® ispGDX Family In-System Programmable Generic Digital Crosspoint Features Functional Block Diagram ISP Control I/O Pins A I/O Pins D • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 5V Power Supply — 5.0ns Input-to-Output/5.0ns Clock-to-Output Delay — Low-Power: 40mA Quiescent Icc — Balanced 24mA Output Buffers with Programmable Slew Rate Control — Schmitt Trigger Inputs for Noise Immunity — Electrically Erasable and Reprogrammable — Non-Volatile E2CMOS Technology — 100% Tested I/O Cells Boundary Scan Control Global Routing Pool (GRP) I/O Cells I/O Pins C • IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL CROSSPOINT FAMILY — Advanced Architecture Addresses Programmable PCB Interconnect, Bus Interface Integration and Jumper/Switch Replacement — Three Device Options: 80 to 160 Programmable I/O Pins — “Any Input to Any Output” Routing — Fixed HIGH or LOW Output Option for Jumper/DIP Switch Emulation — Space-Saving TQFP, PQFP and BGA Packaging — Dedicated IEEE 1149.1-Compliant Boundary Scan Test — PCI Compliant Output Drive I/O Pins B Description • ispGDX OFFERS THE FOLLOWING ADVANTAGES The ispGDX architecture provides a family of fast, flexible programmable devices to address a variety of systemlevel digital signal routing and interface requirements including: — In-System Programmable — Lattice ISP or JTAG Programming Interface — Only 5V Power Supply Required — Change Interconnects in Seconds — Reprogram Soldered Devices • Multi-Port Multiprocessor Interfaces • FLEXIBLE ARCHITECTURE — Combinatorial/Latched/Registered Inputs or Outputs — Individual I/O Tri-state Control with Polarity Control — Dedicated Clock Input Pins (two or four) or Programmable Clocks from I/O Pins (from 20 up to 40) — Up to 4:1 Dynamic Path Selection — Programmable Output Pull-up Resistors — Outputs Tri-state During Power-up (“Live Insertion” Friendly) • Wide Data and Address Bus Multiplexing (e.g. 4:1 High-Speed Bus MUX) • Programmable Control Signal Routing (e.g. Interrupts, DMAREQs, etc) • Board-Level PCB Signal Routing for Prototyping or Programmable Bus Interfaces The ispGDX Family consists of three members with 80, 120 and 160 Programmable I/Os. These devices are available in packages ranging from the 100-pin TQFP to the 208-pin PQFP. The devices feature fast operation, with input-to-output signal delays (Tpd) of 5ns and clockto-output delays of 5ns. The architecture of the devices consists of a series of programmable I/O cells interconnected by a Global Rout- Copyright © 2002 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com ispgdx_11 1 November 2003 Specifications ispGDX Family Description (Continued) ing Pool (GRP). All I/O pin inputs enter the GRP directly or are registered or latched so they can be routed to the required I/O outputs. I/O pin inputs are defined as four sets (A,B,C,D) which have access to the four MUX inputs found in each I/O cell. Each output has individual, programmable I/O tri-state control (OE), output latch clock (CLK) and two multiplexer control (MUX0 and MUX1) inputs. Polarity for these signals is programmable for each I/O cell. The MUX0 and MUX1 inputs control a fast 4:1 MUX, allowing dynamic selection of up to four signal sources for a given output. OE, CLK and MUX0 and MUX1 inputs can be driven directly from selected sets of I/O pins. Optional dedicated clock input pins give minimum clock-to-output delays. In addition, there are no pin-to-pin routing constraints for 1:1 or 1:n signal routing. That is, any I/O pin configured as an input can drive one or more I/O pins configured as outputs. The device pins also have the ability to set outputs to fixed HIGH or LOW logic levels (Jumper or DIP Switch mode). Device outputs are specified for 24mA sink and source current and can be tied together in parallel for greater drive. Programmable output slew rate can be defined independently for each I/O pin to reduce overall ground bounce and switching noise. All I/O pins are equipped with IEEE1149.1-compliant Boundary Scan Test circuitry for enhanced testability. In addition, in-system programming is supported through the Test Access Port via a special set of private commands or through Lattice’s industry-standard ISP protocol. The BSCAN/ispEN pin is used to make this selection. Through in-system programming, connections between I/O pins and architectural features (latched or registered inputs or outputs, output enable control, etc.) can be defined. In keeping with its data path application focus, the ispGDX devices contain no programmable logic arrays. All input pins include Schmitt trigger buffers for noise immunity. These connections are programmed into the device using non-volatile E2CMOS technology. Non-volatile technology means the device configuration is saved even when the power is removed from the device. The ispGDX I/Os are designed to withstand “live insertion” system environments. The I/O buffers are disabled during power-up and power-down cycles. When designing for “live insertion,” absolute maximum rating conditions for the Vcc and I/O pins must still be met. For additional information, an application note about using Lattice devices in hot swap environments can be downloaded from the Lattice web site at www.latticesemi.com. Table 1. ispGDX Family Members ispGDX DEVICE ispGDX80A ispGDX120A ispGDX160A I/O Pins 80 120 160 I/O-OE Inputs* 20 30 40 I/O-Clk Inputs* 20 30 40 I/O-MUXsel1 Inputs* 20 30 40 I/O-MUXsel2 Inputs* 20 30 40 Dedicated Clock Pins 2 4 4 BSCAN / ispEN 1 1 1 1** 1 1 BSCAN / ISP Interface 4 4 4 RESET 1 1 1 Power/GND 12 25 33 100-Pin TQFP 176-Pin TQFP/ 160-Pin PQFP 208-Pin PQFP 272-Ball BGA TOE Pin Count/Package * The CLK, OE, MUX0 and MUX1 terminals on each I/O cell can each access 25% of the I/Os. ** MUXed with Y1. 