pin activity (e.g., CLKOUT, XTAL).
One way to evaluate power consumption is to use a current per MIPS measurement methodology to
minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP).
A benchmark power consumption test algorithm is listed in Appendix A. Use the test algorithm, specific
test current measurements, and the following equation to derive the current per MIPS value.
1MIPS = 1MHz = ( I typF2 – I typF1 ) × ( F2 – F1 )
where :
ItypF2 = current at F2
ItypF1 = current at F1
F2
= high frequency (any specified operating frequency)
F1
= low frequency (any specified operating frequency lower than F2)
NOTE
F1 should be significantly less than F2. For example, F2 could be 66 MHz
and F1 could be 33 MHz. The degree of difference between F1 and F2
determines the amount of precision with which the current rating can be
determined for an application.
5.4
PLL Performance Issues
The following explanations should be considered as general observations on expected PLL behavior.
There is no testing that verifies these exact numbers. These observations were measured on a limited
number of parts and were not verified over the entire temperature and voltage ranges.
5.4.1
Phase Skew Performance
The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and
CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature, and voltage
ranges. As defined in Figure 3-1, for input frequencies greater than 15 MHz and the MF ≤ 4, this skew is
greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for
MF < 10 and input frequencies greater than 10 MHz, this skew is between −1.4 ns and +3.2 ns.
5.4.2
Phase Jitter Performance
The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL
and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load
on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater
than 15 MHz and MF ≤ 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However,
for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.
DSP56362 Technical Data, Rev. 4
5-4
Freescale Semiconductor
Host Port Considerations
5.4.3
Frequency Jitter Performance
The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF
(MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5%
and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%.
5.4.4
Input (EXTAL) Jitter Requirements
The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL
is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency
of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be
2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the
prescribed values.
5.5
Host Port Considerations
Careful synchronization is required when reading multi-bit registers that are written by another
asynchronous system. This synchronization is a common problem when two asynchronous systems are
connected, as they are in the host interface. The following paragraphs present considerations for proper
operation.
5.5.1
•
•
•
Host Programming Considerations
Unsynchronized Reading of Receive Byte Registers—When reading the receive byte registers,
receive register high (RXH), receive register middle (RXM), or receive register low (RXL), the
host interface programmer should use interrupts or poll the receive register data full (RXDF) flag
that indicates whether data is available. This ensures that the data in the receive byte registers will
be valid.
Overwriting Transmit Byte Registers—The host interface programmer should not write to the
transmit byte registers, transmit register high (TXH), transmit register middle (TXM), or transmit
register low (TXL), unless the transmit register data empty (TXDE) bit is set, indicating that the
transmit byte registers are empty. This ensures that the transmit byte registers will transfer valid
data to the host receive (HRX) register.
Synchronization of Status Bits from DSP to Host—HC, HOREQ, DMA, HF3, HF2, TRDY,
TXDE, and RXDF status bits are set or cleared from inside the DSP and read by the host processor
(refer to the user’s manual for descriptions of these status bits). The host can read these status bits
very quickly without regard to the clock rate used by the DSP, but the state of the bit could be
changing during the read operation. This is not generally a system problem, because the bit will be read
correctly in the next pass of any host polling routine.
However, if the host asserts HEN for more than timing number 31, with
a minimum cycle time of timing number 31 + 32, then these status bits are guaranteed to be
stable. Exercise care when reading status bits HF3 and HF2 as an encoded pair. If the DSP
changes HF3 and HF2 from 00 to 11, there is a small probability that the host could read the bits
during the transition and receive 01 or 10 instead of 11. If the combination of HF3 and HF2 has
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
5-5
Host Port Considerations
•
•
•
5.5.2
•
•
significance, the host could read the wrong combination. Therefore, read the bits twice and
check for consensus.
Overwriting the Host Vector—The host interface programmer should change the host vector
(HV) register only when the host command (HC) bit is clear. This ensures that the DSP interrupt
control logic will receive a stable vector.
Cancelling a Pending Host Command Exception—The host processor may elect to clear the HC
bit to cancel the host command exception request at any time before it is recognized by the DSP.
Because the host does not know exactly when the exception will be recognized (due to exception
processing synchronization and pipeline delays), the DSP may execute the host command
exception after the HC bit is cleared. For these reasons, the HV bits must not be changed at the
same time that the HC bit is cleared.
Variance in the Host Interface Timing—The host interface (HDI) may vary (e.g. due to the PLL
lock time at reset). Therefore, a host which attempts to load (bootstrap) the DSP should first make
sure that the part has completed its HI port programming (e.g., by setting the INIT bit in ICR then
polling it and waiting it to be cleared, then reading the ISR or by writing the TREQ/RREQ together
with the INIT and then polling INIT, ISR, and the HOREQ pin).
DSP Programming Considerations
Synchronization of Status Bits from Host to DSP—DMA, HF1, HF0, HCP, HTDE, and HRDF
status bits are set or cleared by the host processor side of the interface. These bits are individually
synchronized to the DSP clock. (Refer to the user’s manual for descriptions of these status bits.)
Reading HF0 and HF1 as an Encoded Pair—Care must be exercised when reading status bits
HF0 and HF1 as an encoded pair, (i.e., the four combinations 00, 01, 10, and 11 each have
