Freescale Semiconductor Data Sheet: Product Preview K10 Sub-Family Data Sheet Document Number: K10P144M100SF2 Rev. 1, 11/2010 K10P144M100SF2 Pr el im in ar y Supports the following: MK10X128VLQ100, MK10X128VMD100, MK10X256VLQ100, MK10X256VMD100, MK10N512VLQ100, MK10N512VMD100 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB program flash memory on nonFlexMemory devices – Up to 256 KB program flash memory on FlexMemory devices – Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface • Clocks – 1 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – 10 low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 16-channel DMA controller, supporting up to 64 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – 16-bit SAR ADC with PGA (x64) – 12-bit DAC – Analog comparator (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timers – Two-channel quadrature decoder/general purpose timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – Controller Area Network (CAN) module – SPI modules – I2C modules – UART modules – Secure Digital host controller (SDHC) – I2S This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © 2010–2010 Freescale Semiconductor, Inc. Preliminary Pr el im in ar y K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 2 Preliminary Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................5 6.1 Core modules....................................................................20 1.1 Determining valid orderable parts......................................5 6.1.1 Debug trace timing specifications.........................20 2 Part identification......................................................................5 6.1.2 JTAG electricals....................................................21 2.1 Description.........................................................................5 6.2 System modules................................................................24 2.2 Format...............................................................................5 6.3 Clock modules...................................................................24 2.3 Fields.................................................................................5 6.3.1 MCG Specifications...............................................24 2.4 Example............................................................................6 6.3.2 Oscillator Electrical Characteristics.......................26 3 Terminology and guidelines......................................................6 6.3.2.1 Oscillator DC Electrical Specifications 26 3.1 Definition: Operating requirement......................................6 6.3.2.2 Oscillator frequency specifications......27 6.3.3 32kHz Oscillator Electrical Characteristics............28 Pr el im in ar y 3.2 Definition: Operating behavior...........................................7 3.3 Definition: Attribute............................................................7 6.3.3.1 3.4 Definition: Rating...............................................................8 32kHz Oscillator DC Electrical Specifications......................................28 3.5 Result of exceeding a rating..............................................8 6.3.3.2 3.6 Relationship between ratings and operating 32kHz Oscillator Frequency Specifications......................................28 requirements......................................................................8 6.4 Memories and memory interfaces.....................................29 3.7 Guidelines for ratings and operating requirements............9 6.4.1 3.8 Definition: Typical value.....................................................9 Flash (FTFL) Electrical Characteristics.................29 6.4.1.1 3.9 Typical Value Conditions...................................................10 Flash Timing Parameters — Program and Erase............................................29 4 Ratings......................................................................................10 6.4.1.2 4.1 Thermal handling ratings...................................................10 Flash Timing Parameters — Commands..........................................29 4.2 Moisture handling ratings..................................................11 6.4.1.3 4.3 ESD handling ratings.........................................................11 Flash (FTFL) Current and Power Parameters..........................................31 4.4 Voltage and current operating ratings...............................11 6.4.1.4 Reliability Characteristics....................31 5 General.....................................................................................12 6.4.1.5 Write Endurance to FlexRAM for 5.1 Nonswitching electrical specifications...............................12 EEPROM.............................................32 5.1.1 Voltage and Current Operating Requirements......12 6.4.2 EzPort Switching Specifications............................33 5.1.2 LVD and POR operating requirements.................13 6.4.3 Flexbus Switching Specifications..........................34 5.1.3 Voltage and current operating behaviors..............14 6.5 Security and integrity modules..........................................36 5.1.4 Power mode transition operating behaviors..........14 6.6 Analog...............................................................................36 5.1.5 Power consumption operating behaviors..............15 5.1.5.1 6.6.1 ADC electrical specifications.................................36 Diagram: Typical IDD_RUN operating 6.6.1.1 16-bit ADC operating conditions..........37 behavior...............................................17 6.6.1.2 16-bit ADC electrical characteristics....39 5.1.6 EMC radiated emissions operating behaviors.......18 6.6.1.3 16-bit ADC with PGA operating 5.1.7 Designing with radiated emissions in mind...........19 5.1.8 Capacitance attributes..........................................19 conditions............................................42 6.6.1.4 16-bit ADC with PGA characteristics...43 5.2 Switching electrical specifications.....................................19 6.6.2 CMP and 6-bit DAC electrical specifications.........44 5.3 Thermal specifications.......................................................19 6.6.3 12-bit DAC electrical characteristics.....................45 5.3.1 Thermal operating requirements...........................20 6.6.3.1 12-bit DAC operating requirements.....45 5.3.2 Thermal attributes.................................................20 6.6.3.2 12-bit DAC operating behaviors..........46 6 Peripheral operating requirements and behaviors....................20 6.6.4 Voltage Reference Electrical Specifications..........48 K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 3 6.7 Timers................................................................................49 6.9.1 General Switching Specifications..........................56 6.8 Communication interfaces.................................................49 6.9.2 TSI Electrical Specifications..................................56 6.8.1 DSPI Switching Specifications for Low-speed 7 Dimensions...............................................................................57 Operation..............................................................50 6.8.2 DSPI Switching Specifications (High-speed 7.1 Obtaining package dimensions.........................................57 8 Pinout........................................................................................58 mode)....................................................................51 8.1 K10 Signal Multiplexing and Pin Assignments..................58 6.8.3 SDHC Specifications.............................................53 8.2 K10 Pinouts.......................................................................63 6.8.4 I2S Switching Specifications.................................54 9 Revision History........................................................................65 Pr el im in ar y 6.9 Human-machine interfaces (HMI)......................................56 K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 4 Preliminary Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Pr el im in ar y Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK10 and MK10. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## M FFF T PP CCC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K10 M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 5 Terminology and guidelines Field Description Values Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB T Temperature range (°C) • V = –40 to 105 PP Package identifier • • • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) FX = 64 QFN (9 mm x 9 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) ML = 104 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MF = 196 MAPBGA (15 mm x 15 mm) MJ = 256 MAPBGA (17 mm x 17 mm) CCC Maximum CPU frequency (MHz) • • • • • 50 = 50 MHz 72 = 72 MHz 100 = 100 MHz 120 = 120 MHz 150 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays Pr el im in ar y FFF 2.4 Example This is an example part number: MK10N512VMD100 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 6 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol 1.0 V core supply volt‐ age Min. 0.9 Max. 1.1 Unit V Pr el im in ar y VDD Description 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Min. Input capacitance: digi‐ — tal pins Max. 7 Unit pF K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 7 Terminology and guidelines 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. Pr el im in ar y 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply volt‐ age –0.3 Max. 1.2 Unit V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 20 10 0 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating rating Measured characteristic K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 8 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines 3.6 Relationship between ratings and operating requirements mi g( era Op g tin h or g dlin an in rat n.) ing t era Op x.) ma .) ) in. t (m en m re ax t (m en m re ui req g tin era Op g dlin an ui req g tin ( ing rat h or era Op Fatal range Limited operating range Normal operating range Limited operating range Fatal range - Probable permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation - Probable permanent failure Handling range Pr el im in ar y - No permanent failure –∞ ∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 9 Ratings 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ 150 °C 3000 Pr el im in ar y IDD_STOP (μA) 3500 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.05 1.00 1.10 VDD (V) 3.9 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 10 Preliminary Freescale Semiconductor, Inc. Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 Pr el im in ar y 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 85°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V VAIO Analog, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 11 General Symbol ID Description Min. Max. Unit Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V IDDA Analog supply current1 TBD TBD mA VBAT RTC battery supply voltage –0.3 3.8 V VRAM VDD voltage required to retain RAM 1.2 — V TBD — V VRFVBAT VBAT voltage required to retain the VBAT register file 5 General Pr el im in ar y 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 5.1 Nonswitching electrical specifications 5.1.1 Voltage and Current Operating Requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V VIH VIL VHYS Notes Input high voltage Input low voltage Input hysteresis Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 12 Preliminary Freescale Semiconductor, Inc. General Table 1. Voltage and current operating requirements (continued) Symbol IIC Description Min. Max. Unit DC injection current — single pin Notes 1 • VIN > VDD 0 2 mA • VIN < VSS 0 –0.2 mA DC injection current — total MCU limit, includes sum of all stressed pins • VIN > VDD 1 • VIN < VSS 0 25 mA 0 –5 mA Pr el im in ar y 1. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). 5.1.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage TBD 1.1 TBD V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) TBD 2.56 TBD V Low-voltage warning thresholds — high range VLVW1 • Level 1 falling (LVWV=00) TBD 2.70 TBD V VLVW2 • Level 2 falling (LVWV=01) TBD 2.80 TBD V VLVW3 • Level 3 falling (LVWV=10) TBD 2.90 TBD V VLVW4 • Level 4 falling (LVWV=11) TBD 3.00 TBD V VHYS Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) 60 TBD TBD Notes 1 mV TBD V Low-voltage warning thresholds — low range 1 VLVW1 • Level 1 falling (LVWV=00) TBD 1.80 TBD V VLVW2 • Level 2 falling (LVWV=01) TBD 1.90 TBD V VLVW3 • Level 3 falling (LVWV=10) TBD 2.00 TBD V VLVW4 • Level 4 falling (LVWV=11) TBD 2.10 TBD V Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 13 General Table 2. LVD and POR operating requirements (continued) Symbol Description Min. Typ. Max. 40 Unit VHYS Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference TBD 1.00 TBD V tLPO Internal low power oscillator period TBD 1000 TBD μs Notes mV factory trimmed Pr el im in ar y 1. Rising thresholds are falling threshold + VHYS 5.1.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors Symbol Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) — 1 μA IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA Internal weak pullup and pulldown resistors 30 50 kΩ VOH Description Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT RPU and RPD 1 1. Measured at VIL max and VDD min K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 14 Preliminary Freescale Semiconductor, Inc. General 5.1.4 Power mode transition operating behaviors In the table below, all specifications except tPOR, assume the following clock configuration: • CPU and system clocks = 100MHz • Bus and FlexBus clocks = 50 MHz • Flash clock = 25 MHz Table 4. Power mode transition operating behaviors tPOR Description Min. Max. Unit Pr el im in ar y Symbol After a POR event, amount of time from the point VDD reaches 1.8V to execution of the first instruction across the operating temperature range of the chip. — 300 μs • RUN → VLLS1 — 4.1 μs • VLLS1 → RUN — 123.8 μs • RUN → VLLS2 — 4.1 μs • VLLS2 → RUN — 49.3 μs • RUN → VLLS3 — 4.1 μs • VLLS3 → RUN — 49.2 μs • RUN → LLS — 4.1 μs • LLS → RUN — 5.9 μs • RUN → STOP — 4.1 μs • STOP → RUN — 4.2 μs • RUN → VLPS — 4.1 μs • VLPS → RUN — 5.8 μs Notes 1 RUN → VLLS1 → RUN RUN → VLLS2 → RUN RUN → VLLS3 → RUN RUN → LLS → RUN RUN → STOP → RUN RUN → VLPS → RUN 1. Normal boot (FTFL_OPT[LPBOOT]=1) K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 15 General 5.1.5 Power consumption operating behaviors Table 5. Power consumption operating behaviors Symbol Description Min. IDD_RUN Run mode current — all peripheral clocks disa‐ bled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Typ. Max. Unit 1 — 40 TBD mA — 42 TBD mA Run mode current — all peripheral clocks ena‐ bled, code executing from flash • @ 1.8V 2 — 55 TBD mA Pr el im in ar y • @ 3.0V — IDD_RUN_M Run mode current — all peripheral clocks ena‐ bled and peripherals active, code executing from AX flash • @ 1.8V • @ 3.0V Notes 56 TBD mA — 85 TBD mA — 85 TBD mA 3 IDD_WAIT Wait mode current at 3.0 V — all peripheral clocks disabled — 15 TBD mA IDD_STOP Stop mode current at 3.0 V — 1.4 TBD mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.25 TBD mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — TBD TBD mA 6 IDD_VLPW Very-low-power wait mode current at 3.0 V — 1.05 TBD mA 7 IDD_VLPS Very-low-power stop mode current at 3.0 V — 30 TBD μA IDD_LLS Low leakage stop mode current at 3.0 V — 12 TBD μA • 128KB RAM devices — 8 TBD μA • 64KB RAM devices — 6 TBD μA • 32KB RAM devices — 5 TBD μA IDD_VLLS3 4 Very low-leakage stop mode 3 current at 3.0 V IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V — 4 TBD μA IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V — 2 TBD μA IDD_VBAT Average current when CPU is not accessing RTC registers at 3.0 V — 550 TBD nA 1. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 2. 100MHz core and system clock, 50MHz bus and FlexBus clocks, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation. 3. 100MHz core and system clock, 50MHz bus and FlexBus clocks, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. 4. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clocks. MCG configured for FEI mode. 5. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. Code executing from flash. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 16 Preliminary Freescale Semiconductor, Inc. General 6. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 7. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. 5.1.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks disabled except FTFL LVD disabled No GPIOs toggled Code execution from flash Pr el im in ar y • • • • • Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled The following data was measured under these conditions: • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) • All peripheral clocks enabled but peripherals are not in active operation • LVD disabled K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 17 General Pr el im in ar y • No GPIOs toggled • Code execution from flash Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled 5.1.6 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes dBμV 1, 2 — 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 TBD VRE2 Radiated emissions voltage, band 2 50–150 TBD VRE3 Radiated emissions voltage, band 3 150–500 TBD VRE4 Radiated emissions voltage, band 4 500–1000 TBD 0.15–1000 TBD VRE_IEC_SAE IEC and SAE level 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/ Wideband TEM (GTEM) Cell Method. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 18 Preliminary Freescale Semiconductor, Inc. General 2. VDD = 3 V, TA = 25 °C, fOSC = 16 MHz (crystal), fBUS = 20 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method. 5.1.7 Designing with radiated emissions in mind Pr el im in ar y 1. To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go to www.freescale.com and perform a keyword search for “EMC design.” 5.1.8 Capacitance attributes Table 7. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.2 Switching electrical specifications Table 8. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 100 MHz fBUS Bus clock — 50 MHz FlexBus clock — 50 MHz Flash clock — 25 MHz FB_CLK fFLASH VLPR mode fSYS System and core clock — 2 MHz fBUS Bus clock — 2 MHz FlexBus clock — 2 MHz Flash clock — 1 MHz FB_CLK fFLASH 5.3 Thermal specifications K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 19 Peripheral operating requirements and behaviors 5.3.1 Thermal operating requirements Table 9. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Board type Pr el im in ar y 5.3.2 Thermal attributes Symbol Description 144 LQFP 144 Unit MAPBGA Notes Singlelayer (1s) RθJA Thermal resistance, junction to ambient (natural convection) 52 50 °C/W 1 Four-layer (2s2p) RθJA Thermal resistance, junction to ambient (natural convection) 44 30 °C/W 1 Singlelayer (1s) RθJMA Thermal resistance, junction to ambient (200 ft./ min. air speed) 43 41 °C/W 1 Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./ min. air speed) 38 27 °C/W 1 — RθJB Thermal resistance, junction to board 33 17 °C/W 2 — RθJC Thermal resistance, junction to case 11 10 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 2 2 °C/W 4 6 Peripheral operating requirements and behaviors 6.1 Core modules 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 20 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.1.1 Debug trace timing specifications Table 10. Debug trace operating behaviors Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold Pr el im in ar y Symbol 2 — ns Figure 3. TRACE_CLKOUT specifications TRACE_CLKOUT Ts TRACE_D[3:0] Th Ts Th Figure 4. Trace data specifications 6.1.2 JTAG electricals Table 11. JTAG electricals Symbol J1 J2 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — TCLK cycle period ns Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 21 Peripheral operating requirements and behaviors Table 11. JTAG electricals (continued) Symbol J3 Description Min. Max. TCLK clock pulse width Unit ns 20 — • Serial Wire Debug 10 — J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 30 ns J8 TCLK low to boundary scan output high-Z — 30 ns J9 TMS, TDI input data setup time to TCLK rise 16 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 4 ns J12 TCLK low to TDO high-Z — 4 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Pr el im in ar y • JTAG and CJTAG J2 J3 J3 TCLK (input) J4 J4 Figure 5. Test clock input timing K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 22 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid Pr el im in ar y J8 Data outputs J7 Data outputs Output data valid Figure 6. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 7. Test Access Port timing K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 23 Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 8. TRST timing Pr el im in ar y 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG Specifications Table 12. MCG specifications Symbol Description Min. Typ. Max. Unit fints_ft Internal reference frequency (slow clock) — facto‐ ry trimmed at nominal VDD and 25°C — 32.768 — kHz fints_t Internal reference frequency (slow clock) — user trimmed 31.25 — 39.0625 kHz tirefsts Internal reference (slow clock) startup time — TBD 4 µs Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.1 ± 0.3 %fdco Δfdco_res_t Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco Total deviation of trimmed DCO output frequency over voltage and temperature — + 0.5 ± 3.5 %fdco Δfdco_t Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0– 70°C — ± 0.5 ± TBD %fdco fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C 3.875 4 4.125 MHz fintf_t Internal reference frequency (fast clock) — user trimmed 3 — 5 MHz Δfdco_res_t Δfdco_t Notes - 1.0 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 24 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. MCG specifications (continued) Symbol tirefstf Description Internal reference startup time (fast clock) Min. Typ. Max. Unit — TBD TBD µs floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 20 20.97 25 MHz Notes FLL DCO output fre‐ quency range — user trimmed and DMX32=0 Low range (DRS=00) 1, 2 640 × fints_t Pr el im in ar y fdco_t Mid range (DRS=01) 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz 1280 × fints_t Mid-high range (DRS=10 192)0 × fints_t High range (DRS=11) 2560 × fints_t fdco_t_DMX3 DCO output fre‐ quency range — 2 reference = 32,768Hz and DMX32=1 Low range (DRS=00) 3 732 × fints_t Mid range (DRS=01) 1464 × fints_t Mid-high range (DRS=10) 2197 × fints_t High range (DRS=11) 2929 × fints_t Jcyc_fll FLL period jitter — TBD TBD ps Jacc_fll FLL accumulated jitter of DCO output over a 1µs time window — TBD TBD ps FLL target frequency acquisition time — — 1 ms VCO operating frequency 48.0 — 100 MHz fpll_ref PLL reference frequency range 2.0 — 4.0 MHz Jcyc_pll PLL period jitter — 400 — ps 6, 7 Jacc_pll PLL accumulated jitter over 1µs window — TBD — ps 6,7 tfll_acquire 4 5 PLL fvco Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 0.15 + 1075(1/ fpll_ref) ms 8 1. The resulting system clock frequencies should not exceed their maximum specified values. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 25 Peripheral operating requirements and behaviors 2. 3. 4. 5. This specification includes the 2% precision of the internal reference frequency (slow clock). The resulting clock frequency must not exceed the maximum specified clock frequency of the device. This specification was obtained at TBD frequency. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 7. This specification was obtained at internal frequency of TBD. 8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Pr el im in ar y 6.3.2 Oscillator Electrical Characteristics This section provides the electrical characteristics of the module. 6.3.2.1 Oscillator DC Electrical Specifications Table 13. Oscillator DC electrical specifications, (VSSOSC= 0 VDC) (TA = TL to TH) Symbol VDD33OSC IDDOSC IDDOSC Description Min. Typ. Max. Unit 3.3 V supply voltage 1.71 — 3.6 V Supply current — low-power mode • 32 kHz — 500 — nA • 1 MHz — 100 — μA • 4 MHz — 200 — μA • 8 MHz — 300 — μA • 16 MHz — 700 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode • 32 kHz — 25 — μA • 1 MHz — 200 — μA • 4 MHz — 400 — μA • 8 MHz — 800 — μA • 16 MHz — 1.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Notes 1 1 Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2,3 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 26 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 13. Oscillator DC electrical specifications, (VSSOSC= 0 VDC) (TA = TL to TH) (continued) RF RS Description Min. Typ. Max. Unit Notes Feedback resistor — low-frequency, low-power mode — — — MΩ 2,3 Feedback resistor — low-frequency, high-gain mode — 10 — MΩ Feedback resistor — high-frequency, low-power mode (1 – 8 MHz, 8 – 32 MHz) — — — MΩ Feedback resistor — high-frequency, high-gain mode (1 – 8 MHz, 8 – 32 MHz) — 1 — MΩ Pr el im in ar y Symbol Series resistor — low-frequency, low-power mode — — — kΩ Series resistor — low-frequency, high-gain mode — 200 — kΩ Series resistor — high-frequency, low-power mode — — — kΩ — 6.6 — kΩ — 3.3 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode 0.75 × VDD33OSC VDD33OSC — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode 0.75 × VDD33OSC VDD33OSC — V Series resistor — high-frequency, high-gain mode • 1 MHz resonator • 2 MHz resonator • 4 MHz resonator • 8 MHz resonator • 16 MHz resonator • 20 MHz resonator • 32 MHz resonator Vpp 1. VDD33OSC=3.3 V, Temperature =27 °C, Cx/Cy=20 pF 2. See crystal or resonator manufacturer's recommendation 3. RF and Cx,Cy are integrated in low-frequency, low-power mode and must not be attached externally K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 27 Peripheral operating requirements and behaviors 6.3.2.2 Oscillator frequency specifications Table 14. Oscillator frequency specifications, (VDD33OSC = VDD33OSC (min) to VDD33OSC (max), TA = TL to TH) Symbol Description Min. Typ. Max. Unit Oscillator crystal or resonator frequency — low frequency mode 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) 1 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) 8 — 32 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal start-up time — 32 kHz low-frequency, low-power mode — TBD — ms Crystal start-up time — 32 kHz low-frequency, high-gain mode — 800 — ms Crystal start-up time — 8 MHz high-frequency, low-power mode — 4 — ms Crystal start-up time — 8 MHz high-frequency, high-gain mode — 3 — ms tcst Pr el im in ar y fosc_lo Notes 1, 2, 3 1. This parameter is characterized before qualification rather than 100% tested. 