2 Specifications ispGDX Family Architecture The ispGDX architecture is different from traditional PLD architectures, in keeping with its unique application focus. The block diagram is shown below. The programmable interconnect consists of a single Global Routing Pool (GRP). Unlike ispLSI® devices, there are no programmable logic arrays on the device. Control signals for OEs, Clocks and MUX Controls must come from designated sets of I/O pins. The polarity of these signals can be independently programmed in each I/O cell. Figure 1. The four data inputs to the MUX (called MUXA, MUXB, MUXC and MUXD) come from I/O signals found in the GRP. Each MUX data input can access one quarter of the total I/Os. For example, in a 160 I/O ispGDX, each data input can connect to one of 40 I/O pins. MUX0 and MUX1 can be driven by designated I/O pins called MUXsel1 and MUXsel2. Each MUXsel input covers 25% of the total I/O pins (e.g. 40 out of 160). MUX0 and MUX1 can be driven from either MUXsel1 or MUXsel2. The I/O cell also includes a programmable flow-through latch or register that can be placed in the input or output path and bypassed for combinatorial outputs. As shown in Figure 1, when both register/latch control MUXes select the “A” path, the register/latch gets its inputs from the 4:1 MUX and drives the I/O output. When selecting the “B” path, the register/latch is directly driven by the I/O input while its output feeds the GRP. The programmable polarity Clock to the latch or register can be connected to any I/O in the I/O-Clock set (one-quarter of total I/Os) or to one of the dedicated clock input pins (Yx). Use of the dedicated clock inputs gives minimum clock-to-output delays and minimizes delay variation with fanout. Combinatorial output mode may be implemented by a dedicated architecture bit and bypass MUX. I/O cell output polarity can be programmed as active high or active low. Each I/O cell drives a unique pin. The OE control for each I/O pin is independent and may be driven via the GRP by one of the designated I/O pins (I/O-OE set). The I/O-OE set consists of 25% of the total I/O pins. Boundary Scan test is supported by dedicated registers at each I/O pin. The in-system programming process uses either a Boundary Scan based or Lattice ISP protocol. The programming protocol is selected by the BSCAN/ispEN pin as described later. The various I/O pin sets are also shown in the block diagram below. The A, B, C, and D I/O pins are grouped together with one group per side. I/O Architecture Each I/O cell contains a 4:1 dynamic MUX controlled by two select lines called MUX0 and MUX1 as shown in Figure 1. ispGDX I/O Cell and GRP Detail (160 I/O Device) Logic "1" 160 I/O Inputs I/O MUX Operation I/O 0 I/O 1 MUX1 MUX0 DATA INPUT SELECTED I/O 80 I/O 81 E2CMOS •• • Programmable Interconnect I/O Cell N Prog. Pull-up Bypass Option 4-to-1 MUX MUXA MUXB MUXC MUXD • • • • • • A B MUX0 MUX1 Register or Latch D Q CLK Reset C I/O Pin R Programmable Slew Rate Boundary Scan Cell I/O 78 I/O 79 •••••• 80 I/O Cells 160 Input GRP Inputs Vertical Y0-Y3 Outputs Horizontal Global Clocks I/O 158 I/O 159 80 I/O Cells Global Reset 3 0 0 MUXA 0 1 MUXB 1 1 MUXC 1 0 MUXD Specifications ispGDX Family Applications The ispGDX family architecture has been developed to deliver an in-system programmable signal routing solution with high speed and high flexibility. The devices are targeted for three similar but distinct classes of endsystem applications: Programmable Switch Replacement (PSR) Includes solid-state replacement and integration of mechanical DIP Switch and jumper functions. Through in-system programming, pins of the ispGDX devices can be driven to HIGH or LOW logic levels to emulate the traditional device outputs. PSR functions do not require any input pin connections. Programmable, Random Signal Interconnect (PRSI) This class includes PCB-level programmable signal routing and may be used to provide arbitrary signal swapping between chips. It opens up the possibilities of programmable system hardware. It is characterized by the need to provide a large number of 1:1 pin connections which are statically configured, i.e., the pin-to-pin paths do not need to change dynamically in response to control inputs. These applications actually require somewhat different silicon features. PRSI functions require that the device support arbitrary signal routing on-chip between any two pins with no routing restrictions. The routing connections are static (determined at programming time) and each input-to-output path operates independently. As a result, there is little need for dynamic signal controls (OE, clocks, etc.). Because the ispGDX device will interface with control logic outputs from other components (such as ispLSI) on the board (which frequently change late in the design process as control logic is finalized), there must be no restrictions on pin-to-pin signal routing for this type of application. Programmable Data Path (PDP) This application area includes system data path transceiver, MUX and latch functions. With today’s 32- and 64-bit microprocessor buses, but standard data path glue components still relegated primarily to eight bits, PCBs are frequently crammed with a dozen or more data path glue chips that use valuable real estate. Many of these applications consist of “on-board” bus and memory interfaces that do not require the very high drive of standard glue functions but can benefit from higher integration. Therefore, there is a need for a flexible means to integrate these on-board data path functions in an analogous way to programmable logic’s solution to control logic integration. Lattice’s ispLSI High-Density PLDs make an ideal control logic complement to the ispGDX in-system programmable data path devices as shown below. PDP functions, on the other hand, require the ability to dynamically switch signal routing (MUXing) as well as latch and tri-state output signals. As a result, the programmable interconnect is used to define possible signal routes that are then selected dynamically by control signals from an external MPU or control logic. These functions are