Freescale MPXN3020VMS1R Pxs30 microcontroller Datasheet

Freescale Semiconductor
Data Sheet: Advance Information
Document Number: PXS30
Rev. 1, 09/2011
PXS30
PXS30 Microcontroller Data
Sheet
The PXS30 family represents a new generation of
32-bit microcontrollers based on the Power
Architecture®. These devices provide a
cost-effective, single chip display solution for the
industrial market. An integrated TFT driver with
digital video input ability from an external video
source, significant on-chip memory, and low power
design methodologies provide flexibility and
reliability in meeting display demands in rugged
environments. The advanced processor core offers
high performance processing optimized for low
power consumption, operating at speeds as high as
64 MHz. The family itself is fully scalable from
512 KB to 1 MB internal flash memory. The
memory capacity can be further expanded via the
on-chip QuadSPI serial flash controller module.
The PXS30 family platform has a single level of
memory hierarchy supporting on-chip SRAM and
flash memories. The 1 MB flash version features
160 KB of on-chip graphics SRAM to buffer cost
effective color TFT displays driven via the on-chip
Display Control Unit (DCU). See Table 1 for
specific memory size and feature sets of the product
family members.
The PXS30 family benefits from the extensive
development infrastructure for Power Architecture
devices, which is already well established. This
includes full support from available software
drivers, operating systems, and configuration code
473 MAPBGA
(19 x 19 mm)
1
2
3
4
5
6
7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . 19
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Recommended operating conditions . . . . . . . . . . . . . . 71
3.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Electromagnetic interference (EMI) characteristics . . . 74
3.6 Electrostatic discharge (ESD) characteristics. . . . . . . . 75
3.7 Static latch-up (LU). . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Power Management Controller (PMC) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.9 Supply current characteristics . . . . . . . . . . . . . . . . . . . 78
3.10 Temperature sensor electrical characteristics . . . . . . . 78
3.11 Main oscillator electrical characteristics . . . . . . . . . . . . 79
3.12 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . 79
3.13 16 MHz RC oscillator electrical characteristics . . . . . . 81
3.14 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . 81
3.15 Flash memory electrical characteristics . . . . . . . . . . . . 87
3.16 SRAM memory electrical characteristics . . . . . . . . . . . 89
3.17 GP pads specifications . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.18 PDI pads specifications . . . . . . . . . . . . . . . . . . . . . . . . 91
3.19 DRAM pad specifications . . . . . . . . . . . . . . . . . . . . . . . 96
3.20 RESET characteristics . . . . . . . . . . . . . . . . . . . . . . . . 102
3.21 Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.22 Peripheral timing characteristics. . . . . . . . . . . . . . . . . 110
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.1 Package mechanical data. . . . . . . . . . . . . . . . . . . . . . 132
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 138
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2011. All rights reserved.
Preliminary—Subject to Change Without Notice
257 MAPBGA
(14 x 14 mm)
Introduction
to assist with users’ implementations. See Section 3, Developer support, for more information.
1
Introduction
1.1
Document overview
This document describes the features of the family and options available within the family members, and
highlights important electrical and physical characteristics of the devices.
This document provides electrical specifications, pin assignments, and package diagrams for the PXS30
series of microcontroller units (MCUs). For functional characteristics, see the PXS30 Microcontroller
Reference Manual.
1.2
Device comparison
Table 1. PXS30 Family Feature Set
Features
CPU
PXS3010
PXS3015
2 × e200z7d (SoR1) in lock-step or decoupled operation
Type
Architecture
Harvard
Execution speed
0–150 MHz (+2% FM)
0–180 MHz (+2% FM)
0–180 MHz (+2% FM)
Nominal platform
frequency (in 1:1, 1:2,
and 1:3 modes)
0–75 MHz (+2% FM)
0–90 MHz (+2% FM)
0–90 MHz (+2% FM)
MMU
64 entries (SoR)
Instruction set PPC
Yes
Instruction set VLE
Yes
Instruction cache
16 KB, 4-way with EDC (SoR)
Data cache
16 KB, 4-way with EDC (SoR)
MPU
Buses
PXS3020
Yes (SoR)
Core bus
32-bit address, 64-bit data
Internal periphery bus
32-bit address, 32-bit data
XBAR
Master  slave ports
Memory
Static RAM (SRAM)
256 KB (ECC)
Code Flash memory
Data Flash memory
Yes (SoR)
2
1 MB
384 KB (ECC)
1.5
MB2
512 KB (ECC)
2 MB2
64 KB2
PXS30 Microcontroller Data Sheet, Rev. 1
2
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
Table 1. PXS30 Family Feature Set (continued)
Features
Modules
PXS3010
Analog-to-Digital
Converter (ADC)
PXS3015
PXS3020
257 pin pkg: 4 × 12 bit (22 external channels)
473 pin pkg: 4 × 12 bit (up to 34 external channels)
CRC unit
2 (3 contexts each)
Cross Triggering Unit
(CTU)
Serial Peripheral
Interface (SPI)
2 modules
2 modules
(3 chip selects)
3 modules
(3 chip selects)
 16
Digital I/Os
DRAM Controller
(DRAMC)
Yes3
No
Enhanced Direct
Memory Access (eDMA)
2 modules, 32 channels each
eTimer
3 modules, 6 channels each
External Bus Interface
(EBI)
1 module3
16-bit Data + Address or 32-bit Data with Address bus muxed4
Fast Ethernet Controller
(FEC)
1 module
Fault Collection and
Control Unit (FCCU)
1 module
CAN
4 modules (32 message buffers each)
PWM
3 modules (each 4 × 3 channels)
FlexRay
Optional
I2C
2 modules
Interrupt Controller
(INTC)
3 modules
Yes (SoR)
UART/LIN
3 modules
Parallel Data Interface
(PDI)
Periodic Interrupt Timer
(PIT)
4 modules
4
1 module
1 module, 4 channels
Software Watchdog
Timer (SWT)
Yes (SoR)
System Timer Module
(STM)
Yes (SoR)
Temperature sensor
1 module
Wakeup Unit (WKPU)
Crossbar switch (XBAR)
Yes
3 modules, 2 are user-configurable
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
3
Introduction
Table 1. PXS30 Family Feature Set (continued)
Features
Clocking
PXS3010
Clock monitor unit
(CMU)
3 modules
Clock output
2 modules
Frequency-modulated
phase-locked loop
(FMPLL)
Supply
PXS3015
2 modules (system and auxiliary)
IRCOSC – 16 MHz
1
XOSC 4 MHz – 40 MHz
1
Power management unit
(PMU)
Yes
1.2 V low-voltage
detector (LVD12)
1
1.2 V high-voltage
detector (HVD12)
1
2.7 V low-voltage
detector (LVD27)
4
Debug
Nexus
Packages
MAPBGA
Temperature
Ambient
PXS3020
Class 3+ (for cores and SRAM ports)
257 pins
473 pins
473 pins
See the TA recommended operating condition in the device data sheet
NOTES:
1 Sphere of Replication.
2 Does not include Test or Shadow Flash memory space.
3 Available only on 473-pin package.
4 DDR available only on 473 package. Other modules available as follows:
EBI or DDR on 473 package.
EBI + PDI on 473 package.
DDR + PDI on 473 package
PDI only on 257 package.
1.3
Block diagram
Figure 1 shows a top-level block diagram of the PXS30 device.
PXS30 Microcontroller Data Sheet, Rev. 1
4
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
PXS30 Block Diagram
Debug
e200z7
PMU
e200z7
PMU
JTAG
SWT
SWT
Nexus
SPE2
MCM
SPE2
VLE
STM
FlexRay™
MMU
INTC
Ethernet
STM
MMU
PDI
Redundancy
Checker
Cache
eDMA
MCM
VLE
INTC
Cache
eDMA
Crossbar Switch (XBAR)
Crossbar Switch (XBAR)
Memory Protection Unit (MPU)
Memory Protection Unit (MPU)
PBRIDGE
EBI
Redundancy Checker
Redundancy Checker
2 MB Flash (ECC)
512 KB SRAM (ECC)
MDDR
PBRIDGE
ADC
BAM
CAN
CMU
CRC
CTU
EBI
ECC
ECSM
eDMA
FCCU
FEC
FMPLL
I2 C
IRCOSC
INTC
JTAG
MC
– Analog-to-digital converter
– Boot assist module
– Controller area network controller
– Clock monitoring unit
– Cyclic redundancy check unit
– Cross triggering unit
– External bus interface
– Error correction code
– Error correction status module
– Enhanced direct memory access controller
– Fault collection and control unit
– Fast Ethernet controller
– Frequency-modulated phase-locked loop
– Inter-integrated circuit controller
– Internal RC oscillator
– Interrupt controller
– Joint Test Action Group interface
– Mode entry, clock, reset, & power modules
mDDR
PBRIDGE
PDI
PIT
PMU
PWM
RC
RTC
SEMA4
SIUL
SPI
SSCM
STM
SWT
TSENS
UART/LIN
XOSC
4x
ADC
2x
CTU
3x
PWM
3x
eTIMER
4x
CAN
3x
I2C
3x
SPI
4x
UART/LIN
TSENS
FCCU
Redundancy Checker
Communications
I/O System
– Mobile double data rate dynamic RAM
– Peripheral I/O bridge
– Parallel data interface
– Periodic interrupt timer
– Power management unit
– Pulse width modulator module
– Redundancy checker
– Real time clock
– Semaphore unit
– System integration unit Lite
– Serial peripheral interface controller
– System status and configuration module
– System timer module
– Software watchdog timer
– Temperature sensor
– Universal asynchronous receiver/transmitter/
local interconnect network
– Crystal oscillator
Figure 1. PXS30 block diagram
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
5
Introduction
1.4
•
•
•
•
•
•
•
•
•
•
Feature list
High-performance e200z7d dual core
— 32-bit Power Architecture technology CPU
— Up to 180 MHz core frequency
— Dual-issue core
— Variable length encoding (VLE)
— Memory management unit (MMU) with 64 entries
— 16 KB instruction cache and 16 KB data cache
Memory available
— Up to 2 MB Code flash memory with ECC
— 64 KB Data flash memory with ECC
— Up to 512 KB on-chip SRAM with ECC
SIL3/ASILD innovative safety concept: LockStep mode and fail-safe protection
— Sphere of replication (SoR) for key components
— Redundancy checking units on outputs of the SoR connected to FCCU
— Fault collection and control unit (FCCU)
— Boot-time built-in self-test for memory (MBIST) and logic (LBIST) triggered by hardware
— Boot-time built-in self-test for ADC and flash memory
— Replicated safety-enhanced watchdog timer
— Junction temperature sensor
— Non-maskable interrupt (NMI)
— 16-region memory protection unit (MPU)
— Clock monitoring units (CMU)
— Power management unit (PMU)
— Cyclic redundancy check (CRC) units
Decoupled Parallel mode for high-performance use of replicated cores
Nexus Class 3+ interface
Interrupts
— Replicated 16-priority interrupt controller
— Replicated 32-channel eDMA controller
GPIOs individually programmable as input, output, or special function
3 general-purpose eTimer units (6 channels each)
3 FlexPWM units with four 16-bit channels per module
Communications interfaces
— 4 LINFlex modules
— 3 DSPI modules with automatic chip select generation
— 4 FlexCAN interfaces (2.0B Active) with 32 message objects
PXS30 Microcontroller Data Sheet, Rev. 1
6
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
•
•
•
•
•
•
•
1.5
1.5.1
•
•
•
•
•
•
•
•
•
•
— FlexRay module (V2.1) with dual channel, up to 128 message objects and up to 10 Mbit/s
— Fast Ethernet Controller (FEC)
— 3 I2C modules
Four 12-bit analog-to-digital converters (ADCs)
— 22 input channels
— Programmable cross triggering unit (CTU) to synchronize ADC conversion with timer and
PWM
External bus interface
16-bit external DDR memory controller
Parallel digital interface (PDI)
On-chip CAN/UART bootstrap loader
Capable of operating on a single 3.3 V voltage supply
— 3.3 V-only modules: I/O, oscillators, flash memory
— 3.3 V or 5 V modules: ADCs, supply to internal VREG
— 1.8–3.3 V supply range: DRAM/PDI
Operating junction temperature range –40 to 150 °C
Feature details
High-performance e200z7d core processor
Dual 32-bit Power Architecture processor core
Loose or tight core coupling
Freescale Variable Length Encoding (VLE) enhancements for code size footprint reduction
Thirty-two 64-bit general-purpose registers (GPRs)
Memory management unit (MMU) with 64-entry fully-associative translation look-aside buffer
(TLB)
Branch processing unit
Fully pipelined load/store unit
16 KB Instruction and 16 KB Data caches per core with line locking
— Four way set associative
— Two 32-bit fetches per clock
— Eight-entry store buffer
— Way locking
— Supports tag and data parity
Vectored interrupt support
Signal processing engine 2 (SPE2) auxiliary processing unit (APU) operating on 64-bit general
purpose registers
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
7
Introduction
•
•
•
•
1.5.2
•
•
1.5.3
Floating point
— IEEE 754 compatible with software wrapper
— Single precision in hardware; double precision with software library
— Conversion instructions between single precision floating point and fixed point
Long cycle time instructions (except for guarded loads) do not increase interrupt latency in the
PXS30
To reduce latency, long cycle time instructions are aborted upon interrupt requests
Extensive system development support through Nexus debug module
Crossbar switch (XBAR)
32-bit address bus, 64-bit data bus
Simultaneous accesses from different masters to different slaves (there is no clock penalty when a
parked master accesses a slave)
Memory Protection Unit (MPU)
The Memory Protection Unit splits the physical memory into 16 different regions. Each master (DMA,
FlexRay, CPU) can be assigned different access rights to each region.
• 16-region MPU with concurrent checks against each master access
• 32-byte granularity for protected address region
1.5.4
•
•
•
•
•
1.5.5
•
•
•
•
•
Enhanced Direct Memory Access (eDMA) controller
32 channels support independent 8-, 16-, 32-bit single value or block transfers
Supports variable-sized queues and circular queues
Source and destination address registers are independently configured to post-increment or remain
constant
Each transfer is initiated by a peripheral, CPU, or eDMA channel request
Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single
value or block transfer
Interrupt Controller (INTC)
208 peripheral interrupt requests
8 software settable sources
Unique 9-bit vector per interrupt source
16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
Priority elevation for shared resources
PXS30 Microcontroller Data Sheet, Rev. 1
8
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
1.5.6
Frequency-Modulated Phase-Locked Loop (FMPLL)
Two FMPLLs are available on each device.
Each FMPLL allows the user to generate high speed system clocks starting from a minimum reference of
4 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system
clock. The PLL multiplication factor and output clock divider ratio are software configurable. The
FMPLLs have the following major features:
• Input frequency: 4–40 MHz continuous range (limited by the crystal oscillator)
• Voltage controlled oscillator (VCO) range: 256–512 MHz
• Frequency modulation via software control to reduce and control emission peaks
— Modulation depth ±2% if centered or 0% to –4% if downshifted via software control register
— Modulation frequency: triangular modulation with 25 kHz nominal rate
• Option to switch modulation on and off via software interface
• Reduced frequency divider (RFD) for reduced frequency operation without re-lock
• 2 modes of operation
— Normal PLL mode with crystal reference (default)
— Normal PLL mode with external reference
• Lock monitor circuitry with lock status
• Loss-of-lock detection for reference and feedback clocks
• Self-clocked mode (SCM) operation
• Auxiliary FMPLL
— Used for FlexRay due to precise symbol rate requirement by the protocol
— Used for motor control periphery and connected IP (A/D digital interface CTU) to allow
independent frequencies of operation for PWM and timers as well as jitter-free control
— Option to enable/disable modulation to avoid protocol violation on jitter and/or potential
unadjusted error in electric motor control loop
— Allows running motor control periphery at different (precisely lower, equal, or higher ,as
required) frequency than the system to ensure higher resolution
1.5.7
•
•
•
•
External Bus Interface (EBI)
Available on 473-pin devices
Data and address options:
— 16-bit data and address (non-muxed)
— 32-bit data and address (bus-muxed)
MPC5561 324 BGA compatibility mode: 16-bit data bus, 24-bit address bus is default
ADDR[8:31], but configurable to 26-bit address bus.
Memory controller with support for various memory types
— Non-burst and burst mode SDR flash and SRAM
— Asynchronous/legacy flash and SRAM
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
9
Introduction
•
•
•
•
•
Configurable bus speed modes
Support for 2 MB address space
Chip select and write/byte enable options as presented in the pin-muxing table in Section 2,
Package pinouts and signal descriptions
Configurable wait states (via chip selects)
Optional automatic CLKOUT gating to save power and reduce EMI
1.5.8
•
•
•
•
•
•
•
On-chip flash memory
Up to 2 MB Code flash memory with ECC
64 KB Data flash memory with ECC
Censorship protection scheme to prevent flash content visibility
Multiple block sizes to support features such as boot block, operating system block, and EEPROM
emulation
Read-while-write with multiple partitions
Parallel programming mode to support rapid end of line programming
Hardware programming state machine
1.5.9
•
•
•
Cache memory
Harvard architecture cache
16 KB instruction / 16 KB data
Four-way set-associative Harvard (instruction and data) 256-bit long cache
— Two 32-bit fetches per clock
— Eight-entry store buffer
— Way locking
— Supports tag and data parity
1.5.10
•
•
On-chip internal static RAM (SRAM)
Up to 512 KB general-purpose SRAM
ECC performs single-bit correction, double-bit error detection
— Address included in ECC checkbase
1.5.11
DRAM controller
The DRAM controller (available only on 473-pin devices) is a multi-port controller that monitors
incoming requests on the three AHB slave ports and decides (at each rising clock edge) what command
needs to be sent to the external DRAM.
The DRAM controller on this device supports the following types of memories:
• Mobile DDR (mDDR)
PXS30 Microcontroller Data Sheet, Rev. 1
10
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
•
•
•
DDR 1
DDR 2 (optional)
SDR
The controller has the following features:
• Optimized timing for 32-byte bursts and single read accesses on the AHB interface
• Optimized timing for 8-byte and 16-byte bursts on the DRAMC interface
• Supports priority elevation on the slave ports for single accesses
• 16-bit wide DRAM interface
• One chip select (CS)
• mDDR memory controller
— 16-bit external interface
— Address range up to 8 MB
1.5.12
•
•
•
•
Enables booting via serial mode (FlexCAN, LINFlex)
Handles static mode in case of an erroneous boot procedure
Implemented in 8 KB ROM
Supports Lock Step Mode (LSM) and Decoupled Parallel Mode (DPM)
1.5.13
•
•
•
•
•
•
•
•
Parallel Data Interface (PDI)
Support for external ADC and CMOS image sensors
Parallel interface operation up to MCU system bus frequency
Selectable data capture from rising or falling edge
Receive FIFO with adjustable trigger thresholds
Data width for 8, 10, 12, 14, and 16 bits
Data Packing Unit to pack input data on 64-bit words — data packed on 8- or 16- bit boundary,
depending on input data width
Binary increasing channel select that allows as many as eight channels to be selected
Frame synchronization through Vsync, Hsync, PIXCLK
1.5.14
•
Boot Assist Module (BAM)
Deserial Serial Peripheral Interface (DSPI) modules
Three Serial Peripheral Interfaces
— Full duplex communication ports with interrupt and eDMA request support
— Support for all functional modes from QSPI submodule of QSMCM (MPC5xx family)
— Support for queues in RAM
— Six chip selects, expandable to 64 with external demultiplexers
— Programmable frame size, baud rate, clock delay, and clock phase on a per-frame basis
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
11
Introduction
•
— Modified SPI mode for interfacing to peripherals with longer setup time requirements
Support for up to 60 Mbit/s in Slave Only Rx mode
1.5.15
Serial communication interface module (LINFlex)
The LINFlex on this device features the following:
• Supports LIN Master mode, LIN Slave mode, and UART mode
• LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
• Manages LIN frame transmission and reception without CPU intervention
• LIN features
— Autonomous LIN frame handling
— Message buffer to store as many as 8 data bytes
— Supports messages as long as 64 bytes
— Detection and flagging of LIN errors (Sync field, delimiter, ID parity, bit framing, checksum
and time-out errors)
— Classic or extended checksum calculation
— Configurable break duration of up to 36-bit times
— Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
— Diagnostic features (Loop back, LIN bus stuck dominant detection)
— Interrupt-driven operation with 16 interrupt sources
• LIN slave mode features
— Autonomous LIN header handling
— Autonomous LIN response handling
• UART mode
— Full-duplex operation
— Standard non return-to-zero (NRZ) mark/space format
— Data buffers with 4-byte receive, 4-byte transmit
— Configurable word length (8-bit, 9-bit, or 16-bit words)
— Configurable parity scheme: none, odd, even, always 0
— Speed as fast as 2 Mbit/s
— Error detection and flagging (parity, noise, and framing errors)
— Interrupt-driven operation with four interrupt sources
— Separate transmitter and receiver CPU interrupt sources
— 16-bit programmable baud-rate modulus counter and 16-bit fractional
— Two receiver wake-up methods
• Support for DMA-enabled transfers
PXS30 Microcontroller Data Sheet, Rev. 1
12
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
1.5.16
•
•
•
•
•
•
•
•
•
•
•
Thirty-two message buffers each
Full implementation of the CAN protocol specification, Version 2.0B
Programmable acceptance filters
Individual Rx filtering per message buffer
Short latency time for high priority transmit messages
Arbitration scheme according to message ID or message buffer number
Listen-only mode capabilities
Programmable clock source: system clock or oscillator clock
Reception queue possible by setting more than one Rx message buffer with the same ID
Backwards compatible with previous FlexCAN modules
Safety CAN features on 1 CAN module as implemented on MPC5604P
1.5.17
•
•
•
•
•
•
•
FlexCAN
Dual-channel FlexRay controller
Full implementation of FlexRay Protocol Specification 2.1
Sixty-four configurable message buffers can be handled
Message buffers configurable as Tx, Rx, or RxFIFO
Message buffer size configurable
Message filtering for all message buffers based on FrameID, cycle count, and message ID
Programmable acceptance filters for RxFIFO message buffers
Dual channel, each at up to 10 Mbit/s data rate
1.5.18
Periodic Interrupt Timer (PIT)
The PIT module implements the features below:
• Four general-purpose interrupt timers
• 32-bit counter resolution
• Clocked by system clock frequency
• 32-bit counter for real time interrupt, clocked from main external oscillator
• Can be used for software tick or DMA trigger operation
1.5.19
System Timer Module (STM)
The STM implements the features below:
• Duplicated periphery to guarantee that safety targets (SIL3) are achieved
• Up-counter with four output compare registers
• OS task protection and hardware tick implementation as per current state-of-the-art AUTOSAR
requirement
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
13
Introduction
1.5.20
Motor control (MOTC) peripherals
The peripherals in this section can be used for general-purpose applications, but are specifically designed
for motor control (MOTC) applications.
1.5.20.1
FlexPWM
The pulse width modulator module (FlexPWM) contains three PWM channels, each of which is
configured to control a single half-bridge power stage. There may also be one or more fault channels.
This PWM is capable of controlling most motor types: AC induction motors (ACIM), Permanent Magnet
AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable
reluctance motors (VRM), and stepper motors.
A FlexPWM module implements the following features:
• 16 bits of resolution for center, edge aligned, and asymmetrical PWMs
• Maximum operating frequency lower than or equal to platform frequency
• Clock source not modulated and independent from system clock (generated via auxiliary PLL)
• Fine granularity control for enhanced resolution of the PWM period
• PWM outputs can operate as complementary pairs or independent channels
• Ability to accept signed numbers for PWM generation
• Independent control of both edges of each PWM output
• Synchronization to external hardware or other PWM is supported
• Double-buffered PWM registers
— Integral reload rates from 1 to 16
— Half-cycle reload capability
• Multiple ADC trigger events can be generated per PWM cycle via hardware
• Fault inputs can be assigned to control multiple PWM outputs
• Programmable filters for fault inputs
• Independently programmable PWM output polarity
• Independent top and bottom deadtime insertion
• Each complementary pair can operate with its own PWM frequency and deadtime values
• Individual software control for each PWM output
• All outputs can be forced to a value simultaneously
• PWMX pin can optionally output a third signal from each channel
• Channels not used for PWM generation can be used for buffered output compare functions
• Channels not used for PWM generation can be used for input capture functions
• Enhanced dual-edge capture functionality
• Option to supply the source for each complementary PWM signal pair from any of the following:
— External digital pin
— Internal timer channel
PXS30 Microcontroller Data Sheet, Rev. 1
14
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
•
— External ADC input, taking into account values set in ADC high and low limit registers
DMA support
1.5.20.2
Cross Triggering Unit (CTU)
The CTU provides automatic generation of ADC conversion requests on user selected conditions without
CPU load during the PWM period and with minimized CPU load for dynamic configuration.
The CTU implements the following features:
• Cross triggering between ADC, FlexPWM, eTimer, and external pins
• Double-buffered trigger generation unit with as many as eight independent triggers generated from
external triggers
• Maximum operating frequency lower than or equal to platform
• Trigger generation unit configurable in sequential mode or in triggered mode
• Trigger delay unit to compensate the delay of external low-pass filter
• Double-buffered global trigger unit allowing eTimer synchronization and/or ADC command
generation
• Double-buffered ADC command list pointers to minimize ADC-trigger unit update
• Double-buffered ADC conversion command list with as many as twenty-four ADC commands
• Each trigger has the capability to generate consecutive commands
• ADC conversion command allows controlling ADC channel from each ADC, single or
synchronous sampling, independent result queue selection
• DMA support with safety features
1.5.20.3
•
•
•
•
•
•
Analog-to-Digital Converter (ADC)
Four independent ADCs with 12-bit A/D resolution
Common mode conversion range of 0–5 V or 0–3.3 V
Twenty-two single-ended input channels
Supports eight FIFO queues with fixed priority
Queue modes with priority-based preemption; initiated by software command, internal, or external
triggers
DMA and interrupt request support
1.5.20.4
eTimer module
Three 16-bit general purpose up/down timer/counters per module are implemented with the following
features:
• Ability to operate up to platform frequency
• Individual channel capability
— Input capture trigger
— Output compare
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
15
Introduction
•
•
•
•
•
•
•
•
•
— Double buffer (to capture rising edge and falling edge)
— Separate prescaler for each counter
— Selectable clock source
— 0–100% pulse measurement
— Rotation direction flag (Quad decoder mode)
Maximum count rate
— Equals peripheral clock/2 for external event counting
— Equals peripheral clock for internal clock counting
Cascadeable counters
Programmable count modulo
Quadrature decode capabilities
Counters can share available input pins
Count once or repeatedly
Preloadable counters
Pins available as GPIO when timer functionality not in use
DMA support
1.5.21
Redundancy Control and Checker Unit (RCCU)
The RCCU checks all outputs of the sphere of replication (addresses, data, control signals). It has the
following features:
• Duplicated module to guarantee highest possible diagnostic coverage (check of checker)
• Replicated IP to be used as checkers on the PBRIDGE output, flash controller output, SRAM
Output, DMA Channel Mux inputs
1.5.22
Software Watchdog Timer (SWT)
This module implements the features below:
• Duplicated periphery to guarantee that safety targets (SIL3) are achieved
• Fault-tolerant output
• Safe internal RC oscillator as reference clock
• Windowed watchdog
• Program flow control monitor with 16-bit pseudorandom key generation
• Allows high level of safety (SIL3 monitor)
1.5.23
Fault Collection and Control Unit (FCCU)
The FCCU module has the following features:
• Redundant collection of hardware checker results
• Redundant collection of error information and latch of faults from critical modules on the device
PXS30 Microcontroller Data Sheet, Rev. 1
16
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Introduction
•
•
Collection of test results
Configurable and graded fault control
— Internal reactions (no internal reaction, NMI, reset, or safe mode)
— External reaction (failure is reported to the outside world via configurable output pins)
1.5.24
System Integration Unit Lite (SIUL)
The SIUL controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O
(GPIO), internal peripheral multiplexing, and the system reset operation. The reset configuration block
contains the external pin boot configuration logic. The pad configuration block controls the static electrical
characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O
pins of the MCU.