2. Proper PC board layout procedures must be followed to achieve specifications. 3. Crystal start up time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.3.3 32kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 32kHz Oscillator DC Electrical Specifications Table 15. 32kHz Oscillator Module DC Electrical Specifications (VSSOSC= 0 VDC) (TA = TL to TH) Symbol Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 2.5 — pF Cload Internal load capacitance (programmable) — 15 — pF Peak-to-peak amplitude of oscillation — 0.6 — V VBAT RF Vpp K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 28 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.3.3.2 32kHz Oscillator Frequency Specifications Table 16. 32kHz oscillator frequency specifications (VDD33OSC = VDD33OSC (min) to VDD33OSC (max), TA = TL to TH) Symbol fosc_lo tstart Description Min. Typ. Max. Unit Oscillator crystal — 32 — kHz Crystal start-up time — 1000 — ms Notes 1, 2 Pr el im in ar y 1. This parameter is characterized before qualification rather than 100% tested. 2. Proper PC board layout procedures must be followed to achieve specifications. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFL) Electrical Characteristics This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash Timing Parameters — Program and Erase The following characteristics represent the amount of time the internal charge pumps are active and do not include command overhead. Table 17. NVM program/erase timing characteristics Symbol Description Min. Typ. Max. Unit thvpgm4 Notes Longword Program high-voltage time — 20 TBD μs thversscr Sector Erase high-voltage time — 20 100 ms 1 thversblk Erase Block high-voltage time — 160 800 ms 1 Notes 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Flash Timing Parameters — Commands Table 18. Flash command timing characteristics Symbol Min. Typ. Max. Unit Read 1s Block execution time — — 1.4 ms trd1sec2k Read 1s Section execution time (2 KB flash sec‐ tor) — — 40 μs tpgmchk Program Check execution time — — 35 μs trd1blk Description Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 29 Peripheral operating requirements and behaviors Table 18. Flash command timing characteristics (continued) Symbol Description Min. Typ. Max. Unit Notes 1 Read Resource execution time — — 35 μs tpgm4 Program Longword execution time — 50 TBD μs tersblk Erase Flash Block execution time — 160 800 ms 2 tersscr Erase Flash Sector execution time — 20 100 ms 2 Program Section execution time (2 KB flash sec‐ tor) — TBD TBD ms trd1all Read 1s All Blocks execution time — — 2.8 ms trdonce Read Once execution time — — 35 μs Program Once execution time — 50 TBD μs tersall Erase All Blocks execution time — 320 1600 ms 2 tvfykey Verify Backdoor Access Key execution time — — 35 μs 1 Program Partition for EEPROM execution time — 175 TBD ms tsetram32k Set FlexRAM Function execution time for 32 KB of EEPROM backup — TBD TBD ms tsetram256k Set FlexRAM Function execution time for 256 KB of EEPROM backup — TBD TBD ms tpgmsec2k tpgmonce tpgmpart Pr el im in ar y trdrsrc 1 Byte-write to FlexRAM for EEPROM operation teewr8bers Byte-write to erased FlexRAM location execution time — 100 TBD μs teewr8b32k Byte-write to FlexRAM execution time (32 KB EEPROM backup) — TBD TBD ms teewr8b64k Byte-write to FlexRAM execution time (64 KB EEPROM backup) — TBD 1.5 ms teewr8b128k Byte-write to FlexRAM execution time (128 KB EEPROM backup) — TBD TBD ms teewr8b256k Byte-write to FlexRAM execution time (256 KB EEPROM backup) — TBD 2.5 ms 3 Word-write to FlexRAM for EEPROM operation teewr16bers Word-write to erased FlexRAM location execu‐ tion time — 100 TBD μs teewr16b32k Word-write to FlexRAM execution time (32 KB EEPROM backup) — TBD TBD ms teewr16b64k Word-write to FlexRAM execution time (64 KB EEPROM backup) — TBD 1.5 ms teewr16b128k Word-write to FlexRAM execution time (128 KB EEPROM backup) — TBD TBD ms teewr16b256k Word-write to FlexRAM execution time (256 KB EEPROM backup) — TBD 2.5 ms Longword-write to FlexRAM for EEPROM operation Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 30 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 18. Flash command timing characteristics (continued) Min. Typ. Max. Unit — 200 TBD μs teewr16b32k Longword-write to FlexRAM execution time (32 KB EEPROM backup) — TBD TBD ms teewr16b64k Longword-write to FlexRAM execution time (64 KB EEPROM backup) — TBD 2.7 ms teewr32b128k Longword-write to FlexRAM execution time (128 KB EEPROM backup) — TBD TBD ms teewr32b256k Longword-write to FlexRAM execution time (256 KB EEPROM backup) — TBD 3.7 ms teewr32bers Description Longword-write to erased FlexRAM location exe‐ cution time Pr el im in ar y Symbol Notes 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash (FTFL) Current and Power Parameters Table 19. Flash (FTFL) current and power parameters Symbol Description IDD_PGM Worst case programming current in program flash 6.4.1.4 Typ. Unit 10 mA Reliability Characteristics Table 20. NVM reliability characteristics Symbol Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 TBD — years 2 tnvmretp1k Data retention after up to 1 K cycles 10 TBD — years 2 tnvmretp100 Data retention after up to 100 cycles 15 TBD — years 2 10 K TBD — cycles 3 nnvmcycp Cycling endurance Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 TBD — years 2 tnvmretd1k Data retention after up to 1 K cycles 10 TBD — years 2 tnvmretd100 Data retention after up to 100 cycles 15 TBD — years 2 10 K TBD — cycles 3 TBD — years 2 nnvmcycd Cycling endurance FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 31 Peripheral operating requirements and behaviors Table 20. NVM reliability characteristics (continued) Symbol Description Min. Typ.1 Max. Unit Notes Data retention up to 10% of write endurance 10 TBD — years 2 tnvmretee1 Data retention up to 1% of write endurance 15 TBD — years 2 nnvmwree16 Write endurance with an EEPROM backup to FlexRAM ratio of 16 35 K TBD — writes 4 nnvmwree128 Write endurance with an EEPROM backup to FlexRAM ratio of 128 315 K TBD — writes 4 nnvmwree512 Write endurance with an EEPROM backup to FlexRAM ratio of 512 1.27 M TBD — writes 4 nnvmwree4k Write endurance with an EEPROM backup to FlexRAM ratio of 4096 10 M TBD — writes 4 nnvmwree32k Write endurance with an EEPROM backup to FlexRAM ratio of 32,768 80 M TBD — writes 4 Pr el im in ar y tnvmretee10 1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to 25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C 4. Write endurance represents the number of writes to FlexRAM at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value assumes all byte-writes to FlexRAM. 6.4.1.5 Write Endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size are used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × nnvmcycd where • Writes_subsystem — minimum writes to FlexRAM for subsystem (each subsystem can have different endurance) K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 32 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — total allocated FlexRAM based on DEPART; entered with Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM Pr el im in ar y • nnvmcycd — data flash cycling endurance Figure 9. EEPROM backup writes to FlexRAM 6.4.2 EzPort Switching Specifications Table 21. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 33 Peripheral operating requirements and behaviors Table 21. EzPort switching specifications (continued) Description Min. Max. Unit EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid (setup) — 12 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns EZP_CK Pr el im in ar y Num EP3 EZP_CS EP9 EP7 EZP_Q (output) EP5 EZP_D (input) EP2 EP4 EP8 EP6 Figure 10. EzPort Timing Diagram 6.4.3 Flexbus Switching Specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 34 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 22. Flexbus switching specifications Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 50 Mhz FB1 Clock period 20 — ns FB2 Address, data, and control output valid TBD 11.