usually formulated early in the conceptual design of a product. The data path requirements are driven by the microprocessor, bus and memory architecture defined for the system. This part of the design is the earliest portion of the system design frozen, and will not usually change late in the design because the result would be total system and PCB redesign. As a result, the ability to accommodate arbitrary any pin-to-any pin rerouting is not a strong requirement as long as the designer has the ability to define his functions with a reasonable degree of freedom initially. Figure 2. ispGDX Complements Lattice ispLSI Address Inputs (from µP) Control Inputs (from µP) Data Path Bus #1 ISP/JTAG Interface As a result, the ispGDX architecture has been defined to support PSR and PRSI applications (including bidirectional paths) with no restrictions, while PDP applications (using dynamic MUXing) are supported with a minimal number of restrictions as described below. In this way, speed and cost can be optimized and the devices can still support the system designer’s needs. Buffers / Registers State Machines Control Outputs ispLSI Device ispGDX Device Decoders Buffers / Registers System Clock(s) Configuration (Switch) Outputs The following diagrams illustrate several ispGDX applications. Data Path Bus #2 4 Specifications ispGDX Family Applications (Cont.) Figure 3. Address Demultiplex/Data Buffering As mentioned earlier, this architecture satisfies the PRSI class of applications without restrictions: any I/O pin as a single input or bidirectional can drive any other I/O pin as output. XCVR Muxed Address Data Bus Control Bus Designing with the ispGDX I/OA Buffered Data I/OB OEA OEB For the case of PDP applications, the designer does have to take into consideration the limitations on pins that can be used as control (MUX0, MUX1, OE, CLK) or data (MUXA-D) inputs. The restrictions on control inputs are not likely to cause any major design issues because the input possibilities span 25% of the total pins. To Memory/ Peripherals Address Latch D Q Address The MUXA-D input partitioning requires that designers consciously assign pinouts so that MUX inputs are in the appropriate, disjoint groups. For example, since the MUXA group includes I/O0-19 (80 I/O device), it is not possible to use I/O0 and I/O9 in the same MUX function. As previously discussed, data path functions will be assigned early in the design process and these restrictions are reasonable in order to optimize speed and cost. CLK Figure 4. Data Bus Byte Swapper XCVR I/OA D0-7 I/OB Data Bus A Control Bus I/OA I/OB OEA OEB XCVR D8-15 I/OA User Electronic Signature XCVR OEA OEB The ispGDX Family includes dedicated User Electronic Signature (UES) E2CMOS storage to allow users to code design-specific information into the devices to identify particular manufacturing dates, code revisions, or the like. The UES information is accessible through the boundary scan or Lattice ISP programming port via a specific command. This information can be read even when the security cell is programmed. Data Bus B D0-7 D8-15 I/OB XCVR OEA OEB I/OA I/OB OEA OEB Security Bit The ispGDX Family includes a security bit feature that prevents reading the device program once set. Even when set, it does not inhibit reading the UES or device ID code. It can be erased only via a device bulk erase. Figure 5. Four-Port Memory Interface Bus 1 Bus 2 Bus 3 Bus 4 4-to-1 16-Bit MUX Bidirectional Port #1 OE1 Memory Port Port #2 OE2 OEM Port #3 OE3 SEL0 Port #4 OE4 SEL1 To Memory Note: All OE and SEL lines driven by external arbiter logic (not shown). 5 Specifications ispGDX Family Absolute Maximum Ratings 1 Supply Voltage Vcc ................................. -0.5 to +7.0V Input Voltage Applied ........................ -2.5 to VCC +1.0V Off-State Output Voltage Applied ..... -2.5 to VCC +1.0V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Recommended Operating Conditions SYMBOL VCC VIL1 VIH1 PARAMETER MIN. MAX. UNITS 4.75 5.25 V Input Low Voltage 0 0.8 V Input High Voltage 2.0 Vcc + 1 V Supply Voltage Commercial TA = 0°C to +70°C 1. Typical 100mV of input hysteresis. Capacitance (TA=25oC, f=1.0 MHz) TYPICAL UNITS I/O Capacitance 8 pf VCC = 5.0V, VI/O = 2.0V Dedicated Clock Capacitance 10 pf VCC = 5.0V, VY = 2.0V SYMBOL C1 C2 PARAMETER TEST CONDITIONS Table 2 - 0006 Erase/Reprogram Specifications PARAMETER ispGDX Erase/Reprogram Cycles 6 MINIMUM MAXIMUM UNITS 10,000 – Cycles Specifications ispGDX Family Switching Test Conditions Input Pulse Levels + 5V GND to 3.0V Input Rise and Fall Time ≤ 1.5ns 10% to 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load R1 Device Output See figure at right Test Point CL* R2 3-state levels are measured 0.5V from steady-state active level. Output Load Conditions *CL includes Test Fixture and Probe Capacitance. TEST CONDITION R1 R2 CL 160Ω 90Ω 35pF Active High ∞ 90Ω 35pF Active Low 160Ω 90Ω 35pF Active High to Z at VOH -0.5V ∞ 90Ω 5pF Active Low to Z at VOL +0.5V 160Ω 90Ω 5pF A B C Table 2 - 0004A DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL VOL VOH IIL IIH IIL-isp IIL-PU IOS1 ICCQ ICC MIN. TYP.2 MAX. UNITS IOL =24 mA – – 0.55 V Output High Voltage IOH =-24 mA 2.4 – – V Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) – – -10 µA Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC – – 10 µA ispEN Input Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) – – -150 µA I/O Active Pull-Up Current 0V ≤ VIN ≤ VIL – – -150 µA Output Short Circuit Current VCC = 5V, VOUT = 0.5V, TA = 25˚C -100 – -250 mA Quiescent Power Supply Current VIL = 0.5V, VIH = VCC – 25 40 mA Dynamic Power Supply Current per Input Switching One input toggling @ 50% duty cycle, outputs open. – See Note 3 – mA/MHz PARAMETER Output Low Voltage CONDITION 1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2. Typical values are at VCC = 5V and TA = 25oC. 3. I CC / MHz = (0.0114 x I/O cell fanout) + 0.06 e.g. An input driving