The SIUL provides the following features:
• Centralized pad control on per-pin basis
— Pin function selection
— Configurable weak pullup/pulldown
— Configurable slew rate control (slow/medium/fast)
— Hysteresis on GPIO pins
— Configurable automatic safe mode pad control
• Input filtering for external interrupts
1.5.25
Cyclic Redundancy Checker (CRC) unit
The CRC module is a configurable multiple data flow unit to compute CRC signatures on data written to
an input register.
The CRC unit has the following features:
• Three sets of registers to allow three concurrent contexts with possibly different CRC
computations, each with a selectable polynomial and seed
• Computes 16- or 32-bit wide CRC on the fly (single-cycle computation) and stores the result in an
internal register
• Implements the following standard CRC polynomials:
— x16 + x12 + x5 + 1 [16-bit CRC-CCITT]
— x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
[32-bit CRC-ethernet(32)]
• Key engine to be coupled with communication periphery where CRC application is added to allow
implementation of safe communication protocol
• Offloads the core from cycle-consuming CRC and helps in checking the configuration signature
for safe start-up or periodic procedures
• Connected as a peripheral on the internal peripheral bus
• Provides DMA support
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
17
Introduction
1.5.26
Non-maskable interrupt (NMI)
The non-maskable interrupt with de-glitching filter is available to support high priority core exceptions.
1.5.27
System Status and Configuration Module (SSCM)
The SSCM on the PXS30 features the following:
• System configuration and status
• Debug port status and debug port enable
• Multiple boot code starting locations out of reset through implementation of search for valid Reset
Configuration Half Word
• Sets up the MMU to allow user boot code to execute as either Classic PowerPC Book E code
(default) or as Freescale VLE code out of flash
• Supports serial bootloading of either Classic PowerPC Book E code (default) or Freescale VLE code
• Detection of user boot code
• Automatic switch to serial boot mode if internal flash is blank or invalid
1.5.28
•
•
•
•
•
•
•
•
Per IEEE-ISTO 5001-2008
Real-time development support for Power Architecture core through Nexus class 3 (some class 4
support)
Nexus support to snoop system SRAM traffic
Data trace of FlexRay accesses
Read and write access
Configured via the IEEE 1149.1 (JTAG) port
High bandwidth mode for fast message transmission
Reduced bandwidth mode for reduced pin usage
1.5.29
•
•
•
•
•
•
Nexus Development Interface (NDI)
IEEE 1149.1 JTAG controller (JTAGC)
IEEE 1149.1-2001 Test Access Port (TAP) interface
JCOMP input that provides the ability to share the TAP —selectable modes of operation include
JTAGC/debug or normal system operation
5-bit instruction register that supports IEEE 1149.1-2001 defined instructions
5-bit instruction register that supports additional public instructions
Three test data registers:
— Bypass register
— Boundary scan register
— Device identification register
TAP controller state machine that controls the operation of the data registers, instruction register,
and associated circuitry
PXS30 Microcontroller Data Sheet, Rev. 1
18
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
2
Package pinouts and signal descriptions
2.1
Package pinouts
Figure 2 shows the PXS30 in the 257 MAPBGA package. Figure 3 through Figure 6 show the PXS30 in
the 473 MAPBGA package.
1
2
3
A
VSS_
HV_IO
VSS_
HV_IO
VDD_
HV_IO
B
VSS_
HV_IO
VSS_
HV_IO
mc_cgl
clk_out
can1
TXD
nexus
MDO
[14]
dspi2
CS1
C
VDD_
HV_IO
nexus
MDO
[15]
VSS_
HV_IO
FCCU_
F[1]
flexray
CB_RX
etimer0
ETC[0]
D
nexus
MDO
[2]
nexus
MDO
[3]
can1
RXD
dspi0
SOUT
RESERV etimer0
ED
ETC[5]
E
nexus
MDO
[0]
nexus
MDO
[1]
flexray
CA_RX
NMI
F
nexus
MDO[6]
nexus
MDO
[11]
dspi1
SOUT
dspi1
SIN
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
G
nexus
MDO
[4]
VDD_
HV_IO
dspi0
SCK
dspi1
SCK
VDD_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
H
nexus
MDO
[10]
VSS_
HV_IO
dspi0
CS0
dspi1
CS0
VDD_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
J
nexus
MCKO
nexus
MDO[8]
dspi2
CS0
dspi2
CS2
VDD_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
K
nexus
nexus
MSEO_ MSEO_
B[0]
B[1]
nexus
RDY_B
dspi0
SIN
VDD_
LV_
COR
VSS_
LV_
COR
L
nexus
nexus
EVTO_B EVTI_B
dspi2
SCK
nexus
MDO
[13]
VDD_
LV_
COR
VDD_
HV_IO
dspi1
CS2
nexus
MDO
[12]
VDD_
LV_
COR
XTALIN
VSS_
HV_IO
dspi0
CS3
VSS_
LV_PLL
P
VSS_
HV_
OSC
RESET
dspi0
CS2
VDD_
LV_PLL
etimer1
ETC[1]
etimer1
ETC[2]
adc0
AN[0]
R
XTAL
OUT
FCCU_ VSS_HV
F[0]
_IO
dspi1
CS3
adc2
AN[0]
adc2
AN[3]
VDD_
HV_
ADR_13
T
VSS_
HV_IO
VDD_
HV_IO
dspi2
SOUT
adc3
AN[0]
adc3
AN[3]
adc2
AN[2]
U
VSS_
HV_IO
VSS_
HV_IO
dspi2
SIN
adc3
AN[1]
adc3
AN[2]
1
2
3
4
5
M VDD_
HV_
OSC
N
4
5
6
nexus
nexus
nexus
MDO[5] MDO[7] MDO[9]
7
8
flexray
flexray
CA_TR_
CB_TX
EN
9
10
VDD_
HV_IO
fec
RXD[2]
flexray
flexray
CB_TR_
CA_TX
EN
VSS_
HV_IO
fec
RXD[3]
etimer0
ETC[1]
12
13
14
15
16
fec
RXD[0]
fec
MDIO
fec
TX_EN
fec
TXD[3]
VSS_
HV_IO
VSS_ A
HV_IO
fec
RX_ER
fec
RXD[1]
fec
TX_ER
fec
TX_
CLK
can0
TXD
VDD_
HV_IO
VSS_ B
HV_IO
etimer0
ETC[3]
JCOMP
fec
CRS
fec
TXD[0]
fec
COL
can0
RXD
VSS_
HV_PDI
pdi
DATA
[5]
C
pdi
CLOCK
fec
TXD[1]
fec
RX_DV
fec
MDC
VDD_
HV_PDI
VSS_
HV_IO
pdi
DATA
[0]
pdi
DATA
[1]
D
pdi
LINE_V
pdi
DATA
[2]
pdi
DATA
[3]
pdi
DATA
[4]
E
VDD_
LV_
COR
mc_cgl
clk_out
pdi
DATA
[6]
pdi
DATA
[7]
pdi
DATA
[8]
F
VSS_
LV_
COR
VDD_
LV_
COR
pdi
DATA
[9]
pdi
DATA
[10]
pdi
DATA
[11]
pdi
G
FRAME_
V
VSS_
LV_
COR
VSS_
LV_
COR
VDD_
LV_
COR
pdi
DATA
[12]
pdi
DATA
[13]
VDD_
HV_
PDI
flexpwm
H
0
X[0]
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VDD_
LV_
COR
pdi
DATA
[14]
pdi
DATA
[15]
VSS_
HV_
PDI
flexpwm
J
0
X[1]
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VDD_
LV_
COR
flexpwm flexpwm flexpwm flexpwm
K
0
0
0
0
X[2]
X[3]
A[1]
B[0]
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VSS_
LV_
COR
VDD_
LV_
COR
VDD_HV
_DRAM_
VREF
TCK
flexpwm
0
B[1]
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
VDD_
LV_
COR
flexpwm
0
B[2]
TDI
TMS
etimer0
ETC[2]
etimer0 VDD_
VSS_
fec
ETC[4] HV_FLA HV_FLA TXD[2]
11
fec
RX_
CLK
17
TDO
L
flexpwm
M
1
A[1]
flexpwm flexpwm flexpwm flexpwm
N
0
0
1
1
B[3]
A[2]
A[0]
B[0]
VDD_
HV_IO
adc0_
adc1
AN[14]
etimer1
ETC[4]
etimer1
ETC[5]
VDD_
HV_IO
adc2_
VDD_
adc3
HV_
AN[14] ADR_02
adc0
AN[2]
adc0_
adc1
AN[13]
adc1
AN[1]
VREG_C
TRL
lin0
TXD
VSS_
HV_IO
flexpwm flexpwm
R
1
1
A[2]
B[2]
VSS_
HV_
ADR_13
adc2_
VSS_
adc3
HV_
AN[13] ADR_02
adc0
AN[1]
adc0_
adc1
AN[12]
adc1
AN[0]
adc1
AN[2]
lin0
RXD
etimer1
ETC[0]
VDD_
HV_IO
VSS_ T
HV_IO
adc2
AN[1]
adc2_
adc3
AN[11]
adc2_
adc3
AN[12]
VDD_
HV_
ADV
VSS_
HV_
ADV
adc0_
adc1
AN[11]
VSS_
HV_
PMU
VSS_
HV_IO
VSS_ U
HV_IO
6
7
8
9
10
11
15
16
etimer1
ETC[3]
VSS_
HV_IO
VREG_
RESET_ VDD_HV
INT_EN
SUP
_PMU
ABLE
12
13
14
flexpwm flexpwm flexpwm
P
0
0
1
A[3]
A[0]
B[1]
17
Figure 2. PXS30 257 MAPBGA pinout (top view)
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
19
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
A
VSS_
HV_IO
VSS_
HV_IO
VDD_
HV_IO
nexus
MDO[5]
nexus
MDO[7]
nexus
MDO[9]
flexray
CB_TX
flexray
CA_TR_EN
fec
RX_DV
fec
MDIO
fec
TX_CLK
fec
TX_EN
B
VSS_
HV_IO
VSS_
HV_IO
mc_cgl
clk_out
can1
TXD
nexus
MDO[14]
dspi2
CS1
flexray
CB_TR_EN
flexray
CA_TX
fec
RXD[3]
fec
RX_ER
fec
TXD[0]
fec
RXD[0]
C
VDD_
HV_IO
nexus
MDO[15]
VSS_
HV_IO
FCCU_
F[1]
flexray
CB_RX
etimer0
ETC[4]
etimer0
ETC[1]
etimer0
ETC[2]
etimer0
ETC[3]
fec
TXD[2]
fec
TXD[1]
fec
CRS
D
nexus
MDO[1]
nexus
MDO[3]
can1
RXD
dspi0
SOUT
RESERVED
etimer0
ETC[5]
etimer0
ETC[0]
VDD_
HV_IO
VSS_
HV_IO
JCOMP
VSS_
HV_IO
VSS_
HV_FLA
E
nexus
MDO[0]
nexus
MDO[2]
flexray
CA_RX
NMI
F
nexus
MDO[10]
nexus
MDO[11]
nexus
MDO[6]
nexus
MDO[4]
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
G
nexus
MCKO
VDD_
HV_IO
nexus
MDO[8]
nexus
MSEO_B[1]
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
H
nexus
EVTO_B
VSS_
HV_IO
nexus
MSEO_B[0]
nexus
EVTI_B
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
J
nexus
RDY_B
nexus
MDO[13]
nexus
MDO[12]
dspi1
SIN
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
K
dspi0
SCK
dspi1
CS0
dspi1
SCK
dspi1
SOUT
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
L
dspi0
CS0
dspi2
CS2
dspi2
CS0
VSS_
HV_IO
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
M
flexpwm0
X[0]
VDD_
HV_IO
dspi0
SIN
VDD_
HV_IO
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
Figure 3. PXS30 473 MAPBGA pinout (northwest, viewed from above)
N
flexpwm0
A[0]
VSS_
HV_IO
flexpwm0
X[1]
flexpwm0
B[2]
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
P
flexpwm0
B[0]
flexpwm0
B[1]
flexpwm0
A[2]
flexpwm0
A[3]
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
R
flexpwm0
X[2]
flexpwm0
X[3]
flexpwm0
A[1]
VSS_
HV_IO
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
T
flexpwm0
B[3]
flexpwm1
A[0]
flexpwm1
A[1]
VDD_
HV_IO
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
U
flexpwm1
B[0]
flexpwm1
B[1]
flexpwm1
A[2]
dspi2
SCK
VDD_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
V
VDD_
HV_OSC
VDD_
HV_IO
flexpwm1
B[2]
dspi1
CS2
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
W
XTALIN
VSS_
HV_IO
dspi0
CS3
VSS_
LV_PLL
Y
VSS_
HV_OSC
RESET
dspi0
CS2
VDD_
LV_PLL
flexpwm1
X[0]
adc3
AN[0]
adc2_adc3
AN[11]
adc2_adc3
AN[14]
etimer1
ETC[1]
etimer1
ETC[2]
etimer1
ETC[3]
VSS_
HV_IO
AA
XTALOUT
FCCU_
F[0]
VSS_
HV_IO
dspi1
CS3
flexpwm1
X[1]
adc3
AN[1]
adc2_adc3
AN[12]
adc2
AN[0]
VDD_
HV_ADV
VSS_
HV_ADV
adc0
AN[2]
adc0
AN[5]
AB
VSS_
HV_IO
VDD_
HV_IO
dspi2
SOUT
flexpwm1
X[2]
flexpwm1
X[3]
adc3
AN[2]
adc2_adc3
AN[13]
adc2
AN[1]
adc2
AN[2]
adc0
AN[0]
adc0
AN[4]
adc0
AN[6]
AC
VSS_
HV_IO
VSS_
HV_IO
dspi2
SIN
flexpwm1
A[3]
flexpwm1
B[3]
adc3
AN[3]
VDD_HV_
ADR_23
VSS_HV_
ADR_23
adc2
AN[3]
adc0
AN[1]
adc0
AN[3]
VDD_
HV_ADR_0
1
2
3
4
5
6
7
8
9
10
11
12
Figure 4. PXS30 473 MAPBGA pinout (southwest, viewed from above)
PXS30 Microcontroller Data Sheet, Rev. 1
20
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
13
14
15
16
17
18
19
20
21
22
23
fec
TXD[3]
VDD_
HV_IO
pdi
DATA[3]
pdi
DATA[1]
pdi
CLOCK
pdi
DATA[7]
pdi
DATA[10]
pdi
DATA[13]
pdi
DATA[15]
VSS_
HV_IO
VSS_
HV_IO
A
fec
TX_ER
VSS_
HV_IO
pdi
DATA[6]
pdi
DATA[4]
pdi
DATA[0]
pdi
LINE_V
pdi
DATA[9]
pdi
DATA[14]
can0
TXD
VDD_
HV_IO
VSS_
HV_IO
B
fec
RX_CLK
fec
RXD[1]
fec
COL
pdi
DATA[5]
pdi
DATA[2]
pdi
DATA[8]
pdi
DATA[12]
can0
RXD
VSS_
HV_PDI
siul
GPIO[197]
dramc
CAS
C
VDD_
HV_FLA
fec
RXD[2]
fec
MDC
VDD_
HV_PDI
VSS_
HV_PDI
pdi
DATA[11]
pdi
FRAME_V
VDD_
HV_PDI
dramc
BA[1]
siul
GPIO[195]
dramc
BA[0]
D
mc_cgl
clk_out
siul
GPIO[149]
dramc
CS0
dramc
BA[2]
E
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
dramc
RAS
siul
GPIO[194]
siul
GPIO[148]
dramc
D[5]
F
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
siul
GPIO[196]
dramc
DQS[0]
dramc
DM[0]
dramc
D[7]
G
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
D[2]
VDD_HV_
DRAM_VTT
VDD_HV_
DRAM
VSS_HV_
DRAM
H
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
D[0]
dramc
D[1]
dramc
D[3]
dramc
D[6]
J
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
VSS_
HV_IO
dramc
D[4]
dramc
D[8]
dramc
D[9]
K
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
VDD_
HV_IO
VDD_HV_
DRAM_VTT
VSS_HV_
DRAM
VDD_HV_
DRAM
L
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
ODT
dramc
WEB
dramc
D[11]
dramc
D[10]
M
Figure 5. PXS30 473 MAPBGA pinout (northeast, viewed from above)
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
DQS[1]
dramc
DM[1]
dramc
D[13]
dramc
D[12]
N
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
D[14]
dramc
D[15]
VSS_HV_
DRAM
VDD_HV_
DRAM
P
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
VDD_HV_
DRAM_VREF
dramc
ADD[3]
dramc
CKE
dramc
CLKB
R
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
ADD[8]
dramc
ADD[9]
dramc
ADD[1]
dramc
CLK
T
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VSS_
LV_COR
VDD_
LV_COR
dramc
ADD[6]
dramc
ADD[12]
VDD_HV_
DRAM
dramc
ADD[0]
U
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
VDD_
LV_COR
lin0
TXD
dramc
ADD[13]
VSS_HV_
DRAM
dramc
ADD[2]
V
lin0
RXD
dramc
ADD[14]
dramc
ADD[7]
dramc
ADD[4]
W
VDD_
HV_IO
adc0_adc1
AN[11]
etimer1
ETC[5]
etimer1
ETC[4]
adc1
AN[8]
adc1
AN[6]
TCK
VDD_HV_IO
dramc
ADD[15]
dramc
ADD[11]
dramc
ADD[5]
Y
adc0
AN[8]
adc0_adc1
AN[12]
adc1
AN[0]
adc1
AN[2]
adc1
AN[5]
adc1
AN[7]
TDI
etimer1
ETC[0]
VSS_HV_IO
lin1
TXD
dramc
ADD[10]
AA
adc0
AN[7]
adc0_adc1
AN[13]
adc1
AN[1]
adc1
AN[3]
adc1
AN[4]
TDO
TMS
RESERVED
lin1
RXD
VDD_
HV_IO
VSS_
HV_IO
AB
VSS_
HV_ADR_0
adc0_adc1
AN[14]
VDD_
HV_ADR_1
VSS_
HV_ADR_1
VDD_
HV_PMU
VREG_CTRL
VSS_
HV_PMU
RESET_
SUP
VREG_INT_
ENABLE
VSS_
HV_IO
VSS_
HV_IO
AC
13
14
15
16
17
18
19
20
21
22
23
Figure 6. PXS30 473 MAPBGA pinout (southeast, viewed from above)
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
21
Package pinouts and signal descriptions
2.2
Pin descriptions
The following sections provide signal descriptions and related information about the functionality and
configuration for this device.
2.2.1
Pad types
Table 2 lists the pad types used on the PXS30.
Table 2. Pad types
Pad Type
Description
GP Slow
Slow buffer with CMOS Schmitt trigger and pullup/pulldown.
GP Slow/Fast
Programmable slow/fast buffer with CMOS Schmitt trigger, pullup/pulldown.
GP Slow/Medium
Programmable slow/medium buffer with CMOS Schmitt trigger, pullup/pulldown.
Programmable slow/medium buffer with CMOS Schmitt trigger, pullup/pulldown
and Injection proof analog switch.
GP Slow/Symmetric Programmable slow/symmetric buffer with CMOS Schmitt trigger,
pullup/pulldown.
2.2.2
PDI Medium
Medium slew-rate output with four selectable slew rates. Contains an input buffer
and weak pullup/pulldown.
PDI Fast
Fast slew-rate output with four selectable slew rates. Contains an input buffer and
weak pullup/pulldown.
DRAM ACC
Bidirectional DDR pad. Can be configured to support LPDDR half strength,
LPDDR full strength, DDR1, DDR2 half strength, DDR2 full strength, and SDR.
DRAM CLK
Differential clock driver
DRAM DQ
Bidirectional DDR pad with integrated ODT. Can be configured to support
LPDDR half strength, LPDDR full strength, DDR1, DDR2 half strength, DDR2 full
strength, and SDR.
DRAM ODT CTL
Enable On Die Termination control
Analog
CMOS Schmitt trigger cell with injection proof analog switch.
Analog Shared
CMOS Schmitt trigger cell with two injection-proof analog switches.
Power supply and reference voltage pins
Table 3 shows the supply pins for the PXS30 in the 257 MAPBGA package. Table 5 shows the supply pins
for the PXS30 in the 473 MAPBGA package.
Table 4 and Table 6 show the pins not populated on the PXS30 257 MAPBGA and 473 MAPBGA
packages, respectively.