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 Pr el im in ar y Num Notes 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. FB1 FB_CLK FB5 FB_A[Y] FB3 Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS AA=1 FB_CSn AA=0 FB_OEn FB_BE/BWEn FB4 FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ Figure 11. FlexBus read timing diagram K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 35 Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB_A[Y] Address FB2 FB_D[X] Address Data Pr el im in ar y FB_RW FB_TS AA=1 FB_CSn AA=0 FB_OEn FB_BE/BWEn FB4 FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 12. FlexBus write timing diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins (ADCx_DP0, ADCx_DM0, ADC, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DP3). The ADCx_DP2 and ADCx_DM2 ADC inputs are used K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 36 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors as the PGA inputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 25 and Table 26. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 23. 16-bit ADC operating conditions Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDDVDDA) -100 0 +100 mV ΔVSSA Ground voltage Delta to VSS (VSSVSSA) -100 0 +100 mV VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL Reference volt‐ age low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capaci‐ tance • 16 bit modes — 8 10 pF • 8/10/12 bit modes — 4 5 — 2 5 RADIN Pr el im in ar y Description Symbol Input resistance Notes 2 2 kΩ Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 37 Peripheral operating requirements and behaviors Table 23. 16-bit ADC operating conditions (continued) Symbol RAS Description Conditions Analog source resistance 16 bit modes Min. Typ.1 Max. Unit Notes External to MCU • fADCK > 8MHz — — 0.5 kΩ • fADCK = 4–8MHz — — 1 kΩ • fADCK < 4MHz — — 2 kΩ • fADCK > 16MHz — — 0.5 kΩ • fADCK > 8MHz — — 1 kΩ Assumes ADLSMP=0 Pr el im in ar y 13/12 bit modes • fADCK = 4–8MHz — — 2 kΩ • fADCK < 4MHz — — 5 kΩ • fADCK > 8MHz — — 2 kΩ • fADCK = 4–8MHz — — 5 kΩ • fADCK < 4MHz — — 10 kΩ — — 5 kΩ — — 10 kΩ • 16 bit modes 1.0 — TBD MHz • ≤13 bit modes 1.0 — TBD MHz 1.0 — 8.0 MHz 1.0 — 12.0 MHz • 16 bit modes 1.0 — 5.0 MHz • ≤13 bit modes 1.0 — 8.0 MHz • 16 bit modes 1.0 — 2.5 MHz • ≤13 bit modes 1.0 — 5.0 MHz 11/10 bit modes 9/8 bit modes • fADCK > 8MHz • fADCK < 8MHz fADCK ADC conversion clock frequency ADLPC=0, ADHSC=1 ADLPC=0, ADHSC=0 • 16 bit modes • ≤13 bit modes ADLPC=1, ADHSC=1 ADLPC=1, ADHSC=0 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 38 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS Pr el im in ar y R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 13. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol IDDA fADACK Conditions1 Min. Typ.2 Max. Unit Notes • ADLPC=1, ADHSC=0 — 215 — μA • ADLPC=1, ADHSC=1 — 340 — μA ADLSMP= 0 • ADLPC=0, ADHSC=0 — 470 — μA • ADLPC=0, ADHSC=1 — 610 — μA Supply current • Stop, reset, module off — 0.01 0.8 μA ADC asynchro‐ nous clock source • ADLPC=1, ADHSC=0 TBD 2.4 TBD MHz • ADLPC=1, ADHSC=1 TBD 4.0 TBD MHz • ADLPC=0, ADHSC=0 TBD 5.2 TBD MHz • ADLPC=0, ADHSC=1 TBD 6.2 TBD MHz Description Supply current Sample Time ADCO=1 tADACK = 1/ fADACK See Reference Manual chapter for sample times Conversion Time See Reference Manual chapter for conversion times Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 39 Peripheral operating requirements and behaviors Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) TUE DNL INL EZS Conditions1 Description Total unadjusted error Min. Typ.2 Max. Unit Notes • 16 bit differential — ±14.0 ±TBD LSB3 • 16 bit single-ended — ±13.0 ±TBD • 13 bit differential — ±1.5 ±TBD • 12 bit single-ended — ±TBD ±TBD Max hard‐ ware aver‐ aging (AVGE = %1, AVGS = %11) • 11 bit differential — ±0.8 ±TBD • 10 bit single-ended — ±TBD ±TBD • 9 bit differential — ±0.5 ±1.0 • 8 bit single-ended — ±0.5 ±1.0 Pr el im in ar y Symbol Differential nonlinearity Integral non-line‐ arity Zero-scale error • 16 bit differential — ±2.5 ±TBD • 16 bit single-ended — ±2.5 ±TBD • 13 bit differential — ±0.7 ±TBD • 12 bit single-ended — ±0.7 ±TBD • 11 bit differential — ±0.5 ±TBD • 10 bit single-ended — ±TBD ±TBD • 9 bit differential — ±0.2 ±0.5 • 8 bit single-ended — ±0.2 ±0.5 • 16 bit differential — -6 to +2.5 — • 16 bit single-ended — -2 to +12 — • 13 bit differential — ±1.0 ±TBD • 12 bit single-ended — ±1.0 ±TBD • 11 bit differential — ±0.5 ±TBD • 10 bit single-ended — ±0.5 ±TBD • 9 bit differential — ±0.3 ±0.5 • 8 bit single-ended — ±0.3 ±0.5 • 16 bit differential — ±4.0 — • 16 bit single-ended — ±4.0 — • 13 bit differential — ±0.7 ±TBD • 12 bit single-ended — ±0.7 ±TBD • 11 bit differential — ±0.4 ±TBD • 10 bit single-ended — ±0.4 ±TBD • 9 bit differential — ±0.2 ±0.5 • 8 bit single-ended — ±0.2 ±0.5 LSB3 Max hard‐ ware aver‐ aging (AVGE = %1, AVGS = %11) LSB3 Max aver‐ aging LSB3 VADIN = VSSA Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 40 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) EFS EQ ENOB Conditions1 Description Full-scale error Min. Typ.2 Max. Unit Notes • 16 bit differential — 0 to +10 — LSB3 • 16 bit single-ended — 0 to +14 — VADIN = VDDA • 13 bit differential — ±1.0 ±TBD • 12 bit single-ended — ±TBD ±TBD • 11 bit differential — ±0.4 ±TBD • 10 bit single-ended — ±0.4 ±TBD • 9 bit differential — ±0.2 ±0.5 • 8 bit single-ended — ±0.2 ±0.5 Pr el im in ar y Symbol Quantization er‐ ror • 16 bit modes — -1 to 0 — • ≤13 bit modes — — ±0.5 Effective number 16 bit differential mode of bits • Avg=32 LSB3 TBD 13.6 TBD bits • Avg=16 TBD TBD TBD bits • Avg=8 TBD 14.1 TBD bits • Avg=4 TBD TBD TBD bits • Avg=1 TBD 13.2 TBD bits TBD TBD TBD bits TBD TBD TBD bits TBD TBD TBD bits TBD TBD TBD bits TBD TBD TBD bits 4 16 bit single-ended mode • Avg=32 • Avg=16 • Avg=8 • Avg=4 • Avg=1 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16 bit differential mode 6.02 × ENOB + 1.76 • Avg=32 dB — -94 TBD dB — TBD TBD dB 4 16 bit single-ended mode • Avg=32 SFDR Spurious free dy‐ 16 bit differential mode namic range • Avg=32 4 TBD 95 — dB TBD TBD — dB 16 bit single-ended mode • Avg=32 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 41 Peripheral operating requirements and behaviors Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol EIL Conditions1 Description Typ.2 Min. Input leakage er‐ ror Max. IIn × RAS Unit Notes mV IIn = leak‐ age cur‐ rent (refer to the MCU's voltage and cur‐ rent oper‐ ating rat‐ ings) VTEMP25 • –40°C to 25°C — TBD — mV/°C • 25°C to 105°C — TBD — mV/°C — TBD — mV Pr el im in ar y Temp sensor slope Temp sensor voltage 25°C 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. 1 LSB = (VREFH - VREFL)/2N 4. Input data is 1 kHz sine wave. 6.6.1.3 16-bit ADC with PGA operating conditions Table 25. 16-bit ADC with PGA operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V VREFPGA PGA ref voltage Symbol VADIN Input voltage RPGA Input impedance RPGAD Differntial input impedance VREFOUT VREFOUT VREFOUT V VSSA — VDDA V Gain = 1, 2, 4, 8 TBD 64 TBD kΩ Gain = 16, 32 TBD 32 TBD Gain = 64 TBD 16 TBD Gain = 1, 2, 4, 8 TBD 128 TBD Gain = 16, 32 TBD 64 TBD Gain = 64 TBD 32 TBD — 100 1.25 — RAS Analog source resistance Gain = 16, 32 TS ADC sampling time Gain = 64 Notes 2, 3 kΩ IN+ to IN- — Ω 4 — µs 5 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREFOUT) 3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output of the VREF module, the VREF module must be disabled. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 42 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 4. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 5. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock. The ADLSTS bits can be adjusted for different ADC clock frequency 6.6.1.4 16-bit ADC with PGA characteristics Table 26. 16-bit ADC with PGA characteristics Symbol Description IDDA_PGA Supply current G Leakage current Gain2 Typ.1 Max. Unit TBD 590 TBD μA — <1 TBD μA • PGAG=0 TBD 1 TBD dB • PGAG=1 TBD 2 TBD dB • PGAG=2 TBD 3.9 TBD dB • PGAG=3 TBD TBD TBD dB • PGAG=4 TBD TBD TBD dB • PGAG=5 TBD 29.9 TBD dB • PGAG=6 TBD TBD TBD dB — — ±0.5 dB — — 4 kHz — — 40 kHz TBD TBD — dB VDDA= 3V ±100mV, fVDDA= 50Hz, 60Hz • Gain=1 TBD TBD — dB • Gain=64 TBD TBD — dB VCM= 500mVpp, fVCM= 50Hz, 100Hz PGA disabled Pr el im in ar y ILKG Min. Conditions GA Gain error BW Input signal band‐ width PSRR Power supply re‐ jection ration CMRR Common mode rejection ratio • 16-bit modes • < 16-bit modes Gain=1 Notes RAS < 100Ω RAS < 100Ω VOFS Input offset volt‐ age — 0.2 TBD mV Gain=1, ADC Averaging=32 TGSW Gain switching settling time — TBD 10 µs 3 dG/dT Gain drift over temperature — TBD TBD ppm/°C 0 to 50°C — TBD TBD ppm/°C — TBD TBD ppm/°C 0 to 50°C, ADC Averaging=32 — TBD TBD %/V — TBD TBD %/V VDDA from 1.71 to 3.6V dVOFS/dT Offset drift over temperature dG/dVDDA Gain drift over supply voltage • Gain=1 • Gain=64 Gain=1 • Gain=1 • Gain=64 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 43 Peripheral operating requirements and behaviors Table 26. 