significance). A very small probability exists that the DSP will read the status bits synchronized
during transition. Therefore, HF0 and HF1 should be read twice and checked for consensus.
DSP56362 Technical Data, Rev. 4
5-6
Freescale Semiconductor
6
Ordering Information
Consult a Freescale Semiconductor, Inc. sales office or authorized distributor to determine product
availability and to place an order.
For information on ordering this and all DSP Audio products, review the SG1004 selector guide at
http://www.freescale.com.
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
6-1
NOTES
DSP56362 Technical Data, Rev. 4
6-2
Freescale Semiconductor
Appendix A Power Consumption Benchmark
The following benchmark program permits evaluation of DSP power usage in a test situation. It enables
the PLL, disables the external clock, and uses repeated multiply-accumulate instructions with a set of
synthetic DSP application data to emulate intensive sustained DSP operation.
;********************************************************************;*********
***********************************************************
;* ;* CHECKS
Typical Power Consumption
;********************************************************************
page
200,55,0,0,0
nolist
I_VEC EQU
START EQU
INT_PROG
INT_XDAT
INT_YDAT
$000000
$8000
EQU $100
EQU $0
EQU $0
;
;
;
;
;
Interrupt vectors for program debug only
MAIN (external) program starting address
INTERNAL program memory starting address
INTERNAL X-data memory starting address
INTERNAL Y-data memory starting address
INCLUDE "ioequ.asm"
INCLUDE "intequ.asm"
list
org
P:START
;
movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)
; Default: 1 w.s (SRAM)
;
movep
#$0d0000,x:M_PCTL
; XTAL disable
; PLL enable
; CLKOUT disable
;
; Load the program
;
move
#INT_PROG,r0
move
#PROG_START,r1
do
#(PROG_END-PROG_START),PLOAD_LOOP
move
p:(r1)+,x0
move
x0,p:(r0)+
nop
PLOAD_LOOP
;
; Load the X-data
;
move
#INT_XDAT,r0
move
#XDAT_START,r1
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
A-1
do
move
move
XLOAD_LOOP
;
; Load the Y-data
;
move
move
do
move
move
YLOAD_LOOP
;
jmp
PROG_START
move
move
move
move
;
clr
clr
move
move
move
move
bset
;
sbr
dor
mac
mac
add
mac
mac
move
_end
bra
nop
nop
nop
nop
PROG_END
nop
nop
XDAT_START
;
org
dc
dc
dc
dc
#(XDAT_END-XDAT_START),XLOAD_LOOP
p:(r1)+,x0
x0,x:(r0)+
#INT_YDAT,r0
#YDAT_START,r1
#(YDAT_END-YDAT_START),YLOAD_LOOP
p:(r1)+,x0
x0,y:(r0)+
INT_PROG
#$0,r0
#$0,r4
#$3f,m0
#$3f,m4
a
b
#$0,x0
#$0,x1
#$0,y0
#$0,y1
#4,omr
; ebd
#60,_end
x0,y0,a x:(r0)+,x1
x1,y1,a x:(r0)+,x0
a,b
x0,y0,a x:(r0)+,x1
x1,y1,a
b1,x:$ff
y:(r4)+,y1
y:(r4)+,y0
y:(r4)+,y0
sbr
x:0
$262EB9
$86F2FE
$E56A5F
$616CAC
DSP56362 Technical Data, Rev. 4
A-2
Freescale Semiconductor
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
$8FFD75
$9210A
$A06D7B
$CEA798
$8DFBF1
$A063D6
$6C6657
$C2A544
$A3662D
$A4E762
$84F0F3
$E6F1B0
$B3829
$8BF7AE
$63A94F
$EF78DC
$242DE5
$A3E0BA
$EBAB6B
$8726C8
$CA361
$2F6E86
$A57347
$4BE774
$8F349D
$A1ED12
$4BFCE3
$EA26E0
$CD7D99
$4BA85E
$27A43F
$A8B10C
$D3A55
$25EC6A
$2A255B
$A5F1F8
$2426D1
$AE6536
$CBBC37
$6235A4
$37F0D
$63BEC2
$A5E4D3
$8CE810
$3FF09
$60E50E
$CFFB2F
$40753C
$8262C5
$CA641A
$EB3B4B
$2DA928
$AB6641
$28A7E6
$4E2127
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
A-3
dc
dc
dc
dc
dc
$482FD4
$7257D
$E53C72
$1A8C3
$E27540
XDAT_END
YDAT_START
;
org
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
y:0
$5B6DA
$C3F70B
$6A39E8
$81E801
$C666A6
$46F8E7
$AAEC94
$24233D
$802732
$2E3C83
$A43E00
$C2B639
$85A47E
$ABFDDF
$F3A2C
$2D7CF5
$E16A8A
$ECB8FB
$4BED18
$43F371
$83A556
$E1E9D7
$ACA2C4
$8135AD
$2CE0E2
$8F2C73
$432730
$A87FA9
$4A292E
$A63CCF
$6BA65C
$E06D65
$1AA3A
$A1B6EB
$48AC48
$EF7AE1
$6E3006
$62F6C7
$6064F4
$87E41D
$CB2692
$2C3863
$C6BC60
$43A519
$6139DE
$ADF7BF
DSP56362 Technical Data, Rev. 4
A-4
Freescale Semiconductor
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
$4B3E8C
$6079D5
$E0F5EA
$8230DB
$A3B778
$2BFE51
$E0A6B6
$68FFB7
$28F324
$8F2E8D
$667842
$83E053
$A1FD90
$6B2689
$85B68E
$622EAF
$6162BC
$E4A245
YDAT_END
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
A-5
NOTES
DSP56362 Technical Data, Rev. 4
A-6
Freescale Semiconductor
Appendix B IBIS Model
[IBIS ver]
2.1
[File name]
56362.ibs
[File Rev]
0.0
[Date]
29/6/2000
[Component]
56362
[Manufacturer] Freescale
[Package]
|variable
typ
R_pkg
45m
L_pkg
2.5nH
C_pkg
1.3pF
min
22m
1.1nH
1.2pF
max
75m
4.3nH
1.4pF
[Pin]signal_name model_name
1 sck
ip5b_io
2 ss_
ip5b_io
3 hreq_
ip5b_io
4 sdo0
ip5b_io
5 sdo1
ip5b_io
6 sdoi23
ip5b_io
7 sdoi32
ip5b_io
8 svcc
power
9 sgnd
gnd
10 sdoi41
ip5b_io
11 sdoi50
ip5b_io
12 fst
ip5b_io
13 fsr
ip5b_io
14 sckt
ip5b_io
15 sckr
ip5b_io
16 hsckt
ip5b_io
17 hsckr
ip5b_io
18 qvccl
power
19 gnd
gnd
20 qvcch
power
21 hp12
ip5b_io
22 hp11
ip5b_io
23 hp15
ip5b_io
24 hp14
ip5b_io
25 svcc
power
26 sgnd
gnd
27 ado
ip5b_io
28 aci
ip5b_io
29 tio
ip5b_io
30 hp13
ip5b_io
31 hp10
ip5b_io
32 hp9
ip5b_io
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-1
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
hp8
hp7
hp6
hp5
hp4
svcc
sgnd
hp3
hp2
hp1
hp0
ires_
pvcc
pcap
pgnd
pgnd1
qvcch
aa3
aa2
cas_
de_
qgnd
cxtldis_
qvccl
cvcc
cgnd
clkout
nmi_
ta_
br_
bb_
cvcc
cgnd
wr_
rd_
aa1
aa0
bg_
eab0
eab1
avcc
agnd
eab2
eab3
eab4
eab5
avcc
agnd
eab6
eab7
eab8
eab9
avcc
agnd
eab10
ip5b_io
ip5b_io
ip5b_io
ip5b_io
ip5b_io
power
gnd
ip5b_io
ip5b_io
ip5b_io
ip5b_io
ip5b_i
power
power
gnd
gnd
power
icbc_o
icbc_o
icbc_o
ipbw_io
gnd
iexlh_i
power
power
gnd
icba_o
ipbw_i
icbc_o
icbc_o
icbc_o
power
gnd
icbc_o
icbc_o
icbc_o
icbc_o
icbc_o
icba_o
icba_o
power
gnd
icba_o
icba_o
icba_o
icba_o
power
gnd
icba_o
icba_o
icba_o
icba_o
power
gnd
icba_o
DSP56362 Technical Data, Rev. 4
B-2
Freescale Semiconductor
89 eab11
90 qgnd
91 qvcc
92 eab12
93 eab13
94 eab14
95 qvcch
96 agnd
97 eab15
98 eab16
99 eab17
100 edb0
101 edb1
102 edb2
103 dvcc
104 dgnd
105 edb3
106 edb4
107 edb5
108 edb6
109 edb7
110 edb8
111 dvcc
112 dgnd
113 edb9
114 edb10
115 edb11
116 edb12
117 edb13
118 edb14
119 dvcc
120 dgnd
121 edb15
122 edb16
123 edb17
124 edb18
125 edb19
126 qvccl
127 qgnd
128 edb20
129 dvcc
130 dgnd
131 edb21
132 edb22
133 edb23
134 irqd_
135 irqc_
136 irqb_
137 irqa_
138 trst_
139 tdo
140 tdi
141 tck
142 tms
143 mosi
icba_o
gnd
power
icba_o
icba_o
icba_o
power
gnd
icba_o
icba_o
icba_o
icba_io
icba_io
icba_io
power
gnd
icba_io
icba_io
icba_io
icba_io
icba_io
icba_io
power
gnd
icba_io
icba_io
icba_io
icba_io
icba_io
icba_io
power
gnd
icba_io
icba_io
icba_io
icba_io
icba_io
power
gnd
icba_io
power
gnd
icba_io
icba_io
icba_io
ip5b_i
ip5b_i
ip5b_i
ip5b_i
ip5b_i
ip5b_o
ip5b_i
ip5b_i
ip5b_i
ip5b_io