PXS30 Microcontroller Data Sheet, Rev. 1
22
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
Table 3. 257 MAPBGA supply pins
Ball
Number
Ball Name
Ball
Number
Pad Type
Ball Name
Pad Type
VDD
A3
VDD_HV_IO
VDD_HV
F9
VDD_LV_COR
VDD_LV
A9
VDD_HV_IO
VDD_HV
F10
VDD_LV_COR
VDD_LV
B16
VDD_HV_IO
VDD_HV
F11
VDD_LV_COR
VDD_LV
C1
VDD_HV_IO
VDD_HV
F12
VDD_LV_COR
VDD_LV
G2
VDD_HV_IO
VDD_HV
G6
VDD_LV_COR
VDD_LV
M2
VDD_HV_IO
VDD_HV
G12
VDD_LV_COR
VDD_LV
P10
VDD_HV_IO
VDD_HV
H6
VDD_LV_COR
VDD_LV
P14
VDD_HV_IO
VDD_HV
H12
VDD_LV_COR
VDD_LV
T2
VDD_HV_IO
VDD_HV
J6
VDD_LV_COR
VDD_LV
T16
VDD_HV_IO
VDD_HV
J12
VDD_LV_COR
VDD_LV
L14
VDD_HV_DRAM_VREF
VDD_HV
K6
VDD_LV_COR
VDD_LV
D8
VDD_HV_FLA
VDD_HV
K12
VDD_LV_COR
VDD_LV
M1
VDD_HV_OSC
VDD_HV
L6
VDD_LV_COR
VDD_LV
D14
VDD_HV_PDI
VDD_HV
L12
VDD_LV_COR
VDD_LV
H16
VDD_HV_PDI
VDD_HV
M6
VDD_LV_COR
VDD_LV
U14
VDD_HV_PMU
VDD_HV
M7
VDD_LV_COR
VDD_LV
R7
VDD_HV_ADR_13
VDD_HV_A
M8
VDD_LV_COR
VDD_LV
R9
VDD_HV_ADR_02
VDD_HV_A
M9
VDD_LV_COR
VDD_LV
U9
VDD_HV_ADV
VDD_HV_A
M10
VDD_LV_COR
VDD_LV
F6
VDD_LV_COR
VDD_LV
M11
VDD_LV_COR
VDD_LV
F7
VDD_LV_COR
VDD_LV
M12
VDD_LV_COR
VDD_LV
F8
VDD_LV_COR
VDD_LV
P4
VDD_LV_PLL
VDD_LV
VSS
A1
VSS_HV_IO
VSS_HV
G7
VSS_LV_COR
VSS_LV
A2
VSS_HV_IO
VSS_HV
G8
VSS_LV_COR
VSS_LV
A16
VSS_HV_IO
VSS_HV
G9
VSS_LV_COR
VSS_LV
A17
VSS_HV_IO
VSS_HV
G10
VSS_LV_COR
VSS_LV
B1
VSS_HV_IO
VSS_HV
G11
VSS_LV_COR
VSS_LV
B2
VSS_HV_IO
VSS_HV
H7
VSS_LV_COR
VSS_LV
B9
VSS_HV_IO
VSS_HV
H8
VSS_LV_COR
VSS_LV
B17
VSS_HV_IO
VSS_HV
H9
VSS_LV_COR
VSS_LV
C3
VSS_HV_IO
VSS_HV
H10
VSS_LV_COR
VSS_LV
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
23
Package pinouts and signal descriptions
Table 3. 257 MAPBGA supply pins (continued)
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
D15
VSS_HV_IO
VSS_HV
H11
VSS_LV_COR
VSS_LV
H2
VSS_HV_IO
VSS_HV
J7
VSS_LV_COR
VSS_LV
N2
VSS_HV_IO
VSS_HV
J8
VSS_LV_COR
VSS_LV
P9
VSS_HV_IO
VSS_HV
J9
VSS_LV_COR
VSS_LV
R3
VSS_HV_IO
VSS_HV
J10
VSS_LV_COR
VSS_LV
R15
VSS_HV_IO
VSS_HV
J11
VSS_LV_COR
VSS_LV
T1
VSS_HV_IO
VSS_HV
K7
VSS_LV_COR
VSS_LV
T17
VSS_HV_IO
VSS_HV
K8
VSS_LV_COR
VSS_LV
U1
VSS_HV_IO
VSS_HV
K9
VSS_LV_COR
VSS_LV
U2
VSS_HV_IO
VSS_HV
K10
VSS_LV_COR
VSS_LV
U16
VSS_HV_IO
VSS_HV
K11
VSS_LV_COR
VSS_LV
U17
VSS_HV_IO
VSS_HV
L7
VSS_LV_COR
VSS_LV
D9
VSS_HV_FLA
VSS_HV
L8
VSS_LV_COR
VSS_LV
P1
VSS_HV_OSC
VSS_HV
L9
VSS_LV_COR
VSS_LV
C15
VSS_HV_PDI
VSS_HV
L10
VSS_LV_COR
VSS_LV
J16
VSS_HV_PDI
VSS_HV
L11
VSS_LV_COR
VSS_LV
T9
VSS_HV_ADR_02
VSS_HV_A
N4
VSS_LV_PLL
VSS_LV
T7
VSS_HV_ADR_13
VSS_HV_A
U15
VSS_HV_PMU
VSS_LV
U10
VSS_HV_ADV
VSS_HV_A
Table 4. 257 MAPBGA Balls not populated on package
E5
E6
E7
E8
E9
E10
E11
E12
E13
F5
F13
G5
G13
H5
H13
J5
J13
K5
K13
L5
L13
M5
M13
N5
N6
N7
N8
N9
N10
N11
N12
N13
Table 5. 473 MAPBGA supply pins
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
VDD
A3
VDD_HV_IO
VDD_HV
F15
VDD_LV_COR
VDD_LV
A14
VDD_HV_IO
VDD_HV
F16
VDD_LV_COR
VDD_LV
B22
VDD_HV_IO
VDD_HV
F17
VDD_LV_COR
VDD_LV
PXS30 Microcontroller Data Sheet, Rev. 1
24
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
Table 5. 473 MAPBGA supply pins (continued)
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
C1
VDD_HV_IO
VDD_HV
F18
VDD_LV_COR
VDD_LV
D8
VDD_HV_IO
VDD_HV
G6
VDD_LV_COR
VDD_LV
G2
VDD_HV_IO
VDD_HV
G18
VDD_LV_COR
VDD_LV
L20
VDD_HV_IO
VDD_HV
H6
VDD_LV_COR
VDD_LV
M2
VDD_HV_IO
VDD_HV
H18
VDD_LV_COR
VDD_LV
M4
VDD_HV_IO
VDD_HV
J6
VDD_LV_COR
VDD_LV
T4
VDD_HV_IO
VDD_HV
J18
VDD_LV_COR
VDD_LV
V2
VDD_HV_IO
VDD_HV
K6
VDD_LV_COR
VDD_LV
Y13
VDD_HV_IO
VDD_HV
K18
VDD_LV_COR
VDD_LV
Y20
VDD_HV_IO
VDD_HV
L6
VDD_LV_COR
VDD_LV
AB2
VDD_HV_IO
VDD_HV
L18
VDD_LV_COR
VDD_LV
AB22
VDD_HV_IO
VDD_HV
M6
VDD_LV_COR
VDD_LV
AC12
VDD_HV_ADR_0
VDD_HV_A
M18
VDD_LV_COR
VDD_LV
AC15
VDD_HV_ADR_1
VDD_HV_A
N6
VDD_LV_COR
VDD_LV
AC7
VDD_HV_ADR_23
VDD_HV_A
N18
VDD_LV_COR
VDD_LV
AA9
VDD_HV_ADV
VDD_HV_A
P6
VDD_LV_COR
VDD_LV
H22
VDD_HV_DRAM
VDD_HV
P18
VDD_LV_COR
VDD_LV
L23
VDD_HV_DRAM
VDD_HV
R6
VDD_LV_COR
VDD_LV
P23
VDD_HV_DRAM
VDD_HV
R18
VDD_LV_COR
VDD_LV
U22
VDD_HV_DRAM
VDD_HV
T6
VDD_LV_COR
VDD_LV
R20
VDD_HV_DRAM_VREF
VDD_HV
T18
VDD_LV_COR
VDD_LV
H21
VDD_HV_DRAM_VTT
VDD_HV
U6
VDD_LV_COR
VDD_LV
L21
VDD_HV_DRAM_VTT
VDD_HV
U18
VDD_LV_COR
VDD_LV
D13
VDD_HV_FLA
VDD_HV
V6
VDD_LV_COR
VDD_LV
V1
VDD_HV_OSC
VDD_HV
V7
VDD_LV_COR
VDD_LV
D16
VDD_HV_PDI
VDD_HV
V8
VDD_LV_COR
VDD_LV
D20
VDD_HV_PDI
VDD_HV
V9
VDD_LV_COR
VDD_LV
AC17
VDD_HV_PMU
VDD_HV
V10
VDD_LV_COR
VDD_LV
F6
VDD_LV_COR
VDD_LV
V11
VDD_LV_COR
VDD_LV
F7
VDD_LV_COR
VDD_LV
V12
VDD_LV_COR
VDD_LV
F8
VDD_LV_COR
VDD_LV
V13
VDD_LV_COR
VDD_LV
F9
VDD_LV_COR
VDD_LV
V14
VDD_LV_COR
VDD_LV
F10
VDD_LV_COR
VDD_LV
V15
VDD_LV_COR
VDD_LV
F11
VDD_LV_COR
VDD_LV
V16
VDD_LV_COR
VDD_LV
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
25
Package pinouts and signal descriptions
Table 5. 473 MAPBGA supply pins (continued)
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
F12
VDD_LV_COR
VDD_LV
V17
VDD_LV_COR
VDD_LV
F13
VDD_LV_COR
VDD_LV
V18
VDD_LV_COR
VDD_LV
F14
VDD_LV_COR
VDD_LV
Y4
VDD_LV_PLL
VDD_LV
VSS
A2
VSS_HV_IO
VSS_HV
L7
VSS_LV_COR
VSS_LV
A22
VSS_HV_IO
VSS_HV
L8
VSS_LV_COR
VSS_LV
A23
VSS_HV_IO
VSS_HV
L9
VSS_LV_COR
VSS_LV
B1
VSS_HV_IO
VSS_HV
L10
VSS_LV_COR
VSS_LV
B2
VSS_HV_IO
VSS_HV
L11
VSS_LV_COR
VSS_LV
B14
VSS_HV_IO
VSS_HV
L12
VSS_LV_COR
VSS_LV
B23
VSS_HV_IO
VSS_HV
L13
VSS_LV_COR
VSS_LV
C3
VSS_HV_IO
VSS_HV
L14
VSS_LV_COR
VSS_LV
D9
VSS_HV_IO
VSS_HV
L15
VSS_LV_COR
VSS_LV
D11
VSS_HV_IO
VSS_HV
L16
VSS_LV_COR
VSS_LV
H2
VSS_HV_IO
VSS_HV
L17
VSS_LV_COR
VSS_LV
K20
VSS_HV_IO
VSS_HV
M7
VSS_LV_COR
VSS_LV
L4
VSS_HV_IO
VSS_HV
M8
VSS_LV_COR
VSS_LV
N2
VSS_HV_IO
VSS_HV
M9
VSS_LV_COR
VSS_LV
A1
VSS_HV_IO
VSS_HV
M10
VSS_LV_COR
VSS_LV
R4
VSS_HV_IO
VSS_HV
M11
VSS_LV_COR
VSS_LV
W2
VSS_HV_IO
VSS_HV
M12
VSS_LV_COR
VSS_LV
Y12
VSS_HV_IO
VSS_HV
M13
VSS_LV_COR
VSS_LV
AA3
VSS_HV_IO
VSS_HV
M14
VSS_LV_COR
VSS_LV
AA21
VSS_HV_IO
VSS_HV
M15
VSS_LV_COR
VSS_LV
AB1
VSS_HV_IO
VSS_HV
M16
VSS_LV_COR
VSS_LV
AB23
VSS_HV_IO
VSS_HV
M17
VSS_LV_COR
VSS_LV
AC1
VSS_HV_IO
VSS_HV
N7
VSS_LV_COR
VSS_LV
AC2
VSS_HV_IO
VSS_HV
N8
VSS_LV_COR
VSS_LV
AC22
VSS_HV_IO
VSS_HV
N9
VSS_LV_COR
VSS_LV
AC23
VSS_HV_IO
VSS_HV
N10
VSS_LV_COR
VSS_LV
AC13
VSS_HV_ADR_0
VSS_HV_A
N11
VSS_LV_COR
VSS_LV
AC16
VSS_HV_ADR_1
VSS_HV_A
N12
VSS_LV_COR
VSS_LV
AC8
VSS_HV_ADR_23
VSS_HV_A
N13
VSS_LV_COR
VSS_LV
AA10
VSS_HV_ADV
VSS_HV_A
N14
VSS_LV_COR
VSS_LV
PXS30 Microcontroller Data Sheet, Rev. 1
26
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
Table 5. 473 MAPBGA supply pins (continued)
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
H23
VSS_HV_DRAM
VSS_HV
N15
VSS_LV_COR
VSS_LV
L22
VSS_HV_DRAM
VSS_HV
N16
VSS_LV_COR
VSS_LV
P22
VSS_HV_DRAM
VSS_HV
N17
VSS_LV_COR
VSS_LV
V22
VSS_HV_DRAM
VSS_HV
P7
VSS_LV_COR
VSS_LV
D12
VSS_HV_FLA
VSS_HV
P8
VSS_LV_COR
VSS_LV
Y1
VSS_HV_OSC
VSS_HV
P9
VSS_LV_COR
VSS_LV
C21
VSS_HV_PDI
VSS_HV
P10
VSS_LV_COR
VSS_LV
D17
VSS_HV_PDI
VSS_HV
P11
VSS_LV_COR
VSS_LV
G7
VSS_LV_COR
VSS_LV
P12
VSS_LV_COR
VSS_LV
G8
VSS_LV_COR
VSS_LV
P13
VSS_LV_COR
VSS_LV
G9
VSS_LV_COR
VSS_LV
P14
VSS_LV_COR
VSS_LV
G10
VSS_LV_COR
VSS_LV
P15
VSS_LV_COR
VSS_LV
G11
VSS_LV_COR
VSS_LV
P16
VSS_LV_COR
VSS_LV
G12
VSS_LV_COR
VSS_LV
P17
VSS_LV_COR
VSS_LV
G13
VSS_LV_COR
VSS_LV
R7
VSS_LV_COR
VSS_LV
G14
VSS_LV_COR
VSS_LV
R8
VSS_LV_COR
VSS_LV
G15
VSS_LV_COR
VSS_LV
R9
VSS_LV_COR
VSS_LV
G16
VSS_LV_COR
VSS_LV
R10
VSS_LV_COR
VSS_LV
G17
VSS_LV_COR
VSS_LV
R11
VSS_LV_COR
VSS_LV
H7
VSS_LV_COR
VSS_LV
R12
VSS_LV_COR
VSS_LV
H8
VSS_LV_COR
VSS_LV
R13
VSS_LV_COR
VSS_LV
H9
VSS_LV_COR
VSS_LV
R14
VSS_LV_COR
VSS_LV
H10
VSS_LV_COR
VSS_LV
R15
VSS_LV_COR
VSS_LV
H11
VSS_LV_COR
VSS_LV
R16
VSS_LV_COR
VSS_LV
H12
VSS_LV_COR
VSS_LV
R17
VSS_LV_COR
VSS_LV
H13
VSS_LV_COR
VSS_LV
T7
VSS_LV_COR
VSS_LV
H14
VSS_LV_COR
VSS_LV
T8
VSS_LV_COR
VSS_LV
H15
VSS_LV_COR
VSS_LV
T9
VSS_LV_COR
VSS_LV
H16
VSS_LV_COR
VSS_LV
T10
VSS_LV_COR
VSS_LV
H17
VSS_LV_COR
VSS_LV
T11
VSS_LV_COR
VSS_LV
J7
VSS_LV_COR
VSS_LV
T12
VSS_LV_COR
VSS_LV
J8
VSS_LV_COR
VSS_LV
T13
VSS_LV_COR
VSS_LV
J9
VSS_LV_COR
VSS_LV
T14
VSS_LV_COR
VSS_LV
J10
VSS_LV_COR
VSS_LV
T15
VSS_LV_COR
VSS_LV
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
27
Package pinouts and signal descriptions
Table 5. 473 MAPBGA supply pins (continued)
Ball
Number
Ball Name
Pad Type
Ball
Number
Ball Name
Pad Type
J11
VSS_LV_COR
VSS_LV
T16
VSS_LV_COR
VSS_LV
J12
VSS_LV_COR
VSS_LV
T17
VSS_LV_COR
VSS_LV
J13
VSS_LV_COR
VSS_LV
U7
VSS_LV_COR
VSS_LV
J14
VSS_LV_COR
VSS_LV
U8
VSS_LV_COR
VSS_LV
J15
VSS_LV_COR
VSS_LV
U9
VSS_LV_COR
VSS_LV
J16
VSS_LV_COR
VSS_LV
U10
VSS_LV_COR
VSS_LV
J17
VSS_LV_COR
VSS_LV
U11
VSS_LV_COR
VSS_LV
K7
VSS_LV_COR
VSS_LV
U12
VSS_LV_COR
VSS_LV
K8
VSS_LV_COR
VSS_LV
U13
VSS_LV_COR
VSS_LV
K9
VSS_LV_COR
VSS_LV
U14
VSS_LV_COR
VSS_LV
K10
VSS_LV_COR
VSS_LV
U15
VSS_LV_COR
VSS_LV
K11
VSS_LV_COR
VSS_LV
U16
VSS_LV_COR
VSS_LV
K12
VSS_LV_COR
VSS_LV
U17
VSS_LV_COR
VSS_LV
K13
VSS_LV_COR
VSS_LV
W4
VSS_LV_PLL
VSS_LV
K14
VSS_LV_COR
VSS_LV
AC19
VSS_HV_PMU
VSS_LV
K15
VSS_LV_COR
VSS_LV
D5
RESERVED
VSS_HV
K16
VSS_LV_COR
VSS_LV
AB20
RESERVED
VSS_HV
K17
VSS_LV_COR
VSS_LV
Table 6. 473 MAPBGA Balls not populated on package
2.2.3
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
F5
F19
G5
G19
H5
H19
J5
J19
K5
K19
L5
L19
M5
M19
N5
N19
P5
P19
R5
R19
T5
T19
U5
U19
V5
V19
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W16
W17
W18
W19
System pins
Table 7 shows the system pins for the PXS30 in the 257 MAPBGA package. Table 8 shows the system
pins for the PXS30 in the 473 MAPBGA package.
PXS30 Microcontroller Data Sheet, Rev. 1
28
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package pinouts and signal descriptions
Table 7. 257 MAPBGA system pins
Ball
Number
Ball Name
C4
FCCU_F[1]
C10
JCOMP
1
Weak pull
Safe Mode
during reset default condition
Pad Type
Power Domain
disabled
not available
GP Slow/Medium
VDD_HV_IO
pull down
not available
GP Slow
VDD_HV_IO
—
not available
GP Slow/Fast
VDD_HV_IO
E1
Nexus MDO[0]
E4
NMI
pull up
not available
GP Slow
VDD_HV_IO
L15
TCK
pull up
not available
GP Slow
VDD_HV_IO
M16
TMS
pull up
not available
GP Slow
VDD_HV_IO
N1
XTALIN
—
not available
Analog Feedthrough
VDD_HV_IO
P2
RESET
pull down
not available
Reset
VDD_HV_IO
R1
XTALOUT
—
not available
Analog Feedthrough
VDD_HV_IO
R2
FCCU_F[0]
disabled
not available
GP Slow/Medium
VDD_HV_IO
R13
VREG_CTRL
—
—
Analog Feedthrough
VDD_REG
U12
VREG_INT_ENABLE
—
—
Analog Feedthrough
VDD_HV_IO
U13
RESET_SUP
pull down
—
Analog Feedthrough
VDD_HV_IO
NOTES:
1 Do not connect pin directly to a power supply or ground.
Table 8. 473 MAPBGA system pins
Ball
Number
Ball Name
C4
FCCU_F[1]
D10
JCOMP
E1
Nexus MDO[0]
E4
NMI
1
Weak pull
Safe Mode
during reset default condition
Pad Type
Power Domain
disabled
not available
GP Slow/Medium
VDD_HV_IO
pull down
not available
GP Slow
VDD_HV_IO
—
not available
GP Slow/Fast
VDD_HV_IO
pull up
not available
GP Slow
VDD_HV_IO
—
—
DRAM CLK
VDD_HV_DRAM
disabled
—
DRAM CLK
VDD_HV_DRAM
R23
dramc CLKB
T23
dramc CLK
W1
XTALIN
—
not available
Analog Feedthrough
VDD_HV_IO
Y2
RESET
pull down
not available
Reset
VDD_HV_IO
Y19
TCK
pull up
not available
GP Slow
VDD_HV_IO
AA1
XTALOUT
—
not available
Analog Feedthrough
VDD_HV_IO
AA2
FCCU_F[0]
disabled
not available
GP Slow/Medium
VDD_HV_IO
AB19
TMS
pull up
not available
GP Slow
VDD_HV_IO
AC18
VREG_CTRL
—
—
Analog Feedthrough
VDD_REG
AC20
RESET_SUP
pull down
—
Analog Feedthrough
VDD_HV_IO
AC21
VREG_INT_ENABLE
—
—
Analog Feedthrough
VDD_HV_IO
NOTES:
1 Do not connect pin directly to a power supply or ground.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
29
Multiplexed pins
Table 9 shows the pin multiplexing for the PXS30 in the 257 MAPBGA package. Table 10 shows the pin multiplexing for the PXS30
in the 473 MAPBGA package.
Table 9. 257 MAPBGA pin multiplexing
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
A4
GPIO nexus
MDO[5]1
A0: siul_GPIO[114]
A1: _
A2: npc_wrapper_MDO[5]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A5
GPIO nexus
MDO[7]1
A0: siul_GPIO[112]
A1: _
A2: npc_wrapper_MDO[7]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A6
GPIO nexus
MDO[9]1
A0: siul_GPIO[110]
A1: _
A2: npc_wrapper_MDO[9]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A7
GPIO flexray
CB_TX
A0: siul_GPIO[51]
A1: flexray_CB_TX
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
A8
GPIO flexray
A0: siul_GPIO[47]
CA_TR_EN A1: flexray_CA_TR_EN
A2: _
A3: _
I: ctu0_EXT_IN
I: flexpwm0_EXT_SYNC
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
A10
GPIO fec
RXD[2]
A0: siul_GPIO[213]
A1: _
A2: _
A3: dspi2_SOUT
I: fec_RXD[2]
I: _
I: siul_EIRQ[21]
—
disabled
GP Slow/
Medium
VDD_HV_IO
A11
GPIO fec
RX_CLK
A0: siul_GPIO[209]
A1: flexray_DBG2
A2: etimer2_ETC[2]
A3: dspi0_CS6
I: fec_RX_CLK
I: _
I: siul_EIRQ[25]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
30
2.2.4
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO fec
RXD[0]
A0: siul_GPIO[211]
A1: i2c1_clock
A2: _
A3: _
I: fec_RXD[0]
I: _
I: siul_EIRQ[27]
—
disabled
GP Slow/
Medium
VDD_HV_IO
A13
GPIO fec
MDIO
A0: siul_GPIO[198]
A1: fec_MDIO
A2: _
A3: dspi2_CS0
I: _
I: _
I: siul_EIRQ[28]
—
disabled
GP Slow/
Medium
VDD_HV_IO
A14
GPIO fec
TX_EN
A0: siul_GPIO[200]
A1: fec_TX_EN
A2: _
A3: lin0_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
A15
GPIO fec
TXD[3]
A0: siul_GPIO[204]
A1: fec_TXD[3]
A2: _
A3: dspi2_CS2
I: flexpwm1_FAULT[2]
I: _
I: siul_EIRQ[29]
—
disabled
GP Slow/
Medium
VDD_HV_IO
B3
GPIO mc_cgl
clk_out
A0: siul_GPIO[22]
A1: mc_cgl_clk_out
A2: etimer2_ETC[5]
A3: _
I: _
I: _
I: siul_EIRQ[18]
—
disabled
GP Slow/
Fast
VDD_HV_IO
B4
GPIO can1
TXD
A0: siul_GPIO[14]
A1: can1_TXD
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[13]
—
disabled
GP Slow/
Medium
VDD_HV_IO
B5
GPIO nexus
MDO[14]1
A0: siul_GPIO[219]
A1: _
A2: npc_wrapper_MDO[14]
A3: can3_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
B6
GPIO dspi2
CS1
A0: siul_GPIO[9]
A1: dspi2_CS1
A2: _
A3: _
I: flexpwm0_FAULT[0]
I: lin3_RXD
I: can2_RXD
—
disabled
GP Slow/
Medium
VDD_HV_IO
B7
GPIO flexray
A0: siul_GPIO[52]
CB_TR_EN A1: flexray_CB_TR_EN
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
31
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
A12
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
B8
GPIO flexray
CA_TX
A0: siul_GPIO[48]
A1: flexray_CA_TX
A2: _
A3: _
I: ctu1_EXT_IN
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
B10
GPIO fec
RXD[3]
A0: siul_GPIO[214]
A1: i2c1_data
A2: _
A3: _
I: fec_RXD[3]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B11
GPIO fec
RX_ER
A0: siul_GPIO[215]
A1: _
A2: _
A3: dspi0_CS1
I: fec_RX_ER
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B12
GPIO fec
RXD[1]
A0: siul_GPIO[212]
A1: dspi1_CS1
A2: etimer2_ETC[5]
A3: _
I: fec_RXD[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B13
GPIO fec
TX_ER
A0: siul_GPIO[205]
A1: fec_TX_ER
A2: dspi2_CS3
A3: _
I: flexpwm1_FAULT[3]
I: lin0_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B14
GPIO fec
TX_CLK
A0: siul_GPIO[207]
A1: flexray_DBG0
A2: etimer2_ETC[4]
A3: dspi0_CS4
I: fec_TX_CLK
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B15
GPIO can0
TXD
A0: siul_GPIO[16]
A1: can0_TXD
A2: _
A3: sscm_DEBUG[0]
I: _
I: _
I: siul_EIRQ[15]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C2
GPIO nexus
MDO[15]1
A0: siul_GPIO[220]
A1: _
A2: npc_wrapper_MDO[15]
A3: _
I: can3_RXD
I: can2_RXD
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
C5
GPIO flexray
CB_RX
A0: siul_GPIO[50]
A1: _
A2: ctu1_EXT_TGR
A3: _
I: flexray_CB_RX
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
32
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO etimer0
ETC[0]
A0: siul_GPIO[0]
A1: etimer0_ETC[0]
A2: _
A3: _
I: dspi2_SIN
I: _
I: siul_EIRQ[0]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C7
GPIO etimer0
ETC[1]
A0: siul_GPIO[1]
A1: etimer0_ETC[1]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[1]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C8
GPIO etimer0
ETC[2]
A0: siul_GPIO[2]
A1: etimer0_ETC[2]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[2]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C9
GPIO etimer0
ETC[3]
A0: siul_GPIO[3]
A1: etimer0_ETC[3]
A2: _
A3: _
I: _
I: mc_rgm_ABS[2]
I: siul_EIRQ[3]
—
pull down
GP Slow/
Medium
VDD_HV_IO
C11
GPIO fec
CRS
A0: siul_GPIO[208]
A1: flexray_DBG1
A2: etimer2_ETC[3]
A3: dspi0_CS5
I: fec_CRS
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C12
GPIO fec
TXD[0]
A0: siul_GPIO[201]
A1: fec_TXD[0]
A2: etimer2_ETC[1]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C13
GPIO fec
COL
A0: siul_GPIO[206]
A1: fec_COL
A2: _
A3: lin1_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C14
GPIO can0
RXD
A0: siul_GPIO[17]
A1: _
A2: _
A3: sscm_DEBUG[1]
I: can0_RXD
I: can1_RXD
I: siul_EIRQ[16]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C16
GPIO pdi
DATA[5]
A0: siul_GPIO[136]
A1: flexpwm2_A[0]
A2: _
A3: etimer1_ETC[0]
I: pdi_DATA[5]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
33
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
C6
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
C17
GPIO pdi
CLOCK
A0: siul_GPIO[128]
A1: flexpwm2_B[1]
A2: _
A3: etimer1_ETC[3]
I: pdi_CLOCK
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
D1
GPIO nexus
MDO[2]1
A0: siul_GPIO[85]
A1: _
A2: npc_wrapper_MDO[2]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
D2
GPIO nexus
MDO[3]1
A0: siul_GPIO[84]
A1: _
A2: npc_wrapper_MDO[3]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
D3
GPIO can1
RXD
A0: siul_GPIO[15]
A1: _
A2: _
A3: _
I: can1_RXD
I: can0_RXD
I: siul_EIRQ[14]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D4
GPIO dspi0
SOUT
A0: siul_GPIO[38]
A1: dspi0_SOUT
A2: _
A3: sscm_DEBUG[6]
I: _
I: _
I: siul_EIRQ[24]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D6
GPIO etimer0
ETC[5]
A0: siul_GPIO[44]
A1: etimer0_ETC[5]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D7
GPIO etimer0
ETC[4]
A0: siul_GPIO[43]
A1: etimer0_ETC[4]
A2: _
A3: _
I: _
I: mc_rgm_ABS[0]
I: _
—
pull down
GP Slow/
Medium
VDD_HV_IO
D10
GPIO fec
TXD[2]
A0: siul_GPIO[203]
A1: fec_TXD[2]
A2: _
A3: _
I: flexpwm1_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D11
GPIO fec
TXD[1]
A0: siul_GPIO[202]
A1: fec_TXD[1]
A2: _
A3: dspi2_SCK
I: flexpwm1_FAULT[0]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
34
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO fec
RX_DV
A0: siul_GPIO[210]
A1: flexray_DBG3
A2: etimer2_ETC[0]
A3: dspi0_CS7
I: fec_RX_DV
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D13
GPIO fec
MDC
A0: siul_GPIO[199]
A1: fec_MDC
A2: _
A3: _
I: _
I: lin1_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D16
GPIO pdi
DATA[0]
A0: siul_GPIO[131]
A1: _
A2: lin3_TXD
A3: _
I: pdi_DATA[0]
I: _
I: flexpwm2_FAULT[2]
—
disabled
PDI
Medium
VDD_HV_PDI
D17
GPIO pdi
DATA[1]
A0: siul_GPIO[132]
A1: flexpwm2_B[3]
A2: _
A3: _
I: pdi_DATA[1]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
E2
GPIO nexus
MDO[1]1
A0: siul_GPIO[86]
A1: _
A2: npc_wrapper_MDO[1]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
E3
GPIO flexray
CA_RX
A0: siul_GPIO[49]
A1: _
A2: ctu0_EXT_TGR
A3: _
I: flexray_CA_RX
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
E14
GPIO pdi
LINE_V
A0: siul_GPIO[129]
A1: _
A2: lin2_TXD
A3: _
I: pdi_LINE_V
I: _
I: flexpwm2_FAULT[0]
—
disabled
PDI
Medium
VDD_HV_PDI
E15
GPIO pdi
DATA[2]
A0: siul_GPIO[133]
A1: flexpwm2_A[1]
A2: _
A3: etimer1_ETC[2]
I: pdi_DATA[2]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
E16
GPIO pdi
DATA[3]
A0: siul_GPIO[134]
A1: flexpwm2_X[1]
A2: _
A3: _
I: pdi_DATA[3]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
35
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
D12
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
E17
GPIO pdi
DATA[4]
A0: siul_GPIO[135]
A1: flexpwm2_A[2]
A2: _
A3: etimer1_ETC[4]
I: pdi_DATA[4]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
F1
GPIO nexus
MDO[6]1
A0: siul_GPIO[113]
A1: _
A2: npc_wrapper_MDO[6]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F2
GPIO nexus
MDO[11]1
A0: siul_GPIO[108]
A1: _
A2: npc_wrapper_MDO[11]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F3
GPIO dspi1
SOUT
A0: siul_GPIO[7]
A1: dspi1_SOUT
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[7]
—
disabled
GP Slow/
Medium
VDD_HV_IO
F4
GPIO dspi1
SIN
A0: siul_GPIO[8]
A1: _
A2: _
A3: _
I: dspi1_SIN
I: _
I: siul_EIRQ[8]
—
disabled
GP Slow/
Medium
VDD_HV_IO
F14
GPIO mc_cgl
clk_out
A0: siul_GPIO[233]
A1: mc_cgl_clk_out
A2: etimer2_ETC[5]
A3: _
I: _
I: _
I: _
—
disabled
PDI Fast
VDD_HV_PDI
F15
GPIO pdi
DATA[6]
A0: siul_GPIO[137]
A1: flexpwm2_B[0]
A2: _
A3: etimer1_ETC[1]
I: pdi_DATA[6]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
F16
GPIO pdi
DATA[7]
A0: siul_GPIO[138]
A1: flexpwm2_B[2]
A2: _
A3: etimer1_ETC[5]
I: pdi_DATA[7]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
F17
GPIO pdi
DATA[8]
A0: siul_GPIO[139]
A1: flexpwm2_A[3]
A2: _
A3: _
I: pdi_DATA[8]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
Package pinouts and signal descriptions
36
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO nexus
MDO[4]1
A0: siul_GPIO[115]
A1: _