16-bit ADC with PGA characteristics (continued) Symbol EIL Description Conditions Input leakage er‐ ror All modes Min. Typ.1 Max. IIn × RAS Unit Notes mV IIn = leakage current (refer to the MCU's voltage and current op‐ erating ratings) SNR THD SFDR ENOB SINAD Maximum differ‐ ential input signal swing [(VREFPGA × 2.33) - 0.2] / (2 × Gain) V 4 Average=32 Signal-to-noise ratio • Gain=1 • Gain=64 TBD 8.3 — dB TBD 57.7 — dB Total harmonic distortion • Gain=1 • Gain=64 TBD 87.3 — dB TBD 85.3 — dB Spurious free dy‐ namic range • Gain=1 • Gain=64 TBD 92.42 — dB TBD 92.54 — dB Effective number of bits • Gain=1, Average=4 TBD 12.3 — bits • Gain=1, Average=8 TBD 12.7 — bits • Gain=64, Average=4 TBD 8.4 — bits • Gain=64, Average=8 TBD 8.7 — bits • Gain=1, Average=32 TBD 13.4 — bits • Gain=2, Average=32 TBD 13.1 — bits • Gain=4, Average=32 TBD 12.6 — bits • Gain=8, Average=32 TBD 11.8 — bits • Gain=16, Average=32 TBD 11.1 — bits • Gain=32, Average=32 TBD 10.2 — bits • Gain=64, Average=32 TBD 9.3 — bits Pr el im in ar y VPP,DIFF Signal-to-noise plus distortion ra‐ tio See ENOB 6.02 × ENOB + 1.76 Average=32, fin=100Hz Average=32, fin=100Hz dB 1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated. 2. Gain = 2PGAGx 3. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC sampling rate and time of the switching). 4. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 44 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications Symbol VDD Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1, VDDA >= VLVI_trip) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA IDDOFF Supply current, OFF Mode (EN=0,) — — 100 nA VSS – 0.3 — VDD V Analog input voltage VAIO Analog input offset voltage VH Pr el im in ar y VAIN — — 20 mV • HYSTCTR = 00 — 5 — mV • HYSTCTR = 01 — 10 — mV • HYSTCTR = 10 — 20 — mV • HYSTCTR = 11 — 30 — mV Analog comparator hysteresis VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 120 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=1) 120 250 420 ns Analog comparator initialization delay — — TBD ns 6-bit DAC current adder (enabled) — — 8 μA IDAC6b INL 6-bit DAC integral non-Llnearity –0.5 — 0.5 LSB1 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB Notes 1. 1 LSB = Vreference/64 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.15 3.6 V Temperature −40 105 °C TA 1 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 45 Peripheral operating requirements and behaviors Table 28. 12-bit DAC operating requirements (continued) Symbol Desciption Min. Max. Unit Notes 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC 6.6.3.2 Table 29. 12-bit DAC operating behaviors Min. Typ. Max. Unit 12 — 12 b IDDA_DACLP Supply current — low-power mode — — 150 μA IDDA_DACH Supply current — high-speed mode — — 700 μA n P Description Pr el im in ar y Symbol 12-bit DAC operating behaviors Resolution Notes tDACLP Full-scale settling time (0x080 to 0xF7F) — lowpower mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — highpower mode — 15 30 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode — — 5 μs 1 tCCDACHP Code-to-code settling time (0xBF8 to 0xC08) — high-speed mode 1 TBD — μs 1 Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 0 100 — mV Vdacouth DAC output voltage range high — high-speed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode ±3 — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V ±0.5 — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VRE‐ FO (1.15 V) ±0.5 — ±1 LSB 4 VOFFSET Offset error ±0.4 — ±0.8 %FSR 5 EG Gain error ±0.1 — ±0.6 %FSR 5 90 dB PSRR Power supply rejection ratio, VDDA > = 2.4 V 60 TCO Temperature coefficient offset voltage — TBD — μV/C TGE Temperature coefficient gain error — TBD — ppm of FSR/C AC Offset aging coefficient — — TBD μV/yr Output resistance load = 3 kΩ — — 250 Ω Rop Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 46 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 29. 12-bit DAC operating behaviors (continued) Symbol SR Min. Typ. Max. Slew rate -80h→ F7Fh→ 80h 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 Channel to channel cross talk BW 3dB bandwidth Notes V/μs • High power (SPHP) CT Unit dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Pr el im in ar y 1. 2. 3. 4. 5. Description Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100 mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V Calculated by a best fit curve from VSS+100 mV to VREF−100 mV Figure 14. Typical INL error vs. digital code K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 47 Pr el im in ar y Peripheral operating requirements and behaviors Figure 15. Offset at half scale vs. temperature 6.6.4 Voltage Reference Electrical Specifications Table 30. VREF full-range operating requirements Symbol Description Min. Max. Unit Supply voltage 1.71 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 nF VDDA Notes Table 31. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Vout Voltage reference output with factory trim TBD 1.2 TBD V Vout Voltage reference output without factory trim 1.15 — 1.24 V Vdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 7 mV Notes See Fig‐ ure 16 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 48 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 31. VREF full-range operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Tc Temperature coefficient — — TBD ppm/°C Ac Aging coefficient — — TBD ppm/year Ioff Powered down current (off mode, VREFEN = 0, VRSTEN = 0) — — 0.10 µA Ibg Bandgap only (MODE_LV = 00) current — TBD 75 µA Itr Tight-regulation buffer (MODE_LV =10) current — — 1.1 mA Load regulation (MODE_LV = 10) current — — 100 µV/mA 100 — TBD µs — — TBD mV –60 — TBD dB Buffer startup time DC Line regulation (power supply rejection) Pr el im in ar y Tstup Notes Table 32. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 33. VREF limited-range operating behaviors Symbol Vout Description Min. Max. Unit Voltage reference output with factory trim TBD TBD µA TBD Notes Figure 16. Typical output vs.temperature TBD Figure 17. Typical output vs. VDD 6.7 Timers See General Switching Specifications. 6.8 Communication interfaces K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 49 Peripheral operating requirements and behaviors 6.8.1 DSPI Switching Specifications for Low-speed Operation The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 34. Master Mode DSPI Timing (Low-speed mode) Description Min. Max. Unit Notes 1.71 3.6 V 1 — 12.5 MHz 4 x tBCLK — ns Pr el im in ar y Num Operating voltage Frequency of operation DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tSCK/2) - 4 — ns DS4 DSPI_SCK to DSPI_PCSn output hold (tSCK/2) - 4 — ns DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. DSPI_PCSn DS3 DSPI_SCK (CPOL=0) DS7 DSPI_SIN DS1 DS2 DS8 Data First data Last data DS5 DSPI_SOUT DS4 First data DS6 Data Last data Figure 18. DSPI Classic SPI Timing — Master Mode Table 35. Slave Mode DSPI Timing (Low-speed Mode) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 6.25 MHz Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 50 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 35. Slave Mode DSPI Timing (Low-speed Mode) (continued) Num Description Min. Max. Unit 8 x tBCLK — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 5 — ns DS14 DSPI_SCK to DSIP_SIN input hold 15 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 15 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 15 ns DSPI_SS Pr el im in ar y DS9 DS10 DSPI_SCK (CPOL=0) DSPI_SOUT DS15 DS12 First data DS13 DSPI_SIN DS9 DS16 DS11 Data Last data DS14 First data Data Last data Figure 19. DSPI Classic SPI Timing — Slave Mode 6.8.2 DSPI Switching Specifications (High-speed mode) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 36. Master Mode DSPI Timing (High-speed mode) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 25 MHz 2 x tBCLK — ns (tSCK/2) − 2 (tSCK/2) + 2 ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 51 Peripheral operating requirements and behaviors Table 36. Master Mode DSPI Timing (High-speed mode) (continued) Num Description Min. Max. Unit DSPI_PCSn to DSPI_SCK output valid (tSCK/2) − 2 — ns DS4 DSPI_SCK to DSPI_PCSn output hold (tSCK/2) − 2 — ns DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup TBD — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns DSPI_PCSn Pr el im in ar y DS3 DS3 DSPI_SCK (CPOL=0) DSPI_SIN DSPI_SOUT DS1 DS2 DS4 DS8 DS7 Data First data Last data DS5 DS6 First data Data Last data Figure 20. DSPI Classic SPI Timing — Master Mode Table 37. Slave Mode DSPI Timing (High-speed