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-3
144 sda
ip5b_io
|
[Model]
ip5b_i
Model_type
Input
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[GND_clamp]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.21e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.12e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.61e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.43e+01
-4.52e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.67e+00
-9.00e-01
-9.69e-03
-1.18e+00
-7.81e-03
-7.00e-01
-2.83e-04
-5.70e-03
-8.42e-04
-5.00e-01
-1.35e-06
-4.53e-05
-1.00e-05
-3.00e-01
-1.31e-09
-3.74e-07
-8.58e-09
-1.00e-01
-2.92e-11
-3.00e-09
-3.64e-11
0.000e+00
-2.44e-11
-5.14e-10
-2.79e-11
|
|
[Model]
ip5b_io
Model_type
I/O
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.21e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.12e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.61e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
DSP56362 Technical Data, Rev. 4
B-4
Freescale Semiconductor
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-7.83e+01
-4.43e+01
-1.02e+01
-5.10e-02
-3.65e-02
-2.65e-02
-1.62e-02
-5.49e-03
5.377e-03
1.516e-02
2.370e-02
3.098e-02
3.700e-02
4.175e-02
4.531e-02
4.779e-02
4.935e-02
5.013e-02
5.046e-02
5.063e-02
5.075e-02
5.085e-02
5.090e-02
4.771e-02
4.525e-02
4.657e-02
4.904e-02
5.221e-02
5.524e-02
5.634e-02
5.751e-02
5.634e-02
5.648e-02
5.664e-02
5.679e-02
5.693e-02
5.707e-02
5.722e-02
5.741e-02
5.766e-02
5.801e-02
5.824e-02
I(typ)
2.922e-04
2.881e-04
2.853e-04
2.836e-04
2.825e-04
2.819e-04
2.815e-04
2.813e-04
2.812e-04
-6.88e+01
-4.52e+01
-2.15e+01
-1.18e+00
-2.25e-02
-1.38e-02
-8.35e-03
-2.80e-03
2.744e-03
7.871e-03
1.252e-02
1.667e-02
2.026e-02
2.324e-02
2.553e-02
2.709e-02
2.803e-02
2.851e-02
2.876e-02
2.892e-02
2.904e-02
2.912e-02
2.876e-02
2.994e-02
3.321e-02
3.570e-02
3.801e-02
4.029e-02
4.253e-02
4.463e-02
4.645e-02
4.786e-02
4.881e-02
4.912e-02
4.795e-02
4.679e-02
4.688e-02
4.700e-02
4.712e-02
4.723e-02
4.733e-02
4.737e-02
I(min)
2.177e-04
2.175e-04
2.173e-04
2.172e-04
2.171e-04
2.170e-04
2.169e-04
2.167e-04
2.520e-04
-7.58e+01
-4.17e+01
-7.69e+00
-5.63e-02
-4.28e-02
-3.12e-02
-1.91e-02
-6.52e-03
6.427e-03
1.823e-02
2.869e-02
3.776e-02
4.544e-02
5.171e-02
5.660e-02
6.023e-02
6.271e-02
6.419e-02
6.494e-02
6.525e-02
6.540e-02
6.549e-02
6.555e-02
6.561e-02
6.182e-02
6.049e-02
6.178e-02
6.450e-02
6.659e-02
6.867e-02
6.970e-02
6.938e-02
6.960e-02
6.983e-02
7.005e-02
7.026e-02
7.049e-02
7.074e-02
7.105e-02
7.147e-02
7.205e-02
7.242e-02
I(max)
4.123e-04
4.021e-04
3.946e-04
3.893e-04
3.857e-04
3.834e-04
3.820e-04
3.812e-04
3.808e-04
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-5
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[GND_clamp]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
2.811e-04
2.810e-04
2.809e-04
2.808e-04
2.997e-04
1.750e-02
1.048e-02
3.487e-03
-3.40e-03
-9.69e-03
-1.52e-02
-2.02e-02
-2.46e-02
-2.84e-02
-3.14e-02
-3.37e-02
-3.55e-02
-3.68e-02
-3.78e-02
-3.85e-02
-3.91e-02
-3.96e-02
-4.01e-02
-4.04e-02
-4.08e-02
-4.11e-02
-4.14e-02
-4.17e-02
-4.32e-02
-4.08e-01
-2.73e+01
-6.13e+01
-9.54e+01
-1.38e+02
-1.89e+02
-2.40e+02
-2.91e+02
-3.42e+02
-3.93e+02
-4.44e+02
-4.95e+02
-5.21e+02
I(typ)
-5.21e+02
-4.69e+02
-4.18e+02
-3.67e+02
-3.16e+02
-2.65e+02
-2.14e+02
-1.63e+02
-1.13e+02
3.078e-02
2.684e-02
2.277e-02
1.864e-02
1.447e-02
1.031e-02
6.181e-03
2.084e-03
-2.03e-03
-5.71e-03
-8.99e-03
-1.19e-02
-1.43e-02
-1.62e-02
-1.77e-02
-1.88e-02
-1.95e-02
-2.00e-02
-2.04e-02
-2.07e-02
-2.10e-02
-2.12e-02
-2.15e-02
-2.17e-02
-2.18e-02
-2.20e-02
-2.78e-02
-1.20e+00
-2.15e+01
-4.52e+01
-6.89e+01
-9.25e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.59e+02
-2.94e+02
-3.30e+02
-3.65e+02
-4.01e+02
-4.18e+02
I(min)
-3.65e+02
-3.30e+02
-2.94e+02
-2.59e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.25e+01
3.806e-04
3.804e-04
3.802e-04
3.801e-04
3.799e-04
3.797e-04
3.776e-04
4.568e-03
-4.22e-03
-1.24e-02
-1.95e-02
-2.61e-02
-3.21e-02
-3.73e-02
-4.18e-02
-4.55e-02
-4.85e-02
-5.09e-02
-5.27e-02
-5.41e-02
-5.51e-02
-5.60e-02
-5.67e-02
-5.74e-02
-5.79e-02
-5.84e-02
-5.89e-02
-5.94e-02
-5.98e-02
-6.10e-02
-6.84e-02
-7.73e+00
-4.18e+01
-7.59e+01
-1.11e+02
-1.61e+02
-2.12e+02
-2.63e+02
-3.14e+02
-3.65e+02
-4.16e+02
-4.41e+02
I(max)
-5.18e+02
-4.67e+02
-4.16e+02
-3.65e+02
-3.14e+02
-2.63e+02
-2.12e+02
-1.61e+02
-1.10e+02
DSP56362 Technical Data, Rev. 4
B-6
Freescale Semiconductor
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.43e+01
-4.52e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.67e+00
-9.00e-01
-9.69e-03
-1.18e+00
-7.81e-03
-7.00e-01
-2.83e-04
-5.70e-03
-8.42e-04
-5.00e-01
-1.35e-06
-4.53e-05
-1.00e-05
-3.00e-01
-1.31e-09
-3.74e-07
-8.58e-09
-1.00e-01
-2.92e-11
-3.00e-09
-3.64e-11
0.000e+00
-2.44e-11
-5.14e-10
-2.79e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
I(min)
I(max)
|
|
dV/dt_r
1.030/0.465
0.605/0.676
1.320/0.366
|
|
dV/dt_f
1.290/0.671
0.829/0.122
1.520/0.431
|
|
[Model]
ip5b_o
Model_type
3-state
Polarity
Non-Inverting
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.21e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.12e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.61e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.43e+01
-4.52e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.69e+00
-9.00e-01
-5.10e-02
-1.18e+00
-5.63e-02
-7.00e-01
-3.65e-02
-2.25e-02
-4.28e-02
-5.00e-01
-2.65e-02
-1.38e-02
-3.12e-02
-3.00e-01
-1.62e-02
-8.35e-03
-1.91e-02
-1.00e-01
-5.49e-03
-2.80e-03
-6.52e-03
1.000e-01
5.377e-03
2.744e-03
6.427e-03
3.000e-01
1.516e-02
7.871e-03
1.823e-02
5.000e-01
2.370e-02
1.252e-02
2.869e-02
7.000e-01
3.098e-02
1.667e-02
3.776e-02
9.000e-01
3.700e-02
2.026e-02
4.544e-02
1.100e+00
4.175e-02
2.324e-02
5.171e-02
1.300e+00
4.531e-02
2.553e-02
5.660e-02
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-7
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
4.779e-02
4.935e-02
5.013e-02
5.046e-02
5.063e-02
5.075e-02
5.085e-02
5.090e-02
4.771e-02
4.525e-02
4.657e-02
4.904e-02
5.221e-02
5.524e-02
5.634e-02
5.751e-02
5.634e-02
5.648e-02
5.664e-02
5.679e-02
5.693e-02
5.707e-02
5.722e-02
5.741e-02
5.766e-02
5.801e-02
5.824e-02
I(typ)
2.922e-04
2.881e-04
2.853e-04
2.836e-04
2.825e-04
2.819e-04
2.815e-04
2.813e-04
2.812e-04
2.811e-04
2.810e-04
2.809e-04
2.808e-04
2.997e-04
1.750e-02
1.048e-02
3.487e-03
-3.40e-03
-9.69e-03
-1.52e-02
-2.02e-02
-2.46e-02
-2.84e-02
-3.14e-02
2.709e-02
2.803e-02
2.851e-02
2.876e-02
2.892e-02
2.904e-02
2.912e-02
2.876e-02
2.994e-02
3.321e-02
3.570e-02
3.801e-02
4.029e-02
4.253e-02
4.463e-02
4.645e-02
4.786e-02
4.881e-02