A2: npc_wrapper_MDO[4]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
G3
GPIO dspi0
SCK
A0: siul_GPIO[37]
A1: dspi0_SCK
A2: _
A3: sscm_DEBUG[5]
I: flexpwm0_FAULT[3]
I: _
I: siul_EIRQ[23]
—
disabled
GP Slow/
Medium
VDD_HV_IO
G4
GPIO dspi1
SCK
A0: siul_GPIO[6]
A1: dspi1_SCK
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[6]
—
disabled
GP Slow/
Medium
VDD_HV_IO
G14
GPIO pdi
DATA[9]
A0: siul_GPIO[140]
A1: flexpwm2_X[2]
A2: _
A3: _
I: pdi_DATA[9]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
G15
GPIO pdi
DATA[10]
A0: siul_GPIO[141]
A1: flexpwm2_X[3]
A2: _
A3: _
I: pdi_DATA[10]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
G16
GPIO pdi
DATA[11]
A0: siul_GPIO[142]
A1: flexpwm2_X[0]
A2: _
A3: _
I: pdi_DATA[11]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
G17
GPIO pdi
FRAME_V
A0: siul_GPIO[130]
A1: _
A2: _
A3: _
I: pdi_FRAME_V
I: lin2_RXD
I: flexpwm2_FAULT[1]
—
disabled
PDI
Medium
VDD_HV_PDI
H1
GPIO nexus
MDO[10]1
A0: siul_GPIO[109]
A1: _
A2: npc_wrapper_MDO[10]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
H3
GPIO dspi0
CS0
A0: siul_GPIO[36]
A1: dspi0_CS0
A2: _
A3: sscm_DEBUG[4]
I: _
I: _
I: siul_EIRQ[22]
—
disabled
GP Slow/
Medium
VDD_HV_IO
37
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
G1
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
H4
GPIO dspi1
CS0
A0: siul_GPIO[5]
A1: dspi1_CS0
A2: _
A3: dspi0_CS7
I: _
I: _
I: siul_EIRQ[5]
—
disabled
GP Slow/
Medium
VDD_HV_IO
H14
GPIO pdi
DATA[12]
A0: siul_GPIO[143]
A1: _
A2: _
A3: _
I: pdi_DATA[12]
I: lin3_RXD
I: flexpwm2_FAULT[3]
—
disabled
PDI
Medium
VDD_HV_PDI
H15
GPIO pdi
DATA[13]
A0: siul_GPIO[144]
A1: pdi_SENS_SEL[2]
A2: ctu1_EXT_TGR
A3: _
I: pdi_DATA[13]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
H17
GPIO flexpwm0
X[0]
A0: siul_GPIO[194]
A1: flexpwm0_X[0]
A2: ebi_D28
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
J1
GPIO nexus
MCKO
A0: siul_GPIO[87]
A1: _
A2: npc_wrapper_MCKO
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
J2
GPIO nexus
MDO[8]1
A0: siul_GPIO[111]
A1: _
A2: npc_wrapper_MDO[8]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
J3
GPIO dspi2
CS0
A0: siul_GPIO[10]
A1: dspi2_CS0
A2: _
A3: can3_TXD
I: _
I: _
I: siul_EIRQ[9]
—
disabled
GP Slow/
Medium
VDD_HV_IO
J4
GPIO dspi2
CS2
A0: siul_GPIO[42]
A1: dspi2_CS2
A2: lin3_TXD
A3: can2_TXD
I: flexpwm0_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
J14
GPIO pdi
DATA[14]
A0: siul_GPIO[145]
A1: pdi_SENS_SEL[1]
A2: i2c2_clock
A3: _
I: pdi_DATA[14]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
Package pinouts and signal descriptions
38
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO pdi
DATA[15]
A0: siul_GPIO[146]
A1: pdi_SENS_SEL[0]
A2: i2c2_data
A3: _
I: pdi_DATA[15]
I: ctu1_EXT_IN
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
J17
GPIO flexpwm0
X[1]
A0: siul_GPIO[195]
A1: flexpwm0_X[1]
A2: ebi_D29
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
K1
GPIO nexus
A0: siul_GPIO[89]
MSEO_B[0]1 A1: _
A2: npc_wrapper_MSEO_B[0]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
K2
GPIO nexus
A0: siul_GPIO[88]
MSEO_B[1]1 A1: _
A2: npc_wrapper_MSEO_B[1]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
K3
GPIO nexus
RDY_B
A0: siul_GPIO[216]
A1: _
A2: nexus_RDY_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
K4
GPIO dspi0
SIN
A0: siul_GPIO[39]
A1: _
A2: _
A3: sscm_DEBUG[7]
I: dspi0_SIN
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
K14
GPIO flexpwm0
X[2]
A0: siul_GPIO[196]
A1: flexpwm0_X[2]
A2: ebi_D30
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
K15
GPIO flexpwm0
X[3]
A0: siul_GPIO[197]
A1: flexpwm0_X[3]
A2: ebi_D31
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
K16
GPIO flexpwm0
A[1]
A0: siul_GPIO[149]
A1: _
A2: ebi_RD_WR
A3: flexpwm0_A[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
39
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
J15
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
K17
GPIO flexpwm0
B[0]
A0: siul_GPIO[148]
A1: _
A2: ebi_CLKOUT
A3: flexpwm0_B[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
L1
GPIO nexus
EVTO_B
A0: siul_GPIO[90]
A1: _
A2: npc_wrapper_EVTO_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
L2
GPIO nexus
EVTI_B
A0: siul_GPIO[91]
A1: _
A2: leo_sor_proxy_EVTI_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
L3
GPIO dspi2
SCK
A0: siul_GPIO[11]
A1: dspi2_SCK
A2: _
A3: _
I: can3_RXD
I: _
I: siul_EIRQ[10]
—
disabled
GP Slow/
Medium
VDD_HV_IO
L4
GPIO nexus
MDO[13]1
A0: siul_GPIO[218]
A1: _
A2: npc_wrapper_MDO[13]
A3: _
I: can2_RXD
I: can3_RXD
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
L16
GPIO flexpwm0
B[1]
A0: siul_GPIO[150]
A1: dramc_CS0
A2: ebi_TS
A3: flexpwm0_B[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
L17
GPIO TDO
A0: siul_GPIO[20]
A1: jtagc_TDO
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
M3
GPIO dspi1
CS2
A0: siul_GPIO[56]
A1: dspi1_CS2
A2: _
A3: dspi0_CS5
I: flexpwm0_FAULT[3]
I: lin2_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
M4
GPIO nexus
MDO[12]1
A0: siul_GPIO[217]
A1: _
A2: npc_wrapper_MDO[12]
A3: can2_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
Package pinouts and signal descriptions
40
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO flexpwm0
B[2]
A0: siul_GPIO[152]
A1: dramc_CAS
A2: ebi_WE_BE_1
A3: flexpwm0_B[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
M15
GPIO TDI
A0: siul_GPIO[21]
A1: _
A2: _
A3: _
I: jtagc_TDI
I: _
I: _
—
pull up
GP Slow/
Medium
VDD_HV_IO
M17
GPIO flexpwm1
A[1]
A0: siul_GPIO[157]
A1: dramc_ODT
A2: ebi_CS1
A3: flexpwm1_A[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
N3
GPIO dspi0
CS3
A0: siul_GPIO[53]
A1: dspi0_CS3
A2: i2c2_clock
A3: _
I: flexpwm0_FAULT[2]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
N14
GPIO flexpwm0
B[3]
A0: siul_GPIO[154]
A1: dramc_BA[0]
A2: ebi_WE_BE_3
A3: flexpwm0_B[3]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
N15
GPIO flexpwm0
A[2]
A0: siul_GPIO[151]
A1: dramc_RAS
A2: ebi_WE_BE_0
A3: flexpwm0_A[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
N16
GPIO flexpwm1
A[0]
A0: siul_GPIO[155]
A1: dramc_BA[1]
A2: ebi_BDIP
A3: flexpwm1_A[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
N17
GPIO flexpwm1
B[0]
A0: siul_GPIO[156]
A1: dramc_BA[2]
A2: ebi_CS0
A3: flexpwm1_B[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
GPIO dspi0
CS2
A0: siul_GPIO[54]
A1: dspi0_CS2
A2: i2c2_data
A3: _
I: flexpwm0_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
P3
41
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
M14
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
P5
GPIO etimer1
ETC[1]
A0: siul_GPIO[45]
A1: etimer1_ETC[1]
A2: _
A3: _
I: ctu0_EXT_IN
I: flexpwm0_EXT_SYNC
I: ctu1_EXT_IN
—
disabled
GP Slow/
Medium
VDD_HV_IO
P6
GPIO etimer1
ETC[2]
A0: siul_GPIO[46]
A1: etimer1_ETC[2]
A2: ctu0_EXT_TGR
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
P7
ANA adc0
AN[0]
Analog
VDD_HV_ADR02
GP Slow/
Medium
VDD_HV_IO
Analog
Shared
VDD_HV_ADR02
—
siul_GPI[23]
AN: adc0_AN[0]
lin0_RXD
Freescale Semiconductor
P8
GPIO etimer1
ETC[3]
P11
ANA adc0_adc1
AN[14]
P12
GPIO etimer1
ETC[4]
A0: siul_GPIO[93]
A1: etimer1_ETC[4]
A2: ctu1_EXT_TGR
A3: _
I: _
I: _
I: siul_EIRQ[31]
—
disabled
GP Slow/
Medium
VDD_HV_IO
P13
GPIO etimer1
ETC[5]
A0: siul_GPIO[78]
A1: etimer1_ETC[5]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[26]
—
disabled
GP Slow/
Medium
VDD_HV_IO
P15
GPIO flexpwm0
A[3]
A0: siul_GPIO[153]
A1: dramc_WEB
A2: ebi_WE_BE_2
A3: flexpwm0_A[3]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
P16
GPIO flexpwm0
A[0]
A0: siul_GPIO[147]
A1: dramc_CKE
A2: ebi_OE
A3: flexpwm0_A[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
A0: siul_GPIO[92]
A1: etimer1_ETC[3]
A2: _
A3: _
—
I: ctu1_EXT_IN
I: mc_rgm_FAB
I: siul_EIRQ[30]
siul_GPI[28]
—
pull down
AN: adc0_adc1_AN[14]
Package pinouts and signal descriptions
42
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO flexpwm1
B[1]
A0: siul_GPIO[163]
A1: dramc_ADD[5]
A2: ebi_ADD13
A3: flexpwm1_B[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
R4
GPIO dspi1
CS3
A0: siul_GPIO[55]
A1: dspi1_CS3
A2: lin2_TXD
A3: dspi0_CS4
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
R5
ANA adc2
AN[0]
—
siul_GPI[221]
AN: adc2_AN[0]
—
Analog
VDD_HV_ADR02
R6
ANA adc2
AN[3]
—
siul_GPI[224]
AN: adc2_AN[3]
—
Analog
VDD_HV_ADR02
R8
ANA adc2_adc3
AN[14]
—
siul_GPI[228]
AN: adc2_adc3_AN[14]
—
Analog
Shared
VDD_HV_ADR13
R10
ANA adc0
AN[2]
—
siul_GPI[33]
AN: adc0_AN[2]
—
Analog
VDD_HV_ADR02
R11
ANA adc0_adc1
AN[13]
—
siul_GPI[27]
AN: adc0_adc1_AN[13]
—
Analog
Shared
VDD_HV_ADR02
R12
ANA adc1
AN[1]
—
siul_GPI[30]
etimer0_ETC[4]
AN: adc1_AN[1]
—
Analog
VDD_HV_ADR13
siul_EIRQ[19]
R14
GPIO lin0
TXD
A0: siul_GPIO[18]
A1: lin0_TXD
A2: i2c0_clock
A3: sscm_DEBUG[2]
I: _
I: _
I: siul_EIRQ[17]
—
disabled
GP Slow/
Medium
VDD_HV_IO
R16
GPIO flexpwm1
A[2]
A0: siul_GPIO[164]
A1: dramc_ADD[6]
A2: ebi_ADD14
A3: flexpwm1_A[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
43
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
P17
Ball
Ball
Number Type
R17
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
GPIO flexpwm1
B[2]
A0: siul_GPIO[165]
A1: dramc_ADD[7]
A2: ebi_ADD15
A3: flexpwm1_B[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_IO
T3
GPIO dspi2
SOUT
A0: siul_GPIO[12]
A1: dspi2_SOUT
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[11]
—
disabled
GP Slow/
Medium
VDD_HV_IO
T4
ANA adc3
AN[0]
—
siul_GPI[229]
AN: adc3_AN[0]
—
Analog
VDD_HV_ADR13
T5
ANA adc3
AN[3]
—
siul_GPI[232]
AN: adc3_AN[3]
—
Analog
VDD_HV_ADR13
T6
ANA adc2
AN[2]
—
siul_GPI[223]
AN: adc2_AN[2]
—
Analog
VDD_HV_ADR02
T8
ANA adc2_adc3
AN[13]
—
siul_GPI[227]
AN: adc2_adc3_AN[13]
—
Analog
Shared
VDD_HV_ADR02
T10
ANA adc0
AN[1]
—
siul_GPI[24]
etimer0_ETC[5]
AN: adc0_AN[1]
—
Analog
VDD_HV_ADR02
T11
ANA adc0_adc1
AN[12]
—
siul_GPI[26]
AN: adc0_adc1_AN[12]
—
Analog
Shared
VDD_HV_ADR02
T12
ANA adc1
AN[0]
—
siul_GPI[29]
AN: adc1_AN[0]
—
Analog
VDD_HV_ADR13
AN: adc1_AN[2]
—
Analog
VDD_HV_ADR13
lin1_RXD
T13
ANA adc1
AN[2]
—
siul_GPI[31]
siul_EIRQ[20]
Package pinouts and signal descriptions
44
Table 9. 257 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 9. 257 MAPBGA pin multiplexing (continued)
Ball
Ball
Number Type
Ball Name
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
during reset
Pad Type
Power Domain
GPIO lin0
RXD
A0: siul_GPIO[19]
A1: _
A2: i2c0_data
A3: sscm_DEBUG[3]
I: lin0_RXD
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
T15
GPIO etimer1
ETC[0]
A0: siul_GPIO[4]
A1: etimer1_ETC[0]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[4]
—
disabled
GP Slow/
Medium
VDD_HV_IO
U3
GPIO dspi2
SIN
A0: siul_GPIO[13]
A1: _
A2: _
A3: _
I: dspi2_SIN
I: flexpwm0_FAULT[0]
I: siul_EIRQ[12]
—
disabled
GP Slow/
Medium
VDD_HV_IO
U4
ANA adc3
AN[1]
—
siul_GPI[230]
AN: adc3_AN[1]
—
Analog
VDD_HV_ADR13
U5
ANA adc3
AN[2]
—
siul_GPI[231]
AN: adc3_AN[2]
—
Analog
VDD_HV_ADR13
U6
ANA adc2
AN[1]
—
siul_GPI[222]
AN: adc2_AN[1]
—
Analog
VDD_HV_ADR02
U7
ANA adc2_adc3
AN[11]
—
siul_GPI[225]
AN: adc2_adc3_AN[11]
—
Analog
Shared
VDD_HV_ADR13
U8
ANA adc2_adc3
AN[12]
—
siul_GPI[226]
AN: adc2_adc3_AN[12]
—
Analog
Shared
VDD_HV_ADR13
U11
ANA adc0_adc1
AN[11]
—
siul_GPI[25]
AN: adc0_adc1_AN[11]
—
Analog
Shared
VDD_HV_ADR02
END OF 257 MAPBGA PIN MULTIPLEXING TABLE
NOTES:
1 Do not connect pin directly to a power supply or ground.
45
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
T14
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
A4
GPIO nexus
MDO[5]1
A0: siul_GPIO[114]
A1: _
A2: npc_wrapper_MDO[5]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A5
GPIO nexus
MDO[7]1
A0: siul_GPIO[112]
A1: _
A2: npc_wrapper_MDO[7]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A6
GPIO nexus
MDO[9]1
A0: siul_GPIO[110]
A1: _
A2: npc_wrapper_MDO[9]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
A7
GPIO flexray
CB_TX
A0: siul_GPIO[51]
A1: flexray_CB_TX
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
A8
GPIO flexray
A0: siul_GPIO[47]
CA_TR_EN A1: flexray_CA_TR_EN
A2: _
A3: _
I: ctu0_EXT_IN
I: flexpwm0_EXT_SYNC
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
A9
GPIO fec
RX_DV
A0: siul_GPIO[210]
A1: flexray_DBG3
A2: etimer2_ETC[0]
A3: dspi0_CS7
I: fec_RX_DV
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
A10
GPIO fec
MDIO
A0: siul_GPIO[198]
A1: fec_MDIO
A2: _
A3: dspi2_CS0
I: _
I: _
I: siul_EIRQ[28]
—
disabled
GP Slow/
Medium
VDD_HV_IO
A11
GPIO fec
TX_CLK
A0: siul_GPIO[207]
A1: flexray_DBG0
A2: etimer2_ETC[4]
A3: dspi0_CS4
I: fec_TX_CLK
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
A12
GPIO fec
TX_EN
A0: siul_GPIO[200]
A1: fec_TX_EN
A2: _
A3: lin0_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
46
Table 10. 473 MAPBGA pin multiplexing
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO fec
TXD[3]
A0: siul_GPIO[204]
A1: fec_TXD[3]
A2: _
A3: dspi2_CS2
I: flexpwm1_FAULT[2]
I: _
I: siul_EIRQ[29]
—
disabled
GP Slow/
Medium
VDD_HV_IO
A15
GPIO pdi
DATA[3]
A0: siul_GPIO[134]
A1: flexpwm2_X[1]
A2: _
A3: _
I: pdi_DATA[3]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A16
GPIO pdi
DATA[1]
A0: siul_GPIO[132]
A1: flexpwm2_B[3]
A2: _
A3: _
I: pdi_DATA[1]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A17
GPIO pdi
CLOCK
A0: siul_GPIO[128]
A1: flexpwm2_B[1]
A2: _
A3: etimer1_ETC[3]
I: pdi_CLOCK
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A18
GPIO pdi
DATA[7]
A0: siul_GPIO[138]
A1: flexpwm2_B[2]
A2: _
A3: etimer1_ETC[5]
I: pdi_DATA[7]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A19
GPIO pdi
DATA[10]
A0: siul_GPIO[141]
A1: flexpwm2_X[3]
A2: _
A3: _
I: pdi_DATA[10]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A20
GPIO pdi
DATA[13]
A0: siul_GPIO[144]
A1: pdi_SENS_SEL[2]
A2: ctu1_EXT_TGR
A3: _
I: pdi_DATA[13]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
A21
GPIO pdi
DATA[15]
A0: siul_GPIO[146]
A1: pdi_SENS_SEL[0]
A2: i2c2_data
A3: _
I: pdi_DATA[15]
I: ctu1_EXT_IN
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
B3
GPIO mc_cgl
clk_out
A0: siul_GPIO[22]
A1: mc_cgl_clk_out
A2: etimer2_ETC[5]
A3: _
I: _
I: _
I: siul_EIRQ[18]
—
disabled
GP Slow/
Fast
VDD_HV_IO
47
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
A13
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
B4
GPIO can1
TXD
A0: siul_GPIO[14]
A1: can1_TXD
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[13]
—
disabled
GP Slow/
Medium
VDD_HV_IO
B5
GPIO nexus
MDO[14]1
A0: siul_GPIO[219]
A1: _
A2: npc_wrapper_MDO[14]
A3: can3_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
B6
GPIO dspi2
CS1
A0: siul_GPIO[9]
A1: dspi2_CS1
A2: _
A3: _
I: flexpwm0_FAULT[0]
I: lin3_RXD
I: can2_RXD
—
disabled
GP Slow/
Medium
VDD_HV_IO
B7
GPIO flexray
A0: siul_GPIO[52]
CB_TR_EN A1: flexray_CB_TR_EN
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
B8
GPIO flexray
CA_TX
A0: siul_GPIO[48]
A1: flexray_CA_TX
A2: _
A3: _
I: ctu1_EXT_IN
I: _
I: _
—
disabled
GP Slow/
Symmetric
VDD_HV_IO
B9
GPIO fec
RXD[3]
A0: siul_GPIO[214]
A1: i2c1_data
A2: _
A3: _
I: fec_RXD[3]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B10
GPIO fec
RX_ER
A0: siul_GPIO[215]
A1: _
A2: _
A3: dspi0_CS1
I: fec_RX_ER
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B11
GPIO fec
TXD[0]
A0: siul_GPIO[201]
A1: fec_TXD[0]
A2: etimer2_ETC[1]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B12
GPIO fec
RXD[0]
A0: siul_GPIO[211]
A1: i2c1_clock
A2: _
A3: _
I: fec_RXD[0]
I: _
I: siul_EIRQ[27]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
48
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO fec
TX_ER
A0: siul_GPIO[205]
A1: fec_TX_ER
A2: dspi2_CS3
A3: _
I: flexpwm1_FAULT[3]
I: lin0_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
B15
GPIO pdi
DATA[6]
A0: siul_GPIO[137]
A1: flexpwm2_B[0]
A2: _
A3: etimer1_ETC[1]
I: pdi_DATA[6]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
B16
GPIO pdi
DATA[4]
A0: siul_GPIO[135]
A1: flexpwm2_A[2]
A2: _
A3: etimer1_ETC[4]
I: pdi_DATA[4]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
B17
GPIO pdi
DATA[0]
A0: siul_GPIO[131]
A1: _
A2: lin3_TXD
A3: _
I: pdi_DATA[0]
I: _
I: flexpwm2_FAULT[2]
—
disabled
PDI
Medium
VDD_HV_PDI
B18
GPIO pdi
LINE_V
A0: siul_GPIO[129]
A1: _
A2: lin2_TXD
A3: _
I: pdi_LINE_V
I: _
I: flexpwm2_FAULT[0]
—
disabled
PDI
Medium
VDD_HV_PDI
B19
GPIO pdi
DATA[9]
A0: siul_GPIO[140]
A1: flexpwm2_X[2]
A2: _
A3: _
I: pdi_DATA[9]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
B20
GPIO pdi
DATA[14]
A0: siul_GPIO[145]
A1: pdi_SENS_SEL[1]
A2: i2c2_clock
A3: _
I: pdi_DATA[14]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
B21
GPIO can0
TXD
A0: siul_GPIO[16]
A1: can0_TXD
A2: _
A3: sscm_DEBUG[0]
I: _
I: _
I: siul_EIRQ[15]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C2
GPIO nexus
MDO[15]1
A0: siul_GPIO[220]
A1: _
A2: npc_wrapper_MDO[15]
A3: _
I: can3_RXD
I: can2_RXD
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
49
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
B13
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
C5
GPIO flexray
CB_RX
A0: siul_GPIO[50]
A1: _
A2: ctu1_EXT_TGR
A3: _
I: flexray_CB_RX
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C6
GPIO etimer0
ETC[4]
A0: siul_GPIO[43]
A1: etimer0_ETC[4]
A2: _
A3: _
I: _
I: mc_rgm_ABS[0]
I: _
—
pull down
GP Slow/
Medium
VDD_HV_IO
C7
GPIO etimer0
ETC[1]
A0: siul_GPIO[1]
A1: etimer0_ETC[1]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[1]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C8
GPIO etimer0
ETC[2]
A0: siul_GPIO[2]
A1: etimer0_ETC[2]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[2]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C9
GPIO etimer0
ETC[3]
A0: siul_GPIO[3]
A1: etimer0_ETC[3]
A2: _
A3: _
I: _
I: mc_rgm_ABS[2]
I: siul_EIRQ[3]
—
pull down
GP Slow/
Medium
VDD_HV_IO
C10
GPIO fec
TXD[2]
A0: siul_GPIO[203]
A1: fec_TXD[2]
A2: _
A3: _
I: flexpwm1_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C11
GPIO fec
TXD[1]
A0: siul_GPIO[202]
A1: fec_TXD[1]
A2: _
A3: dspi2_SCK
I: flexpwm1_FAULT[0]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C12
GPIO fec
CRS
A0: siul_GPIO[208]
A1: flexray_DBG1
A2: etimer2_ETC[3]
A3: dspi0_CS5
I: fec_CRS
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C13
GPIO fec
RX_CLK
A0: siul_GPIO[209]
A1: flexray_DBG2
A2: etimer2_ETC[2]
A3: dspi0_CS6
I: fec_RX_CLK
I: _
I: siul_EIRQ[25]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
50
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO fec
RXD[1]
A0: siul_GPIO[212]
A1: dspi1_CS1
A2: etimer2_ETC[5]
A3: _
I: fec_RXD[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C15
GPIO fec
COL
A0: siul_GPIO[206]
A1: fec_COL
A2: _
A3: lin1_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
C16
GPIO pdi
DATA[5]
A0: siul_GPIO[136]
A1: flexpwm2_A[0]
A2: _
A3: etimer1_ETC[0]
I: pdi_DATA[5]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
C17
GPIO pdi
DATA[2]
A0: siul_GPIO[133]
A1: flexpwm2_A[1]
A2: _
A3: etimer1_ETC[2]
I: pdi_DATA[2]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
C18
GPIO pdi
DATA[8]
A0: siul_GPIO[139]
A1: flexpwm2_A[3]
A2: _
A3: _
I: pdi_DATA[8]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
C19
GPIO pdi
DATA[12]
A0: siul_GPIO[143]
A1: _
A2: _
A3: _
I: pdi_DATA[12]
I: lin3_RXD
I: flexpwm2_FAULT[3]
—
disabled
PDI
Medium
VDD_HV_PDI
C20
GPIO can0
RXD
A0: siul_GPIO[17]
A1: _
A2: _
A3: sscm_DEBUG[1]
I: can0_RXD
I: can1_RXD
I: siul_EIRQ[16]
—
disabled
GP Slow/
Medium
VDD_HV_IO
C22
GPIO siul
GPIO[197]
A0: siul_GPIO[197]
A1: flexpwm0_X[3]
A2: ebi_D31
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
C23
GPIO dramc
CAS
A0: siul_GPIO[152]
A1: dramc_CAS
A2: ebi_WE_BE_1
A3: flexpwm0_B[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
51
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
C14
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
D1
GPIO nexus
MDO[1]1
A0: siul_GPIO[86]
A1: _
A2: npc_wrapper_MDO[1]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
D2
GPIO nexus
MDO[3]1
A0: siul_GPIO[84]
A1: _
A2: npc_wrapper_MDO[3]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
D3
GPIO can1
RXD
A0: siul_GPIO[15]
A1: _
A2: _
A3: _
I: can1_RXD
I: can0_RXD
I: siul_EIRQ[14]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D4
GPIO dspi0
SOUT
A0: siul_GPIO[38]
A1: dspi0_SOUT
A2: _
A3: sscm_DEBUG[6]
I: _
I: _
I: siul_EIRQ[24]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D6
GPIO etimer0
ETC[5]
A0: siul_GPIO[44]
A1: etimer0_ETC[5]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D7
GPIO etimer0
ETC[0]
A0: siul_GPIO[0]
A1: etimer0_ETC[0]
A2: _
A3: _
I: dspi2_SIN
I: _
I: siul_EIRQ[0]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D14
GPIO fec
RXD[2]
A0: siul_GPIO[213]
A1: _
A2: _
A3: dspi2_SOUT
I: fec_RXD[2]
I: _
I: siul_EIRQ[21]
—
disabled
GP Slow/
Medium
VDD_HV_IO
D15
GPIO fec
MDC
A0: siul_GPIO[199]
A1: fec_MDC
A2: _
A3: _
I: _
I: lin1_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
D18
GPIO pdi
DATA[11]
A0: siul_GPIO[142]
A1: flexpwm2_X[0]
A2: _
A3: _
I: pdi_DATA[11]
I: _
I: _
—
disabled
