MGA-635P8 Ultra Low Noise, High Linearity Low Noise Amplifier Data Sheet Description Features Avago Technologies’ MGA-635P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise and high linearity achieved through the use of Avago Technologies’ proprietary 0.25mm GaAs Enhancement-mode pHEMT process. It is housed in a miniature 2.0 x 2.0 x 0.75mm3 8-pin Quad-Flat-Non-Lead (QFN) package. It is designed for optimum use from 2.3GHz up to 4GHz. The compact footprint and low profile coupled with low noise, high gain and high linearity make the MGA-635P8 an ideal choice as a low noise amplifier for cellular infrastructure for LTE, GSM and CDMA. For optimum performance at lower frequency from 450MHz up to 1.5GHz, MGA-633P8 is recommended. For optimum performance at frequency from 1.5GHz up to 2.3GHz, MGA-634P8 is recommended. All these 3 products, MGA-633P8, MGA-634P8 and MGA-635P8 share the same package and pinout configuration. • • • • • • Pin Configuration and Package Marking 2.0 x 2.0 x 0.75 mm3 8-lead QFN [1] [8] [2] [7] [3] 35X [6] [5] [4] Top View Pin 1 – Vbias Pin 2 – RFinput Pin 3 – Not Used Pin 4 – Not Used [8] [7] [1] [2] [6] [5] [3] [4] Ultra Low noise Figure High linearity performance GaAs E-pHEMT Technology[1] Low cost small package size: 2.0 x 2.0 x 0.75 mm3 Excellent uniformity in product specifications Tape-and-Reel packaging option available Specifications 2.5GHz; 5V, 56mA • • • • • 18 dB Gain 0.56 dB Noise Figure 12.5 dB Input Return Loss 35.9 dBm Output IP3 22 dBm Output Power at 1dB gain compression Applications • Low noise amplifier for cellular infrastructure for LTE, GSM and CDMA. • Other ultra low noise application. Simplified Schematic Vdd Rbias Bottom View Note: Package marking provides orientation and identification “35” = Device Code, where X is the month code. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 50 V (Class A) ESD Human Body Model = 500 V (Class 1B) Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. R1 C5 Pin 5 – Not Used Pin 6 – Not Used Pin 7 – RFoutput/Vdd Pin 8 – Not Used Centre tab - Ground C4 C3 RFin C6 R2 L1 C1 L2 [1] bias [8] [2] [7] [3] [6] [4] [5] C2 RFout Notes: • The schematic is shown with the assumption that similar PCB is used for all MGA-633P8, MGA-634P8 and MGA-635P8. • Detail of the components needed for this product is shown in Table 1. • Enhancement mode technology employs positive gate voltage, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. • Good RF practice requires all unused pins to be earthed. Absolute Maximum Rating [1] TA=25°C Thermal Resistance Symbol Parameter Units Absolute Maximum Vdd Device Voltage, RF output to ground V 5.5 Vbias Gate Voltage V 0.7 Pin,max CW RF Input Power (Vdd = 5.0V, Id = 50 mA) dBm +20 Pdiss Total Power Dissipation [2] W 0.5 Tj Junction Temperature °C 150 Tstg Storage Temperature °C -65 to 150 Thermal Resistance [3] (Vdd = 5.0V, Idd = 50mA) θjc = 75°C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Power dissipation with device turned on. Board temperature TB is 25°C. Derate at 13mW/°C for TB>112°C. 3. Thermal resistance measured using Infra-Red Measurement Technique