4.912e-02
4.795e-02
4.679e-02
4.688e-02
4.700e-02
4.712e-02
4.723e-02
4.733e-02
4.737e-02
I(min)
2.177e-04
2.175e-04
2.173e-04
2.172e-04
2.171e-04
2.170e-04
2.169e-04
2.167e-04
2.520e-04
3.078e-02
2.684e-02
2.277e-02
1.864e-02
1.447e-02
1.031e-02
6.181e-03
2.084e-03
-2.03e-03
-5.71e-03
-8.99e-03
-1.19e-02
-1.43e-02
-1.62e-02
-1.77e-02
6.023e-02
6.271e-02
6.419e-02
6.494e-02
6.525e-02
6.540e-02
6.549e-02
6.555e-02
6.561e-02
6.182e-02
6.049e-02
6.178e-02
6.450e-02
6.659e-02
6.867e-02
6.970e-02
6.938e-02
6.960e-02
6.983e-02
7.005e-02
7.026e-02
7.049e-02
7.074e-02
7.105e-02
7.147e-02
7.205e-02
7.242e-02
I(max)
4.123e-04
4.021e-04
3.946e-04
3.893e-04
3.857e-04
3.834e-04
3.820e-04
3.812e-04
3.808e-04
3.806e-04
3.804e-04
3.802e-04
3.801e-04
3.799e-04
3.797e-04
3.776e-04
4.568e-03
-4.22e-03
-1.24e-02
-1.95e-02
-2.61e-02
-3.21e-02
-3.73e-02
-4.18e-02
DSP56362 Technical Data, Rev. 4
B-8
Freescale Semiconductor
1.500e+00
-3.37e-02
1.700e+00
-3.55e-02
1.900e+00
-3.68e-02
2.100e+00
-3.78e-02
2.300e+00
-3.85e-02
2.500e+00
-3.91e-02
2.700e+00
-3.96e-02
2.900e+00
-4.01e-02
3.100e+00
-4.04e-02
3.300e+00
-4.08e-02
3.500e+00
-4.11e-02
3.700e+00
-4.14e-02
3.900e+00
-4.17e-02
4.100e+00
-4.32e-02
4.300e+00
-4.08e-01
4.500e+00
-2.73e+01
4.700e+00
-6.13e+01
4.900e+00
-9.54e+01
5.100e+00
-1.38e+02
5.300e+00
-1.89e+02
5.500e+00
-2.40e+02
5.700e+00
-2.91e+02
5.900e+00
-3.42e+02
6.100e+00
-3.93e+02
6.300e+00
-4.44e+02
6.500e+00
-4.95e+02
6.600e+00
-5.21e+02
|
[GND_clamp]
|voltage
I(typ)
|
-3.30e+00
-5.21e+02
-3.10e+00
-4.69e+02
-2.90e+00
-4.18e+02
-2.70e+00
-3.67e+02
-2.50e+00
-3.16e+02
-2.30e+00
-2.65e+02
-2.10e+00
-2.14e+02
-1.90e+00
-1.63e+02
-1.70e+00
-1.13e+02
-1.50e+00
-7.83e+01
-1.30e+00
-4.43e+01
-1.10e+00
-1.02e+01
-9.00e-01
-9.69e-03
-7.00e-01
-2.83e-04
-5.00e-01
-1.35e-06
-3.00e-01
-1.31e-09
-1.00e-01
-2.92e-11
0.000e+00
-2.44e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
|
|
-1.88e-02
-1.95e-02
-2.00e-02
-2.04e-02
-2.07e-02
-2.10e-02
-2.12e-02
-2.15e-02
-2.17e-02
-2.18e-02
-2.20e-02
-2.78e-02
-1.20e+00
-2.15e+01
-4.52e+01
-6.89e+01
-9.25e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.59e+02
-2.94e+02
-3.30e+02
-3.65e+02
-4.01e+02
-4.18e+02
I(min)
-3.65e+02
-3.30e+02
-2.94e+02
-2.59e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.25e+01
-6.88e+01
-4.52e+01
-2.15e+01
-1.18e+00
-5.70e-03
-4.53e-05
-3.74e-07
-3.00e-09
-5.14e-10
I(min)
-4.55e-02
-4.85e-02
-5.09e-02
-5.27e-02
-5.41e-02
-5.51e-02
-5.60e-02
-5.67e-02
-5.74e-02
-5.79e-02
-5.84e-02
-5.89e-02
-5.94e-02
-5.98e-02
-6.10e-02
-6.84e-02
-7.73e+00
-4.18e+01
-7.59e+01
-1.11e+02
-1.61e+02
-2.12e+02
-2.63e+02
-3.14e+02
-3.65e+02
-4.16e+02
-4.41e+02
I(max)
-5.18e+02
-4.67e+02
-4.16e+02
-3.65e+02
-3.14e+02
-2.63e+02
-2.12e+02
-1.61e+02
-1.10e+02
-7.58e+01
-4.17e+01
-7.67e+00
-7.81e-03
-8.42e-04
-1.00e-05
-8.58e-09
-3.64e-11
-2.79e-11
I(max)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-9
dV/dt_r
1.030/0.465
0.605/0.676
1.320/0.366
|
|
dV/dt_f
1.290/0.671
0.829/0.122
1.520/0.431
|
|
[Model]
icba_io
Model_type
I/O
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.20e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.12e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.60e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.43e+01
-4.52e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.68e+00
-9.00e-01
-2.70e-02
-1.19e+00
-2.90e-02
-7.00e-01
-1.32e-02
-1.25e-02
-1.63e-02
-5.00e-01
-9.33e-03
-4.69e-03
-1.10e-02
-3.00e-01
-5.75e-03
-2.81e-03
-6.76e-03
-1.00e-01
-1.97e-03
-9.48e-04
-2.32e-03
1.000e-01
1.945e-03
9.285e-04
2.307e-03
3.000e-01
5.507e-03
2.640e-03
6.599e-03
5.000e-01
8.649e-03
4.168e-03
1.048e-02
7.000e-01
1.136e-02
5.504e-03
1.393e-02
9.000e-01
1.364e-02
6.636e-03
1.693e-02
1.100e+00
1.547e-02
7.551e-03
1.950e-02
1.300e+00
1.688e-02
8.240e-03
2.162e-02
1.500e+00
1.299e-01
6.458e-02
2.331e-02
1.700e+00
1.366e-01
6.746e-02
1.755e-01
1.900e+00
1.404e-01
6.916e-02
1.847e-01
2.100e+00
1.423e-01
7.006e-02
1.907e-01
2.300e+00
1.433e-01
7.059e-02
1.940e-01
2.500e+00
1.440e-01
7.098e-02
1.958e-01
2.700e+00
1.445e-01
7.128e-02
1.970e-01
2.900e+00
1.450e-01
7.154e-02
1.979e-01
3.100e+00
1.454e-01
7.176e-02
1.986e-01
3.300e+00
1.458e-01
7.196e-02
1.993e-01
3.500e+00
1.461e-01
7.223e-02
1.999e-01
3.700e+00
1.464e-01
8.810e-02
2.004e-01
3.900e+00
1.469e-01
2.589e+00
2.009e-01
DSP56362 Technical Data, Rev. 4
B-10
Freescale Semiconductor
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
1.490e-01
1.501e+00
1.813e+01
3.540e+01
5.269e+01
7.541e+01
1.012e+02
1.270e+02
1.527e+02
1.785e+02
2.043e+02
2.301e+02
2.559e+02
2.688e+02
I(typ)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
6.237e+01
4.389e+01
2.662e+01
9.360e+00
4.275e-02
8.208e-03
5.635e-03
3.370e-03
1.118e-03
-1.09e-03
-3.12e-03
-4.96e-03
-6.60e-03
-8.04e-03
-9.26e-03
-1.03e-02
-1.25e-01
-1.31e-01
-1.36e-01
-1.40e-01
-1.42e-01
-1.44e-01
-1.46e-01
-1.48e-01
-1.49e-01
-1.50e-01
-1.52e-01
-1.53e-01
-1.54e-01
1.451e+01
2.658e+01
3.866e+01
5.076e+01
6.461e+01
8.261e+01
1.006e+02
1.186e+02
1.366e+02
1.546e+02
1.726e+02
1.906e+02
2.086e+02
2.176e+02
I(min)
1.905e+02
1.725e+02
1.545e+02
1.365e+02
1.185e+02
1.005e+02
8.253e+01
6.454e+01
5.068e+01
3.859e+01
2.651e+01
1.444e+01
2.518e+00
2.012e-02
3.518e-03
2.053e-03
6.789e-04
-6.56e-04
-1.86e-03
-2.93e-03
-3.87e-03
-4.66e-03
-5.30e-03
-6.55e-02
-6.93e-02
-7.19e-02
-7.38e-02
-7.53e-02
-7.65e-02
-7.76e-02
-7.85e-02
-7.93e-02
-8.00e-02
-8.06e-02
-8.13e-02
-8.84e-02
-1.26e+00
2.015e-01
2.030e-01
2.385e-01
9.563e+00
2.682e+01
4.409e+01
6.258e+01
8.836e+01
1.141e+02
1.399e+02
1.657e+02
1.915e+02
2.173e+02
2.302e+02
I(max)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
6.237e+01
4.389e+01
2.662e+01
9.362e+00
4.663e-02
1.070e-02
7.068e-03
4.233e-03
1.410e-03
-1.38e-03
-3.99e-03
-6.39e-03
-8.59e-03
-1.06e-02
-1.23e-02
-1.38e-02
-1.70e-01
-1.82e-01
-1.91e-01
-1.97e-01
-2.03e-01
-2.07e-01
-2.10e-01
-2.13e-01
-2.15e-01
-2.17e-01
-2.19e-01
-2.21e-01
-2.22e-01
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-11
4.100e+00
-1.57e-01
4.300e+00
-5.25e-01
4.500e+00
-2.74e+01
4.700e+00
-6.14e+01
4.900e+00
-9.55e+01
5.100e+00
-1.38e+02
5.300e+00
-1.89e+02
5.500e+00
-2.40e+02
5.700e+00
-2.91e+02
5.900e+00
-3.42e+02
6.100e+00
-3.93e+02
6.300e+00
-4.44e+02
6.500e+00
-4.95e+02
6.600e+00
-5.21e+02
|
[GND_clamp]
|voltage
I(typ)
|
-3.30e+00
-5.20e+02
-3.10e+00
-4.69e+02
-2.90e+00
-4.18e+02
-2.70e+00
-3.67e+02
-2.50e+00
-3.16e+02
-2.30e+00
-2.65e+02
-2.10e+00
-2.14e+02
-1.90e+00
-1.63e+02
-1.70e+00
-1.13e+02
-1.50e+00
-7.83e+01
-1.30e+00
-4.43e+01
-1.10e+00
-1.02e+01
-9.00e-01
-1.22e-02
-7.00e-01
-5.18e-04
-5.00e-01
-2.43e-06
-3.00e-01