PDI
Medium
VDD_HV_PDI
Package pinouts and signal descriptions
52
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO pdi
FRAME_V
A0: siul_GPIO[130]
A1: _
A2: _
A3: _
I: pdi_FRAME_V
I: lin2_RXD
I: flexpwm2_FAULT[1]
—
disabled
PDI
Medium
VDD_HV_PDI
D21
GPIO dramc
BA[1]
A0: siul_GPIO[155]
A1: dramc_BA[1]
A2: ebi_BDIP
A3: flexpwm1_A[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
D22
GPIO siul
GPIO[195]
A0: siul_GPIO[195]
A1: flexpwm0_X[1]
A2: ebi_D29
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
D23
GPIO dramc
BA[0]
A0: siul_GPIO[154]
A1: dramc_BA[0]
A2: ebi_WE_BE_3
A3: flexpwm0_B[3]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
E2
GPIO nexus
MDO[2]1
A0: siul_GPIO[85]
A1: _
A2: npc_wrapper_MDO[2]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
E3
GPIO flexray
CA_RX
A0: siul_GPIO[49]
A1: _
A2: ctu0_EXT_TGR
A3: _
I: flexray_CA_RX
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
E20
GPIO mc_cgl
clk_out
A0: siul_GPIO[233]
A1: mc_cgl_clk_out
A2: etimer2_ETC[5]
A3: _
I: _
I: _
I: _
—
disabled
PDI Fast
VDD_HV_PDI
E21
GPIO siul
GPIO[149]
A0: siul_GPIO[149]
A1: _
A2: ebi_RD_WR
A3: flexpwm0_A[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
E22
GPIO dramc
CS0
A0: siul_GPIO[150]
A1: dramc_CS0
A2: ebi_TS
A3: flexpwm0_B[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
53
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
D19
Ball
Ball
Ball Name
Number Type
E23
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
GPIO dramc
BA[2]
A0: siul_GPIO[156]
A1: dramc_BA[2]
A2: ebi_CS0
A3: flexpwm1_B[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
F1
GPIO nexus
MDO[10]1
A0: siul_GPIO[109]
A1: _
A2: npc_wrapper_MDO[10]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F2
GPIO nexus
MDO[11]1
A0: siul_GPIO[108]
A1: _
A2: npc_wrapper_MDO[11]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F3
GPIO nexus
MDO[6]1
A0: siul_GPIO[113]
A1: _
A2: npc_wrapper_MDO[6]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F4
GPIO nexus
MDO[4]1
A0: siul_GPIO[115]
A1: _
A2: npc_wrapper_MDO[4]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
F20
GPIO dramc
RAS
A0: siul_GPIO[151]
A1: dramc_RAS
A2: ebi_WE_BE_0
A3: flexpwm0_A[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
F21
GPIO siul
GPIO[194]
A0: siul_GPIO[194]
A1: flexpwm0_X[0]
A2: ebi_D28
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
F22
GPIO siul
GPIO[148]
A0: siul_GPIO[148]
A1: _
A2: ebi_CLKOUT
A3: flexpwm0_B[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
F23
GPIO dramc
D[5]
A0: siul_GPIO[179]
A1: dramc_D[5]
A2: ebi_D13
A3: ebi_ADD29
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
Package pinouts and signal descriptions
54
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO nexus
MCKO
A0: siul_GPIO[87]
A1: _
A2: npc_wrapper_MCKO
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
G3
GPIO nexus
MDO[8]1
A0: siul_GPIO[111]
A1: _
A2: npc_wrapper_MDO[8]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
G4
GPIO nexus
A0: siul_GPIO[88]
I: _
MSEO_B[1]1 A1: _
I: _
A2: npc_wrapper_MSEO_B[1] I: _
A3: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
G20
GPIO siul
GPIO[196]
A0: siul_GPIO[196]
A1: flexpwm0_X[2]
A2: ebi_D30
A3: _
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
G21
GPIO dramc
DQS[0]
A0: siul_GPIO[190]
A1: dramc_DQS[0]
A2: ebi_D24
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
G22
GPIO dramc
DM[0]
A0: siul_GPIO[192]
A1: dramc_DM[0]
A2: ebi_D26
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
G23
GPIO dramc
D[7]
A0: siul_GPIO[181]
A1: dramc_D[7]
A2: ebi_D15
A3: ebi_ADD31
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
H1
GPIO nexus
EVTO_B
A0: siul_GPIO[90]
A1: _
A2: npc_wrapper_EVTO_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
H3
GPIO nexus
A0: siul_GPIO[89]
MSEO_B[0]1 A1: _
A2: npc_wrapper_MSEO_B[0]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
55
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
G1
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
H4
GPIO nexus
EVTI_B
A0: siul_GPIO[91]
A1: _
A2: leo_sor_proxy_EVTI_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
H20
GPIO dramc
D[2]
A0: siul_GPIO[176]
A1: dramc_D[2]
A2: ebi_D10
A3: ebi_ADD26
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
J1
GPIO nexus
RDY_B
A0: siul_GPIO[216]
A1: _
A2: nexus_RDY_B
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
J2
GPIO nexus
MDO[13]1
A0: siul_GPIO[218]
A1: _
A2: npc_wrapper_MDO[13]
A3: _
I: can2_RXD
I: can3_RXD
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
J3
GPIO nexus
MDO[12]1
A0: siul_GPIO[217]
A1: _
A2: npc_wrapper_MDO[12]
A3: can2_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
J4
GPIO dspi1
SIN
A0: siul_GPIO[8]
A1: _
A2: _
A3: _
I: dspi1_SIN
I: _
I: siul_EIRQ[8]
—
disabled
GP Slow/
Medium
VDD_HV_IO
J20
GPIO dramc
D[0]
A0: siul_GPIO[174]
A1: dramc_D[0]
A2: ebi_D8
A3: ebi_ADD24
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
J21
GPIO dramc
D[1]
A0: siul_GPIO[175]
A1: dramc_D[1]
A2: ebi_D9
A3: ebi_ADD25
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
J22
GPIO dramc
D[3]
A0: siul_GPIO[177]
A1: dramc_D[3]
A2: ebi_D11
A3: ebi_ADD27
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
Package pinouts and signal descriptions
56
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO dramc
D[6]
A0: siul_GPIO[180]
A1: dramc_D[6]
A2: ebi_D14
A3: ebi_ADD30
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
K1
GPIO dspi0
SCK
A0: siul_GPIO[37]
A1: dspi0_SCK
A2: _
A3: sscm_DEBUG[5]
I: flexpwm0_FAULT[3]
I: _
I: siul_EIRQ[23]
—
disabled
GP Slow/
Medium
VDD_HV_IO
K2
GPIO dspi1
CS0
A0: siul_GPIO[5]
A1: dspi1_CS0
A2: _
A3: dspi0_CS7
I: _
I: _
I: siul_EIRQ[5]
—
disabled
GP Slow/
Medium
VDD_HV_IO
K3
GPIO dspi1
SCK
A0: siul_GPIO[6]
A1: dspi1_SCK
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[6]
—
disabled
GP Slow/
Medium
VDD_HV_IO
K4
GPIO dspi1
SOUT
A0: siul_GPIO[7]
A1: dspi1_SOUT
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[7]
—
disabled
GP Slow/
Medium
VDD_HV_IO
K21
GPIO dramc
D[4]
A0: siul_GPIO[178]
A1: dramc_D[4]
A2: ebi_D12
A3: ebi_ADD28
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
K22
GPIO dramc
D[8]
A0: siul_GPIO[182]
A1: dramc_D[8]
A2: ebi_D16
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
K23
GPIO dramc
D[9]
A0: siul_GPIO[183]
A1: dramc_D[9]
A2: ebi_D17
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
L1
GPIO dspi0
CS0
A0: siul_GPIO[36]
A1: dspi0_CS0
A2: _
A3: sscm_DEBUG[4]
I: _
I: _
I: siul_EIRQ[22]
—
disabled
GP Slow/
Medium
VDD_HV_IO
57
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
J23
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
L2
GPIO dspi2
CS2
A0: siul_GPIO[42]
A1: dspi2_CS2
A2: lin3_TXD
A3: can2_TXD
I: flexpwm0_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
L3
GPIO dspi2
CS0
A0: siul_GPIO[10]
A1: dspi2_CS0
A2: _
A3: can3_TXD
I: _
I: _
I: siul_EIRQ[9]
—
disabled
GP Slow/
Medium
VDD_HV_IO
M1
GPIO flexpwm0
X[0]
A0: siul_GPIO[57]
A1: flexpwm0_X[0]
A2: lin2_TXD
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
M3
GPIO dspi0
SIN
A0: siul_GPIO[39]
A1: _
A2: _
A3: sscm_DEBUG[7]
I: dspi0_SIN
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
M20
GPIO dramc
ODT
A0: siul_GPIO[157]
A1: dramc_ODT
A2: ebi_CS1
A3: flexpwm1_A[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
M21
GPIO dramc
WEB
A0: siul_GPIO[153]
A1: dramc_WEB
A2: ebi_WE_BE_2
A3: flexpwm0_A[3]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
M22
GPIO dramc
D[11]
A0: siul_GPIO[185]
A1: dramc_D[11]
A2: ebi_D19
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
M23
GPIO dramc
D[10]
A0: siul_GPIO[184]
A1: dramc_D[10]
A2: ebi_D18
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
GPIO flexpwm0
A[0]
A0: siul_GPIO[58]
A1: flexpwm0_A[0]
A2: _
A3: _
I: _
I: etimer0_ETC[0]
I: _
—
disabled
GP Slow/
Medium
N1
VDD_HV_IO
Package pinouts and signal descriptions
58
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO flexpwm0
X[1]
A0: siul_GPIO[60]
A1: flexpwm0_X[1]
A2: _
A3: _
I: lin2_RXD
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
N4
GPIO flexpwm0
B[2]
A0: siul_GPIO[100]
A1: flexpwm0_B[2]
A2: _
A3: _
I: _
I: etimer0_ETC[5]
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
N20
GPIO dramc
DQS[1]
A0: siul_GPIO[191]
A1: dramc_DQS[1]
A2: ebi_D25
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
N21
GPIO dramc
DM[1]
A0: siul_GPIO[193]
A1: dramc_DM[1]
A2: ebi_D27
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
N22
GPIO dramc
D[13]
A0: siul_GPIO[187]
A1: dramc_D[13]
A2: ebi_D21
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
N23
GPIO dramc
D[12]
A0: siul_GPIO[186]
A1: dramc_D[12]
A2: ebi_D20
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
P1
GPIO flexpwm0
B[0]
A0: siul_GPIO[59]
A1: flexpwm0_B[0]
A2: _
A3: _
I: _
I: etimer0_ETC[1]
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
P2
GPIO flexpwm0
B[1]
A0: siul_GPIO[62]
A1: flexpwm0_B[1]
A2: _
A3: _
I: _
I: etimer0_ETC[3]
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
P3
GPIO flexpwm0
A[2]
A0: siul_GPIO[99]
A1: flexpwm0_A[2]
A2: _
A3: _
I: _
I: etimer0_ETC[4]
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
59
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
N3
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
P4
GPIO flexpwm0
A[3]
A0: siul_GPIO[102]
A1: flexpwm0_A[3]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
P20
GPIO dramc
D[14]
A0: siul_GPIO[188]
A1: dramc_D[14]
A2: ebi_D22
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
P21
GPIO dramc
D[15]
A0: siul_GPIO[189]
A1: dramc_D[15]
A2: ebi_D23
A3: _
I: _
I: _
I: _
—
disabled
DRAM DQ VDD_HV_DRAM
R1
GPIO flexpwm0
X[2]
A0: siul_GPIO[98]
A1: flexpwm0_X[2]
A2: lin3_TXD
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
R2
GPIO flexpwm0
X[3]
A0: siul_GPIO[101]
A1: flexpwm0_X[3]
A2: _
A3: _
I: lin3_RXD
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
R3
GPIO flexpwm0
A[1]
A0: siul_GPIO[80]
A1: flexpwm0_A[1]
A2: _
A3: _
I: _
I: etimer0_ETC[2]
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
R21
GPIO dramc
ADD[3]
A0: siul_GPIO[161]
A1: dramc_ADD[3]
A2: ebi_ADD11
A3: ebi_TEA
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
R22
GPIO dramc
CKE
A0: siul_GPIO[147]
A1: dramc_CKE
A2: ebi_OE
A3: flexpwm0_A[0]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
GPIO flexpwm0
B[3]
A0: siul_GPIO[103]
A1: flexpwm0_B[3]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
T1
VDD_HV_IO
Package pinouts and signal descriptions
60
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO flexpwm1
A[0]
A0: siul_GPIO[117]
A1: flexpwm1_A[0]
A2: _
A3: can2_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
T3
GPIO flexpwm1
A[1]
A0: siul_GPIO[120]
A1: flexpwm1_A[1]
A2: _
A3: can3_TXD
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
T20
GPIO dramc
ADD[8]
A0: siul_GPIO[166]
A1: dramc_ADD[8]
A2: ebi_D0
A3: ebi_ADD16
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
T21
GPIO dramc
ADD[9]
A0: siul_GPIO[167]
A1: dramc_ADD[9]
A2: ebi_D1
A3: ebi_ADD17
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
T22
GPIO dramc
ADD[1]
A0: siul_GPIO[159]
A1: dramc_ADD[1]
A2: ebi_ADD9
A3: ebi_CS3
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
U1
GPIO flexpwm1
B[0]
A0: siul_GPIO[118]
A1: flexpwm1_B[0]
A2: _
A3: _
I: can2_RXD
I: can3_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
U2
GPIO flexpwm1
B[1]
A0: siul_GPIO[121]
A1: flexpwm1_B[1]
A2: _
A3: _
I: can3_RXD
I: can2_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
U3
GPIO flexpwm1
A[2]
A0: siul_GPIO[123]
A1: flexpwm1_A[2]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
U4
GPIO dspi2
SCK
A0: siul_GPIO[11]
A1: dspi2_SCK
A2: _
A3: _
I: can3_RXD
I: _
I: siul_EIRQ[10]
—
disabled
GP Slow/
Medium
VDD_HV_IO
61
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
T2
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
U20
GPIO dramc
ADD[6]
A0: siul_GPIO[164]
A1: dramc_ADD[6]
A2: ebi_ADD14
A3: flexpwm1_A[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
U21
GPIO dramc
ADD[12]
A0: siul_GPIO[170]
A1: dramc_ADD[12]
A2: ebi_D4
A3: ebi_ADD20
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
U23
GPIO dramc
ADD[0]
A0: siul_GPIO[158]
A1: dramc_ADD[0]
A2: ebi_ADD8
A3: ebi_CS2
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
V3
GPIO flexpwm1
B[2]
A0: siul_GPIO[124]
A1: flexpwm1_B[2]
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
V4
GPIO dspi1
CS2
A0: siul_GPIO[56]
A1: dspi1_CS2
A2: _
A3: dspi0_CS5
I: flexpwm0_FAULT[3]
I: lin2_RXD
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
V20
GPIO lin0
TXD
A0: siul_GPIO[18]
A1: lin0_TXD
A2: i2c0_clock
A3: sscm_DEBUG[2]
I: _
I: _
I: siul_EIRQ[17]
—
disabled
GP Slow/
Medium
VDD_HV_IO
V21
GPIO dramc
ADD[13]
A0: siul_GPIO[171]
A1: dramc_ADD[13]
A2: ebi_D5
A3: ebi_ADD21
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
V23
GPIO dramc
ADD[2]
A0: siul_GPIO[160]
A1: dramc_ADD[2]
A2: ebi_ADD10
A3: ebi_TA
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
W3
GPIO dspi0
CS3
A0: siul_GPIO[53]
A1: dspi0_CS3
A2: i2c2_clock
A3: _
I: flexpwm0_FAULT[2]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
62
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO lin0
RXD
A0: siul_GPIO[19]
A1: _
A2: i2c0_data
A3: sscm_DEBUG[3]
I: lin0_RXD
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
W21
GPIO dramc
ADD[14]
A0: siul_GPIO[172]
A1: dramc_ADD[14]
A2: ebi_D6
A3: ebi_ADD22
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
W22
GPIO dramc
ADD[7]
A0: siul_GPIO[165]
A1: dramc_ADD[7]
A2: ebi_ADD15
A3: flexpwm1_B[2]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
W23
GPIO dramc
ADD[4]
A0: siul_GPIO[162]
A1: dramc_ADD[4]
A2: ebi_ADD12
A3: ebi_ALE
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
Y3
GPIO dspi0
CS2
A0: siul_GPIO[54]
A1: dspi0_CS2
A2: i2c2_data
A3: _
I: flexpwm0_FAULT[1]
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y5
GPIO flexpwm1
X[0]
A0: siul_GPIO[116]
A1: flexpwm1_X[0]
A2: etimer2_ETC[0]
A3: dspi0_CS1
I: ctu0_EXT_IN
I: ctu1_EXT_IN
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y6
ANA
adc3
AN[0]
—
siul_GPI[229]
AN: adc3_AN[0]
—
Analog
VDD_HV_ADR23
Y7
ANA
adc2_adc3
AN[11]
—
siul_GPI[225]
AN: adc2_adc3_AN[11]
—
Analog
Shared
VDD_HV_ADR23
Y8
ANA
adc2_adc3
AN[14]
—
siul_GPI[228]
AN: adc2_adc3_AN[14]
—
Analog
Shared
VDD_HV_ADR23
63
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
W20
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Y9
GPIO etimer1
ETC[1]
A0: siul_GPIO[45]
A1: etimer1_ETC[1]
A2: _
A3: _
I: ctu0_EXT_IN
I: flexpwm0_EXT_SYNC
I: ctu1_EXT_IN
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y10
GPIO etimer1
ETC[2]
A0: siul_GPIO[46]
A1: etimer1_ETC[2]
A2: ctu0_EXT_TGR
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y11
GPIO etimer1
ETC[3]
A0: siul_GPIO[92]
A1: etimer1_ETC[3]
A2: _
A3: _
I: ctu1_EXT_IN
I: mc_rgm_FAB
I: siul_EIRQ[30]
—
pull down
GP Slow/
Medium
VDD_HV_IO
Y14
ANA
AN: adc0_adc1_AN[11]
—
Analog
Shared
VDD_HV_ADR0
Y15
GPIO etimer1
ETC[5]
A0: siul_GPIO[78]
A1: etimer1_ETC[5]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[26]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y16
GPIO etimer1
ETC[4]
A0: siul_GPIO[93]
A1: etimer1_ETC[4]
A2: ctu1_EXT_TGR
A3: _
I: _
I: _
I: siul_EIRQ[31]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Y17
ANA
adc1
AN[8]
—
siul_GPI[74]
AN: adc1_AN[8]
—
Analog
VDD_HV_ADR1
Y18
ANA
adc1
AN[6]
—
siul_GPI[76]
AN: adc1_AN[6]
—
Analog
VDD_HV_ADR1
Y21
GPIO dramc
ADD[15]
disabled
DRAM
ACC
VDD_HV_DRAM
adc0_adc1
AN[11]
—
A0: siul_GPIO[173]
A1: dramc_ADD[15]
A2: ebi_D7
A3: ebi_ADD23
siul_GPI[25]
I: _
I: _
I: _
—
Package pinouts and signal descriptions
64
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO dramc
ADD[11]
A0: siul_GPIO[169]
A1: dramc_ADD[11]
A2: ebi_D3
A3: ebi_ADD19
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
Y23
GPIO dramc
ADD[5]
A0: siul_GPIO[163]
A1: dramc_ADD[5]
A2: ebi_ADD13
A3: flexpwm1_B[1]
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
AA4
GPIO dspi1
CS3
A0: siul_GPIO[55]
A1: dspi1_CS3
A2: lin2_TXD
A3: dspi0_CS4
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AA5
GPIO flexpwm1
X[1]
A0: siul_GPIO[119]
A1: flexpwm1_X[1]
A2: etimer2_ETC[1]
A3: dspi0_CS4
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AA6
ANA
adc3
AN[1]
—
siul_GPI[230]
AN: adc3_AN[1]
—
Analog
VDD_HV_ADR23
AA7
ANA
adc2_adc3
AN[12]
—
siul_GPI[226]
AN: adc2_adc3_AN[12]
—
Analog
Shared
VDD_HV_ADR23
AA8
ANA
adc2
AN[0]
—
siul_GPI[221]
AN: adc2_AN[0]
—
Analog
VDD_HV_ADR23
AA11
ANA
adc0
AN[2]
—
siul_GPI[33]
AN: adc0_AN[2]
—
Analog
VDD_HV_ADR0
AA12
ANA
adc0
AN[5]
—
siul_GPI[66]
AN: adc0_AN[5]
—
Analog
VDD_HV_ADR0
AA13
ANA
adc0
AN[8]
—
siul_GPI[69]
AN: adc0_AN[8]
—
Analog
VDD_HV_ADR0
65
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Y22
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
AA14
ANA
adc0_adc1
AN[12]
—
siul_GPI[26]
AN: adc0_adc1_AN[12]
—
Analog
Shared
VDD_HV_ADR0
AA15
ANA
adc1
AN[0]
—
siul_GPI[29]
AN: adc1_AN[0]
—
Analog
VDD_HV_ADR1
AN: adc1_AN[2]
—
Analog
VDD_HV_ADR1
lin1_RXD
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
AA16
ANA
adc1
AN[2]
—
siul_GPI[31]
siul_EIRQ[20]
Freescale Semiconductor
AA17
ANA
adc1
AN[5]
—
siul_GPI[64]
AN: adc1_AN[5]
—
Analog
VDD_HV_ADR1
AA18
ANA
adc1
AN[7]
—
siul_GPI[73]
AN: adc1_AN[7]
—
Analog
VDD_HV_ADR1
AA19
GPIO TDI
A0: siul_GPIO[21]
A1: _
A2: _
A3: _
I: jtagc_TDI
I: _
I: _
—
pull up
GP Slow/
Medium
VDD_HV_IO
AA20
GPIO etimer1
ETC[0]
A0: siul_GPIO[4]
A1: etimer1_ETC[0]
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[4]
—
disabled
GP Slow/
Medium
VDD_HV_IO
AA22
GPIO lin1
TXD
A0: siul_GPIO[94]
A1: lin1_TXD
A2: i2c1_clock
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AA23
GPIO dramc
ADD[10]
A0: siul_GPIO[168]
A1: dramc_ADD[10]
A2: ebi_D2
A3: ebi_ADD18
I: _
I: _
I: _
—
disabled
DRAM
ACC
VDD_HV_DRAM
AB3
GPIO dspi2
SOUT
A0: siul_GPIO[12]
A1: dspi2_SOUT
A2: _
A3: _
I: _
I: _
I: siul_EIRQ[11]
—
disabled
GP Slow/
Medium
VDD_HV_IO
Package pinouts and signal descriptions
66
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
GPIO flexpwm1
X[2]
A0: siul_GPIO[122]
A1: flexpwm1_X[2]
A2: etimer2_ETC[2]
A3: dspi0_CS5
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AB5
GPIO flexpwm1
X[3]
A0: siul_GPIO[125]
A1: flexpwm1_X[3]
A2: etimer2_ETC[3]
A3: dspi0_CS6
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AB6
ANA
adc3
AN[2]
—
siul_GPI[231]
AN: adc3_AN[2]
—
Analog
VDD_HV_ADR23
AB7
ANA
adc2_adc3
AN[13]
—
siul_GPI[227]
AN: adc2_adc3_AN[13]
—
Analog
Shared
VDD_HV_ADR23
AB8
ANA
adc2
AN[1]
—
siul_GPI[222]
AN: adc2_AN[1]
—
Analog
VDD_HV_ADR23
AB9
ANA
adc2
AN[2]
—
siul_GPI[223]
AN: adc2_AN[2]
—
Analog
VDD_HV_ADR23
AB10
ANA
adc0
AN[0]
—
siul_GPI[23]
AN: adc0_AN[0]
—
Analog
VDD_HV_ADR0
lin0_RXD
AB11
ANA
adc0
AN[4]
—
siul_GPI[70]
AN: adc0_AN[4]
—
Analog
VDD_HV_ADR0
AB12
ANA
adc0
AN[6]
—
siul_GPI[71]
AN: adc0_AN[6]
—
Analog
VDD_HV_ADR0
AB13
ANA
adc0
AN[7]
—
siul_GPI[68]
AN: adc0_AN[7]
—
Analog
VDD_HV_ADR0
AB14
ANA
adc0_adc1
AN[13]
—
siul_GPI[27]
AN: adc0_adc1_AN[13]
—
Analog
Shared
VDD_HV_ADR0
67
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
AB4
Ball
Ball
Ball Name
Number Type
AB15
ANA
adc1
AN[1]
Alternate I/O
—
Additional Inputs
siul_GPI[30]
etimer0_ETC[4]
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
AN: adc1_AN[1]
—
Analog
VDD_HV_ADR1
siul_EIRQ[19]
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
AB16
ANA
adc1
AN[3]
—
siul_GPI[32]
AN: adc1_AN[3]
—
Analog
VDD_HV_ADR1
AB17
ANA
adc1
AN[4]
—
siul_GPI[75]
AN: adc1_AN[4]
—
Analog
VDD_HV_ADR1
AB18
GPIO TDO
A0: siul_GPIO[20]
A1: jtagc_TDO
A2: _
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Fast
VDD_HV_IO
AB21
GPIO lin1
RXD
A0: siul_GPIO[95]
A1: _
A2: i2c1_data
A3: _
I: lin1_RXD
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AC3
GPIO dspi2
SIN
A0: siul_GPIO[13]
A1: _
A2: _
A3: _
I: dspi2_SIN
I: flexpwm0_FAULT[0]
I: siul_EIRQ[12]
—
disabled
GP Slow/
Medium
VDD_HV_IO
AC4
GPIO flexpwm1
A[3]
A0: siul_GPIO[126]
A1: flexpwm1_A[3]
A2: etimer2_ETC[4]
A3: dspi0_CS7
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AC5
GPIO flexpwm1
B[3]
A0: siul_GPIO[127]
A1: flexpwm1_B[3]
A2: etimer2_ETC[5]
A3: _
I: _
I: _
I: _
—
disabled
GP Slow/
Medium
VDD_HV_IO
AC6
ANA
adc3
AN[3]
—
siul_GPI[232]
AN: adc3_AN[3]
—
AC9
ANA
adc2
AN[3]
—
siul_GPI[224]
AN: adc2_AN[3]
—
GP Slow/ VDD_HV_ADR23
Medium
Analog
VDD_HV_ADR23
Package pinouts and signal descriptions
68
Table 10. 473 MAPBGA pin multiplexing (continued)
Freescale Semiconductor
Table 10. 473 MAPBGA pin multiplexing (continued)
Ball
Ball
Ball Name
Number Type
Alternate I/O
Additional Inputs
Analog Inputs
Weak pull
Pad Type
during reset
Power Domain
AC10
ANA
adc0
AN[1]
—
siul_GPI[24]
etimer0_ETC[5]
AN: adc0_AN[1]
—
Analog
VDD_HV_ADR0
AC11
ANA
adc0
AN[3]
—
siul_GPI[34]
AN: adc0_AN[3]
—
Analog
VDD_HV_ADR0
AC14
ANA
adc0_adc1
AN[14]
—
siul_GPI[28]
AN: adc0_adc1_AN[14]
—
Analog
Shared
VDD_HV_ADR0
NOTES:
1
Do not connect pin directly to a power supply or ground.