four I/O cells at 40 MHz results in a dynamic I CC of approximately ((0.0114 x 4) + 0.06) x 40 = 4.2 mA. 7 Specifications ispGDX Family External Timing Parameters Over Recommended Operating Conditions 1 PARAMETER TEST # tpd tsel fmax(ext) tsu1 tsu2 th tgco1 tgco2 tco1 tco2 ten tdis ttoeen ttoedis twh twl trst trw tsl tsk -5 DESCRIPTION COND. -7 UNITS MIN. MAX. MIN. MAX. A 1 Data Propagation Delay from any I/O pin to any I/O pin – 5.0 – 7.0 ns A 2 Data Propagation Delay from MUXsel Inputs to any Output – 6.5 – 9.0 ns – 3 Clock Frequency with External Feedback ( 111 – 80.0 – MHz – 4 Input Latch or Register Setup Time before any Clk 4.0 – 5.5 – ns – 5 Output Latch or Register MUX Data Setup Time before any Clk 4.0 – 5.5 – ns 0.0 – 0.0 – ns 1 tsu2+tgco1 ) – 6 Latch or Register Hold Time after any Clk A 7 Output Latch or Register Clk (from Yx) to Output Delay – 5 – 7.0 ns A 8 Input Latch or Register Clk (from Yx) to Output Delay – 8.5 – 11.0 ns A 9 Output Latch or Register Clk (from I/O pin) to Output Delay 9.0 ns A 10 Input Latch or Register Clock (from I/O pin) to Output Delay – 9.5 – 13.0 ns B 11 Input to Output Enable – 6.0 – 8.5 ns C 12 Input to Output Disable – 6.0 – 8.5 ns B 13 Test OE Output Enable – 9.0 – 12.0 ns C 14 Test OE Output Disable – 9.0 – 12.0 ns – 15 Clock Pulse Duration, High 3.5 – 5.0 – ns – 16 Clock Pulse Duration, Low 3.5 – 5.0 – ns – 17 Register Reset Delay from RESET Low – 14.0 – 18.0 ns 6.0 – 18 Reset pulse width 10.0 – 14.0 – ns A 19 Output Delay Adder for Output Timings Using Slow Slew Rate – 5.0 – 7.0 ns A 20 Output Skew (tgco1 across chip) – 0.5 – 0.5 ns 1. All timings measured with one output switching, fast output slew rate setting, except tsl. Maximum ∆ GRP Delay vs. I/O Cell Fanout ispGDX timings are specified with a GRP load (fanout) of four I/O cells. The figure at right shows the Maximum ∆ GRP Delay with increased GRP loads. These deltas apply to any signal path traversing the GRP (MUXA-D, OE, CLK, MUXsel0-1). Global Clock signals, which do not use the GRP, have no fanout delay adder. ∆ GRP Delay (ns) 10 8 6 4 2 0 4 10 20 30 40 50 I/O Cell Fanout 8 60 70 Specifications ispGDX Family Internal Timing Parameters1 Over Recommended Operating Conditions -5 PARAMETER #2 DESCRIPTION1 -7 MIN. MAX. MIN. MAX. UNITS Inputs tio 21 Input Buffer Delay — 0.7 — 1.3 ns 22 GRP Delay — 2.0 — 2.5 ns tmuxd 23 I/O Cell MUX A/B/C/D Data Delay — 1.0 — 1.4 ns tmuxs 24 I/O Cell MUX A/B/C/D Data Select — 2.5 — 3.4 ns tiolat 25 I/O Latch Delay — 1.6 — 2.2 ns tiosu 26 I/O Register Setup Time Before Clock — 1.6 — 1.8 ns tioh 27 I/O Register Hold Time After Clock — 2.4 — 3.6 ns tioco 28 I/O Register Clock to Output Delay — 1.6 — 2.2 ns tior 29 I/O Reset to Output Delay — 0.7 — 1.0 ns trfdbk 30 I/O Register Feedback Delay — 0.2 — 0.3 ns tiobp 31 I/O Register Bypass Delay — 0.4 — 0.6 ns tioob 32 I/O Register Output Buffer Delay — 0.1 — 0.7 ns tmuxc (Yx Clk) 33 I/O Register Data Input MUX Delay — 1.1 — 1.2 ns tmuxc (I/O Clk) 34 I/O Register Data Input MUX Delay — 2.1 — 3.2 ns GRP tgrp MUX Register Data Path tiod (Yx Clk) 35 I/O Register I/O Input MUX Delay — 4.1 — 5.1 ns tiod (I/O Clk) 36 I/O Register I/O Input MUX Delay — 5.1 — 7.1 ns Outputs tob 37 Output Buffer Delay — 0.9 — 1.3 ns tobs 38 Output Buffer Delay, Slow Slew — 5.9 — 8.3 ns toen 39 I/O Cell OE to Output Enabled — 0.8 — 1.1 ns toedis 40 I/O Cell OE to Output Disabled — 0.8 — 1.1 ns tgoe 41 Global Output Enable Delay — 2.5 — 3.6 ns ttoe 42 Test OE Enable Delay — 8.2 — 10.9 ns tcio 43 I/O Clock Delay — 0.7 — 1.0 ns tgy0/1/2/3 44 Clock Delay, Y0/1/2/3 — 2.4 — 2.8 ns 45 Global Reset to I/O Register/Latch — 12.3 — 15.0 ns Clocks Global Reset tgr 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to the Timing Model in this data sheet for further details. 9 Specifications ispGDX Family Switching Waveforms DATA (I/O INPUT) VALID INPUT MUXSEL (I/O INPUT) VALID INPUT tsel DATA (I/O INPUT) VALID INPUT th tgco1 tgco2 tco1 tco2 tsu1 tsu2 CLK tpd COMBINATORIAL I/O OUTPUT REGISTERED I/O OUTPUT Combinatorial Output 1/fmax (external fdbk) Registered Output OE (I/O INPUT) tdis ten COMBINATORIAL I/O OUTPUT RESET trw I/O Output Enable/Disable twh trst REGISTERED I/O OUTPUT twl CLK (I/O INPUT) Reset Clock Width ispGDX Timing Model OE tmuxd #23 tmuxs #24 tgoe #41 TOE A ttoe #42 tiobp #31 B tmuxc #33, #34 C D tioob #32 MUX0 D Q I/O Pin MUX1 tob #37 tobs #38 toen #39 toedis #40 GRP tgrp #22 tiod #35, #36 tiolat #25 tiosu #26 tioh #27 tioco #28 tior #29 tgr #45 Reset trfdbk #30 tio #21 Clock Y0,1,2,3 tcio #43 0902/gdx tgy0/1/2/3 #44 10 Specifications ispGDX Family while the pin is held low. After pulling the pin high the JTAG controller becomes active. The intent of this feature is to allow the JTAG interface to be directly controlled by the data bus of an embedded controller (hence the name Embedded Port Enable). The EPEN signal is used as a “device select” to prevent spurious programming and/or testing from occurring due to random bit patterns on the data bus. Figure 9 illustrates the block diagram for the ispJTAG™ interface. ispLEVER Development System The ispLEVER Development System supports ispGDX design using a VHDL or Verilog language syntax. From creation to in-system programming, the ispLEVER system is an easy-to-use, self-contained design tool. Features • VHDL and Verilog Synthesis Support Available • ispGDX Design Compiler - Design Rule Checker - I/O Connectivity Checker - Automatic Compiler Function Figure 5. ISP Device Programming Interface SDO SDI MODE SCLK ispEN • Industry Standard JEDEC File for Programming • Min/Max Timing Report 5-wire Programming Interface • Interfaces To Popular Timing Simulators • User Electronic Signature (UES) Support • Detailed Log and Report Files For Easy Design Debug • On-line Help • Windows® XP, Windows 2000, Windows 98 and Windows NT® Compatible BSCAN/ispEN BSCAN/ispEN BSCAN/ispEN ispGDX 80A ispGDX 120A ispGDX 160A • Solaris® and HP-UX Versions Available