-2.33e-09
-1.00e-01
-2.10e-11
0.000e+00
-1.70e-11
|
[POWER_clamp]
|voltage
I(typ)
|
-3.30e+00
2.686e+02
-3.10e+00
2.428e+02
-2.90e+00
2.170e+02
-2.70e+00
1.912e+02
-2.50e+00
1.655e+02
-2.30e+00
1.397e+02
-2.10e+00
1.139e+02
-1.90e+00
8.814e+01
-1.70e+00
6.236e+01
-1.50e+00
4.389e+01
-1.30e+00
2.662e+01
-1.10e+00
9.358e+00
-9.00e-01
3.399e-02
-7.00e-01
3.426e-04
-5.00e-01
2.840e-06
-2.16e+01
-4.53e+01
-6.89e+01
-9.26e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.59e+02
-2.94e+02
-3.30e+02
-3.65e+02
-4.01e+02
-4.19e+02
I(min)
-3.65e+02
-3.30e+02
-2.94e+02
-2.59e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.25e+01
-6.88e+01
-4.52e+01
-2.15e+01
-1.18e+00
-6.62e-03
-6.64e-05
-6.35e-07
-6.31e-09
-1.95e-09
I(min)
1.905e+02
1.725e+02
1.545e+02
1.365e+02
1.185e+02
1.005e+02
8.253e+01
6.454e+01
5.068e+01
3.859e+01
2.651e+01
1.444e+01
2.517e+00
1.577e-02
7.857e-05
-2.24e-01
-2.27e-01
-2.38e-01
-7.90e+00
-4.20e+01
-7.60e+01
-1.11e+02
-1.61e+02
-2.12e+02
-2.63e+02
-3.14e+02
-3.65e+02
-4.16e+02
-4.42e+02
I(max)
-5.18e+02
-4.67e+02
-4.16e+02
-3.65e+02
-3.14e+02
-2.63e+02
-2.12e+02
-1.60e+02
-1.10e+02
-7.58e+01
-4.17e+01
-7.67e+00
-1.17e-02
-1.56e-03
-1.80e-05
-1.54e-08
-2.99e-11
-1.91e-11
I(max)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
6.237e+01
4.389e+01
2.662e+01
9.359e+00
3.554e-02
9.211e-04
1.655e-05
DSP56362 Technical Data, Rev. 4
B-12
Freescale Semiconductor
-3.00e-01
3.401e-09
6.836e-07
1.946e-08
-1.00e-01
6.162e-11
7.379e-09
7.622e-11
0.000e+00
5.758e-11
2.438e-09
6.240e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
I(min)
I(max)
|
|
dV/dt_r
1.680/0.164
1.360/0.329
1.900/0.124
|
|
dV/dt_f
1.690/0.219
1.310/0.442
1.880/0.155
|
|
[Model]
icba_o
Model_type
3-state
Polarity
Non-Inverting
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.20e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.12e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.60e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.43e+01
-4.52e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.68e+00
-9.00e-01
-2.70e-02
-1.19e+00
-2.90e-02
-7.00e-01
-1.32e-02
-1.25e-02
-1.63e-02
-5.00e-01
-9.33e-03
-4.69e-03
-1.10e-02
-3.00e-01
-5.75e-03
-2.81e-03
-6.76e-03
-1.00e-01
-1.97e-03
-9.48e-04
-2.32e-03
1.000e-01
1.945e-03
9.285e-04
2.307e-03
3.000e-01
5.507e-03
2.640e-03
6.599e-03
5.000e-01
8.649e-03
4.168e-03
1.048e-02
7.000e-01
1.136e-02
5.504e-03
1.393e-02
9.000e-01
1.364e-02
6.636e-03
1.693e-02
1.100e+00
1.547e-02
7.551e-03
1.950e-02
1.300e+00
1.688e-02
8.240e-03
2.162e-02
1.500e+00
1.299e-01
6.458e-02
2.331e-02
1.700e+00
1.366e-01
6.746e-02
1.755e-01
1.900e+00
1.404e-01
6.916e-02
1.847e-01
2.100e+00
1.423e-01
7.006e-02
1.907e-01
2.300e+00
1.433e-01
7.059e-02
1.940e-01
2.500e+00
1.440e-01
7.098e-02
1.958e-01
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-13
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
1.445e-01
1.450e-01
1.454e-01
1.458e-01
1.461e-01
1.464e-01
1.469e-01
1.490e-01
1.501e+00
1.813e+01
3.540e+01
5.269e+01
7.541e+01
1.012e+02
1.270e+02
1.527e+02
1.785e+02
2.043e+02
2.301e+02
2.559e+02
2.688e+02
I(typ)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
6.237e+01
4.389e+01
2.662e+01
9.360e+00
4.275e-02
8.208e-03
5.635e-03
3.370e-03
1.118e-03
-1.09e-03
-3.12e-03
-4.96e-03
-6.60e-03
-8.04e-03
-9.26e-03
-1.03e-02
-1.25e-01
-1.31e-01
-1.36e-01
-1.40e-01
-1.42e-01
-1.44e-01
7.128e-02
7.154e-02
7.176e-02
7.196e-02
7.223e-02
8.810e-02
2.589e+00
1.451e+01
2.658e+01
3.866e+01
5.076e+01
6.461e+01
8.261e+01
1.006e+02
1.186e+02
1.366e+02
1.546e+02
1.726e+02
1.906e+02
2.086e+02
2.176e+02
I(min)
1.905e+02
1.725e+02
1.545e+02
1.365e+02
1.185e+02
1.005e+02
8.253e+01
6.454e+01
5.068e+01
3.859e+01
2.651e+01
1.444e+01
2.518e+00
2.012e-02
3.518e-03
2.053e-03
6.789e-04
-6.56e-04
-1.86e-03
-2.93e-03
-3.87e-03
-4.66e-03
-5.30e-03
-6.55e-02
-6.93e-02
-7.19e-02
-7.38e-02
-7.53e-02
-7.65e-02
-7.76e-02
1.970e-01
1.979e-01
1.986e-01
1.993e-01
1.999e-01
2.004e-01
2.009e-01
2.015e-01
2.030e-01
2.385e-01
9.563e+00
2.682e+01
4.409e+01
6.258e+01
8.836e+01
1.141e+02
1.399e+02
1.657e+02
1.915e+02
2.173e+02
2.302e+02
I(max)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
6.237e+01
4.389e+01
2.662e+01
9.362e+00
4.663e-02
1.070e-02
7.068e-03
4.233e-03
1.410e-03
-1.38e-03
-3.99e-03
-6.39e-03
-8.59e-03
-1.06e-02
-1.23e-02
-1.38e-02
-1.70e-01
-1.82e-01
-1.91e-01
-1.97e-01
-2.03e-01
-2.07e-01
DSP56362 Technical Data, Rev. 4
B-14
Freescale Semiconductor
2.700e+00
-1.46e-01
2.900e+00
-1.48e-01
3.100e+00
-1.49e-01
3.300e+00
-1.50e-01
3.500e+00
-1.52e-01
3.700e+00
-1.53e-01
3.900e+00
-1.54e-01
4.100e+00
-1.57e-01
4.300e+00
-5.25e-01
4.500e+00
-2.74e+01
4.700e+00
-6.14e+01
4.900e+00
-9.55e+01
5.100e+00
-1.38e+02
5.300e+00
-1.89e+02
5.500e+00
-2.40e+02
5.700e+00
-2.91e+02
5.900e+00
-3.42e+02
6.100e+00
-3.93e+02
6.300e+00
-4.44e+02
6.500e+00
-4.95e+02
6.600e+00
-5.21e+02
|
[GND_clamp]
|voltage
I(typ)
|
-3.30e+00
-5.20e+02
-3.10e+00
-4.69e+02
-2.90e+00
-4.18e+02
-2.70e+00
-3.67e+02
-2.50e+00
-3.16e+02
-2.30e+00
-2.65e+02
-2.10e+00
-2.14e+02
-1.90e+00
-1.63e+02
-1.70e+00
-1.13e+02
-1.50e+00
-7.83e+01
-1.30e+00
-4.43e+01
-1.10e+00
-1.02e+01
-9.00e-01
-1.22e-02
-7.00e-01
-5.18e-04
-5.00e-01
-2.43e-06
-3.00e-01
-2.33e-09
-1.00e-01
-2.10e-11
0.000e+00
-1.70e-11
|
[POWER_clamp]
|voltage
I(typ)
|
-3.30e+00
2.686e+02
-3.10e+00
2.428e+02
-2.90e+00
2.170e+02
-2.70e+00
1.912e+02
-2.50e+00
1.655e+02
-2.30e+00
1.397e+02
-2.10e+00
1.139e+02
-1.90e+00
8.814e+01
-7.85e-02
-7.93e-02
-8.00e-02
-8.06e-02
-8.13e-02
-8.84e-02
-1.26e+00
-2.16e+01
-4.53e+01
-6.89e+01
-9.26e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.59e+02
-2.94e+02
-3.30e+02
-3.65e+02
-4.01e+02
-4.19e+02
I(min)
-3.65e+02
-3.30e+02
-2.94e+02
-2.59e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.25e+01
-6.88e+01
-4.52e+01
-2.15e+01
-1.18e+00
-6.62e-03
-6.64e-05
-6.35e-07
-6.31e-09
-1.95e-09
I(min)
1.905e+02
1.725e+02
1.545e+02
1.365e+02
1.185e+02
1.005e+02
8.253e+01
6.454e+01
-2.10e-01
-2.13e-01
-2.15e-01
-2.17e-01
-2.19e-01
-2.21e-01
-2.22e-01
-2.24e-01
-2.27e-01
-2.38e-01
-7.90e+00
-4.20e+01
-7.60e+01
-1.11e+02
-1.61e+02
-2.12e+02
-2.63e+02
-3.14e+02
-3.65e+02
-4.16e+02
-4.42e+02
I(max)
-5.18e+02
-4.67e+02
-4.16e+02
-3.65e+02
-3.14e+02
-2.63e+02
-2.12e+02
-1.60e+02
-1.10e+02
-7.58e+01
-4.17e+01
-7.67e+00
-1.17e-02
-1.56e-03
-1.80e-05
-1.54e-08
-2.99e-11
-1.91e-11
I(max)
2.686e+02
2.428e+02
2.170e+02
1.912e+02
1.655e+02
1.397e+02
1.139e+02
8.814e+01
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-15
-1.70e+00
6.236e+01
5.068e+01
6.237e+01
-1.50e+00
4.389e+01
3.859e+01
4.389e+01
-1.30e+00
2.662e+01
2.651e+01
2.662e+01
-1.10e+00