69
Package pinouts and signal descriptions
PXS30 Microcontroller Data Sheet, Rev. 1
Preliminary—Subject to Change Without Notice
END OF 473 MAPBGA PIN MULTIPLEXING TABLE
Electrical characteristics
3
Electrical characteristics
3.1
Introduction
This section contains detailed information on power considerations, DC/AC electrical characteristics, and
AC timing specifications for this device.
The “Symbol” column of the electrical parameter and timings tables may contain an additional column
containing “SR”, “CC”, “P”, “C”, “T” or “D”.
• “SR” identifies system requirements—conditions that must be provided to ensure normal device
operation. An example is the input voltage of a voltage regulator.
• “CC” identifies specifications that define normal device operation. Where available, the letters
“P”, “C”, “T” or “D” replace the letter “CC” and apply to these controller characteristics. They
specify how each characteristic is guaranteed.
— P: parameter is guaranteed by production testing of each individual device.
— C: parameter is guaranteed by design characterization. Measurements are taken from a
statistically relevant sample size across process variations.
— T: parameter is guaranteed by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values are shown in the typical
(“typ”) column are within this category.
— D: parameters are derived mainly from simulations.
3.2
Absolute maximum ratings
Table 11. Absolute maximum ratings1
No.
Symbol
Parameter
Conditions
Min
Max2
Unit
1
VDD_HV_PMU
SR Voltage regulator supply voltage
—
–0.3
5.53
V
2
VSS_HV_PMU
SR Voltage regulator supply ground
—
–0.1
0.1
V
V
3
VDD_HV_IO
SR Input/output supply voltage
—
–0.3
3.64,5
4
VSS_HV_IO
SR Input/output supply ground
—
–0.1
0.1
V
V
5
VDD_HV_FLA
SR Flash supply voltage
—
–0.3
3.64,5
6
VSS_HV_FLA
SR Flash supply ground
—
–0.1
0.1
V
V
7
VDD_HV_OSC
SR Crystal oscillator amplifier supply voltage
—
–0.3
3.64,5
8
VSS_HV_OSC
SR Crystal oscillator amplifier supply ground
—
–0.1
0.1
V
V
9
VDD_HV_PDI
SR PDI interface supply voltage
—
–0.3
3.64,5
10
VSS_HV_PDI
SR PDI interface supply ground
—
–0.1
0.1
V
11
VDD_HV_DRAM
SR DRAM interface supply voltage
—
–0.3
3.64,5
V
12
VSS_HV_DRAM
SR DRAM interface supply ground
—
–0.1
0.1
V
13
VDD_HV_ADRx
6
SR ADCx high reference voltage
—
–0.3
6.0
V
14
VSS_HV_ADRx
SR ADCx low reference voltage
—
–0.1
0.1
V
PXS30 Microcontroller Data Sheet, Rev. 1
70
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 11. Absolute maximum ratings1 (continued)
No.
Symbol
15
VDD_HV_ADV
16
VSS_HV_ADV
Conditions
Min
Max2
Unit
SR ADC supply voltage
—
–0.3
3.64,5
V
SR ADC supply ground
—
–0.1
0.1
V
Parameter
7
17
VDD_LV_COR
SR Core supply voltage digital logic
—
–0.3
1.32
18
VSS_LV_COR
SR Core supply voltage ground digital logic
—
–0.1
0.1
V
19
VDD_LV_PLL
SR PLL supply voltage
—
–0.3
1.4
V
20
VSS_LV_PLL
SR PLL reference voltage
—
–0.1
0.1
V
21
TVDD
SR Slope characteristics on all VDD during power
up
—
—
25
mV/µs
22
VIN
SR Voltage on any pin with respect to its supply rail Relative to
VDD_HV_xxx
VDD_HV_xxx
–0.3
VDD_HV_xxx
+ 0.38
V
23
IINJPAD
SR Injected input current on any pin during
overload condition (incl. analog pins TBD)
—
–10
10
mA
24
IINJPADA
SR Injected input current on any analog pin during
overload condition
—
–3
3
mA
25
IINJSUM
SR Absolute sum of all injected input currents
during overload condition
—
–50
50
mA
26
TSTG
SR Storage temperature
—
–55
150
°C
27
TSDR
SR Maximum Solder Temperature9
Pb-free package
SnPb package
—
—
—
260
245
SR Moisture Sensitivity Level10
—
—
3
28
MSL
V
°C
—
NOTES:
1 Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect
device reliability or cause permanent damage to the device.
2 Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress
have not yet been determined.
3
TBD V for 10 hours cumulative time, 5.0 V + 10% for time remaining.
4 5.3 V for 10 hours cumulative over lifetime of device, 3.63 V for time remaining.
5 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
6
All VDD_HV_ADRx rails must be operated at the same supply voltage.
7 2.0 V for 10 hours cumulative time, 1.2 V + 10% for time remaining.
8 Only when V
DD_HV_xxx < 5.2 V.
9
Solder profile per CDF-AEC-Q100.
10 Moisture sensitivity per JEDEC test method A112.
3.3
Recommended operating conditions
Table 12. Recommended operating conditions1
No.
1
Symbol
VDD_HV_PMU
Parameter
SR Voltage regulator supply voltage
Conditions
Min
Max
Unit
—
3.0
5.5
V
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
71
Electrical characteristics
Table 12. Recommended operating conditions1 (continued)
No.
Symbol
Parameter
Conditions
Min
Max
Unit
SR Voltage regulator supply ground
—
0
0
V
2
VSS_HV_PMU
3
VDD_HV_IO
SR Input/output supply voltage
—
3.0
3.6
V
4
VSS_HV_IO
SR Input/output supply ground
—
0
0
V
5
VDD_HV_FLA
SR Flash supply voltage
—
3.0
3.6
V
6
VSS_HV_FLA
SR Flash supply ground
—
0
0
V
7
VDD_HV_OSC
SR Crystal oscillator amplifier supply voltage
—
3.0
3.6
V
8
VSS_HV_OSC
SR Crystal oscillator amplifier supply ground
—
0
0
V
9
VDD_HV_PDI
SR PDI interface supply voltage
—
1.62
3.6
V
10
VSS_HV_PDI
SR PDI interface supply ground
—
0
0
V
11
VDD_HV_DRAM
SR DRAM interface supply voltage
—
1.62
3.6
V
12
VSS_HV_DRAM
SR DRAM interface supply ground
—
0
0
V
13
VDD_HV_ADRx
SR ADCx high reference voltage
—
3.0
3.6
V
Alternate input
voltage
4.5
5.5
14
VSS_HV_ADRx
SR ADCx low reference voltage
—
0
0
V
15
VDD_HV_ADV
SR ADC supply voltage
—
3.0
3.6
V
16
VSS_HV_ADV
SR ADC supply ground
—
0
0
V
17
VDD_LV_COR
SR Core supply voltage digital logic2
External VREG
mode
1.14
1.32
V
CC
Internal VREG
Mode
1.14
1.32
V
—
0
0
V
External VREG
mode
1.14
1.32
V
Internal VREG
Mode
1.14
1.32
V
—
0
0
V
257 MAPBGA
–40
1054
°C
473 MAPBGA
–40
125
°C
257 MAPBGA
–40
150
°C
473 MAPBGA
–40
150
17a
18
19
VSS_LV_COR
VDD_LV_PLL
19a
20
21
22
SR Core supply voltage ground digital logic
SR PLL supply
voltage2
CC
VSS_LV_PLL
TA
TJ
SR PLL reference voltage
SR Ambient temperature under
bias3
SR Junction temperature under bias
NOTES:
1
These specifications are design targets and are subject to change per device characterization.
2 The jitter specifications for both PLLs holds true only up to 50 mV noise (peak to peak) on V
DD_LV_COR and
VDD_LV_PLL.
3 See Table 1 for available frequency and package options.
4 Preliminary data.
PXS30 Microcontroller Data Sheet, Rev. 1
72
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.4
Thermal characteristics
Table 13. Thermal characteristics for package options1
Value
No.
Symbol
Parameter
Conditions
BGA
257
BGA
473
Unit
1
RJA
CC Thermal resistance junction-to-ambient Single layer board – 1s
natural convection2
 40
 34
°C/W
2
RJA
CC Thermal resistance junction-to-ambient Four layer board – 2s2p
natural convection2
 22
 20
°C/W
3
RJMA
CC Thermal resistance
junction-to-moving-air ambient2
@ 200 ft./min.,
single layer board – 1s
 32
 26
°C/W
4
RJMA
CC Thermal resistance
junction-to-moving-air ambient2
@ 200 ft./min.,
four layer board – 2s2p
 18
 17
°C/W
5
RJB
—
 10
 10
°C/W
—
6
6
°C/W
—
2
2
°C/W
CC Thermal resistance junction-to-board3
junction-to-case4
6
RJC
CC Thermal resistance
7
JT
CC Junction-to-package-top natural
convection5
NOTES:
1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2 Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package.
3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5
Thermal characterization parameter indicating the temperature difference between the package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JT.
3.4.1
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from Equation 1:
TJ = TA + (RJA × PD)
Eqn. 1
where:
= ambient temperature for the package (oC)
TA
RJA = junction to ambient thermal resistance (oC/W)
PD
= power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy
estimation of thermal performance. Unfortunately, there are two values in common usage: the value
determined on a single layer board and the value obtained on a board with two planes. For packages such
as the PBGA, these values can be different by a factor of two. Which value is closer to the application
depends on the power dissipated by other components on the board. The value obtained on a single layer
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
73
Electrical characteristics
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the
internal planes is usually appropriate if the board has low power dissipation and the components are well
separated.
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case
thermal resistance and a case to ambient thermal resistance:
RJA = RJC + RCA
Eqn. 2
where:
RJA = junction to ambient thermal resistance (°C/W)
RJC = junction to case thermal resistance (°C/W)
RCA = case to ambient thermal resistance (°C/W)
RJC is device related and cannot be influenced by the user. The user controls the thermal environment to
change the case to ambient thermal resistance, RCA. For instance, the user can change the size of the heat
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit
board, or change the thermal dissipation on the printed circuit board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are not used, the
Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a
measurement of the temperature at the top center of the package case using Equation 3:
Eqn. 3
TJ = TT + (JT × PD)
where:
TT
= thermocouple temperature on top of the package (°C)
JT = thermal characterization parameter (°C/W)
PD
= power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire
is placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
See [6] to [10] in Section 6, Reference documents, for more information.
3.5
3.5.1
Electromagnetic interference (EMI) characteristics
Test Setup
Electromagnetic emission tests are performed by TEM cell [2] and via direct coupling [3] (150 Ohm)
measurements.
Electromagnetic immunity are measured by DPI [4].
PXS30 Microcontroller Data Sheet, Rev. 1
74
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
See Section 6, Reference documents, for more information.
3.5.2
Test parameters
The following test parameters shall be used:
Table 14. EMC test parameters
Receiver
Method
Frequency Range
150 Ohm
1 MHz to 1000 MHz
BW
Step Size
1 MHz
500 kHz
TEM
In case of only narrow band disturbances the maximum of the results will not change. In case of broadband
signals the emission has to be below the limits.
3.6
Electrostatic discharge (ESD) characteristics
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of
each sample according to each pin combination. The sample size depends on the number of supply pins in
the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.
Table 15. ESD ratings1, 2
No.
Symbol
Parameter
Conditions
Class
Max value3
Unit
1
VESD(HBM)
SR Electrostatic discharge
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
V
2
VESD(MM)
SR Electrostatic discharge
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
V
3
VESD(CDM)
SR Electrostatic discharge TA = 25 °C
(Charged Device Model) conforming to AEC-Q100-011
C3A
750 (corners)
V
500
NOTES:
1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
3 Data based on characterization results, not tested in production.
3.7
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
•
•
A supply over voltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
75
Electrical characteristics
Table 16. Latch-up results
No.
1
3.8
Symbol
LU
Parameter
CC
Static latch-up class
Conditions
Class
TA = 125 °C conforming to JESD 78
II level A
Power Management Controller (PMC) electrical characteristics
3.8.1
PMC electrical specifications
This section contains electrical characteristics for the PMC.
Table 17. PMC electrical specifications
No.
2
Symbol
Parameter
VDD_LV_COR CC Nominal VRC regulated 1.2 V output
VDD_HV_PMU
Min
Typ
Max
Unit
—
1.28
—
V
3
PorC
CC POR rising VDD 1.2 V
• POR VDD variation
• POR 1.2 V hysteresis
—
PorC – 30%
—
0.7
PorC
75
—
PorC + 30%
—
V
V
mV
4
LvdC
CC Nominal LVD 1.2 V
• LVD 1.2 V at reset (LVDCR)
• LVD 1.2 V variation at reset
• LVD 1.2 V variation after reset
• LVD 1.2 V hysteresis
—
—
LvdC – 3.5%
LvdC – 3%
10
1.1751
1.2151
LvdC1
LvdC1
15
—
—
LvdC + 3.5%
LvdC + 3%
20
V
V
V
V
mV
5
HvdC
CC Nominal HVD 1.2 V
• HVD 1.2 V at reset (HVDCR)
• HVD 1.2 V variation at reset
• HVD 1.2 V variation after reset
• HVD 1.2 V hysteresis
—
—
HvdC – 3.5%
HvdC – 3%
10
1.321
1.441
HvdC1
HvdC1
15
—
—
HvdC + 3.5%
HvdC + 3%
20
V
V
V
mV
—
5
—
mV
—
PorReg – 30%
—
2.00
PorReg
250
—
PorReg + 30%
—
V
V
mV
6
VddStepC
7
PorReg
CC POR rising on VDDREG
• POR VDDREG variation
• POR VDDREG hysteresis
8
LvdReg
CC Nominal rising LVD 3.3 V on VDDREG,
—
—
2.865
V
VDDIO, VDDFLASH, and VDDADC
• LVD 3.3 V variation at reset
LvdReg – 3.5% LvdReg1 LvdReg + 3.5%
V
• LVD 3.3 V variation after reset
LvdReg – 3% LvdReg1 LvdReg + 3%
V
30
• LVD 3.3 V hysteresis
—
—
mV
50
• Minimum slew rate
—
—
mV/ms
25
• Maximum slew rate
—
—
mV/µs
9
CC Trimming step LVD 1.2 V, HVD 1.2 V,
VRC 1.2 V
LvdStepReg CC Trimming step LVD 3.3 V
—
30
—
mV
NOTES:
1 Rising V .
DD
PXS30 Microcontroller Data Sheet, Rev. 1
76
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.8.2
PMC board schematic and components
Figure 7 shows a sample application for the PMC.
VDD_HV_PMU
Ca
Cd
Cb
VSS_HV_PMU
R
Q
VREG_CTRL
L
VDD_LV_COR
Cl
D
Ce
VSS_LV_COR
Figure 7. PMU mandatory external components
Table 18. VRC SMPS recommended external devices
Reference
Designator
Part Description
Ca
—
capacitor 20 µF, 20 V
Cb
—
capacitor 0.1 µF, 20 V Filter capacitor
Cd
—
capacitor 20 µF, 20 V
Ce
—
capacitor 0.1 µF, 16 V Ceramic
Cl
—
capacitor 20 µF, 16 V
Buck capacitor, total ESR < 100 m,
as close to the coil as possible
D
SS8P3L
Schottky
Vishay low Vf Schottky diode
L
—
Q
SUD50P04/SQD50P04
pMOS
2 A, 40 V
Vishay low threshold p-MOS, Vth <
2.5 V, [email protected] V < 20 m, Cg
< 5 nF
R
—
resistor
50–100 k
Pull up for power p-MOS gate
Part Type
Nominal
—
inductor 4 µH, 1.5 A
Description
Filter capacitor
Supply decoupling cap, ESR < 50 m,
as close to p-MOS source as possible
Buck shielded coil low ESR
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
77
Electrical characteristics
3.9
Supply current characteristics
Table 19. Current consumption characteristics1
No.
Symbol
Parameter
CC Maximum run IDD
(incl. digital core logic
and analog block of
the LV rail)
1
IDD_LV
2
IDD_LV_PLL
3
Conditions
VDD_LV = 1.36 V, fCore = 180 MHz, 1:2
Mode, DPM, both cores executing EMC test
code, internal VREG mode, all caches
enabled, code execution of core 0 from
code flash 0, code execution of core 1 from
code flash 1, FMPLL_1 active at 120 MHz.
Min Typ Max Unit
—
600
900
mA
CC Maximum run IDD for VDD_LV_PLL = 1.36 V, fVCO running at
each PLL2
maximum frequency.
—
1.5
2
mA
IDD_HV_FLA
CC Maximum run IDD
Flash
VDD_HV_FLA = 3.6 V, DPM, both cores
executing EMC test code, code execution of
core 0 from code flash 0, code execution of
core 1 from code flash 1.
—
20
30
mA
4
IDD_HV_OSC
CC Maximum run IDD
OSC
fOSC 4 MHz to 40 MHz,
VDD_HV_OSC 3.6 V
—
1
3
mA
5
IDD_HV_ADV
CC Maximum run IDD for VDD_HV_ADV = 3.6 V
each ADC3
—
2
4
mA
IDD_HV_ADR024 CC Maximum reference
IDD5
ADC0 powered on6
—
—
2
mA
ADC2 powered on
—
—
1.2
mA
7
IDD_HV_ADR134 CC Maximum reference
IDD5
ADC1 powered on
—
—
1.2
mA
ADC3 powered on
—
—
1.2
mA
8
IDD_HV_ADR07
—
—
2
mA
9
IDD_HV_ADR17 CC Maximum reference
IDD
ADC1 powered on
—
—
1.2
mA
10 IDD_HV_ADR237 CC Maximum reference
IDD5
ADC2 powered on
—
—
1.2
mA
ADC3 powered on
—
—
1.2
mA
6
CC Maximum reference
IDD
ADC0 powered
on6
NOTES:
1 Applies to T = –40 °C to 150 °C.
J
2 Total current on I
DD_LV_PLL needs to be multiplied with the number of active PLLs.
3
Total current on IDD_HV_ADV needs to be multiplied with the number of active ADCs.
4 257 MAPBGA only.
5
Total current on IDD_HV_ADRxx is the sum of both references if both ADCs are powered on.
6 ADC0 includes 0.7 mA dissipation for the temperature sensor (TSENS).
7
473 MAPBGA only.
3.10
Temperature sensor electrical characteristics
Table 20. Temperature sensor electrical characteristics
Symbol
1
—
Parameter
P Accuracy
Conditions
TJ = –40 °C to TA = 125 °C
Min
Max
Unit
–10
10
°C
PXS30 Microcontroller Data Sheet, Rev. 1
78
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 20. Temperature sensor electrical characteristics (continued)
Symbol
2
TS
3.11
Parameter
Conditions
Min
Max
Unit
—
4
—
µs
D Minimum sampling period
Main oscillator electrical characteristics
The PXS30 provides an oscillator/resonator driver.
×
Table 21. Main oscillator electrical characteristics
No.
Symbol
1
2
FXOSCHS
Value
Conditions1
Parameter
SR Oscillator frequency
—
TXOSCHSSU CC Oscillator start-up time fOSC = 4 MHz to 40 MHz
3
VIH
SR Input high level CMOS Oscillator bypass mode
Schmitt Trigger
4
VIL
SR Input low level CMOS
Schmitt Trigger
Oscillator bypass mode
Unit
Min
Typ
Max
4.0
—
40.0
MHz
—
TBD
TBD
µs
0.65 × VDD
—
VDD + 0.4
V
–0.4
—
0.35 × VDD
V
NOTES:
1 V
DD = 3.0 V to 3.6 V, TJ = –40 to 150 °C, unless otherwise specified.
3.12
FMPLL electrical characteristics
Table 22. FMPLL electrical characteristics
Symbol
Parameter
fREF_CRYSTAL D FMPLL reference frequency
fREF_EXT
range1
fPLL_IN
Conditions
Crystal reference
D Phase detector input frequency
range (after pre-divider)
—
fFMPLLOUT D Clock frequency range in normal See Chapter 30,
mode
“Frequency-Modulated
Phase-Locked Loop (FMPLL),” in
the PXS30 Reference Manual
(PXS30RM) for more details on
PLL configuration.
fFREE
P Free running frequency
Measured using clock division
(typically 16)
Min
Typ
Max
Unit
TBD
—
TBD
MHz
TBD
—
TBD
MHz
16
—
256
MHz
TBD
—
TBD
MHz
fsys
D On-chip FMPLL frequency2
—
TBD
—
TBD
MHz
tCYC
D System clock period
—
—
—
1 / fsys
ns
fLORL
fLORH
D Loss of reference frequency
window2
Lower limit
TBD
—
TBD
MHz
Upper limit
TBD
—
TBD
TBD
—
TBD
fSCM
D Self-clocked mode
frequency3,4
—
MHz
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
79
Electrical characteristics
Table 22. FMPLL electrical characteristics (continued)
Symbol
tLOCK
Parameter
P Lock time
Conditions
Min
Typ
Max
Unit
Stable oscillator (fPLLIN = 4 MHz),
stable VDD
—
—
200
µs
tlpll
D FMPLL lock time 5, 6
—
—
—
TBD
s
tdc
D Duty cycle of reference
—
40
—
60
%
Peak-to-peak (clock edge to clock
edge), fSYS maximum
TBD
—
TBD
ps
Long-term jitter (avg. over 2 ms
interval), fSYS maximum
TBD
—
TBD
ns
T Single period jitter (peak to peak) PHI @ 16 MHz,
Input clock @ 4 MHz
—
—
±500
ps
T Long term jitter
—
—
±6
ns
CJITTER
tPKJIT
tLTJIT
T CLKOUT period jitter7,8,9,10
PHI @ 16 MHz,
Input clock @ 4 MHz
fLCK
D Frequency LOCK range
—
TBD
—
TBD
%
fsys
fUL
D Frequency un-LOCK range
—
TBD
—
TBD
%
fsys
fCS
fDS
D Modulation Depth
Center spread
TBD
—
TBD
Down Spread
TBD
—
TBD
%
fsys
TBD
—
TBD
kHz
fMOD
D Modulation
frequency11
—
NOTES:
1 Considering operation with FMPLL not bypassed.
2 “Loss of Reference Frequency” window is the reference frequency range outside of which the FMPLL is in self
clocked mode.
3 Self clocked mode frequency is the frequency that the FMPLL operates at when the reference frequency falls
outside the fLOR window.
4 f
VCO is the frequency at the output of the VCO; its range is 256–512 MHz.
fSCM is the self-clocked mode frequency (free running frequency); its range is 20–150 MHz.
fSYS = fVCOODF
5
This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for
this FMPLL, load capacitors should not exceed these limits.
6
This specification applies to the period required for the FMPLL to relock after changing the MFD frequency control
bits in the synthesizer control register (SYNCR).
7
This value is determined by the crystal manufacturer and board design.
8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock
signal. Noise injected into the FMPLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency
increase the CJITTER percentage for a given interval.
9 Proper PC board layout procedures must be followed to achieve specifications.
10
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).
11
Modulation depth is attenuated from depth setting when operating at modulation frequencies above 50 kHz.
PXS30 Microcontroller Data Sheet, Rev. 1
80
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.13
16 MHz RC oscillator electrical characteristics
Table 23. RC oscillator electrical characteristics
No.