mode) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 12.5 MHz 4 x tBCLK — ns (tSCK/2) − 2 (tSCK/2 + 2 ns Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — TBD ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSIP_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 52 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Data Last data DS14 Data Last data Pr el im in ar y First data Figure 21. DSPI Classic SPI Timing — Slave Mode 6.8.3 SDHC Specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 38. SDHC switching specifications Num Symbol Description Min. Max. Unit Clock frequency (low speed) 0 400 kHz Clock frequency (SD\SDIO full speed) 0 25 MHz Clock frequency (MMC full speed) 0 20 MHz Clock frequency (identification mode) 0 400 kHz Clock low time 7 — ns Clock high time 7 — ns Card input clock SD1 fpp fpp fpp fOD SD2 tWL SD3 tWH SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tTHL SDHC input setup time 5 — ns SD8 tTHL SDHC input hold time 0 — ns K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 53 Peripheral operating requirements and behaviors SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Pr el im in ar y Input SDHC_CMD Input SDHC_DAT[3:0] Figure 22. SDHC timing 6.8.4 I2S Switching Specifications This section provides the AC timings for the I2S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below. Table 39. I2S master mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time S2 I2S_MCLK pulse width high/low S3 I2S_BCLK cycle time S4 I2S_BCLK pulse width high/low S5 I2S_BCLK to I2S_FS output valid S6 I2S_BCLK to I2S_FS output invalid S7 2 x tSYS ns 45% 55% MCLK period 5 x tSYS — ns 45% 55% BCLK period — 15 ns -2.5 — ns I2S_BCLK to I2S_TXD valid — 15 ns S8 I2S_BCLK to I2S_TXD invalid -3 — ns S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 20 — ns S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 — ns K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 54 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S5 S6 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD I2S_RXD S10 Pr el im in ar y S9 Figure 23. I2S timing — master mode Table 40. I2S alave mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V 8 x tSYS — ns S11 I2S_BCLK cycle time (input) S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_FS input setup before I2S_BCLK 10 — ns S14 I2S_FS input hold after I2S_BCLK 3 — ns S15 I2S_BCLK to I2S_TXD/I2S_FS output valid — 20 ns S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_BCLK 10 — ns S18 I2S_RXD hold after I2S_BCLK 2 — ns S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 S14 I2S_FS (input) S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 24. I2S timing — slave modes K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 55 Peripheral operating requirements and behaviors 6.9 Human-machine interfaces (HMI) 6.9.1 General Switching Specifications These general purpose specifications apply to all signals configured for GPIO, SCI, FlexCAN, CMT, I2C, and IEEE 1588 timer signals. Table 41. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disa‐ bled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disa‐ bled, analog filter enabled) — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width (digital glitch filter disa‐ bled, analog filter disabled) — Asynchronous path 16 — ns 2 External reset pulse width (digital glitch filter disabled) TBD — Mode select (EZP_CS) hold time after reset deasser‐ tion 2 — Pr el im in ar y Symbol Bus clock cycles Port rise and fall time (high drive strength) • Slew disabled — 12 ns • Slew enabled — 36 ns Port rise and fall time (low drive strength) 1. 2. 3. 4. • Slew disabled — 32 ns • Slew enabled — 36 ns 3 4 The greater synchronous and asynchronous timing must be met. This is the shortest pulse that is guaranteed to be recognized. 75pF load 15pF load 6.9.2 TSI Electrical Specifications Table 42. Touch Sensing Input module specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V Target electrode capacitance range 1 20 500 pF Reference oscillator frequency — 5.5 TBD MHz CELE fREFmax Notes 1 Table continues on the next page... K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 56 Preliminary Freescale Semiconductor, Inc. Dimensions Table 42. Touch Sensing Input module specifications (continued) Description Min. Typ. Max. Unit fELEmax Electrode oscillator frequency — 0.5 TBD MHz Internal reference capacitor TBD 1 TBD pF Oscillator delta voltage TBD 600 TBD mV IREF Reference oscillator current source base current TBD 1 TBD μA 2 IELE Electrode oscillator current source base current TBD 1 TBD μA 3 Pres5 Electrode capacitance measurement precision — TBD TBD % 4 Pres20 Electrode capacitance measurement precision — TBD TBD % 5 Pres100 Electrode capacitance measurement precision — TBD TBD % 6 Max‐ Sens20 Max sensitivity @ 20pF electrode 0.15 0.326 600 fF 7 Maximum sensitivity 0.006 0.326 24 fF 8 Resolution — — 16 bits Response time @ 20pF — 30 — μs Current added in run mode — TBD — μA Low power mode current adder — 1 TBD μA CREF VDELTA MaxSens Res TCon20 ITSI_RUN ITSI_LP Pr el im in ar y Symbol Notes 9 1. The TSI module is functional with capacitance values outside of this range. However, optimal performance is not guaranteed. 2. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current 3. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current 4. Measured with a 5pF electrode, reference oscillator frequency of 10MHz, PS = 128, NCSC = 8; Iext = 16 5. Measured with a 20pF electrode, reference oscillator frequency of 10MHz, PS = 128, NCSC = 2; Iext = 16 6. Measured with a 20pF electrode, reference oscillator frequency of 10MHz, PS = 16, NCSC = 3; Iext = 16 7. 6.2ms scan time 8. 1pF electrode capacitance with 4.96ms scan time 9. Time that takes to do one complete measurement of the electrode. Sensitivity resolution of 0.0133pF 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 144-pin LQFP 98ASS23177W 144-pin MAPBGA 98ASA00222D K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 57 Pinout 8 Pinout 8.1 K10 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. Default — L5 NC — M5 NC — A10 NC — B10 NC — C10 NC 1 D3 ADC1_SE4a 2 D2 ADC1_SE5a 3 D1 ADC1_SE6a 4 E4 ADC1_SE7a 5 E5 VDD 6 F6 VSS 7 E3 DISABLED 8 E2 DISABLED 9 E1 DISABLED 10 F4 DISABLED 11 F3 DISABLED 12 F2 13 ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 Pr el im in ar y 144 144 QFP BGA EzPort NC NC NC NC NC ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA ADC1_SE5a PTE1 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL ADC1_SE6a PTE2 SPI1_SCK UART1_CTS _b SDHC0_DCL K ADC1_SE7a PTE3 SPI1_SIN UART1_RTS _b SDHC0_CMD PTE4 SPI1_PCS0 UART3_TX SDHC0_D3 PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 PTE6 SPI1_PCS3 UART3_CTS _b I2S0_MCLK PTE7 UART3_RTS _b I2S0_RXD PTE8 UART5_TX I2S0_RX_FS DISABLED PTE9 UART5_RX I2S0_RX_BC LK F1 DISABLED PTE10 UART5_CTS _b I2S0_TXD 14 G4 DISABLED PTE11 UART5_RTS _b I2S0_TX_FS 15 G3 DISABLED PTE12 16 E6 VDD VDD 17 F7 VSS VSS 18 H1 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN0 FTM0_FLT3 19 H2 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN1 LPT00_ALT3 VDD VSS I2S0_CLKIN I2S0_TX_BC LK K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 58 Preliminary Freescale Semiconductor, Inc. Pinout Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 20 G1 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_CTS _b I2C0_SDA 21 G2 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_RTS _b I2C0_SCL 22 H3 VSS VSS 23 J1 ADC0_DP1 ADC0_DP1 24 J2 ADC0_DM1 ADC0_DM1 25 K1 ADC1_DP1 ADC1_DP1 26 K2 ADC1_DM1 ADC1_DM1 27 L1 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 28 L2 PGA0_DM/ ADC0_DM0/ ADC1_DM3 29 M1 PGA1_DP/ ADC1_DP0/ ADC0_DP3 30 M2 PGA1_DM/ ADC1_DM0/ ADC0_DM3 31 H5 VDDA 32 G5 VREFH 33 G6 VREFL 34 H6 VSSA 35 K3 ADC1_SE16 36 J3 ADC0_SE16 37 M3 VREF_OUT 38 L3 DAC0_OUT 39 L4 DAC1_OUT 40 M7 XTAL32 41 M6 EXTAL32 Pr el im in ar y 144 144 QFP BGA 42 L6 VBAT VBAT 43 — VDD VDD 44 — VSS VSS EzPort PGA0_DM/ ADC0_DM0/ ADC1_DM3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DM/ ADC1_DM0/ ADC0_DM3 VDDA VREFH VREFL VSSA ADC1_SE16 ADC0_SE16 VREF_OUT DAC0_OUT DAC1_OUT XTAL32 EXTAL32 45 M4 ADC0_SE17 ADC0_SE17 PTE24 CAN1_TX UART4_TX EWM_OUT_b 46 K5 ADC0_SE18 ADC0_SE18 PTE25 CAN1_RX UART4_RX EWM_IN 47 K4 DISABLED PTE26 UART4_CTS _b RTC_CLKOU T 48 J4 DISABLED PTE27 UART4_RTS _b 49 H4 DISABLED PTE28 50 J5 JTAG_TCLK/ TSI0_CH1 SWD_CLK/ EZP_CLK PTA0 UART0_CTS _b FTM0_CH5 JTAG_TCLK/ EZP_CLK SWD_CLK K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 59 Pinout 144 144 QFP BGA Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 51 J6 JTAG_TDI/ EZP_DI TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI 52 K6 JTAG_TDO/ TRACE_SW O/EZP_DO TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_SW