9.358e+00
1.444e+01
9.359e+00
-9.00e-01
3.399e-02
2.517e+00
3.554e-02
-7.00e-01
3.426e-04
1.577e-02
9.211e-04
-5.00e-01
2.840e-06
7.857e-05
1.655e-05
-3.00e-01
3.401e-09
6.836e-07
1.946e-08
-1.00e-01
6.162e-11
7.379e-09
7.622e-11
0.000e+00
5.758e-11
2.438e-09
6.240e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
I(min)
I(max)
|
|
dV/dt_r
1.680/0.164
1.360/0.329
1.900/0.124
|
|
dV/dt_f
1.690/0.219
1.310/0.442
1.880/0.155
|
|
[Model]
icbc_o
Model_type
3-state
Polarity
Non-Inverting
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.20e+02
-3.65e+02
-5.18e+02
-3.10e+00
-4.69e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.16e+02
-2.70e+00
-3.67e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.14e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.63e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.11e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.60e+02
-1.70e+00
-1.13e+02
-9.25e+01
-1.10e+02
-1.50e+00
-7.83e+01
-6.88e+01
-7.58e+01
-1.30e+00
-4.42e+01
-4.51e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.67e+00
-9.00e-01
-2.51e-02
-1.18e+00
-2.65e-02
-7.00e-01
-1.30e-02
-1.16e-02
-1.58e-02
-5.00e-01
-9.33e-03
-4.67e-03
-1.10e-02
-3.00e-01
-5.75e-03
-2.81e-03
-6.76e-03
-1.00e-01
-1.97e-03
-9.48e-04
-2.32e-03
1.000e-01
1.945e-03
9.285e-04
2.307e-03
3.000e-01
5.507e-03
2.640e-03
6.599e-03
5.000e-01
8.649e-03
4.168e-03
1.048e-02
7.000e-01
1.136e-02
5.504e-03
1.393e-02
9.000e-01
1.364e-02
6.636e-03
1.693e-02
1.100e+00
1.547e-02
7.551e-03
1.950e-02
DSP56362 Technical Data, Rev. 4
B-16
Freescale Semiconductor
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.688e-02
9.632e-02
1.012e-01
1.039e-01
1.053e-01
1.060e-01
1.065e-01
1.069e-01
1.073e-01
1.076e-01
1.078e-01
1.081e-01
1.083e-01
1.086e-01
1.103e-01
1.437e+00
1.800e+01
3.519e+01
5.241e+01
7.505e+01
1.007e+02
1.264e+02
1.522e+02
1.779e+02
2.036e+02
2.293e+02
2.550e+02
2.678e+02
I(typ)
2.677e+02
2.420e+02
2.163e+02
1.906e+02
1.649e+02
1.392e+02
1.135e+02
8.778e+01
6.208e+01
4.368e+01
2.649e+01
9.302e+00
3.838e-02
8.115e-03
5.634e-03
3.370e-03
1.118e-03
-1.09e-03
-3.12e-03
-4.96e-03
-6.60e-03
-8.04e-03
-9.26e-03
8.240e-03
4.783e-02
4.994e-02
5.118e-02
5.184e-02
5.223e-02
5.251e-02
5.274e-02
5.293e-02
5.309e-02
5.324e-02
5.344e-02
6.705e-02
2.529e+00
1.438e+01
2.638e+01
3.839e+01
5.041e+01
6.419e+01
8.210e+01
1.000e+02
1.179e+02
1.359e+02
1.538e+02
1.717e+02
1.896e+02
2.075e+02
2.165e+02
I(min)
1.896e+02
1.716e+02
1.537e+02
1.358e+02
1.179e+02
9.996e+01
8.205e+01
6.413e+01
5.035e+01
3.834e+01
2.633e+01
1.433e+01
2.477e+00
1.789e-02
3.503e-03
2.053e-03
6.789e-04
-6.56e-04
-1.86e-03
-2.93e-03
-3.87e-03
-4.66e-03
-5.30e-03
2.162e-02
2.331e-02
1.302e-01
1.369e-01
1.412e-01
1.436e-01
1.449e-01
1.458e-01
1.464e-01
1.470e-01
1.475e-01
1.479e-01
1.483e-01
1.487e-01
1.491e-01
1.503e-01
1.810e-01
9.452e+00
2.664e+01
4.384e+01
6.224e+01
8.794e+01
1.136e+02
1.394e+02
1.651e+02
1.908e+02
2.165e+02
2.293e+02
I(max)
2.677e+02
2.420e+02
2.163e+02
1.906e+02
1.649e+02
1.392e+02
1.135e+02
8.778e+01
6.208e+01
4.368e+01
2.649e+01
9.303e+00
4.183e-02
1.045e-02
7.064e-03
4.233e-03
1.410e-03
-1.38e-03
-3.99e-03
-6.39e-03
-8.59e-03
-1.06e-02
-1.23e-02
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-17
1.300e+00
-1.03e-02
1.500e+00
-9.03e-02
1.700e+00
-9.49e-02
1.900e+00
-9.84e-02
2.100e+00
-1.01e-01
2.300e+00
-1.03e-01
2.500e+00
-1.05e-01
2.700e+00
-1.06e-01
2.900e+00
-1.07e-01
3.100e+00
-1.08e-01
3.300e+00
-1.09e-01
3.500e+00
-1.10e-01
3.700e+00
-1.11e-01
3.900e+00
-1.11e-01
4.100e+00
-1.14e-01
4.300e+00
-4.76e-01
4.500e+00
-2.73e+01
4.700e+00
-6.14e+01
4.900e+00
-9.54e+01
5.100e+00
-1.38e+02
5.300e+00
-1.89e+02
5.500e+00
-2.40e+02
5.700e+00
-2.91e+02
5.900e+00
-3.42e+02
6.100e+00
-3.93e+02
6.300e+00
-4.44e+02
6.500e+00
-4.95e+02
6.600e+00
-5.20e+02
|
[GND_clamp]
|voltage
I(typ)
|
-3.30e+00
-5.20e+02
-3.10e+00
-4.69e+02
-2.90e+00
-4.18e+02
-2.70e+00
-3.67e+02
-2.50e+00
-3.16e+02
-2.30e+00
-2.65e+02
-2.10e+00
-2.14e+02
-1.90e+00
-1.63e+02
-1.70e+00
-1.13e+02
-1.50e+00
-7.83e+01
-1.30e+00
-4.42e+01
-1.10e+00
-1.02e+01
-9.00e-01
-1.03e-02
-7.00e-01
-3.74e-04
-5.00e-01
-1.72e-06
-3.00e-01
-1.67e-09
-1.00e-01
-2.03e-11
0.000e+00
-1.69e-11
|
[POWER_clamp]
|voltage
I(typ)
|
-3.30e+00
2.677e+02
-4.75e-02
-5.02e-02
-5.21e-02
-5.34e-02
-5.45e-02
-5.54e-02
-5.62e-02
-5.68e-02
-5.74e-02
-5.79e-02
-5.84e-02
-5.89e-02
-6.49e-02
-1.23e+00
-2.16e+01
-4.52e+01
-6.89e+01
-9.25e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.59e+02
-2.94e+02
-3.30e+02
-3.65e+02
-4.01e+02
-4.18e+02
I(min)
-3.65e+02
-3.30e+02
-2.94e+02
-2.59e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.25e+01
-6.88e+01
-4.51e+01
-2.15e+01
-1.17e+00
-5.73e-03
-5.06e-05
-4.65e-07
-4.80e-09
-1.61e-09
I(min)
1.896e+02
-1.41e-02
-1.23e-01
-1.31e-01
-1.38e-01
-1.43e-01
-1.47e-01
-1.50e-01
-1.52e-01
-1.54e-01
-1.56e-01
-1.57e-01
-1.59e-01
-1.60e-01
-1.61e-01
-1.62e-01
-1.64e-01
-1.73e-01
-7.82e+00
-4.19e+01
-7.59e+01
-1.11e+02
-1.61e+02
-2.12e+02
-2.63e+02
-3.14e+02
-3.65e+02
-4.16e+02
-4.41e+02
I(max)
-5.18e+02
-4.67e+02
-4.16e+02
-3.65e+02
-3.14e+02
-2.63e+02
-2.11e+02
-1.60e+02
-1.10e+02
-7.58e+01
-4.17e+01
-7.66e+00
-9.27e-03
-1.14e-03
-1.28e-05
-1.10e-08
-2.71e-11
-1.89e-11
I(max)
2.677e+02
DSP56362 Technical Data, Rev. 4
B-18
Freescale Semiconductor
-3.10e+00
2.420e+02
1.716e+02
2.420e+02
-2.90e+00
2.163e+02
1.537e+02
2.163e+02
-2.70e+00
1.906e+02
1.358e+02
1.906e+02
-2.50e+00
1.649e+02
1.179e+02
1.649e+02
-2.30e+00
1.392e+02
9.996e+01
1.392e+02
-2.10e+00
1.135e+02
8.205e+01
1.135e+02
-1.90e+00
8.778e+01
6.413e+01
8.778e+01
-1.70e+00
6.208e+01
5.035e+01
6.208e+01
-1.50e+00
4.368e+01
3.834e+01
4.368e+01
-1.30e+00
2.649e+01
2.633e+01
2.649e+01
-1.10e+00
9.300e+00
1.433e+01
9.301e+00
-9.00e-01
2.962e-02
2.475e+00
3.075e-02
-7.00e-01
2.501e-04
1.354e-02
6.708e-04
-5.00e-01
2.066e-06
6.280e-05
1.204e-05
-3.00e-01
2.487e-09
5.128e-07
1.417e-08
-1.00e-01
5.672e-11
5.639e-09
6.832e-11
0.000e+00
5.334e-11
1.992e-09
5.783e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
I(min)
I(max)
|
|
dV/dt_r
1.570/0.200
1.210/0.411
1.810/0.149
|
|
dV/dt_f
1.590/0.304
1.170/0.673
1.800/0.205
|
|
[Model]
ipbw_i
Model_type
Input
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[GND_clamp]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.20e+02
-3.65e+02
-5.17e+02
-3.10e+00
-4.69e+02
-3.29e+02
-4.66e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.15e+02
-2.70e+00
-3.67e+02
-2.58e+02
-3.64e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.13e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.62e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.11e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.60e+02