Electrical Specifications [1], [4] RF performance at TA = 25°C, Vdd = 5V, Rbias = 3.6 kOhm, 2.5 GHz, measured on demo board in Figure 1 with component listed in Table 1 for 2.5 GHz matching. Symbol Parameter and Test Condition Units Min. Typ. Max. Idd Drain Current mA 46 56 71 Gain Gain dB 16.5 18 19.5 OIP3 [2] 32.5 35.9 Output Third Order Intercept Point dBm NF [3] Noise Figure dB 0.56 OP1dB Output Power at 1dB Gain Compression dBm 22 IRL Input Return Loss, 50Ω source dB 12.5 ORL Output Return Loss, 50Ω load dB 12 REV ISOL Reverse Isolation dB 35 0.78 Notes: 1. Measurements at 2.5 GHz obtained using demo board described in Figure 1. 2. OIP3 test condition: FRF1 = 2.5 GHz, FRF2 = 2.501 GHz with input power of -10dBm per tone. 3. For NF data, board losses of the input have not been de-embedded. 4. Use proper bias, heatsink and derating to ensure maximum device temperature is not exceeded. See absolute maximum ratings and application note for more details. 2 Product Consistency Distribution Charts [1, 2] LSL USL USL Idd Max: 71 Min: 46 Mean: 56 45 50 55 60 65 Noise Figure Max: 0.78 Mean: 0.56 70 0.45 Figure 1. Idd @ 2.5GHz, 5V, 56mA Mean = 56 0.5 0.65 0.7 LSL OIP3 Min: 32.5 Mean: 35.9 33 0.6 34 35 36 37 Figure 3. OIP3 @ 2.5GHz, 5V, 56mA Mean = 35.9 0.75 0.8 Figure 2. Noise Figure @ 2.5GHz, 5V, 56mA Mean = 0.56 LSL 32 0.55 38 39 USL Gain Max: 19.5 Min: 16.5 Mean: 18 40 15.8 16.4 17 17.4 18 18.4 19 19.4 20 Figure 4. Gain @ 2.5GHz, 5V, 56mA Mean = 18 Notes: 1. Distribution data samples are 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 2. Circuit Losses have not been de-embedded from the actual measurements. 3 Demo Board Layout Demo Board Schematic C5 (4.7uF) C3 (10pF) Rbias (3.6kOhm) R1 (49.9 Ohm) Vdd C6 (4.7uF) R2 (0 Ohm) L1 (6.8nH) C1 (1000pF) Figure 5. Demo Board Layout Diagram – Recommended PCB material is 10 mils Rogers RO4350. – Suggested component values may vary according to layout and PCB material. Part Size Value Detail Part Number C1, C2 0402 1000pF (Murata) GRM155R71H102KA01E L1 0402 6.8nH (CoilCraft) 0402CS-6N8XGLU L2 0402 6.8nH (Toko) LLP1005-FH6N8C C3, C4 0402 10pF (Murata) GRM1555C1H100JZ01E C5, C6 0805 4.7uF (Murata) GRM21BR60J475KA11L R1 0402 49.9 Ohm (Rohm) MCR01 MZS F 49R9 R2 0402 0 Ohm (Kamaya) RMC1/16S-JPTH Rbias 0402 3.6 kohm (Koa) RK73B1ETTP 4 bias [8] [2] [7] [3] [6] [4] [5] Figure 6. Demo Board Schematic Diagram Table 1. Component list for 2.5 GHz matching Note: C1, C2 are DC Blocking capacitors L1 input match for NF L2 output match for OIP3 C3, C4, C5, C6 are bypass capacitors R1 is stabilizing resistor Rbias is the biasing resistor L2 (6.8nH) [1] RFin C4 (10pF) C2 (1000pF) MGA-635P8 Typical Performance RF performance at TA = 25°C, Vdd = 5V, Id = 55mA, measured using 50ohm input and output board, unless otherwise stated. OIP3 test condition: FRF1 = 2.5 GHz, FRF2 = 2.501 GHz with input power of -10dBm per tone. 0.6 0.4 0.55 0.38 Fmin (dB) Fmin (dB) 0.5 0.45 0.4 40 50 55 Idd (mA) 70 Gain (dB) Gain (dB) 40 50 55 Idd (mA) 70 80 45 40 40 35 35 30 30 25 20 70 80 15 10 5 5 55 Idd(m A) 70 80 Figure 11. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2.5GHz. 40 50 55 Idd (mA) 70 80 20 10 50 55 Idd (mA) 25 15 40 50 Figure 10. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz. OIP3(dBm) OIP3(dBm) 22 20 18 16 14 12 10 8 6 4 2 0 45 0 40 Figure 8. Fmin vs Idd at 5V at 2GHz. Figure 9. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2.5GHz. 5 0.3 80 Figure 7. Fmin vs Idd at 5V at 2.5GHz. 20 18 16 14 12 10 8 6 4 2 0 0.34 0.32 0.35 0.3 0.36 0 40 50 55 Idd(m A) 70 80 Figure 12. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz. OP1dB (dBm) OP1dB (dBm) 24 22 20 18 16 14 12 10 8 6 4 2 0 40 50 55 Idd (mA) 70 80 0.9 45 0.8 40 0.7 35 0.6 30 0.5 0.4 0.3 0.2 55mA 40mA 80mA 0.1 0 1.9 2.0 2.2 2.5 2.7 Frequency (GHz) 3.3 70 80 25 20 15 25°C 85°C -40°C 0 1.9 2 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 16. OIP3 vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 55mA 1.2 1 25°C -40°C 85°C 0.8 0.6 0.4 25°C 85°C -40°C 1.9 2 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 17. Gain vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 55mA 6 55 Idd (mA) 5 Fmin (dB) Gain (dB) 22 20 18 16 14 12 10 8 6 4 2 0 50 10 3.5 Figure 15. Fmin vs Frequency and Idd at 5V 40 Figure 14. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2GHz. OIP3 (dBm) Fmin (dB) Figure 13. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 2.5GHz. 24 22 20 18 16 14 12 10 8 6 4 2 0 0.2 0 1.9 2.0 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 18. Fmin vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 55mA OP1dB(dBm) 24 22 20 18 16 14 12 10 8 6 4 2 0 25°C 85°C -40°C 1.9 2 2.2 2.5 2.7 Frequency(GHz) 3.3 3.5 Figure 19. OP1dB vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 55mA Below is the table showing the MGA-635P8 Reflection Coefficient Parameters tuned for maximum OIP3, Vdd = 5V, Idd = 55mA Gamma Load position Frequency (GHz) Magnitude Angle OIP3 (dBm) OP1dB (dBm) 1.9 0.28 -30 39.8 19.66 2 0.28 -60 40.9 20.46 2.2 0.28 -60 42.2 19.76 2.5 0.28 -60 41.63 20.26 2.7 0.28 -60 42.17 19.86 3.3 0.14 0 40.44 21.98 3.5 0.14 -60 41.5 21.46 RFinput Reference Plane [1] 7 [8] [2] [7] [3] [6] [5] [4] Figure 20 bias RFoutput Reference Plane Notes: 1. The maximum OIP3 values are calculated based on Load pull measurements on approximately 136 different impedances using Focus’ Load Pull test system. 2. Measurements are conducted on 0.010 inch think ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 20. 3. Gamma Load for maximum OIP3 with biasing of 5V 40mA, 5V 50mA, 5V 55mA, 5V 70mA and 5V 80mA from 1.9GHz to 3.5GHz are available upon request. MGA-635P8 Typical Performance in Demoboard 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 25 20 Gain (dB) NF (dB) RF performance at TA = 25°C, Vdd = 5V, Rbias = 3.6kOhm, measured on demo board in Figure. 5 with component list in Table 1 for 2.5 GHz matching, unless otherwise stated. 25°C 85°C -40°C Figure 21. NF vs Frequency vs Temperature 0 36 OP1dB (dBm) OIP3 (dBm) 35 34 33 32 25°C 85°C -40°C 31 2.3 2.5 2.7 2.9 Frequency (GHz) 3.1 3.3 3.5 IRL Gain Rev Iso ORL 1.5 2 2.5 3 Frequency (GHz) 3.5 Figure 25. S-Parameter performance with DUT on demoboard shown in Figure 1. 