O EZP_DO 53 K7 JTAG_TMS/ SWD_DIO TSI0_CH4 PTA3 UART0_RTS _b FTM0_CH0 JTAG_TMS/ SWD_DIO 54 L7 NMI_b/ EZP_CS_b TSI0_CH5 PTA4 FTM0_CH1 NMI_b 55 M8 JTAG_TRST PTA5 FTM0_CH2 56 E7 VDD 57 G7 VSS 58 J7 DISABLED 59 J8 ADC0_SE10 60 K8 ADC0_SE11 61 L8 DISABLED 62 M9 DISABLED 63 L9 DISABLED 64 K9 CMP2_IN0 65 J9 CMP2_IN1 66 L10 DISABLED 67 L11 DISABLED 68 K10 DISABLED 69 K11 ADC1_SE17 ADC1_SE17 70 E8 VDD VDD 71 G8 VSS VSS I2S0_RX_BC JTAG_TRST LK Pr el im in ar y CMP2_OUT EZP_CS_b VDD VSS PTA6 FTM0_CH3 TRACE_CLK OUT ADC0_SE10 PTA7 FTM0_CH4 TRACE_D3 ADC0_SE11 PTA8 FTM1_CH0 FTM1_QD_P HA TRACE_D2 PTA9 FTM1_CH1 FTM1_QD_P HB TRACE_D1 PTA10 FTM2_CH0 FTM2_QD_P HA TRACE_D0 PTA11 FTM2_CH1 FTM2_QD_P HB CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2S0_TXD FTM1_QD_P HA CMP2_IN1 PTA13 CAN0_RX FTM1_CH1 I2S0_TX_FS FTM1_QD_P HB PTA14 SPI0_PCS0 UART0_TX I2S0_TX_BC LK PTA15 SPI0_SCK UART0_RX I2S0_RXD PTA16 SPI0_SOUT UART0_CTS _b I2S0_RX_FS PTA17 SPI0_SIN UART0_RTS _b I2S0_MCLK 72 M12 EXTAL EXTAL PTA18 FTM0_FLT2 FTM_CLKIN0 73 M11 XTAL XTAL PTA19 FTM1_FLT0 FTM_CLKIN1 74 L12 RESET_b RESET_b 75 K12 DISABLED PTA24 FB_A29 76 J12 DISABLED PTA25 FB_A28 77 J11 DISABLED PTA26 FB_A27 78 J10 DISABLED PTA27 FB_A26 79 H12 DISABLED PTA28 FB_A25 80 H11 DISABLED PTA29 FB_A24 I2S0_CLKIN LPT0_ALT1 K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 60 Preliminary Freescale Semiconductor, Inc. Pinout Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 81 H10 ADC0_SE8/ ADC1_SE8/ TSI0_CH0 ADC0_SE8/ ADC1_SE8/ TSI0_CH0 PTB0 I2C0_SCL FTM1_CH0 FTM1_QD_P HA 82 H9 ADC0_SE9/ ADC1_SE9/ TSI0_CH6 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_P HB 83 G12 ADC0_SE12/ ADC0_SE12/ PTB2 TSI0_CH7 TSI0_CH7 I2C0_SCL UART0_RTS _b FTM0_FLT3 84 G11 ADC0_SE13/ ADC0_SE13/ PTB3 TSI0_CH8 TSI0_CH8 I2C0_SDA UART0_CTS _b FTM0_FLT0 85 G10 ADC1_SE10 ADC1_SE10 86 G9 87 F12 ADC1_SE12 88 F11 ADC1_SE13 89 F10 DISABLED 90 F9 91 E12 ADC1_SE14 92 E11 ADC1_SE15 93 H7 VSS 94 F5 VDD 95 E10 TSI0_CH9 96 E9 97 D12 TSI0_CH11 98 D11 TSI0_CH12 99 D10 DISABLED 100 D9 101 C12 DISABLED 102 C11 DISABLED Pr el im in ar y 144 144 QFP BGA 103 ADC0_SE9/ ADC1_SE9/ TSI0_CH6 ADC1_SE11 DISABLED PTB4 FTM1_FLT0 ADC1_SE11 PTB5 FTM2_FLT0 ADC1_SE12 PTB6 FB_AD23 ADC1_SE13 PTB7 FB_AD22 PTB8 UART3_RTS _b FB_AD21 PTB9 SPI1_PCS1 UART3_CTS _b FB_AD20 ADC1_SE14 PTB10 SPI1_PCS0 UART3_RX FB_AD19 FTM0_FLT1 ADC1_SE15 PTB11 SPI1_SCK UART3_TX FB_AD18 FTM0_FLT2 TSI0_CH9 PTB16 SPI1_SOUT UART0_RX FB_AD17 EWM_IN TSI0_CH10 PTB17 SPI1_SIN UART0_TX FB_AD16 EWM_OUT_b TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_BC LK FB_AD15 FTM2_QD_P HA TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_P HB PTB20 SPI2_PCS0 FB_AD31 CMP0_OUT PTB21 SPI2_SCK FB_AD30 CMP1_OUT PTB22 SPI2_SOUT FB_AD29 CMP2_OUT PTB23 SPI2_SIN SPI0_PCS5 B12 ADC0_SE14/ ADC0_SE14/ PTC0 TSI0_CH13 TSI0_CH13 SPI0_PCS4 PDB0_EXTR G I2S0_TXD FB_AD14 104 B11 ADC0_SE15/ ADC0_SE15/ PTC1 TSI0_CH14 TSI0_CH14 SPI0_PCS3 UART1_RTS _b FTM0_CH0 FB_AD13 105 A12 ADC0_SE4b/ ADC0_SE4b/ PTC2 CMP1_IN0/ CMP1_IN0/ TSI0_CH15 TSI0_CH15 SPI0_PCS2 UART1_CTS _b FTM0_CH1 FB_AD12 106 A11 CMP1_IN1 CMP1_IN1 PTC3 SPI0_PCS1 UART1_RX FTM0_CH2 FB_CLKOUT 107 H8 VSS VSS 108 — VDD VDD 109 A9 DISABLED PTC4 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11 CMP1_OUT 110 D8 DISABLED PTC5 SPI0_SCK LPT0_ALT2 FB_AD10 CMP0_OUT TSI0_CH10 DISABLED EzPort VSS VDD FB_AD28 K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 61 Pinout Default ALT0 ALT1 ALT2 ALT3 PDB0_EXTR G ALT4 ALT5 ALT6 ALT7 111 C8 CMP0_IN0 CMP0_IN0 PTC6 SPI0_SOUT 112 B8 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN 113 A8 ADC1_SE4b/ ADC1_SE4b/ PTC8 CMP0_IN2 CMP0_IN2 114 D7 ADC1_SE5b/ ADC1_SE5b/ PTC9 CMP0_IN3 CMP0_IN3 115 C7 ADC1_SE6b/ ADC1_SE6b/ PTC10 CMP0_IN4 CMP0_IN4 I2C1_SCL 116 B7 ADC1_SE7b I2C1_SDA 117 A7 DISABLED 118 D6 DISABLED 119 C6 DISABLED 120 B6 DISABLED 121 — VSS 122 — VDD 123 A6 DISABLED 124 D5 DISABLED 125 C5 DISABLED 126 B5 DISABLED 127 A5 DISABLED Pr el im in ar y 144 144 QFP BGA 128 D4 ADC0_SE5b ADC0_SE5b 129 C4 130 ADC1_SE7b PTC11 FB_AD9 FB_AD8 I2S0_MCLK I2S0_CLKIN FB_AD7 I2S0_RX_BC FB_AD6 LK I2S0_RX_FS I2S0_RXD FTM2_FLT0 FB_AD5 FB_RW_b PTC12 UART4_RTS _b FB_AD27 PTC13 UART4_CTS _b FB_AD26 PTC14 UART4_RX FB_AD25 PTC15 UART4_TX FB_AD24 VSS VDD PTC16 CAN1_RX UART3_RX FB_CS5_b/ FB_TSIZ1/ FB_BE23_16 _BLS15_8_b PTC17 CAN1_TX UART3_TX FB_CS4_b/ FB_TSIZ0/ FB_BE31_24 _BLS7_0_b PTC18 UART3_RTS _b FB_TBST_b/ FB_CS2_b/ FB_BE15_8_ BLS23_16_b PTC19 UART3_CTS _b FB_CS3_b/ FB_TA_b FB_BE7_0_B LS31_24_b PTD0 SPI0_PCS0 UART2_RTS _b FB_ALE/ FB_CS1_b/ FB_TS_b PTD1 SPI0_SCK UART2_CTS _b FB_CS0_b DISABLED PTD2 SPI0_SOUT UART2_RX FB_AD4 B4 DISABLED PTD3 SPI0_SIN UART2_TX FB_AD3 131 A4 DISABLED PTD4 SPI0_PCS1 UART0_RTS _b FTM0_CH4 FB_AD2 EWM_IN 132 A3 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS _b FTM0_CH5 FB_AD1 EWM_OUT_b 133 A2 ADC0_SE7b ADC0_SE7b PTD6 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0 134 M10 VSS VSS 135 F8 VDD VDD EzPort K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 62 Preliminary Freescale Semiconductor, Inc. Pinout 144 144 QFP BGA Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT6 136 A1 DISABLED PTD7 CMT_IRO UART0_TX 137 C9 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16 138 B9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17 139 B3 DISABLED PTD10 UART5_RTS _b FB_A18 140 B2 DISABLED PTD11 SPI2_PCS0 141 B1 DISABLED PTD12 142 C3 DISABLED 143 C2 DISABLED 144 C1 DISABLED ALT7 EzPort FTM0_FLT1 SDHC0_CLKI N FB_A19 SPI2_SCK SDHC0_D4 FB_A20 PTD13 SPI2_SOUT SDHC0_D5 FB_A21 PTD14 SPI2_SIN SDHC0_D6 FB_A22 PTD15 SPI2_PCS1 SDHC0_D7 FB_A23 Pr el im in ar y UART5_CTS _b FTM0_CH7 ALT5 8.2 K10 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 63 PTD15 PTD14 PTD13 PTD12 PTD11 PTD10 PTD9 PTD8 PTD7 VDD VSS PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 PTC19 PTC18 PTC17 PTC16 VDD VSS PTC15 PTC14 PTC13 PTC12 PTC11 PTC10 PTC9 PTC8 PTC7 PTC6 PTC5 PTC4 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 Pinout 1 108 VDD 2 107 VSS PTE2 3 106 PTC3 PTE3 4 105 PTC2 VDD 5 104 PTC1 VSS 6 103 PTC0 PTE4 7 102 PTB23 PTE5 8 101 PTB22 PTE6 9 100 PTB21 PTE7 10 99 PTB20 PTE8 11 98 PTB19 PTE9 12 97 PTB18 PTE10 13 96 PTB17 PTE11 14 95 PTB16 PTE12 15 94 VDD VDD 16 93 VSS VSS 17 92 PTB11 PTE16 18 91 PTB10 PTE17 19 90 PTB9 PTE18 20 89 PTB8 PTE19 21 88 PTB7 VSS 22 87 PTB6 ADC0_DP1 23 86 PTB5 ADC0_DM1 24 85 PTB4 ADC1_DP1 25 84 PTB3 ADC1_DM1 26 83 PTB2 PGA0_DP/ADC0_DP0/ADC1_DP3 27 82 PTB1 PGA0_DM/ADC0_DM0/ADC1_DM3 28 81 PTB0 PGA1_DP/ADC1_DP0/ADC0_DP3 29 80 PTA29 PGA1_DM/ADC1_DM0/ADC0_DM3 30 79 PTA28 VDDA 31 78 PTA27 VREFH 32 77 PTA26 VREFL 33 76 PTA25 VSSA 34 75 PTA24 ADC1_SE16 35 74 RESET_b ADC0_SE16 36 73 PTA19 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VREF_OUT DAC0_OUT DAC1_OUT XTAL32 EXTAL32 VBAT VDD VSS PTE24 PTE25 PTE26 PTE27 PTE28 PTA0 PTA1 PTA2 PTA3 PTA4 PTA5 VDD VSS PTA6 PTA7 PTA8 PTA9 PTA10 PTA11 PTA12 PTA13 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 Pr el im in ar y PTE0 PTE1 Figure 25. K10 144 LQFP Pinout Diagram K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. 64 Preliminary Freescale Semiconductor, Inc. Revision History 2 3 4 5 6 7 8 9 10 11 12 A PTD7 PTD6 PTD5 PTD4 PTD0 PTC16 PTC12 PTC8 PTC4 NC PTC3 PTC2 A B PTD12 PTD11 PTD10 PTD3 PTC19 PTC15 PTC11 PTC7 PTD9 NC PTC1 PTC0 B C PTD15 PTD14 PTD13 PTD2 PTC18 PTC14 PTC10 PTC6 PTD8 NC PTB23 PTB22 C D PTE2 PTE1 PTE0 PTD1 PTC17 PTC13 PTC9 PTC5 PTB21 PTB20 PTB19 PTB18 D E PTE6 PTE5 PTE4 PTE3 VDD VDD VDD VDD PTB17 PTB16 PTB11 PTB10 E F PTE10 PTE9 PTE8 PTE7 VDD VSS VSS VDD PTB9 PTB8 PTB7 PTB6 F G PTE18 PTE19 PTE12 PTE11 VREFH VREFL VSS VSS PTB5 PTB4 PTB3 PTB2 G H PTE16 PTE17 VSS PTE28 VDDA VSSA VSS VSS PTB1 PTB0 PTA29 PTA28 H J ADC0_DP1 ADC0_DM1 ADC0_SE16 PTE27 PTA0 PTA1 PTA6 PTA7 PTA13 PTA27 PTA26 PTA25 J K ADC1_DP1 ADC1_DM1 ADC1_SE16 PTE26 PTE25 PTA2 PTA3 PTA8 PTA12 PTA16 PTA17 PTA24 K PGA0_DP/ PGA0_DM/ L ADC0_DP0/ ADC0_DM0/ DAC0_OUT DAC1_OUT NC VBAT PTA4 PTA9 PTA11 PTA14 PTA15 RESET_b L ADC1_DP3 ADC1_DM3 PGA1_DP/ M ADC1_DP0/ ADC1_DM0/ VREF_OUT PTE24 NC EXTAL32 XTAL32 PTA5 PTA10 VSS PTA19 PTA18 M ADC0_DP3 ADC0_DM3 1 2 3 4 5 6 7 8 9 10 11 12 Pr el im in ar y 1 PGA1_DM/ Figure 26. K10 144 MAPBGA Pinout Diagram 9 Revision History The following table provides a revision history for this document. Table 43. Revision History Rev. No. Date 1 11/2010 Substantial Changes Initial public revision K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010. Freescale Semiconductor, Inc. Preliminary 65 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Japan: Pr el im in ar y Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM is the registered trademark of ARM Limited. ARM Cortex-M4 is the trademark of ARM Limited. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved. K10P144M100SF2 Rev. 1 11/2010