Symbol
1
fRC
2
RCMVAR
3
IRCTRIM
Parameter
Conditions
CC RC oscillator frequency
Min
Typ
Max
Unit
—
16
—
MHz
—
—
—
±5
%
TA = 25 °C
—
1.6
—
%
27 °C, 1.2 V trimmed
CC Frequency spread: The variation in
output frequency from PTF1 across
temperature and supply voltage range
CC Internal RC oscillator trimming step
NOTES:
1
PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and
temperature.
3.14
ADC electrical characteristics
The PXS30 provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.
Offset Error OSE Gain Error GE
4095
4094
4093
4092
4091
4090
( 2)
1 LSB ideal =(VrefH-VrefL)/ 4096 =
3.3 V/ 4096 = 0.806 mV
Total Unadjusted Error
TUE = ±6 LSB = ±4.84 mV
code out
7
( 1)
6
5
(5)
4
(4)
3
(3)
2
1
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer
curve
1 LSB (ideal)
0
1
2
3
4
5
6
7
4089 40904091 40924093 40944095
Vin(A) (LSBideal)
Offset Error OSE
Figure 8. ADC characteristics and error definitions
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
81
Electrical characteristics
3.14.1
Input impedance and ADC accuracy
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC
impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can
be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to
attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when
the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple
RC filter). The RC filtering may be limited according to the value of source impedance of the transducer
or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking
into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input
impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling
capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate
of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz,
with CS equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fC  CS), where fC represents the
conversion rate at the considered channel). To minimize the error induced by the voltage partitioning
between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external
circuit must be designed to respect the Equation 9:
R S + R F + R L + R SW + R AD
1
V A  ---------------------------------------------------------------------------  --- LSB
R EQ
2
Eqn. 9
Equation 9 generates a constraint for external network design, in particular on resistive path. Internal
switch resistances (RSW and RAD) can be neglected with respect to external resistances.
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
RS
VA
Filter
RF
Current Limiter
Channel
Selection
Sampling
RSW1
RAD
RL
CF
CP1
CP2
CS
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
Current Limiter Resistance
RL
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contributions, CP1 and CP2)
CS Sampling Capacitance
Figure 10. Input equivalent circuit
PXS30 Microcontroller Data Sheet, Rev. 1
82
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances
CF, CP1, and CP2 are initially charged at the source voltage VA (please see the equivalent circuit in
Figure 10): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch is
closed).
Voltage Transient on CS
VCS
VA
VA2
V <0.5 LSB
1
2
1 < (RSW + RAD) CS << TS
2 = RL (CS + CP1 + CP2)
VA1
TS
t
Figure 11. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
• A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling
capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case
(since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call
CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is:
CP  CS
 1 =  R SW + R AD   --------------------CP + CS
Eqn. 12
Equation 12 can again be simplified considering only CS as an additional worst condition. In
reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in
the very worst case: the sampling time TS is always much longer than the internal time constant:
 1   R SW + R AD   C S « T S
Eqn. 13
The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1
on the capacitance according to Equation 14:
V A1   C S + C P1 + C P2  = V A   C P1 + C P2 
•
Eqn. 14
A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance)
through the resistance RL: again considering the worst case in which CP2 and CS were in parallel
to CP1 (since the time constant in reality would be faster), the time constant is:
 2  R L   C S + C P1 + C P2 
Eqn. 15
In this case, the time constant depends on the external circuit: in particular imposing that the
transient is completed well before the end of sampling time TS, a constraints on RL sizing is
obtained:
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
83
Electrical characteristics
10   2 = 10  R L   C S + C P1 + C P2   TS
Eqn. 16
Of course, RL shall be sized also according to the current limitation constraints, in combination
with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2
and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher
than VA1. Equation 17 must be respected (charge balance assuming now CS already charged at
VA1):
VA2   C S + C P1 + C P2 + C F  = V A  C F + V A1   C P1 + C P2 + C S 
Eqn. 17
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF
filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal
source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The
filter is typically designed to act as anti-aliasing.
Analog Source Bandwidth (VA)
TC 2 RFCF (Conversion Rate vs. Filter Pole)
fF  f0 (Anti-aliasing Filtering Condition)
Noise
2 f0 fC (Nyquist)
f0
f
Anti-Aliasing Filter (fF = RC Filter pole)
fF
f
Sampled Signal Spectrum (fC = conversion Rate)
f0
fC
f
Figure 18. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the
anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it
means that the constant time of the filter is greater than or at least equal to twice the conversion period
(TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it,
even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific
channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher
than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during
the time in which the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy
error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive
Equation 19 between the ideal and real sampled voltage on CS:
Eqn. 19
VA
C P1 + C P2 + C F
----------- = ------------------------------------------------------V A2
C P1 + C P2 + C F + C S
PXS30 Microcontroller Data Sheet, Rev. 1
84
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept
a maximum error of half a count, a constraint is evident on CF value:
C F  8192  C S
Eqn. 20
Table 24. ADC conversion characteristics
No.
Symbol
1
fCK
2
fs
3
4
Conditions1
Parameter
Min Typ Max Unit
SR ADC clock frequency (depends on ADC
configuration)
(The duty cycle depends on AD_CK2 frequency)
—
3
—
60 MHz
SR Sampling frequency
—
—
—
959 kHz
60 MHz
383
—
—
ns
TBD
600
—
—
ns
tADC_S D Sample time3
tADC_E P Evaluation
time4
5
CS5
D ADC input sampling capacitance
—
—
— 7.32 pF
6
CP15
D ADC input pin capacitance 1
—
—
—
7
CP25
D ADC input pin capacitance 2
—
—
— TBD pF
VREF range = 4.5 to 5.5 V
—
—
1.0
k
VREF range = 3.0 to 3.6 V
—
—
1.2
k
—
—
—
825

Current injection on one ADC
input channel, different from
the converted one. Other
parameters stay within
specified limits as long as the
ADC supply stays within its
specified limits due to the
current injection.
–3
—
3
mA
—
–3
—
3
LSB
—
–1.0
—
8
RSW1
5
D Channel selection switch resistance
9
10
RAD5
11
IINJ
T Current injection
12
INL
P Integral non linearity
D Sample switching resistance
6
2.5
pF
1.0 LSB
13
DNL
P Differential non linearity
14
OFS
T Offset error
—
–4
—
4
LSB
15
GNE
T Gain error
—
–4
—
4
LSB
16
TUE
P Total unadjusted error
—
–6
—
6
LSB
17
TUE
T Total unadjusted error with current injection
—
TBD
18
SNR
T Signal-to-noise ratio
—
69
—
—
dB
19
THD
T Total harmonic distortion
—
TBD
—
—
dB
20 SINAD T Signal-to-noise and distortion
—
65
—
—
dB
21 ENOB
—
10.5
—
—
bits
T Effective number of bits
— TBD LSB
NOTES:
1 V
DD = 3.3 V, TJ = –40 to +150 °C, unless otherwise specified and analog input voltage from VAGND to VAREF.
2 AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
85
Electrical characteristics
3
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of
the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the
sample clock tADC_S depend on programming.
4
This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the time
to load the result register with the conversion result.
5 See Figure 10.
6
No missing codes.
PXS30 Microcontroller Data Sheet, Rev. 1
86
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.15
Flash memory electrical characteristics
3.15.1
Program/Erase characteristics
Table 25 shows the Code flash memory program and erase characteristics.
Table 25. Code flash program and erase electrical specifications
No.
Symbol
Parameter
Min
Typ1
Initial Lifetime
Unit
Max3
Max2
1
TDWPROGRAM
CC Double Word (64 bits) program time4
—
18
50
500
µs
3
T16KPPERASE
CC 16 KB block pre-program and erase time
—
200
500
5000
ms
4
T32KPPERASE
CC 32 KB block pre-program and erase time
—
300
600
5000
ms
5
T64KPPERASE
CC 64 KB block pre-program and erase time
—
400
900
5000
ms
6
T128KPPERASE
CC 128 KB block pre-program and erase time
—
600
1300
7500
ms
NOTES:
1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
2 Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100
program/erase cycles, nominal supply values and operation at TJ = 25 °C. These values are verified at production
test.
3
Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life.
These values are characterized, but not tested.
4 Actual hardware programming times. This does not include software overhead.
Table 26 shows the Data flash memory program and erase characteristics.
Table 26. Data flash program and erase electrical specifications
No.
Symbol
Parameter
Min
Typ1
Initial Lifetime
Unit
Max2
Max3
1
TDWPROGRAM
CC Double Word (64 bits) program time4
—
30
70
300
µs
3
T16KPPERASE
CC 16 KB block pre-program and erase time
—
700
800
1500
ms
NOTES:
1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
2 Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100
program/erase cycles, nominal supply values and operation at TJ = 25 °C. These values are verified at production
test.
3 Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life.
These values are characterized, but not tested.
4
Actual hardware programming times. This does not include software overhead.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
87
Electrical characteristics
Table 27. Flash module life
Value
No.
1a
Symbol
P/E
1b
1c
2
Parameter
Condition
CC Number of program/erase
cycles per block for over the
operating temperature range
(TJ)
Retention CC Minimum data retention at
85 °C average ambient
temperature2
Unit
Min
Typ1
Max
16 KB blocks
100,000
—
—
cycles
32 KB and 64 KB blocks
10,000 100,000
—
cycles
128 KB blocks
1,000
100,000
—
cycles
Blocks with 0–1,000
P/E cycles
20
—
—
years
Blocks with 1,001–10,000
P/E cycles
10
—
—
years
Blocks with 10,001–100,000
P/E cycles
5
—
—
years
NOTES:
1
Typical endurance is evaluated at 25 oC. Product qualification is performed to the minimum specification. For
additional information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619,
Typical Endurance for Nonvolatile Memory.
2 Ambient temperature averaged over duration of application, not to exceed product operating temperature range.
3.15.2
Read access timing
Table 28. Code flash read access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
fREAD
3
CC Maximum frequency for Flash reading
(system clock frequency SYS_CLK)
4 wait states
90
MHz
3 wait states
60
MHz
Table 29. Data flash read access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
fREAD
3
3.15.3
CC Maximum frequency for Flash reading
(system clock frequency SYS_CLK)
12 wait states
90
MHz
8 wait states
60
MHz
Write access timing
Table 30. Code flash write access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
3
fWRITE
CC Maximum frequency for Flash writing
(system clock frequency SYS_CLK)
TBD
90
MHz
TBD
60
MHz
PXS30 Microcontroller Data Sheet, Rev. 1
88
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 31. Data flash write access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
fWRITE
3
3.16
3.16.1
CC Maximum frequency for Flash writing
(system clock frequency SYS_CLK)
TBD
90
MHz
TBD
60
MHz
SRAM memory electrical characteristics
Read access timing
Table 32. System SRAM memory read access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
sREAD
3
3.16.2
CC Maximum frequency for system SRAM
reading (system clock frequency
SYS_CLK)
1 wait state
90
MHz
1 wait state
60
MHz
Write access timing
Table 33. System SRAM memory write access timing
Value
No.
Symbol
Parameter
Condition
Unit
Max
2
sWRITE
3
3.17
CC Maximum frequency for system SRAM
writing (system clock frequency
SYS_CLK)
TBD
90
MHz
TBD
60
MHz
GP pads specifications
This section specifies the electrical characteristics of the GP pads. Please refer to the tables in Section 2.2,
Pin descriptions,” for a cross reference between package pins and pad types.
3.17.1
GP pads DC specifications
Table 34 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IO < 3.6 V).
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
89
Electrical characteristics
Table 34. GP pads DC electrical characteristics1,2
No.
Symbol
Parameter
Conditions
Min
3
Max
Unit
1
VIL
SR Low level input voltage
—
–0.1
0.35 VDD_HV_IO
V
2
VIH
SR High level input voltage
—
0.65 VDD_HV_IO
VDD_HV_IO + 0.13
V
3
VHYS
CC Schmitt trigger hysteresis
—
0.1 VDD_HV_IO
—
V
4
VOL_S
CC Slow, low level output voltage
IOL = 1.5 mA
—
0.5
V
5
VOH_S
CC Slow, high level output voltage
—
V
6
VOL_M
CC Medium, low level output voltage
IOL = 2 mA
—
0.5
V
7
VOH_M
CC Medium, high level output voltage
IOH = –2 mA
VDD_HV_IO – 0.8
—
V
8
VOL_F
CC Fast, high level output voltage
IOL = 11 mA
—
0.5
V
9
VOH_F
CC Fast, high level output voltage
—
V
IOH = –1.5 mA VDD_HV_IO – 0.8
IOH = –11 mA VDD_HV_IO – 0.8
10 VOL_SYM CC Symmetric, high level output voltage
IOL = 5 mA
—
0.5
V
11 VOH_SYM CC Symmetric, high level output voltage
IOH = –5 mA
VDD_HV_IO – 0.8
—
V
VIN = VIL
–130
—
µA
VIN = VIH
—
–10
VIN = VIL
10
—
VIN = VIH
—
130
12
13
IPU
IPD
CC Equivalent pull-up current
CC Equivalent pull-down current
µA
14
IIL
CC Input leakage current
(all bidirectional ports)
TA = –40 to
125 °C
—
1
µA
15
IIL
CC Input leakage current
(all ADC input-only ports)
TA = –40 to
125 °C
—
0.5
µA
16
VILR
—
–0.43
0.35 VDD_HV_IO
V
V
SR RESET, low level input voltage
SR RESET, high level input voltage
—
0.65 VDD_HV_IO
VDD_HV_IO+0.43
VHYSR
CC RESET, Schmitt trigger hysteresis
—
0.1 VDD_HV_IO
—
V
19
VOLR
CC RESET, low level output voltage
IOL = 2 mA
—
0.5
V
20
IPD
VIN = VIL
10
—
µA
VIN = VIH
—
130
17
VIHR
18
CC RESET, equivalent pull-down current
NOTES:
1 These specifications are design targets and subject to change per device characterization.
2
The values provided in this table are not applicable for PDI and EBI/DRAM interface.
3 “SR” parameter values must not exceed the absolute maximum ratings shown in Table 11.
PXS30 Microcontroller Data Sheet, Rev. 1
90
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.17.2
GP pads AC specifications
Table 35. GP pads AC electrical characteristics1
No.
1
2
3
Tswitchon1
(ns)
Pad
Slow
Medium
Fast
Rise/Fall2
(ns)
Current slew3
(mA/ns)
Frequency
(MHz)
Load drive
(pF)
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
3
—
40
4
—
40
—
—
4
0.01
—
2
25
3
—
40
6
—
50
—
—
2
0.01
—
2
50
3
—
40
10
—
75
—
—
2
0.01
—
2
100
3
—
40
14
—
100
—
—
2
0.01
—
2
200
1
—
15
2
—
12
—
—
40
2.5
—
7
25
1
—
15
4
—
25
—
—
20
2.5
—
7
50
1
—
15
8
—
40
—
—
13
2.5
—
7
100
1
—
15
14
—
70
—
—
7
2.5
—
7
200
1
—
6
1
—
4
—
—
72
3
—
40
25
1
—
6
1.5
—
7
—
—
55
7
—
40
50
1
—
6
3
—
12
—
—
40
7
—
40
100
1
—
6
5
—
18
—
—
25
7
—
40
200
4
Symmetric
1
—
8
1
—
5
—
—
50
3
—
25
25
5
Pull Up/Down
(3.6 V max)
—
—
—
—
—
7500
—
—
—
—
—
—
50
NOTES:
1 The values provided in this table are not applicable for PDI and EBI/DRAM interface.
2 Slope at rising/falling edge.
3 Data based on characterization results, not tested in production.
3.18
PDI pads specifications
This section specifies the electrical characteristics of the PDI pads. Please refer to the tables in Section 2.2,
Pin descriptions,” for a cross reference between package pins and pad types.
PDI pads feature list:
• Direction
— Input
— Output
— Bidirectional
• Driver
— Push/Pull/Open Drain
— Configurable Four Drive Strengths on Fast driver pads
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
91
Electrical characteristics
— Configurable No Slew-Rate, Slow Slew-Rate, and Fast Slew-Rate on Slow, Medium, and SLR
driver pads
— VDD_HV_PDI NOTE: All pads are NOT 5 V TOLERANT. Pads are not capable of driving to
or from voltages above their respective VDD_HV_PDI. In other words, you cannot connect a
3.3V external device to a pad supplied with 2.5 V. If a pad must be connected to a 3.3V device,
its local VDD_HV_PDI must be 3.3 V. Injection current is then handled by the intrinsic diodes
from the pad transistors and by the ESD diodes.
— VDD_HV_PDI range
– 1.8 V nominal
– 2.5 V nominal
– 3.3 V nominal
Receiver
— Selectable hysteresis Input Buffer.
— CMOS Input Buffer
•
The electrical data provided in Section 3.18, PDI pads specifications,” applies to the pads listed in
Table 36.
Table 36. PDI I/O pads
No.
Name
Volt.
Used For
Notes
1
PDI Fast
1.62 V-3.6 V
I/O
Enhanced operating voltage range fast slew-rate output with four selectable
slew-rates. Contains an input buffer and weak pullup/pulldown.
2
PDI
Medium
1.62 V-3.6 V
I/O
Enhanced operating voltage range medium slew-rate output with four
selectable slew-rates. Contains an input buffer and weak pullup/pulldown.
3.18.1
PDI pads electrical specifications (VDD_HV_PDI = 3.3 V)
Table 37. PDI pads DC electrical characteristics (VDD_HV_PDI = 3.3 V)
No.
1
Symbol
Parameter
VDD_HV_PDI SR I/O supply voltage
Min
Max
Unit
3.0
3.6
V
2
VIH_C
CC CMOS input buffer high voltage
(hysteresis enabled)
0.65 × VDD_HV_PDI VDD_HV_PDI + 0.3
V
3
VIH_C
CC CMOS input buffer high voltage
(hysteresis disabled)
0.51 × VDD_HV_PDI VDD_HV_PDI + 0.3
V
4
VIL_C
CC CMOS input buffer low voltage
(hysteresis enabled)
VSS – 0.3
0.35 × VDD_HV_PDI
V
5
VIL_C
CC CMOS input buffer low voltage
(hysteresis disabled)
VSS – 0.3
0.42 × VDD_HV_PDI
V
6
VHYS_C
CC CMOS input buffer hysteresis
0.1 × VDD_HV_PDI
7
IACT_S
CC Selectable weak pullup/pulldown current3
9
VOH
10
VOL
V
25
150
µA
CC Output high voltage
0.8 × VDD_HV_PDI
—
V
CC Output low voltage
—
0.2 × VDD_HV_PDI
V
PXS30 Microcontroller Data Sheet, Rev. 1
92
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 38. Drive Current, VDD_HV_PDI = 3.3 V (±10%)
Pad
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
PDI Fast
All
84.4
137
PDI Medium
All
61.9
83.6
NOTES:
1 I
OH is defined as the current sourced by the pad to drive the output to VOH.
2
IOL is defined as the current sunk by the pad to drive the output to VOL.
Table 39. PDI pads AC electrical characteristics (VDD_HV_PDI = 3.3 V)
No.
1
2
Name
PDI Medium
PDI Fast
Prop. Delay (ns)
L  H/H  L1
Rise/Fall Edge
(ns)
Drive Load
(pF)
Min
Max
Min
Max
—
4.0/4.5
—
1.02/1.4
50
7.3/8.3
3.5/4.2
200
24/22
9.1/10.3
50
33/31
14/15
200
49/44
18/21
50
60/53
24/25
200
332/302
126/151
50
362/325
136/158
200
1.1/1.1
50
8/8
2.6/2.6
200
8/8
2.4/2.4
50
12/12
5/5
200
13/13
5/5
50
19/19
8/8
200
40/40
16/16
50
50/50
21/21
200
—
5/5
—
Drive/Slew
Rate Select
MSB, LSB
11
10
01
00
11
10
01
00
NOTES:
1 L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.18.2
PDI pads electrical specifications (VDD_HV_PDI = 2.5 V)
Table 40. PDI pads DC electrical specifications (VDD_HV_PDI = 2.5 V)
No.
1
2
Symbol
Parameter
VDD_HV_PDI SR I/O supply voltage
VIH_C
CC CMOS input buffer high voltage (hysteresis
enabled)
Min
Max
Unit
2.3
2.7
V
0.65 × VDD_HV_PDI VDD_HV_PDI + 0.3
V
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
93
Electrical characteristics
Table 40. PDI pads DC electrical specifications (VDD_HV_PDI = 2.5 V) (continued)
No.
Symbol
Parameter
Min
Max
Unit
3
VIH_C
CC CMOS input buffer high voltage (hysteresis
disabled)
4
VIL_C
CC CMOS input buffer low voltage (hysteresis
enabled)
Vss – 0.3
0.35 × VDD_HV_PDI
V
5
VIL_C
CC CMOS input buffer low voltage (hysteresis
disabled)
Vss – 0.3
0.42 × VDD_HV_PDI
V
6
VHYS_C
7
IACT_S
9
VOH
10
VOL
CC CMOS input buffer hysteresis
0.54 × VDD_HV_PDI VDD_HV_PDI + 0.3
0.1 × VDD_HV_PDI
1
CC Selectable weak pullup/pulldown current
V
V
25
150
µA
CC Output high voltage
0.8 × VDD_HV_PDI
—
V
CC Output low voltage
—
0.2 × VDD_HV_PDI
V
Table 41. Drive Current @ VDD_HV_PDI = 2.5 V (±10%)
Pad
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
PDI Fast
All
51.5
111
PDI Medium
All
52.6
78.1
NOTES:
1 I
OH is defined as the current sourced by the pad to drive the output to VOH.
2
IOL is defined as the current sunk by the pad to drive the output to VOL. PDI
Table 42. PDI pads AC electrical specifications (VDD_HV_PDI = 2.5 V)
No.
1
Name
PDI Medium
Prop. Delay (ns)
L  H/H  L1
Rise/Fall Edge (ns)
Drive Load
(pF)
Min
Max
Min
Max
0.8/0.7
-------1.1/1.08
4.5/4
1.3/1
—
9/7
4.8/3.2
200
34/19
10.5/7.9
50
44/26
16.3/12
200
70/38
21/16
50
83/45
28/20
200
491/254
142/115
50
528/279
154/122
200
Drive/Slew
Rate Select
MSB, LSB
50
11
10
01
00
PXS30 Microcontroller Data Sheet, Rev. 1
94
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 42. PDI pads AC electrical specifications (VDD_HV_PDI = 2.5 V) (continued)
No.
2
Prop. Delay (ns)
L  H/H  L1
Name
PDI Fast
Rise/Fall Edge (ns)
Drive Load
(pF)
Min
Max
Min
Max
0.8/0.7
-------1.1/1.08
5/5
1.5/1.5
—
8.4/8.4
3.5/3.5
200
8.6/8.6
3/3
50
14/14
5.6/5.6
200
15.5/15.5
5.7/5.7
50
22/22
9.5/9.5
200
48/48
19/19
50
60/60
25/25
200
Drive/Slew
Rate Select
MSB, LSB
50
11
10
01
00
NOTES:
1 L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.18.3
PDI pads electrical specifications (VDD_HV_PDI = 1.8 V)
Table 43. PDI pads DC electrical specifications (VDD_HV_PDI = 1.8 V)
No.
1
Symbol
Parameter
VDD_HV_PDI SR I/O supply voltage
Min
Max
Unit
1.62
1.98
V
2
VIH_C
CC CMOS input buffer high voltage
(hysteresis enabled)
0.65 × VDD_HV_PDI VDD_HV_PDI + 0.3
V
3
VIH_C
CC CMOS input buffer high voltage
(hysteresis disabled)
0.58 × VDD_HV_PDI VDD_HV_PDI + 0.3
V
4
VIL_C
CC CMOS input buffer low voltage
(hysteresis enabled)
Vss – 0.3
0.35 × VDD_HV_PDI
V
5
VIL_C
CC CMOS input buffer low voltage
(hysteresis disabled)
Vss – 0.3
0.44 × VDD_HV_PDI
V
6
VHYS_C
CC CMOS input buffer hysteresis
0.1 × VDD_HV_PDI
—
V
7
IACT_S
CC Selectable weak pullup/pulldown current1
25
150
µA
9
VOH
CC Output high voltage
0.8 × VDD_HV_PDI
—
V
10
VOL
CC Output low voltage
—
0.2 × VDD_HV_PDI
V
Table 44. Drive current @ VDD_HV_PDI = 1.8 V (±10%)
Pad
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
PDI Fast
All
26.2
84.8
PDI Medium
All
19.2
52.1
NOTES:
1 I
OH is defined as the current sourced by the pad to drive the output to VOH.
2
IOL is defined as the current sunk by the pad to drive the output to VOL.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
95
Electrical characteristics
Table 45. PDI pads AC electrical specifications (VDD_HV_PDI = 1.8 V)
No.
1
2
Name
PDI Medium
PDI Fast
Prop. Delay (ns)
L  H/H  L1
Rise/Fall Edge
(ns)
Drive Load
(pF)
Min
Max
Min
Max
—
5.5/3.5
2/1
—
12/5.5
7.2/2.3
200
49/17
13/6
50
60/23
21/9.2
200
102/32
26/12
50
119/39
35/16
200
722/216
172/85
50
772/237
191/90
200
10/10
2/2
15/15
6.2/6.2
200
15/15
4.5/4.5
50
22/22
7.1/7.1
200
24/24
7.5/7.5
50
33/33
12/12
200
66/66
24/24
50
84/84
31/31
200
—
—
Drive/Slew
Rate Select
MSB, LSB
50
50
11
10
01
00
11
10
01
00
NOTES:
1 L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.19
DRAM pad specifications
This section specifies the electrical characteristics of the DRAM pads. Please refer to the tables in
Section 2.2, Pin descriptions,” for a cross reference between package pins and pad types.
DRAM pads feature list:
• Driver
— Configurable to support LPDDR half strength, LPDDR full strength, DDR1, DDR2 half
strength, DDR2 full strength, and SDR modes.
— VDD_HV_DRAM Range of
– 1.8 V nominal
– 2.5 V nominal
– 3.3 V nominal
• Receiver
— Differential or pseudo-differential input buffer in all DRAM pads
PXS30 Microcontroller Data Sheet, Rev. 1
96
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
— All inputs are tolerant up to their VDD_HV_DRAM Absolute Maximum Rating
— Data and strobe pads can be configured to support four signal termination options
– Infinite/no termination
– 50 Ohms
– 75 Ohms
– 150 Ohms
The electrical data provided in Section 3.19, DRAM pad specifications,” applies to the pads listed in
Table 46.