-1.70e+00
-1.13e+02
-9.24e+01
-1.10e+02
-1.50e+00
-7.82e+01
-6.87e+01
-7.57e+01
-1.30e+00
-4.42e+01
-4.51e+01
-4.16e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.64e+00
-9.00e-01
-7.17e-03
-1.16e+00
-4.87e-03
-7.00e-01
-1.14e-04
-4.39e-03
-3.03e-04
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-19
-5.00e-01
-4.86e-07
-2.55e-05
-2.73e-06
-3.00e-01
-5.19e-10
-1.91e-07
-2.57e-09
-1.00e-01
-1.91e-11
-2.47e-09
-2.19e-11
0.000e+00
-1.68e-11
-1.17e-09
-1.84e-11
|
[POWER_clamp]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
2.667e+02
1.885e+02
2.667e+02
-3.10e+00
2.411e+02
1.707e+02
2.411e+02
-2.90e+00
2.155e+02
1.528e+02
2.155e+02
-2.70e+00
1.898e+02
1.350e+02
1.898e+02
-2.50e+00
1.642e+02
1.172e+02
1.642e+02
-2.30e+00
1.386e+02
9.935e+01
1.386e+02
-2.10e+00
1.130e+02
8.152e+01
1.130e+02
-1.90e+00
8.739e+01
6.369e+01
8.739e+01
-1.70e+00
6.178e+01
4.999e+01
6.178e+01
-1.50e+00
4.346e+01
3.806e+01
4.346e+01
-1.30e+00
2.634e+01
2.613e+01
2.634e+01
-1.10e+00
9.237e+00
1.421e+01
9.237e+00
-9.00e-01
2.454e-02
2.430e+00
2.488e-02
-7.00e-01
8.741e-05
1.104e-02
2.050e-04
-5.00e-01
6.316e-07
4.079e-05
2.961e-06
-3.00e-01
8.479e-10
2.484e-07
3.721e-09
-1.00e-01
4.420e-11
3.001e-09
4.943e-11
0.000e+00
4.215e-11
1.346e-09
4.543e-11
|
|
[Model]
ipbw_io
Model_type
I/O
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[Pulldown]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.20e+02
-3.65e+02
-5.17e+02
-3.10e+00
-4.69e+02
-3.29e+02
-4.66e+02
-2.90e+00
-4.18e+02
-2.94e+02
-4.15e+02
-2.70e+00
-3.67e+02
-2.58e+02
-3.64e+02
-2.50e+00
-3.16e+02
-2.23e+02
-3.13e+02
-2.30e+00
-2.65e+02
-1.88e+02
-2.62e+02
-2.10e+00
-2.14e+02
-1.52e+02
-2.11e+02
-1.90e+00
-1.63e+02
-1.17e+02
-1.60e+02
-1.70e+00
-1.13e+02
-9.24e+01
-1.10e+02
-1.50e+00
-7.82e+01
-6.87e+01
-7.57e+01
-1.30e+00
-4.42e+01
-4.51e+01
-4.17e+01
-1.10e+00
-1.02e+01
-2.15e+01
-7.66e+00
-9.00e-01
-3.69e-02
-1.17e+00
-3.79e-02
-7.00e-01
-2.52e-02
-1.67e-02
-2.81e-02
-5.00e-01
-1.83e-02
-9.77e-03
-2.04e-02
DSP56362 Technical Data, Rev. 4
B-20
Freescale Semiconductor
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[Pullup]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
-1.11e-02
-3.77e-03
3.729e-03
1.076e-02
1.723e-02
2.311e-02
2.836e-02
3.292e-02
3.675e-02
3.979e-02
4.205e-02
4.347e-02
4.413e-02
4.445e-02
4.465e-02
4.479e-02
4.492e-02
4.502e-02
4.511e-02
4.519e-02
4.526e-02
4.536e-02
4.614e-02
1.344e+00
1.783e+01
3.495e+01
5.208e+01
7.463e+01
1.002e+02
1.259e+02
1.515e+02
1.771e+02
2.027e+02
2.283e+02
2.539e+02
2.667e+02
I(typ)
2.667e+02
2.411e+02
2.155e+02
1.898e+02
1.642e+02
1.386e+02
1.130e+02
8.739e+01
6.178e+01
4.346e+01
2.635e+01
9.243e+00
5.536e-02
2.847e-02
2.025e-02
-5.89e-03
-1.98e-03
1.940e-03
5.578e-03
8.907e-03
1.191e-02
1.455e-02
1.680e-02
1.862e-02
1.997e-02
2.085e-02
2.136e-02
2.162e-02
2.176e-02
2.186e-02
2.194e-02
2.200e-02
2.206e-02
2.211e-02
2.219e-02
3.324e-02
2.452e+00
1.423e+01
2.615e+01
3.808e+01
5.001e+01
6.371e+01
8.154e+01
9.937e+01
1.172e+02
1.350e+02
1.529e+02
1.707e+02
1.885e+02
2.064e+02
2.153e+02
I(min)
1.885e+02
1.707e+02
1.528e+02
1.350e+02
1.172e+02
9.935e+01
8.152e+01
6.369e+01
4.999e+01
3.806e+01
2.613e+01
1.421e+01
2.435e+00
2.689e-02
1.265e-02
-1.24e-02
-4.20e-03
4.177e-03
1.216e-02
1.965e-02
2.663e-02
3.305e-02
3.887e-02
4.404e-02
4.850e-02
5.223e-02
5.518e-02
5.728e-02
5.843e-02
5.899e-02
5.931e-02
5.953e-02
5.971e-02
5.986e-02
5.999e-02
6.010e-02
6.021e-02
6.032e-02
6.065e-02
8.548e-02
9.298e+00
2.640e+01
4.352e+01
6.184e+01
8.745e+01
1.131e+02
1.387e+02
1.643e+02
1.899e+02
2.155e+02
2.283e+02
I(max)
2.667e+02
2.411e+02
2.155e+02
1.898e+02
1.642e+02
1.386e+02
1.130e+02
8.739e+01
6.178e+01
4.346e+01
2.635e+01
9.245e+00
6.260e-02
3.437e-02
2.451e-02
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-21
-3.00e-01
-1.00e-01
1.000e-01
3.000e-01
5.000e-01
7.000e-01
9.000e-01
1.100e+00
1.300e+00
1.500e+00
1.700e+00
1.900e+00
2.100e+00
2.300e+00
2.500e+00
2.700e+00
2.900e+00
3.100e+00
3.300e+00
3.500e+00
3.700e+00
3.900e+00
4.100e+00
4.300e+00
4.500e+00
4.700e+00
4.900e+00
5.100e+00
5.300e+00
5.500e+00
5.700e+00
5.900e+00
6.100e+00
6.300e+00
6.500e+00
6.600e+00
|
[GND_clamp]
|voltage
|
-3.30e+00
-3.10e+00
-2.90e+00
-2.70e+00
-2.50e+00
-2.30e+00
-2.10e+00
-1.90e+00
-1.70e+00
-1.50e+00
-1.30e+00
-1.10e+00
-9.00e-01
-7.00e-01
-5.00e-01
1.208e-02
3.994e-03
-3.88e-03
-1.11e-02
-1.76e-02
-2.35e-02
-2.86e-02
-3.30e-02
-3.65e-02
-3.92e-02
-4.12e-02
-4.26e-02
-4.36e-02
-4.43e-02
-4.49e-02
-4.54e-02
-4.58e-02
-4.61e-02
-4.65e-02
-4.68e-02
-4.70e-02
-4.73e-02
-4.81e-02
-4.00e-01
-2.72e+01
-6.12e+01
-9.52e+01
-1.37e+02
-1.88e+02
-2.39e+02
-2.90e+02
-3.41e+02
-3.92e+02
-4.43e+02
-4.94e+02
-5.20e+02
I(typ)
-5.20e+02
-4.69e+02
-4.18e+02
-3.67e+02
-3.16e+02
-2.65e+02
-2.14e+02
-1.63e+02
-1.13e+02
-7.82e+01
-4.42e+01
-1.02e+01
-7.17e-03
-1.14e-04
-4.86e-07
7.503e-03
2.474e-03
-2.38e-03
-6.76e-03
-1.06e-02
-1.40e-02
-1.69e-02
-1.93e-02
-2.10e-02
-2.22e-02
-2.29e-02
-2.35e-02
-2.38e-02
-2.42e-02
-2.44e-02
-2.47e-02
-2.49e-02
-2.50e-02
-2.52e-02
-2.54e-02
-2.99e-02
-1.19e+00
-2.15e+01
-4.51e+01
-6.87e+01
-9.24e+01
-1.17e+02
-1.52e+02
-1.88e+02
-2.23e+02
-2.58e+02
-2.94e+02
-3.29e+02
-3.65e+02
-4.00e+02
-4.18e+02
I(min)
-3.65e+02
-3.29e+02
-2.94e+02
-2.58e+02
-2.23e+02
-1.88e+02
-1.52e+02
-1.17e+02
-9.24e+01
-6.87e+01
-4.51e+01
-2.15e+01
-1.16e+00
-4.39e-03
-2.55e-05
1.467e-02
4.868e-03
-4.76e-03
-1.37e-02
-2.20e-02
-2.95e-02
-3.63e-02
-4.23e-02
-4.75e-02
-5.17e-02
-5.51e-02
-5.77e-02
-5.97e-02
-6.11e-02
-6.22e-02
-6.31e-02
-6.38e-02
-6.44e-02
-6.49e-02
-6.54e-02
-6.58e-02
-6.62e-02
-6.66e-02
-6.72e-02
-7.21e-02
-7.70e+00
-4.17e+01
-7.57e+01
-1.10e+02
-1.60e+02
-2.11e+02
-2.62e+02
-3.13e+02
-3.64e+02
-4.15e+02
-4.41e+02
I(max)
-5.17e+02
-4.66e+02
-4.15e+02
-3.64e+02
-3.13e+02
-2.62e+02
-2.11e+02
-1.60e+02
-1.10e+02
-7.57e+01
-4.16e+01
-7.64e+00
-4.87e-03
-3.03e-04
-2.73e-06
DSP56362 Technical Data, Rev. 4
B-22
Freescale Semiconductor
-3.00e-01
-5.19e-10
-1.91e-07
-2.57e-09
-1.00e-01
-1.91e-11
-2.47e-09
-2.19e-11
0.000e+00
-1.68e-11
-1.17e-09
-1.84e-11
|
[POWER_clamp]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
2.667e+02
1.885e+02
2.667e+02
-3.10e+00
2.411e+02
1.707e+02
2.411e+02
-2.90e+00
2.155e+02
1.528e+02
2.155e+02
-2.70e+00
1.898e+02
1.350e+02
1.898e+02
-2.50e+00
1.642e+02
1.172e+02
1.642e+02
-2.30e+00
1.386e+02
9.935e+01
1.386e+02
-2.10e+00
1.130e+02
8.152e+01
1.130e+02
-1.90e+00
8.739e+01
6.369e+01
8.739e+01
-1.70e+00
6.178e+01
4.999e+01
6.178e+01
-1.50e+00
4.346e+01
3.806e+01
4.346e+01
-1.30e+00
2.634e+01
2.613e+01
2.634e+01
-1.10e+00
9.237e+00