In-System Programmability Figure 6. ispJTAG Device Programming Interface All necessary programming of the ispGDXV/VA is done via four TTL level logic interface signals. These four signals are fed into the on-chip programming circuitry where a state machine controls the programming. TDO TDI TMS TCK ispJTAG Programming Interface On-chip programming can be accomplished using an IEEE 1149.1 boundary scan protocol. The IEEE 1149.1compliant interface signals are Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK) and Test Mode Select (TMS) control. The EPEN pin is also used to enable or disable the JTAG port. VCC The embedded controller port enable pin (EPEN) is used to enable the JTAG tap controller and in that regard has similar functionality to a TRST pin. When the pin is driven high, the JTAG TAP controller is enabled. This is also true when the pin is left unconnected, in which case the pin is pulled high by the permanent internal pullup. This allows ISP programming and BSCAN testing to take place as specified by the Instruction Table. When the pin is driven low, the JTAG TAP controller is driven to a reset state asynchronously. It stays there 11 BSCAN/ispEN BSCAN/ispEN BSCAN/ispEN ispGDX 80A ispGDX 120A ispGDX 160A Specifications ispGDX Family Table 3. I/O Shift Register Order DEVICE I/O SHIFT REGISTER ORDER ispGDX80A SDI/TDI, I/O B10 .. B19, I/O C0 .. C19, I/O D0 .. D9, RESET, Y1/TOE, Y0, I/O B9 .. B0, I/O A19.. A0, I/O D19 .. D10, SDO/TDO ispGDX120A SDI/TDI, I/O B15 .. B29, I/O C0 .. C29, I/O D0 .. D14, TOE, Y2, Y3, RESET, Y1, Y0, I/O B14 .. B0, I/O A29.. A0, I/O D29 .. D15, SDO/TDO ispGDX160/A SDI/TDI, I/O B20 .. B39, I/O C0 .. C39, I/O D0 .. D19, TOE, Y2, Y3, RESET, Y1, Y0, I/O B19 .. B0, I/O A39.. A0, I/O D39 .. D20, SDO/TDO I/O Shift Reg Order/ispGDX Table 4. ispGDX Device ID Codes 8-BIT ISP ID 32-BIT BOUNDARY SCAN IDCODE ispGDX80A DEVICE 0111 0111 0000 0000 0010 0101 0001 0000 0100 0011 ispGDX120A 0111 1000 0000 0000 0010 0101 0010 0000 0100 0011 ispGDX160/A 0111 1001 0000 0000 0010 0101 0011 0000 0100 0011 GDX ID Codes Boundary Scan The ispGDXV/VA devices provide IEEE1149.1a test capability and ISP programming through a standard Boundary Scan Test Access Port (TAP) interface. The boundary scan circuitry on the ispGDXV/VA Family operates independently of the programmed pattern. This allows customers using boundary scan test to have full test capability with only a single BSDL file. The ispGDXV/VA devices are identified by the 32-bit JTAG IDCODE register. The device ID assignments are listed in Table 4. The ispJTAG programming is accomplished by executing Lattice private instructions under the Boundary Scan State Machine. Contact Lattice Technical Support to obtain more detailed programming information. 12 Specifications ispGDX Family Figure 7. Boundary Scan I/O Register Cell SCANIN (from previous cell) Normal Function OE M U X Q D D M U X Q TOE EXTEST Normal Function OE M U X Q D D M U X Q I/O Pin Update DR M U X Shift DR Q D SCANOUT (to next cell) Clock DR Figure 8. Boundary Scan State Machine 1 0 Test-Logic-Reset 0 1 Run-Test/Idle Select-DR-Scan 0 1 Capture-DR 0 Shift-DR 0 1 Exit1-DR 1 0 Pause-DR 1 1 Select-IR-Scan 0 1 Capture-IR 0 Shift-IR 0 1 Exit1-IR 1 0 Pause-IR 1 0 1 0 0 Exit2-DR 1 Update-DR 1 0 0 Exit2-IR 1 Update-IR 1 0 TCK t su th TMS or TDI t co TDO tsu = 0.1µs (min.) th = 0.1µs (min.) 13 tco = 0.1µs (min.) Specifications ispGDX Family Signal Descriptions Signal Name Description I/O Input/Output Pins – These are the general purpose bidirectional data pins. When used as outputs, each may be independently latched, registered or tristated. They can also each assume one other control function (OE, CLK and MUXsel as described in the text). TOE Test Output Enable pin – This pin tristates all I/O pins when a logic low is driven. RESET Active LOW Input Pin – Resets all I/O register outputs when LOW. Y0, Y1, Y2, Y3 Input Pins – Dedicated clock input pins. Each pin can drive any or all I/O cell registers. BSCAN/ispEN Input Pin – When HIGH, this pin enables the Boundary Scan Test and Programming Interface. When LOW, this pin enables the Lattice ISP protocol for programming and tristates all I/O pins, except those used for the programming interface. TDI/SDI Input/Input Pin – Serial data input during ISP programming or Boundary Scan mode. TCK/SCLK Input/Input Pin – Serial data clock during ISP programming or Boundary Scan mode. TMS/MODE Input/Input Pin – Control input during ISP programming or Boundary Scan mode. TDO/SDO Output/Output Pin – Serial data output during ISP programming or Boundary Scan mode. GND Ground (GND) VCC Vcc – Supply voltage (5V). NC1 No Connect. 1. NC pins are not to be connected to any active signals, VCC or GND. Signal Locations: ispGDX160A Signal 208-Pin PQFP 272-Ball BGA TOE 178 A12 RESET 185 D10 Y0, Y1, Y2, Y3, 75, 76, 180, 181 V10, Y10, C11, A11 BSCAN/ispEN 183 B10 TDI/SDI 81 Y12 TCK/SCLK 80 U11 TMS/MODE 79 V11 TDO/SDO 78 W11 GND 6, 15, 25, 35, 44, 54, 63, 77, 91, 100, 110, 119, 129, A1, D4, D8, D13, D17, H4, H17, J9, J10, J11, J12, 139, 148, 159, 168, 182, 195, 204 K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, M11, M12, N4, N17, U4, U8, U13, U17 VCC 1, 17, 33, 49, 65, 89, 105, 121, 137, 153, 170, 184 193 D6, D11, D15, F4, F17, K4, L17, R4, R17, U6, U10, U15 NC1 73, 74, 156, 179 A2, A6, A7, A10, A15, A19, A20, B1, B2, B4, B11, B14, B18, B19, B20, C2, C3, C10, C18, D2, D3, D16, E2, E17, E19, H1, H3, H18, H20, K20, L1, N1, N3, N18, N20, T2, T4, T19, U5, U18, U19, V3, V14, V18, V19, W1, W2, W3, W7, W10, W14, W19, W20, Y1, Y2, Y6, Y9, Y11, Y18, Y20 1. NC pins are not to be connected to any active signals, VCC or GND. 14 Specifications ispGDX Family I/O Locations: ispGDX160A Signal I/O A0 I/O A1 I/O A2 I/O A3 I/O A4 I/O A5 I/O A6 I/O A7 I/O A8 I/O A9 I/O A10 I/O A11 I/O A12 I/O A13 I/O A14 I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 I/O A20 I/O A21 I/O A22 I/O A23 I/O A24 I/O A25 I/O A26 