8 1.5 2 2.5 3 Frequency (GHz) 3.5 4 24 23.5 23 22.5 22 21.5 21 20.5 20 19.5 19 25°C 85°C -40°C 1.9 2.1 2.3 2.5 2.7 2.9 Frequency (GHz) 3.1 3.3 3.5 Figure 24. OP1dB vs Frequency vs Temperature K-factor IRL, ORL, Gain, Rev Iso (dB) Figure 23. OIP3 vs Frequency vs Temperature 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 25°C 85°C -40°C Figure 22. Gain vs Frequency vs Temperature 37 2.1 10 5 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Frequency (GHz) 30 1.9 15 4 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 25°C -40°C 85°C 0 2 4 6 8 10 12 Frequency (GHz) Figure 26. K-factor vs Frequency vs Temperature 14 16 18 20 80 25 75 20 70 Gain (dB) Idd (mA) 65 60 55 50 40 2.5 3 3.5 4 Rbias (kohm) 4.5 1.1 0.9 OP1dB (dBm) NF (dB) 1 0.8 0.7 0.6 46mA 56mA 76mA 0.5 0.4 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 Frequency (GHz) Figure 29. NF vs Frequency vs Idd 36 35 34 33 32 44mA 56mA 76mA 31 2.1 2.5 3 Frequency (GHz) 2.3 2.5 2.7 2.9 Frequency (GHz) Figure 31. OIP3 vs Frequency vs Idd 24 23.5 23 22.5 22 21.5 21 20.5 20 19.5 19 3.5 4 44mA 56mA 76mA 1.9 2.1 2.3 2.5 2.7 2.9 Frequency (GHz) Figure 30. OP1dB vs Frequency vs Idd 37 1.9 2 Figure 28. Gain vs Frequency vs Idd 1.2 OIP3 (dBm) 46mA 56mA 76mA 0 1.5 5 Figure 27. Idd vs Rbias 9 10 5 45 30 15 3.1 3.3 3.5 3.1 3.3 3.5 MGA-635P8 Typical Scattering Parameters, Vdd = 5V, Idd = 55mA Freq GHz S11 Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. 0.10 0.24 -164.18 4.79 1.74 -116.80 0.00 28.89 0.97 165.96 0.50 0.51 146.66 12.63 4.28 -176.70 0.00 11.09 0.76 95.52 0.90 0.51 54.95 21.10 11.35 146.58 0.00 127.98 0.53 27.80 1.00 0.43 22.28 22.61 13.51 120.90 0.00 108.37 0.45 4.76 1.50 0.18 -140.63 21.25 11.55 44.76 0.01 21.99 0.32 -18.00 1.90 0.21 148.17 20.14 10.16 -12.86 0.01 -17.75 0.27 -100.37 2.00 0.22 134.07 19.66 9.62 -26.25 0.01 -27.60 0.26 -117.68 2.50 0.22 82.31 17.84 7.80 -79.07 0.02 -66.00 0.28 177.67 3.00 0.21 32.06 16.24 6.49 -129.74 0.02 -104.02 0.31 123.03 4.00 0.21 -75.77 13.85 4.93 136.31 0.02 -176.60 0.33 27.43 5.00 0.34 -170.25 11.82 3.90 43.71 0.03 108.97 0.34 -72.61 6.00 0.49 117.14 9.60 3.02 -47.56 0.04 32.85 0.40 -172.92 7.00 0.58 55.67 7.36 2.33 -135.54 0.05 -41.28 0.49 100.13 8.00 0.65 -0.44 5.76 1.94 137.70 0.06 -115.67 0.52 23.58 9.00 0.77 -61.44 4.57 1.69 26.68 0.07 144.09 0.29 -19.28 10.00 0.57 -132.08 -3.33 0.68 -13.14 0.04 114.32 0.76 -86.10 11.00 0.43 154.00 -1.88 0.81 -93.83 0.06 48.62 0.74 -157.05 12.00 0.34 46.54 -0.76 0.92 -178.96 0.10 -31.73 0.75 128.18 13.00 0.48 -77.31 -0.38 0.96 75.14 0.13 -130.43 0.56 29.77 14.00 0.66 -167.80 -4.09 0.62 -39.54 0.08 121.55 0.32 -127.96 15.00 0.74 128.38 -10.45 0.30 -127.69 0.05 64.82 0.38 123.39 16.00 0.82 75.84 -14.01 0.20 159.83 0.05 -35.43 0.54 75.09 17.00 0.79 21.15 -16.61 0.15 89.69 0.02 -156.96 0.55 19.53 18.00 0.64 -32.15 -16.86 0.14 17.83 0.01 -81.66 0.58 2.24 19.00 0.24 -33.81 -20.44 0.10 -71.49 0.03 155.22 0.71 -44.84 20.00 0.06 -112.21 -18.83 0.11 -156.50 0.12 66.14 0.70 -107.02 RFinput Reference Plane S21 [1] 10 [8] [2] [7] [3] [6] [5] [4] Figure 32 bias RFoutput Reference Plane S12 S22 Typical Noise Parameters, Vdd = 5V, Idd = 55mA Part Number Ordering