1.421e+01
9.237e+00
-9.00e-01
2.454e-02
2.430e+00
2.488e-02
-7.00e-01
8.741e-05
1.104e-02
2.050e-04
-5.00e-01
6.316e-07
4.079e-05
2.961e-06
-3.00e-01
8.479e-10
2.484e-07
3.721e-09
-1.00e-01
4.420e-11
3.001e-09
4.943e-11
0.000e+00
4.215e-11
1.346e-09
4.543e-11
|
[Ramp]
R_load = 50.00
|voltage
I(typ)
I(min)
I(max)
|
|
dV/dt_r
1.140/0.494
0.699/0.978
1.400/0.354
|
|
dV/dt_f
1.150/0.505
0.642/0.956
1.350/0.350
|
|
[Model]
iexlh_i
Model_type
Input
Polarity
Non-Inverting
Vinl= 0.8000v
Vinh= 2.000v
C_comp
5.00pF
5.00pF
5.00pF
|
|
[Voltage Range]
3.3v
3v
3.6v
[GND_clamp]
|voltage
I(typ)
I(min)
I(max)
|
-3.30e+00
-5.21e+02
-3.66e+02
-5.18e+02
-3.10e+00
-4.70e+02
-3.30e+02
-4.67e+02
-2.90e+00
-4.19e+02
-2.95e+02
-4.16e+02
-2.70e+00
-3.68e+02
-2.59e+02
-3.65e+02
-2.50e+00
-3.17e+02
-2.24e+02
-3.14e+02
-2.30e+00
-2.66e+02
-1.89e+02
-2.63e+02
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
B-23
-2.10e+00
-2.15e+02
-1.90e+00
-1.64e+02
-1.70e+00
-1.14e+02
-1.50e+00
-7.93e+01
-1.30e+00
-4.53e+01
-1.10e+00
-1.13e+01
-9.00e-01
-7.94e-03
-7.00e-01
-1.62e-06
-5.00e-01
-3.45e-10
-3.00e-01
-1.29e-11
-1.00e-01
-1.10e-11
0.000e+00
-1.01e-11
|
[POWER_clamp]
|voltage
I(typ)
|
-3.30e+00
2.653e+02
-3.10e+00
2.398e+02
-2.90e+00
2.143e+02
-2.70e+00
1.888e+02
-2.50e+00
1.633e+02
-2.30e+00
1.378e+02
-2.10e+00
1.123e+02
-1.90e+00
8.682e+01
-1.70e+00
6.133e+01
-1.50e+00
4.313e+01
-1.30e+00
2.614e+01
-1.10e+00
9.145e+00
-9.00e-01
1.797e-02
-7.00e-01
3.667e-06
-5.00e-01
7.730e-10
-3.00e-01
2.293e-11
-1.00e-01
2.096e-11
0.000e+00
2.004e-11
|
[End]
-1.53e+02
-1.18e+02
-9.34e+01
-6.98e+01
-4.62e+01
-2.26e+01
-1.87e+00
-5.11e-03
-1.40e-05
-3.90e-08
-8.67e-10
-7.13e-10
I(min)
1.870e+02
1.693e+02
1.516e+02
1.339e+02
1.162e+02
9.847e+01
8.076e+01
6.305e+01
4.947e+01
3.766e+01
2.585e+01
1.404e+01
2.364e+00
7.589e-03
2.072e-05
5.767e-08
1.163e-09
9.618e-10
-2.12e+02
-1.61e+02
-1.11e+02
-7.68e+01
-4.28e+01
-8.78e+00
-3.77e-03
-7.69e-07
-1.72e-10
-1.38e-11
-1.19e-11
-1.10e-11
I(max)
2.653e+02
2.398e+02
2.143e+02
1.888e+02
1.633e+02
1.378e+02
1.123e+02
8.682e+01
6.133e+01
4.313e+01
2.614e+01
9.145e+00
1.797e-02
3.667e-06
7.748e-10
2.476e-11
2.278e-11
2.186e-11
DSP56362 Technical Data, Rev. 4
B-24
Freescale Semiconductor
Index
A
ac electrical characteristics 3
Address Trace mode 3, 38, 41
applications 5
arbitration bus timings 41
B
bootstrap ROM 3
Boundary Scan (JTAG Port) timing diagram 72
bus
address 2
data 2
multiplexed 2
non-multiplexed 2
bus acquisition timings 42
bus release timings 43, 44
C
clock
external 4
operation 5
clocks
internal 4
D
data memory expansion 4
DAX 4, 2, 16
dc electrical characteristics 2
Debug support 3
design considerations
electrical 3
PLL 4, 5
power consumption 3
thermal 1
Digital Audio Transmitter 4, 16
DRAM
out of page
read access 36
wait states selection guide 28
write access 37
out of page and refresh timings
11 wait states 32
15 wait states 33
4 wait states 28
8 wait states 30
Page mode
read accesses 27
wait states selection guide 19
write accesses 26
Page mode timings
1 wait state 19
2 wait states 21
3 wait states 22
4 wait states 24
refresh access 38
DRAM controller 4
DSP programming 6
E
electrical design considerations 3
Enhanced Serial Audio Interface 4
ESAI 4, 2
ESSI
receiver timing 66, 67
timings 62
transmitter timing 65
EXTAL jitter 5
external bus control 6, 7
external bus synchronous timings (SRAM access)
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
Index-1
38
external clock operation 4
external interrupt timing (negative edge-triggered)
11
external level-sensitive fast interrupt timing 11
external memory access (DMA Source) timing 13
External Memory Expansion Port 14
F
functional groups 2
functional signal groups 1
G
General Purpose Input/Output 4
GPIO 4, 2, 19
GPIO timing 69
Ground 4
PLL 4
H
HDI08 4, 2, 10, 12, 13
DSP programming 6
DSP synchronization 6
Host synchronization 5
HDI08 timing 46
Host Interface 4, 2, 10, 12, 13
Host Interface timing 46
host port
configuration 9
Host Port considerations 5
Host programming 5
Host Request
Double 2
Single 2
I
instruction cache 3
internal clocks 4
interrupt and mode control 8
interrupt control 8
interrupt timing 7
external level-sensitive fast 11
external negative edge-triggered 11
synchronous from Wait state 12
J
Jitter 5
JTAG 20
JTAG Port 3
reset timing diagram 73
timing 70, 72
M
maximum ratings 1
Memory Expansion Port 3
mode control 8
Mode select timing 7
multiplexed bus 2
multiplexed bus timings
read 50
write 51
N
non-multiplexed bus 2
non-multiplexed bus timings
read 48
write 49
DSP56362 Technical Data, Rev. 4
Index-2
Freescale Semiconductor
O
S
off-chip memory 3
OnCE
module timing 73
OnCE module 3, 20
Debug request 73
on-chip DRAM controller 4
On-Chip Emulation module 3
on-chip memory 3
operating mode select timing 12
Serial Host Interface 4, 14
SHI 4, 2, 14
signal groupings 1
signals 1
functional grouping 2
SRAM 40
Access 38
read access 17
read and write accesses 14
support 4
write access 17, 18
Stop mode 5
Stop state
recovery from 12, 13
Stop timing 7
supply voltage 1
Switch mode 3
Synchronization 5
synchronous bus timings
SRAM
2 wait states 41
SRAM 1 wait state (BCR controlled) 40
synchronous interrupt from Wait state timing 12
synchronous Reset timing 10
P
package
144-pin TQFP 1
TQFP description 1, 3
Phase Lock Loop 6
PLL 6
Characteristics 6
performance issues 4
PLL design considerations 4, 5
PLL performance issues 5
Port A 2
Port B 2, 10, 11, 12, 13
Port C 2, 16
Port D 2, 16
power consumption design considerations 3
power management 5
program memory expansion 4
program RAM 3
R
recovery from Stop state using IRQA 12, 13
RESET 9
Reset timing 7, 10
synchronous 10
ROM, bootstrap 3
T
TAP 3
target applications 5
Test Access Port 3
Test Access Port timing diagram 72
Test Clock (TCLK) input timing diagram 71
thermal characteristics 2
thermal design considerations 1
Timer 4, 2, 19
event input restrictions 68
interrupt generation 68
timing 68
Timing
Digital Audio Transmitter (DAX) 67
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
Index-3
General Purpose I/O (GPIO) Timing 62
OnCE™ (On Chip Emulator) Timing 62
Serial Host Interface (SHI) SPI Protocol Timing 52
Serial Host Interface (SHI) Timing 52
timing
interrupt 7
mode select 7
Reset 7
Stop 7
TQFP 1
pin list by number 3
pin-out drawing (top) 1
W
Wait mode 5
X
X data RAM 3
Y
Y data RAM 3
DSP56362 Technical Data, Rev. 4
Index-4
Freescale Semiconductor
DSP56362 Technical Data, Rev. 4
Freescale Semiconductor
Index-5
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Document Number: DSP56362
Rev. 4
08/2006
Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
Similar pages