I/O A27 I/O A28 I/O A29 I/O A30 I/O A31 208 272 PQFP BGA 2 3 4 5 7 8 9 10 11 12 13 14 16 18 19 20 21 22 23 24 26 27 28 29 30 31 32 34 36 37 38 39 E4 C1 D1 E3 E1 F3 G4 F2 F1 G3 G2 G1 H2 J4 J3 J2 J1 K2 K3 K1 L2 L3 L4 M1 M2 M3 M4 N2 P1 P2 R1 P3 Signal I/O A32 I/O A33 I/O A34 I/O A35 I/O A36 I/O A37 I/O A38 I/O A39 I/O B0 I/O B1 I/O B2 I/O B3 I/O B4 I/O B5 I/O B6 I/O B7 I/O B8 I/O B9 I/O B10 I/O B11 I/O B12 I/O B13 I/O B14 I/O B15 I/O B16 I/O B17 I/O B18 I/O B19 I/O B20 I/O B21 I/O B22 I/O B23 208 272 PQFP BGA 40 41 42 43 45 46 47 48 50 51 52 53 55 56 57 58 59 60 61 62 64 66 67 68 69 70 71 72 82 83 84 85 R2 T1 P4 R3 U1 T3 U2 V1 U3 V2 W4 V4 Y3 Y4 V5 W5 Y5 V6 U7 W6 V7 Y7 V8 W8 Y8 U9 V9 W9 W12 V12 U12 Y13 Signal 208 PQFP 272 BGA Signal I/O B24 I/O B25 I/O B26 I/O B27 I/O B28 I/O B29 I/O B30 I/O B31 I/O B32 I/O B33 I/O B34 I/O B35 I/O B36 I/O B37 I/O B38 I/O B39 I/O C0 I/O C1 I/O C2 I/O C3 I/O C4 I/O C5 I/O C6 I/O C7 I/O C8 I/O C9 I/O C10 I/O C11 I/O C12 I/O C13 I/O C14 I/O C15 86 87 88 90 92 93 94 95 96 97 98 99 101 102 103 104 106 107 108 109 111 112 113 114 115 116 117 118 120 122 123 124 W13 V13 Y14 Y15 W15 Y16 U14 V15 W16 Y17 V16 W17 U16 V17 W18 Y19 T17 V20 U20 T18 T20 R18 P17 R19 R20 P18 P19 P20 N19 M17 M18 M19 I/O C16 I/O C17 I/O C18 I/O C19 I/O C20 I/O C21 I/O C22 I/O C23 I/O C24 I/O C25 I/O C26 I/O C27 I/O C28 I/O C29 I/O C30 I/O C31 I/O C32 I/O C33 I/O C34 I/O C35 I/O C36 I/O C37 I/O C38 I/O C39 I/O D0 I/O D1 I/O D2 I/O D3 I/O D4 I/O D5 I/O D6 I/O D7 15 208 PQFP 272 BGA Signal 125 126 127 128 130 131 132 133 134 135 136 138 140 141 142 143 144 145 146 147 149 150 151 152 154 155 157 158 160 161 162 163 M20 L19 L18 L20 K19 K18 K17 J20 J19 J18 J17 H19 G20 G19 F20 G18 F19 E20 G17 F18 D20 E18 D19 C20 D18 C19 B17 C17 A18 A17 C16 B16 I/O D8 I/O D9 I/O D10 I/O D11 I/O D12 I/O D13 I/O D14 I/O D15 I/O D16 I/O D17 I/O D18 I/O D19 I/O D20 I/O D21 I/O D22 I/O D23 I/O D24 I/O D25 I/O D26 I/O D27 I/O D28 I/O D29 I/O D30 I/O D31 I/O D32 I/O D33 I/O D34 I/O D35 I/O D36 I/O D37 I/O D38 I/O D39 208 PQFP 272 BGA 164 165 166 167 169 171 172 173 174 175 176 177 186 187 188 189 190 191 192 194 196 197 198 199 200 201 202 203 205 206 207 208 A16 C15 D14 B15 C14 A14 C13 B13 A13 D12 C12 B12 A9 B9 C9 D9 A8 B8 C8 B7 C7 B6 A5 D7 C6 B5 A4 C5 A3 D5 C4 B3 Specifications ispGDX Family Signal Configuration: ispGDX160A ispGDX160A 272-Ball BGA Signal Diagram 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 A NC1 NC1 I/O D4 I/O D5 I/O D8 NC1 I/O D13 I/O D16 TOE Y3 NC1 I/O D20 I/O D24 NC1 NC1 I/O D30 I/O D34 I/O D36 NC1 GND A B NC1 NC1 NC1 I/O D2 I/O D7 I/O D11 NC1 I/O D15 I/O D19 NC1 BSCAN/ ispEN I/O D21 I/O D25 I/O D27 I/O D29 I/O D33 NC1 I/O D39 NC1 NC1 B C I/O C39 I/O D1 NC1 I/O D3 I/O D6 I/O D9 I/O D12 I/O D14 I/O D18 Y2 NC1 I/O D22 I/O D26 I/O D28 I/O D32 I/O D35 I/O D38 NC1 NC1 I/O A1 C D I/O C36 I/O C38 I/O D0 GND NC1 I/O I/O I/O 1 D23 GND D31 VCC D37 GND NC NC1 I/O A2 D E I/O C33 NC1 I/O C37 NC1 F I/O C30 I/O C32 I/O C35 VCC G I/O C28 I/O C29 I/O C31 H NC1 I/O C27 NC1 GND J I/O C23 I/O C24 I/O C25 I/O C26 GND GND GND GND I/O A13 K NC1 I/O C20 I/O C21 I/O C22 L I/O C19 I/O C17 M I/O C16 N VCC I/O I/O GND VCC D10 D17 RESET 2 1 I/O A0 I/O A3 NC1 I/O A4 E ispGDX160A VCC I/O A5 I/O A7 I/O A8 F Bottom View I/O A6 I/O A9 I/O A10 I/O A11 G GND NC1 I/O A12 NC1 H I/O A14 I/O A15 I/O A16 J GND GND GND GND I/O VCC A18 I/O A17 I/O A19 K I/O C18 VCC GND GND GND GND I/O A22 I/O A21 I/O A20 NC1 L I/O C15 I/O C14 GND GND GND GND I/O A26 I/O A25 I/O A24 I/O A23 M NC1 I/O C12 NC1 GND GND NC1 I/O A27 NC1 N P I/O C11 I/O C10 I/O C9 I/O C6 I/O A31 I/O A29 I/O A28 P R I/O C8 I/O C7 I/O C5 VCC I/O VCC A35 I/O A32 I/O A30 R T I/O C4 NC1 I/O C3 I/O C0 NC1 I/O A37 NC1 I/O A33 T U I/O C2 NC1 I/O I/O I/O NC1 GND B36 VCC B30 GND B22 I/O I/O VCC B17 GND B10 VCC NC1 GND I/O B0 I/O A38 I/O A36 U V I/O C1 NC1 NC1 I/O B37 I/O B34 I/O B31 NC1 I/O B25 I/O B21 TMS/ MODE Y0 I/O B18 I/O B14 I/O B12 I/O B9 I/O B6 I/O B3 NC1 I/O B1 I/O A39 V W NC1 NC1 I/O B38 I/O B35 I/O B32 I/O B28 NC1 I/O B24 I/O B20 TDO/ SDO NC1 I/O B19 I/O B15 NC1 I/O B11 I/O B7 I/O B2 NC1 NC1 NC1 W Y NC1 I/O B39 NC1 I/O B33 I/O B29 I/O B27 I/O B26 I/O B23 TDI/ SDI NC1 Y1 NC1 I/O B16 I/O B13 NC1 I/O B8 I/O B5 I/O B4 NC1 NC1 Y 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 I/O C34 I/O C13 I/O A34 TCK/ SCLK 1. NCs are not to be connected to any active signals, Vcc or GND. Note: Ball A1 indicator dot on top side of package. 16 Specifications ispGDX Family Pin Configuration: ispGDX160A Control Data VCC I/O A 0 I/O A 1 I/O A 2 I/O A 3 GND I/O A 4 I/O A 5 I/O A 6 I/O A 7 I/O A 8 I/O A 9 I/O A 10 I/O A 11 GND I/O A 12 VCC I/O A 13 I/O A 14 I/O A 15 I/O A 16 I/O A 17 I/O A 18 I/O A 19 GND I/O A 20 I/O A 21 I/O A 22 I/O A 23 I/O A 24 I/O A 25 I/O A 26 VCC I/O A 27 GND I/O A 28 I/O A 29 I/O A 30 I/O A 31 I/O A 32 I/O A 33 I/O A 34 I/O A 35 GND I/O A 36 I/O A 37 I/O A 38 I/O A 39 VCC I/O B 0 I/O B 1 I/O B 2 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 Data — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 — MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ispGDX160A Top View Data I/O B 3 GND I/O B 4 I/O B 5 I/O B 6 I/O B 7 I/O B 8 I/O B 9 I/O B 10 I/O B 11 GND I/O B 12 VCC I/O B 13 I/O B 14 I/O B 15 I/O B 16 I/O B 17 I/O B 18 I/O B 19 1NC 1NC Y0 Y1 GND TDO/SDO TMS/MODE TCK/SCLK TDI/SDI I/O B 20 I/O B 21 I/O B 22 I/O B 23 I/O B 24 I/O B 25 I/O B 26 VCC I/O B 27 GND I/O B 28 I/O B 29 I/O B 30 I/O B 31 I/O B 32 I/O B 33 I/O B 34 I/O B 35 GND I/O B 36 I/O B 37 I/O B 38 I/O B 39 Control MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — — — — — — — — — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 — MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 Control I/O D 39 MUXsel2 I/O D 38 MUXsel1 I/O D 37 OE I/O D 36 CLK GND — I/O D 35 MUXsel2 I/O D 34 MUXsel1 I/O D 33 OE I/O D 32 CLK I/O D 31 MUXsel2 I/O D 30 MUXsel1 I/O D 29 OE I/O D 28 CLK GND — I/O D 27 MUXsel2 VCC — I/O D 26 MUXsel1 I/O D 25 OE I/O D 24 CLK