Information Freq GHz Fmin dB Γopt Mag. Γopt Ang. Rn/50 Part Number No. of Devices Container 1.9 0.38 0.2 95.5 0.05 MGA-635P8-BLKG 100 Antistatic Bag 2 0.39 0.206 96.4 0.06 MGA-635P8-TR1G 3000 7 inch Reel 2.2 0.45 0.205 113.2 0.05 2.5 0.53 0.216 128.8 0.05 2.7 0.60 0.214 163.5 0.04 3.3 0.73 0.292 172.7 0.04 3.5 0.77 0.289 174.7 0.04 Notes: 1. The Fmin values are based on noise figure measurements at 100 different impedances using Focus source pull test system. From these measurements a true Fmin is calculated. 2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in figure 32. 3. S2P file with scattering and noise parameters for biasing 5V 40mA, 5V 55mA, 5V 70mA and 5V 80mA are available upon request. SLP2X2 Package PIN 1 DOT BY MARKING 2.00±0.050 0.203 Ref. 2.00±0.050 35X 0.000–0.05 0.75±0.05 Top View Side View 0.60±0.050 Exp. DAP PIN #1 IDENTIFICATION R0.100 0.35±0.050 1.20±0.050 Exp. DAP 1.50 Ref. 0.50 Bsc 0.25±0.050 Bottom View 11 Notes: 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal burr. Recommended PCB Land Pattern and Stencil Design 2.20 2.16 1.75 0.56 0.50 1.75 0.00 0.80 0.50 0.50 0.22 0.25 0.170 0.45 R0.15 0.40 0.05 (all SM gaps) 0.30 Stencil Opening Land Pattern 1.75 0.56 0.50 0.50 Metal surface R0.15 0.21 1.50 Soldermask Open 0.17 Combination of Land Pattern and Stencil Opening Note: 1. Recommended Land Pattern and Stencil Opening 2. Stencil thickness is 0.1mm (4 mils) 3. All dimension are in mm unless otherwise specified 12 1.72 1.50 1.50 1.20 0.50 0.48 0.21 Device Orientation REEL 4 mm 8 mm CARRIER TAPE 35X USER FEED DIRECTION COVER TAPE Tape Dimensions D P PO P2 E F W + + D1 t1 Tt KO 10° MAX AO DESCRIPTION LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER PERFORATION DIAMETER PITCH POSITION CARRIER TAPE WIDTH CAVITY COVER TAPE DISTANCE 13 10° MAX BO THICKNESS WIDTH TAPE THICKNESS CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) SYMBOL A0 B0 K0 P D1 D P0 E W t1 C Tt F SIZE (mm) 2.30 ± 0.05 2.30 ± 0.05 1.00 ± 0.05 4.00 ± 0.10 1.00 + 0.25 1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10 8.00 ± 0.30 8.00 ± 0.10 0.254 ± 0.02 5.4 ± 0.10 0.062 ± 0.001 3.50 ± 0.05 SIZE (INCHES) 0.091 ± 0.004 0.091 ± 0.004 0.039 ± 0.002 0.157 ± 0.004 0.039 + 0.002 0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004 0.315 ± 0.012 0.315 ± 0.004 0.010 ± 0.0008 0.205 ± 0.004 0.0025 ± 0.0004 0.138 ± 0.002 P2 2.00 ± 0.05 0.079 ± 0.002 35X 35X 35X Reel Dimensions – 7 inch 6.25mm EMBOSSED LETTERS LETTERING THICKNESS: 1.6mm SLOT HOLE "a" SEE DETAIL "X" Ø178.0±0.5 SLOT HOLE "b" FRONT BACK 6 PS SLOT HOLE(2x) 180° APART. 6 PS RECYCLE LOGO SLOT HOLE "a": 3.0±0.5mm(1x) SLOT HOLE "b": 2.5±0.5mm(1x) FRONT VIEW 1.5 MIN. 7.9 - 10.9** +1.5* 8.4 -0.0 45° +0.5 Ø13.0 -0.2 Ø20.2 MIN. R5.2 FRONT BACK ° R10.65 120 65° DETAIL "X" 60° SLOT HOLE ‘a’ EMBOSSED RIBS RAISED: 0.25mm, WIDTH: 1.25mm Ø51.2±0.3 BACK VIEW For product information and a complete list of distributors, please go to our web site: SEE DETAIL "Y" 14.4 * MAX. www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. AV02-2545EN - July 8, 2014 3.5 DETAIL "Y" (Slot Hole) 1.0 Ø55.0±0.5 Ø178.0±1.0 SLOT HOLE ‘b’