I/O D 23 MUXsel2 I/O D 22 MUXsel1 I/O D 21 OE I/O D 20 CLK RESET — VCC — BSCAN/ispEN — GND — Y3 — Y2 — NC1 — TOE — I/O D 19 MUXsel2 I/O D 18 MUXsel1 I/O D 17 OE I/O D 16 CLK I/O D 15 MUXsel2 I/O D 14 MUXsel1 I/O D 13 OE VCC — I/O D 12 CLK GND — I/O D 11 MUXsel2 I/O D 10 MUXsel1 I/O D 9 OE I/O D 8 CLK I/O D 7 MUXsel2 I/O D 6 MUXsel1 I/O D 5 OE I/O D 4 CLK GND — I/O D 3 MUXsel2 I/O D 2 MUXsel1 ispGDX160A 208-Pin PQFP (with Heat Spreader) Pinout Diagram 1. No Connect Pins (NC) are not to be connected to any active signal, Vcc or GND. 17 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 Data Control NC1 I/O D1 I/O D 0 VCC I/O C 39 I/O C 38 I/O C 37 I/O C 36 GND I/O C 35 I/O C 34 I/O C 33 I/O C 32 I/O C 31 I/O C 30 I/O C 29 I/O C 28 GND I/O C 27 VCC I/O C 26 I/O C 25 I/O C 24 I/O C 23 I/O C 22 I/O C 21 I/O C 20 GND I/O C 19 I/O C 18 I/O C 17 I/O C 16 I/O C 15 I/O C 14 I/O C 13 VCC I/O C 12 GND I/O C 11 I/O C 10 I/O C 9 I/O C 8 I/O C 7 I/O C 6 I/O C 5 I/O C 4 GND I/O C 3 I/O C 2 I/O C 1 I/O C 0 VCC — OE CLK — MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 — MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE — CLK — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK — Specifications ispGDX Family Signal Locations: ispGDX120A Signal 176-Pin TQFP 160-Pin PQFP TOE 150 136 RESET 156 142 Y0, Y1, Y2, Y3, 63, 64, 152, 153 57, 58, 138, 139 BSCAN/ispEN 154 140 TDI/SDI 69 63 TCK/SCLK 68 62 TMS/MODE 67 61 TDO/SDO 66 60 GND 8, 17, 27, 37, 50, 65, 77, 91, 101, 110, 120, 129, 144, 161, 170 6, 15, 25, 35, 44, 59, 71, 81, 91, 100, 110, 119, 130, 147, 156 VCC 3, 19, 35, 55, 79, 99, 115, 136, 155, 159 1, 17, 33, 49, 73, 89, 105, 122, 141, 145 1 1, 2, 43, 44, 45, 46, 61, 62, 87, 88, 89, 90, 130, 131, 55, 56, 120, 137 132, 133, 134, 151, 175, 176 NC 1. NC pins are not to be connected to any active signals, VCC or GND. I/O Locations: ispGDX120A Signal I/O A0 I/O A1 I/O A2 I/O A3 I/O A4 I/O A5 I/O A6 I/O A7 I/O A8 I/O A9 I/O A10 I/O A11 I/O A12 I/O A13 I/O A14 I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 I/O A20 I/O A21 I/O A22 I/O A23 176 160 TQFP PQFP 4 5 6 7 9 10 11 12 13 14 15 16 18 20 21 22 23 24 25 26 28 29 30 31 2 3 4 5 7 8 9 10 11 12 13 14 16 18 19 20 21 22 23 24 26 27 28 29 Signal I/O A24 I/O A25 I/O A26 I/O A27 I/O A28 I/O A29 I/O B0 I/O B1 I/O B2 I/O B3 I/O B4 I/O B5 I/O B6 I/O B7 I/O B8 I/O B9 I/O B10 I/O B11 I/O B12 I/O B13 I/O B14 I/O B15 I/O B16 I/O B17 176 160 TQFP PQFP 32 33 34 36 38 39 40 41 42 47 48 49 51 52 53 54 56 57 58 59 60 70 71 72 30 31 32 34 36 37 38 39 40 41 42 43 45 46 47 48 50 51 52 53 54 64 65 66 Signal I/O B18 I/O B19 I/O B20 I/O B21 I/O B22 I/O B23 I/O B24 I/O B25 I/O B26 I/O B27 I/O B28 I/O B29 I/O C0 I/O C1 I/O C2 I/O C3 I/O C4 I/O C5 I/O C6 I/O C7 I/O C8 I/O C9 I/O C10 I/O C11 176 160 TQFP PQFP 73 74 75 76 78 80 81 82 83 84 85 86 92 93 94 95 96 97 98 100 102 103 104 105 18 67 68 69 70 72 74 75 76 77 78 79 80 82 83 84 85 86 87 88 90 92 93 94 95 Signal I/O C12 I/O C13 I/O C14 I/O C15 I/O C16 I/O C17 I/O C18 I/O C19 I/O C20 I/O C21 I/O C22 I/O C23 I/O C24 I/O C25 I/O C26 I/O C27 I/O C28 I/O C29 I/O D0 I/O D1 I/O D2 I/O D3 I/O D4 I/O D5 176 160 TQFP PQFP 106 107 108 109 111 112 113 114 116 117 118 119 121 122 123 124 125 126 127 128 135 137 138 139 96 97 98 99 101 102 103 104 106 107 108 109 111 112 113 114 115 116 117 118 121 123 124 125 Signal I/O D6 I/O D7 I/O D8 I/O D9 I/O D10 I/O D11 I/O D12 I/O D13 I/O D14 I/O D15 I/O D16 I/O D17 I/O D18 I/O D19 I/O D20 I/O D21 I/O D22 I/O D23 I/O D24 I/O D25 I/O D26 I/O D27 I/O D28 I/O D29 176 160 TQFP PQFP 140 141 142 143 145 146 147 148 149 157 158 160 162 163 164 165 166 167 168 169 171 172 173 174 126 127 128 129 131 132 133 134 135 143 144 146 148 149 150 151 152 153 154 155 157 158 159 160 Specifications ispGDX Family Pin Configuration: ispGDX120A Control Data Data 1NC 1NC VCC I/O A 0 I/O A 1 I/O A 2 I/O A 3 GND I/O A 4 I/O A 5 I/O A 6 I/O A 7 I/O A 8 I/O A 9 I/O A 10 I/O A 11 GND I/O A 12 VCC I/O A 13 I/O A 14 I/O A 15 I/O A 16 I/O A 17 I/O A 18 I/O A 19 GND I/O A 20 I/O A 21 I/O A 22 I/O A 23 I/O A 24 I/O A 25 I/O A 26 VCC I/O A 27 GND I/O A 28 I/O A 29 I/O B 0 I/O B1 I/O B 2 1NC 1NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ispGDX120A Top View Data 1NC Control — — OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK — — — — — — — — — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — — 1NC I/O B 3 I/O B 4 I/O B 5 GND I/O B 6 I/O B 7 I/O B 8 I/O B 9 VCC I/O B 10 I/O B 11 I/O B 12 I/O B 13 I/O B 14 1NC 1NC Y0 Y1 GND TDO/SDO TMS/MODE TCK/SCLK TDI/SDI I/O B 15 I/O B 16 I/O B 17 I/O B 18 I/O B 19 I/O B 20 I/O B 21 GND I/O B 22 VCC I/O B 23 I/O B 24 I/O B 25 I/O B 26 I/O B 27 I/O B 28 I/O B 29 1NC 1NC 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 — — — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 — MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK — — 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 Control NC1 — NC1 — I/O D 29 MUXsel2 I/O D 28 MUXsel1 I/O D 27 OE I/O D 26 CLK GND — I/O D 25 MUXsel2 I/O D 24 MUXsel1 I/O D 23 OE I/O D 22 CLK I/O D 21 MUXsel2 I/O D 20 MUXsel1 I/O D 19 OE I/O D 18 CLK GND — I/O D 17 MUXsel2 VCC — I/O D 16 MUXsel1 I/O D 15 OE RESET — VCC — 2 BSCAN/ispEN — Y3 — Y2 — NC — TOE — I/O D 14 CLK I/O D 13 MUXsel2 I/O D 12 MUXsel1 I/O D 11 OE I/O D 10 CLK GND — I/O D 9 MUXsel2 I/O D 8 MUXsel1 I/O D 7 OE I/O D 6 CLK I/O D 5 MUXsel2 I/O D 4 MUXsel1 I/O D 3 OE VCC — I/O D 2 CLK 1 NC — NC1 — ispGDX120A 176-Pin TQFP Pinout Diagram 1. NC pins are not to be connected to any active signals, VCC or GND. 19 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 Data Control NC1 NC1 NC1 GND I/O D 1 I/O D 0 I/O C 29 I/O C 28 I/O C 27 I/O C 26 I/O C 25 I/O C 24 GND I/O C 23 I/O C 22 I/O C 21 I/O C 20 VCC I/O C 19 I/O C 18 I/O C 17 I/O C 16 GND I/O C 15 I/O C 14 I/O C 13 I/O C 12 I/O C 11 I/O C 10 I/O C 9 I/O C 8 GND I/O C 7 VCC I/O C 6 I/O C 5 I/O C 4 I/O C 3 I/O C 2 I/O C 1 I/O C 0 GND NC1 NC1 — — — — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 — MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — — — Specifications ispGDX Family Pin Configuration: ispGDX120A Control Data 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 I/O D 29 MUXsel2 I/O D 28 MUXsel1 I/O D 27 OE I/O D 26 CLK GND — I/O D 25 MUXsel2 I/O D 24 MUXsel1 I/O D 23 OE I/O D 22 CLK I/O D 21 MUXsel2 I/O D 20 MUXsel1 I/O D 19 OE I/O D 18 CLK GND — I/O D 17 MUXsel2 VCC — I/O D 16 MUXsel1 I/O D 15 OE RESET — VCC — BSCAN/ispEN — Y3 — Y2 — NC1 — TOE — I/O D 14 CLK I/O D 13 MUXsel2 I/O D 12 MUXsel1 I/O D 11 OE I/O D 10 CLK GND — I/O D 9 MUXsel2 I/O D 8 MUXsel1 I/O D 7 OE I/O D 6 CLK I/O D 5 MUXsel2 I/O D 4 MUXsel1 I/O D 3 OE VCC — I/O D 2 CLK ispGDX120A 160-Pin PQFP Pinout Diagram Data — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK OE MUXsel1 — MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK VCC I/O A 0 I/O A 1 I/O A 2 I/O A 3 GND I/O A 4 I/O A 5 I/O A 6 I/O A 7 I/O A 8 I/O A 9 I/O A 10 I/O A 11 GND I/O A 12 VCC I/O A 13 I/O A 14 I/O A 15 I/O A 16 I/O A 17 I/O A 18 I/O A 19 GND I/O A 20 I/O A 21 I/O A 22 I/O A 23 I/O A 24 I/O A 25 I/O A 26 VCC I/O A 27 GND I/O A 28 I/O A 29 I/O B 0 I/O B1 I/O B 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ispGDX120A Top View Data I/O B 3 I/O B 4 I/O B 5 GND I/O B 6 I/O B 7 I/O B 8 I/O B 9 VCC I/O B 10 I/O B 11 I/O B 12 I/O B 13 I/O B 14 1NC 1NC Y0 Y1 GND TDO/SDO TMS/MODE TCK/SCLK TDI/SDI I/O B 15 I/O B 16 I/O B 17 I/O B 18 I/O B 19 I/O B 20 I/O B 21 GND I/O B 22 VCC I/O B 23 I/O B 24 I/O B 25 I/O B 26 I/O B 27 I/O B 28 I/O B 29 Control OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 — CLK OE MUXsel1 MUXsel2 CLK — — — — — — — — — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 — CLK — OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Control 1. NC pins are not to be connected to any active signals, VCC or GND. 20 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 Data Control NC1 GND I/O D 1 I/O D 0 I/O C 29 I/O C 28 I/O C 27 I/O C 26 I/O C 25 I/O C 24 GND I/O C 23 I/O C 22 I/O C 21 I/O C 20 VCC I/O C 19 I/O C 18 I/O C 17 I/O C 16 GND I/O C 15 I/O C 14 I/O C 13 I/O C 12 I/O C 11 I/O C 10 I/O C 9 I/O C 8 GND I/O C 7 VCC I/O C 6 I/O C 5 I/O C 4 I/O C 3 I/O C 2 I/O C 1 I/O C 0 GND — — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK — MUXsel2 MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — MUXsel2 — MUXsel1 OE CLK MUXsel2 MUXsel1 OE CLK — Specifications ispGDX Family Signal Locations: ispGDX80A Signal 100-Pin TQFP Y1/TOE 87 Y0 38 RESET 89 BSCAN/ispEN 35 TDI/SDI 39 TCK/SCLK 36 TMS/MODE 86 TDO/SDO 85 GND 6, 18, 29, 45, 56, 68, 79, 95 VCC 12, 37, 62, 88 I/O Locations: ispGDX80A Signal I/O A0 I/O A1 I/O A2 I/O A3 I/O A4 I/O A5 I/O A6 I/O A7 I/O A8 I/O A9 I/O A10 I/O A11 I/O A12 I/O A13 I/O A14 I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 100 TQFP 1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 19 20 21 22 23 Signal I/O B0 I/O B1 I/O B2 I/O B3 I/O B4 I/O B5 I/O B6 I/O B7 I/O B8 I/O B9 I/O B10 I/O B11 I/O B12 I/O B13 I/O B14 I/O B15 I/O B16 I/O B17 I/O B18 I/O B19 100 TQFP Signal 100 TQFP Signal 24 25 26 27 28 30 31 32 33 34 40 41 42 43 44 46 47 48 49 50 I/O C0 I/O C1 I/O C2 I/O C3 I/O C4 I/O C5 I/O C6 I/O C7 I/O C8 I/O C9 I/O C10 I/O C11 I/O C12 I/O C13 I/O C14 I/O C15 I/O C16 I/O C17 I/O C18 I/O C19 51 52 53 54 55 57 58 59 60 61 63 64 65 66 67 69 70 71 72 73 21 I/O D0 I/O D1 I/O D2 I/O D3 I/O D4 I/O D5 I/O D6 I/O D7 I/O D8 I/O D9 I/O D10 I/O D11 I/O D12 I/O D13 I/O D14 I/O D15 I/O D16 I/O D17 I/O D18 I/O D19 100 TQFP 74 75 76 77 78 80 81 82 83 84 90 91 92 93 94 96 97 98 99 100 Specifications ispGDX Family Pin Configuration: ispGDX80A Data I/O A0 I/O A1 I/O A2 I/O A3 I/O A4 GND I/O A5 I/O A6 I/O A7 I/O A8 I/O A9 VCC I/O A10 I/O A11 I/O A12 I/O A13 I/O A14 GND I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 I/O B0 I/O B1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 I/O D19 MUXsel2 I/O D18 MUXsel1 I/O D17 OE I/O D16 CLK I/O D15 MUXsel2 GND — I/O D14 MUXsel1 I/O D13 OE I/O D12 CLK I/O D11 MUXsel2 I/O D10 MUXsel1 RESET — VCC — — Y1/TOE1 TMS/MODE1 — — TDO/SDO1 OE I/O D9 CLK I/O D8 MUXsel2 I/O D7 MUXsel1 I/O D6 OE I/O D5 — GND CLK I/O D4 MUXsel2 I/O D3 MUXsel1 I/O D2 ispGDX80A Top View Data Control I/O B2 MUXsel1 I/O B3 MUXsel2 I/O B4 CLK GND — I/O B5 OE I/O B6 MUXsel1 I/O B7 MUXsel2 I/O B8 CLK I/O B9 OE — BSCAN/ispEN 1TCK/SCLK — VCC — Y0 — 1TDI/SDI — I/O B10 MUXsel1 I/O B11 MUXsel2 I/O B12 CLK I/O B13 OE I/O B14 MUXsel1 GND — I/O B15 MUXsel2 I/O B16 CLK I/O B17 OE I/O B18 MUXsel1 I/O B19 MUXsel2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Control CLK OE MUXsel1 MUXsel2 CLK — OE MUXsel1 MUXsel2 CLK OE — MUXsel1 MUXsel2 CLK OE MUXsel1 — MUXsel2 CLK OE MUXsel1 MUXsel2 CLK OE 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Data Control ispGDX80A 100-Pin TQFP Pinout Diagram 1. Pins have dual function capability. 22 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 Data Control I/O D1 I/O D0 I/O C19 I/O C18 I/O C17 I/O C16 I/O C15 GND I/O C14 I/O C13 I/O C12 I/O C11 I/O C10 VCC I/O C9 I/O C8 I/O C7 I/O C6 I/O C5 GND I/O C4 I/O C3 I/O C2 I/O C1 I/O C0 OE CLK MUXsel2 MUXsel1 OE CLK MUXsel2 — MUXsel1 OE CLK MUXsel2 MUXsel1 — OE CLK MUXsel2 MUXsel1 OE — CLK MUXsel2 MUXsel1 OE CLK Specifications ispGDX Family Part Number Description ispGDX XXXX – X XXXX X Device Family Grade Blank = Commercial Device Number 160A 120A 80A Package Q208 = PQFP (with Heat Spreader) T176 = TQFP Q160 = PQFP B272 = BGA T100 = TQFP Speed 5 = 5ns Tpd 7 = 7ns Tpd 0212/ispGDX Ordering Information COMMERCIAL I/O PINS 160A 120 80 tpd (ns) ORDERING NUMBER PACKAGE 5 ispGDX160A-5Q208 208-Pin PQFP 5 ispGDX160A-5B272 272-Ball BGA 7 ispGDX160A-7Q208 208-Pin PQFP 7 ispGDX160A-7B272 272-Ball BGA 5 ispGDX120A-5T176 176-Pin TQFP 5 ispGDX120A-5Q160 160-Pin PQFP 7 ispGDX120A-7T176 176-Pin TQFP 7 ispGDX120A-7Q160 160-Pin PQFP 5 ispGDX80A-5T100 100-Pin TQFP 7 ispGDX80A-7T100 100-Pin TQFP Table 2-0041/ispGDX 23