Table 46. DRAM pads
Used For
Notes1
DRAM ACC 1.62 V–3.6 V
I/O
Bidirectional DDR pad
DRAM CLK
1.62 V–3.6 V
O
Output only differential clock driver pad
DRAM DQ
1.62 V–3.6 V
I/O
Bidirectional DDR pad with integrated ODT
Name
Voltage
NOTES:
1 All pads can be configured to support LPDDR half strength, LPDDR full strength, DDR1, DDR2 half
strength, DDR2 full strength, and SDR.
All three pad types can be configured to support SDR, DDR, DDR2 half and full strength, and LPDDR
half and full strength modes, according to Table 47.
Table 47. Mode configuration for DRAM pads
Configuration1
Mode
000
1.8 V LPDDR Half Strength
001
1.8 V LPDDR Full Strength
010
1.8 V DDR2 Half Strength
011
2.5 V DDR
100
Not supported
101
Not supported
110
1.8 V DDR2 Full Strength
111
SDR
NOTES:
1 Configuration is selected in the corresponding PCR registers of the SIUL.
3.19.1
DRAM pads electrical specifications (VDD_HV_DRAM = 3.3 V)
Table 48. DRAM pads DC electrical specifications (VDD_HV_DRAM = 3.3 V)
No.
1
2
Symbol
VDD_HV_DRAM
Parameter
SR I/O supply voltage
VDD_HV_DRAM_VREF CC Input reference
voltage
Condition
Min
Max
Unit
—
3.0
3.6
V
—
1.3
1.7
V
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
97
Electrical characteristics
Table 48. DRAM pads DC electrical specifications (VDD_HV_DRAM (continued) = 3.3 V)
No.
3
Symbol
Parameter
VDD_HV_DRAM_VTT CC Termination voltage1
Condition
Min
Max
Unit
—
VDD_HV_DRAM_VREF
× 0.05
VDD_HV_DRAM_VREF
+ 0.05
V
VDD_HV_DRAM_VREF +
0.20
—
V
VDD_HV_DRAM_VREF
× 0.2
V
4
VIH
CC Input high voltage
—
5
VIL
CC Input low voltage
—
6
VOH
CC Output high voltage
7
VOL
CC Output low voltage
ODT
enabled2
VDD_HV_DRAM_VTT
+ 0.8
—
V
ODT
disabled3
0.8 × VDD_HV_DRAM
—
V
ODT
enabled2
—
VDD_HV_DRAM_VTT
× 0.8
V
ODT
disabled3
—
VDD_HV_DRAM
× 0.2
V
NOTES:
1 BGA473: Termination voltage can be supplied via package pins. BGA257 Termination voltage internally tied as the
BGA257 does not provide DRAM interface. Disable ODT
2 Termination voltage is supplied by V
DD_HV_DRAM_VTT.
3 Tie V
to
V
and
disable
ODT
DD_HV_DRAM_VTT
SS
Table 49. Output drive current @ VDDE = 3.3 V (±10%)
No.
Pad Name
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
1
DRAM ACC
111
–16
16
2
DRAM DQ
3
DRAM CLK
NOTES:
1 I
OH is defined as the current sourced by the pad to drive the output to VOH.
2 I
OL is defined as the current sunk by the pad to drive the output to VOL.
Table 50. DRAM pads AC electrical specifications (VDD_HV_DRAM = 3.3 V)
No.
1
2
3
Pad Name
DRAM ACC
DRAM DQ
DRAM CLK
Prop. Delay (ns)
L  H/H  L1
Output Slew rate
Rise/Fall (V/ns)
Drive Load
(pF)
Drive/Slew
Rate Select
Min
Max
Min
Max
MSB, LSB
1.4/1.4
2.4/2.4
3.1/2.5
5.6/5.4
5
111
1.7/1.7
2.7/2.7
0.9/1.1
1.7/2.0
20
111
1.4/1.4
2.4/2.4
3.1/2.5
5.6/5.4
5
111
1.7/1.7
2.7/2.7
0.9/1.1
1.7/2.0
20
111
1.4/1.4
2.4/2.4
3.1/2.5
5.7/5.7
5
111
1.6/1.6
2.6/2.6
1.1/1.3
2.3/2.3
20
111
PXS30 Microcontroller Data Sheet, Rev. 1
98
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
NOTES:
1
L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.19.2
DRAM pads electrical specification (VDD_HV_DRAM = 2.5 V)
Table 51. DRAM pads DC electrical specifications (VDD_HV_DRAM = 2.5 V)
No.
1
Symbol
Parameter
VDD_HV_DRAM
SR I/O supply voltage
Condition
Min
Max
Unit
—
2.3
2.7
V
2
VDD_HV_DRAM_VREF CC Input reference voltage
—
0.49 × VDD_HV_DRAM
0.51 × VDD_HV_DRAM
V
3
VDD_HV_DRAM_VTT CC Termination voltage1
—
VDD_HV_DRAM_VREF VDD_HV_DRAM_VREF
- 0.04
+ 0.04
V
4
VIH
CC Input high voltage
—
VDD_HV_DRAM_VREF
+ 0.15
—
V
5
VIL
CC Input low voltage
—
—
VDD_HV_DRAM_VREF
– 0.15
V
6
VOH
CC Output high voltage
ODT
enabled2
VDD_HV_DRAM_VTT
+ 0.81
—
V
ODT
disabled3
0.8 × VDD_HV_DRAM
—
V
ODT
enabled2
—
VDD_HV_DRAM_VTT
– 0.81
V
ODT
disabled3
—
0.2 × VDD_HV_DRAM
V
7
VOL
CC Output low voltage
NOTES:
1 473 MAPBGA: Termination voltage can be supplied via package pins. 257 MAPBGA Termination voltage internally
tied as the 257 MAPBGA does not provide DRAM interface. Disable ODT
2
Termination voltage is supplied by VDD_HV_DRAM_VTT.
3 Tie V
DD_HV_DRAM_VTT to VSS and disable ODT
Table 52. Output drive current @ VDDE = 2.5 V (±200 mV)
Pad Name
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
DRAM ACC
011
–16.2
16.2
DRAM DQ
011
DRAM CLK
011
NOTES:
1
IOH is defined as the current sourced by the pad to drive the output to VOH.
2 I
OL is defined as the current sunk by the pad to drive the output to VOL.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
99
Electrical characteristics
Table 53. DRAM pads AC electrical specifications (VDD_HV_DRAM = 2.5 V)
No.
1
2
3
Pad Name
DRAM ACC
DRAM DQ
DRAM CLK
Prop. Delay (ns)
L  H/H  L1
Rise/Fall Edge (ns)
Drive/Slew
Rate Select
Drive
Load
(pF)
Min
Max
Min
Max
1.4/1.5
2.5/2.4
2.1/2.1
4.3/4.1
5
1.7/1.7
2.8/2.7
0.6/0.7
1.1/1.3
20
1.4/1.5
2.5/2.4
2.1/2.1
4.3/4.1
5
1.7/1.7
2.8/2.7
0.6/0.7
1.1/1.3
20
1.4/1.4
2.4/2.4
2.1/2.1
4.4/4.1
5
1.6/1.6
2.7/2.7
0.6/0.7
1.6/1.8
20
MSB, LSB
011
011
011
NOTES:
1
L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.19.3
DRAM pads electrical specification (VDD_HV_DRAM = 1.8 V)
Table 54. DRAM pads DC electrical specifications (VDD_HV_DRAM = 1.8 V)
No.
1
2
3
Symbol
VDD_HV_DRAM
Parameter
SR I/O supply voltage
VDD_HV_DRAM_VREF CC Input reference voltage
VDD_HV_DRAM_VTT CC Termination
voltage1
Condition
Min
Max
Unit
—
1.7
1.9
V
—
0.49 × VDD_HV_DRAM 0.51 × VDD_HV_DRAM
V
—
VDD_HV_DRAM_VREF VDD_HV_DRAM_VREF
+ 0.04
– 0.04
V
4
VIH
CC Input high voltage
—
VDD_HV_DRAM_VREF
+ 0.125
—
5
VIL
CC Input low voltage
—
—
VDD_HV_DRAM_VREF
– 0.125
6
VOH
CC Output high voltage
ODT
enabled2
VDD_HV_DRAM_VTT
+ 0.81
—
ODT
0.8 × VDD_HV_DRAM
disabled3
—
7
VOL
CC Output low voltage
ODT
enabled2
—
VDD_HV_DRAM_VTT
– 0.81
ODT
disabled3
—
0.2 × VDD_HV_DRAM
V
V
V
V
V
V
NOTES:
1
BGA473: Termination voltage can be supplied via package pins. BGA257 Termination voltage internally tied as the
BGA257 does not provide DRAM interface. Disable ODT
2
Termination voltage is supplied by VDD_HV_DRAM_VTT.
3 Tie V
DD_HV_DRAM_VTT to VSS and disable ODT
PXS30 Microcontroller Data Sheet, Rev. 1
100
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 55. Output drive current @ VDDE = 1.8 V (±100 mV)
No.
Pad Name
Drive Mode
Minimum IOH (mA)1
Minimum IOL (mA)2
1
DRAM ACC
000
–3.57
3.57
001
–7.84
7.84
010
–5.36
5.36
110
–13.4
13.4
000
–3.57
3.57
001
–7.84
7.84
010
–5.36
5.36
110
–13.4
13.4
000
–3.57
3.57
001
–7.84
7.84
010
–5.36
5.36
110
–13.4
13.4
2
3
DRAM DQ
DRAM CLK
NOTES:
1 I
OH is defined as the current sourced by the pad to drive the output to VOH.
2 I
OL is defined as the current sunk by the pad to drive the output to VOL.
Table 56. DRAM pads AC electrical specifications (VDD_HV_DRAM = 1.8 V)
No.
1
Pad Name
DRAM ACC
Prop. Delay (ns)
L  H/H  L1
Rise/Fall Edge
(ns)
Drive Load
(pF)
Min
Max
Min
Max
1.4/1.4
2.4/2.4
0.6/1.0
2.7/2.6
5
1.7/1.7
2.8/2.7
0.2/0.4
0.5/0.6
20
1.4/1.5
2.4/2.5
1.1/1.1
3.0/2.7
5
1.7/1.7
2.8/2.8
0.4/0.4
0.7/0.7
20
1.4/1.5
2.4/2.4
1.0/1.1
2.9/2.7
5
1.7/1.7
2.8/2.7
0.3/0.4
0.6/0.7
20
1.4/1.5
2.5/2.5
1.5/1.1
3.1/2.6
5
1.7/1.8
2.8/2.8
0.4/0.4
0.7/0.6
20
Drive/Slew
Rate Select
MSB, LSB
000
001
010
110
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
101
Electrical characteristics
Table 56. DRAM pads AC electrical specifications (VDD_HV_DRAM (continued) = 1.8 V)
No.
2
3
Prop. Delay (ns)
L  H/H  L1
Pad Name
DRAM DQ
DRAM CLK
Rise/Fall Edge
(ns)
Drive Load
(pF)
Min
Max
Min
Max
1.4/1.4
2.4/2.4
0.6/1.0
2.7/2.6
5
1.7/1.7
2.8/2.7
0.2/0.4
0.5/0.6
20
1.4/1.5
2.4/2.5
1.1/1.1
3.0/2.7
5
1.7/1.7
2.8/2.8
0.4/0.4
0.7/0.7
20
1.4/1.5
2.4/2.4
1.0/1.1
2.9/2.7
5
1.7/1.7
2.8/2.7
0.3/0.4
0.6/0.7
20
1.4/1.5
2.5/2.5
1.5/1.1
3.1/2.6
5
1.7/1.8
2.8/2.8
0.4/0.4
0.7/0.6
20
1.4/1.4
2.4/2.4
0.4/0.6
2.7/2.7
5
1.6/1.6
2.7/2.7
0.7/0.9
1.8/3.4
20
1.4/1.4
2.4/2.4
1.1/1.1
3.0/2.8
5
1.7/1.7
2.7/2.7
0.3/0.4
1.0/1.1
20
1.4/1.4
2.4/2.4
0.9/1.1
3.0/2.8
5
1.6/1.6
2.7/2.7
0.3/0.4
0.9/1.0
20
1.4/1.4
2.5/2.5
1.5/1.2
3.2/2.6
5
1.7/1.7
2.7/2.7
0.4/0.4
1.1/1.2
20
Drive/Slew
Rate Select
MSB, LSB
000
001
010
110
000
001
010
110
NOTES:
1 L  H signifies low-to-high propagation delay and H  L signifies high-to-low propagation delay.
3.20
3.20.1
RESET characteristics
RESET pin characteristics
Table 57. RESET pin characteristics
No.
Symbol
Parameter
Conditions
Min Max
Unit
1
WFRST
SR RESET pulse is sure to be filtered
—
—
70
ns
2
WNFRST
SR RESET pulse is sure not to be filtered
—
400
—
ns
3.21
Reset sequence
This section shows the duration for different reset sequences. It describes the different reset sequences and
it specifies the start conditions and the end indication for the reset sequences depending on internal or
external VREG mode.
PXS30 Microcontroller Data Sheet, Rev. 1
102
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.21.1
Reset sequence duration
Table 58 specifies the minimum and the maximum reset sequence duration for the five different reset
sequences described in Section 3.21.2, Reset sequence description.”
Table 58. RESET sequences
TReset
No.
Symbol
Parameter
Unit
Min
Typ
Max1
1
TDRB
CC
Destructive Reset Sequence, BIST enabled
60
65
70
ms
2
TDR
CC
Destructive Reset Sequence, BIST disabled
40
400
1000
µs
3
TERLB
CC
External Reset Sequence Long, BIST enabled
60
65
70
ms
4
TFRL
CC
Functional Reset Sequence Long
40
300
600
µs
5
TFRS
CC
Functional Reset Sequence Short
1
3
10
µs
NOTES:
1 The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of
RESET by an external reset generator.
3.21.2
Reset sequence description
The figures in this section show the internal states of the PXS30 during the five different reset sequences.
The doted lines in the figures indicate the starting point and the end point for which the duration is
specified in Table 58. The start point and end point conditions as well as the reset trigger mapping to the
different reset sequences is specified in Section 3.21.3, Reset sequence trigger mapping.”
With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application
execution starts and the internal reset sequence is finished.
The following figures show the internal states of the PXS30 during the execution of the reset sequence and
the possible states of the RESET signal pin.
NOTE
RESET is a bidirectional pin. The voltage level on this pin can either be
driven low by an external reset generator or by the PXS30 internal reset
circuitry. A high level on this pin can only be generated by an external pull
up resistor which is strong enough to overdrive the weak internal pull down
resistor. The rising edge on RESET in the following figures indicates the
time when the device stops driving it low. The reset sequence durations
given in Table 58 are applicable only if the internal reset sequence is not
prolonged by an external reset generator keeping RESET asserted low
beyond the last PHASE3.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
103
Electrical characteristics
Reset Sequence Trigger
Reset Sequence Start Condition
RESET
PHASE0
PHASE1,2
Establish
IRC and
PWR
PHASE3
Flash
Init
BIST
Device
Config
Self
MBIST
Test
Setup
PHASE1,2
PHASE3
Flash
Init
LBIST
Device
Config
DRUN
Application
Execution
TDRB, min < TRESET < TDRB, max
Figure 21. Destructive reset sequence, BIST enabled
Reset Sequence Trigger
Reset Sequence Start Condition
RESET
PHASE0
Establish
IRC and
PWR
PHASE1,2
Flash
Init
PHASE3
Device
Config
DRUN
Application
Execution
TDR, min < TRESET < TDR, max
Figure 22. Destructive reset sequence, BIST disabled
Reset Sequence Trigger
Reset Sequence Start Condition
RESET
PHASE1,2
Flash
Init
PHASE3
Device
Config
BIST
Self
MBIST
Test
Setup
LBIST
PHASE1,2
PHASE3
Flash
Init
Device
Config
DRUN
Application
Execution
TERLB, min < TRESET < TERLB, max
Figure 23. External reset sequence long, BIST enabled
PXS30 Microcontroller Data Sheet, Rev. 1
104
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Reset Sequence Trigger
Reset Sequence Start Condition
RESET
PHASE1,2
Flash
Init
PHASE3
Device
Config
DRUN
Application
Execution
TFRL, min < TRESET < TFRL, max
Figure 24. Functional reset sequence long
Reset Sequence Trigger
Reset Sequence Start Condition
RESET
PHASE3
DRUN
Application
Execution
TFRS, min < TRESET < TFRS, max
Figure 25. Functional reset sequence short
The reset sequences shown in Figure 24 and Figure 25 are triggered by functional reset events. RESET is
driven low during these two reset sequences only if the corresponding functional reset source (which
triggered the reset sequence) was enabled to drive RESET low for the duration of the internal reset
sequence. See the RGM_FBRE register in the PXS30 Reference Manual (PXS30RM) for more
information.
3.21.3
Reset sequence trigger mapping
The following table shows the possible trigger events for the different reset sequences, depending on the
VREG mode (external or internal). It specifies the reset sequence start conditions as well as the reset
sequence end indications that are the basis for the timing data provided in Table 58.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
105
Electrical characteristics
Table 59. Reset sequence trigger—reset sequence
VREG Mode1
Reset Sequence
Reset
Sequence
Start
Condition
Reset
Sequence
End
Indication
I
Section 3.
21.4.1,
Internal
VREG
mode”
Release of
RESET3
E
Section 3.
21.4.2,
External
VREG
mode”
Assertion of
RESET5
I/E
Section 3.
21.4.3,
external
Reset via
RESET”
All internal
functional
reset sources
configured
for long reset
I/E
Sequence
starts with
internal
reset
trigger
All internal
functional
reset sources
configured
for short
reset
I/E
Reset
Sequence
Trigger
All active
internal
destructive
reset sources
(LVDs or
internal HVD
during
power-up and
during
operation)
Destructive
Reset
Sequence,
BIST
enabled2
Destructive
Reset
Sequence,
BIST
disabled2
External
Reset
Sequence
Long,
BIST
enabled
Functional
Reset
Sequence
Long
Functional
Reset
Sequence
Short
cannot
trigger
cannot
trigger
cannot
trigger
cannot
trigger
cannot
trigger
cannot
trigger
cannot trigger
triggers6
triggers7
triggers8
cannot trigger
cannot
trigger
triggers
cannot
trigger
cannot trigger
cannot
trigger
cannot
trigger
triggers
triggers
Assertion of
RESET_SUP4
Release of
RESET9
NOTES:
1 VREG Mode: I = Internal VREG Mode, E = External VREG Mode.
2 Whether BIST is executed or not depends on device configuration data stored in the shadow sector of the NVM.
3
End of the internal reset sequence (as specified in Table 58) can only be observed by release of RESET if it is not held low
externally beyond the end of the internal sequence which would prolong the internal reset PHASE3 until RESET is released
externally.
4 In external VREG mode only.
5 The assertion of RESET can only trigger a reset sequence if the device was running (RESET released) before.
RESET does not gate a Destructive Reset Sequence, BIST enabled or a Destructive Reset Sequence, BIST
disabled. However, it can prolong these sequences if RESET is held low externally beyond the end of the internal
sequence (beyond PHASE3).
6 If RESET is configured for long reset (default) and if BIST is enabled via device configuration data stored in the
shadow sector of the NVM.
PXS30 Microcontroller Data Sheet, Rev. 1
106
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
7
If RESET is configured for long reset (default) and if BIST is disabled via device configuration data stored in the
shadow sector of the NVM.
8
If RESET is configured for short reset.
9
Internal reset sequence can only be observed by state of RESET if bidirectional RESET functionality is enabled for the functional
reset source which triggered the reset sequence.
3.21.4
Reset sequence—start condition
The impact of the voltage thresholds on the starting point of the internal reset sequence are becoming
important if the voltage rails / signals ramp up with a very slow slew rate compared to the overall reset
sequence duration.
3.21.4.1
Internal VREG mode
Figure 26 shows the voltage threshold that determines the start of the Destructive Reset Sequence, BIST
enabled and the start for the Destructive Reset Sequence, BIST disabled. The last voltage rail crossing the
levels shown in Figure 26 determines the start of the reset times specified in Table 58.
Supply Rail
V
Vmax
Vmin
TReset, max starts here
t
TReset, min starts here
Figure 26. Reset sequence start in internal VREG mode
Table 60. Voltage thresholds
3.21.4.2
Variable name
Value
Vmin
LvdReg – 3.5%
Vmax
LvdReg + 3.5%
Supply Rail
VDD_HV_PMU
VDD_HV_IO
VDD_HV_FLASH
VDD_HV_ADV
External VREG mode
Figure 27 and Figure 28 show the voltage thresholds that determine the start of the Destructive Reset
Sequence, BIST enabled and the start for the Destructive Reset Sequence, BIST disabled.
NOTE
RESET_SUP must not be released unless VDD_LV_xxx is within its valid
range of operation.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
107
Electrical characteristics
VDD_HV_PMU
VDD_HV_IO
VDD_HV_FLASH
VDD_HV_ADV
V
t
V
RESET_SUP
0.8 × VDD_HV_IO
0.2 × VDD_HV_IO
TReset, max starts here
t
TReset, min starts here
Figure 27. External VREG mode, RESET_SUP rises after VDD_HV_xxx are stable
V
LvdReg + 3.5%
VDD_HV_PMU
VDD_HV_IO
VDD_HV_FLASH
VDD_HV_ADV
LvdReg – 3.5%
t
V
RESET_SUP
TReset, max starts here
t
TReset, min starts here
Figure 28. External VREG mode, RESET_SUP rises with VDD_HV_xxx
NOTE
In case RESET_SUP has reached a valid high level before VDD_HV_IO is
stable, the reset sequence will start as documented in Figure 28 as the
RESET_SUP input circuitry needs a valid VDD_HV_IO rail in order to detect
a high level on RESET_SUP.
PXS30 Microcontroller Data Sheet, Rev. 1
108
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.21.4.3
external Reset via RESET
Figure 29 shows the voltage thresholds that determine the start of the reset sequences initiated by the
assertion of RESET as specified in Table 59.
V
RESET_SUP
0.65 × VDD_HV_IO
0.352 × VDD_HV_IO
TReset, max starts here
t
TReset, min starts here
Figure 29. Reset sequence start via RESET assertion
3.21.5
External watchdog window
If the application design requires the use of an external watchdog the data provided in Section 3.21, Reset
sequence can be used to determine the correct positioning of the trigger window for the external watchdog.
Figure 30 shows the relationships between the minimum and the maximum duration of a given reset
sequence and the position of an external watchdog trigger window.
Watchdog needs to be triggered within this window
TWDStart, min
External Watchdog window closed
External Watchdog window open
TWDStart, max
External Watchdog window closed
External Watchdog window open
Watchdog Trigger
TReset, min
Basic Application Init
Application Running
TReset, max
Basic Application Init
Application Running
Earliest
Application
Start
Latest
Application
Start
Application time required
to prepare watchdog trigger
Internal Reset Sequence
Start condition (signal or voltage rail)
Figure 30. Reset sequence—external watchdog trigger window position
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
109
Electrical characteristics
3.22
Peripheral timing characteristics
3.22.1
SDRAM (DDR)
The PXS30 memory controller supports three types of DDR devices:
• DDR-1 (SSTL_2 class II interface)
• DDR-2 (SSTL_18 interface)
• LPDDR/Mobile-DDR (1.8V I/O supply voltage)
JEDEC standards define the minimum set of requirements for compliant memory devices:
• JEDEC STANDARD, DDR2 SDRAM SPECIFICATION, JESD79-2C, MAY 2006
• JEDEC STANDARD, Double Data Rate (DDR) SDRAM Specification, JESD79E, May 2005
• JEDEC STANDARD, Low Power Double Data Rate (LPDDR) SDRAM Specification, JESD79-4,
May 2006
The PXS30 supports the configuration of two output drive strengths for DDR2 and LPDDR:
• Full drive strength
• Half drive strength (intended for lighter loads or point-to-point environments)
The PXS30 memory controller supports dynamic on-die termination in the host device and in the DDR2
memory device.
This section includes AC specifications for all DDR SDRAM pins. The DC parameters are specified in the
Section 3.19, DRAM pad specifications.”
3.22.1.1
DDR and DDR2 SDRAM AC timing specifications
Table 61. DDR and DDR2 (DDR2-400) SDRAM timing specifications
At recommended operating conditions with VDD_MEM_IO of 5%
No.
1
Symbol
tCK
Parameter
Min
Max
Unit
—
90
MHz
VDD_MEM_IO
× 0.5 – 0.1
VDD_MEM_IO
× 0.5 + 0.1
V
CC Clock cycle time, CL = x
1
CC MCK AC differential crosspoint voltage
2
VIX-AC
3
tCH
CC CK HIGH pulse width1, 2
0.47
0.53
tCK
4
tCL
width1, 2
0.47
0.53
tCK
5
tDQSS
CC Skew between MCK and DQS transitions2, 3
0.25
0.25
tCK
8
tOS(base)
CC Address and control output setup time relative to
MCK rising edge2, 3
(tCK/2 – 750)
9
tOH(base)
CC Address and control output hold time relative to
MCK rising edge2, 3
(tCK/2 – 750)
—
ps
11
tDS1(base)
CC DQ and DM output setup time relative to DQS2, 3
(tCK/4 – 500)
—
ps
(tCK/4 – 500)
—
ps
12
tDH1(base)
CC CK LOW pulse
CC DQ and DM output hold time relative to
DQS2, 3
ps
PXS30 Microcontroller Data Sheet, Rev. 1
110
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 61. DDR and DDR2 (DDR2-400) SDRAM timing specifications (continued)
At recommended operating conditions with VDD_MEM_IO of 5%
No.
Symbol
Parameter
Min
Max
Unit
14
tDQSQ
CC DQS-DQ skew for DQS and associated DQ inputs2 –(tCK/4 – 600) (tCK/4 – 600)
ps
15
tDQSEN
CC DQS window start position related to CAS read
command1, 2, 3, 4, 5
ps
TBD
TBD
NOTES:
1 Measured with clock pin loaded with differential 100 ohm termination resistor.
2
All transitions measured at mid-supply (VDD_MEM_IO/2).
3
Measured with all outputs except the clock loaded with 50 ohm termination resistor to VDD_MEM_IO/2.
4 In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS
should be low.
5 Window position is given for t
DQSEN = 2.0 tCK. For other values of tDQSEN, window position is shifted accordingly.
Figure 31 shows the DDR SDRAM write timing.
tCL
tCH
MCK
tCK
DQS
tDQSS
DQ, DM (out)
tDS
tDH
Figure 31. DDR write timing
Figure 32 and Figure 33 show the DDR SDRAM read timing.
DQS (in)
Any DQ (in)
tDQSQ
tDQSQ
Figure 32. DDR read timing, DQ vs. DQS
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
111
Electrical characteristics
MCK
Command
Read
Address
tOS
tOH
DQS (in)
tDQSEN (min)
tDQSEN
Figure 33. DDR read timing, DQSEN
Figure 34 provides the AC test load for the DDR bus.
Output
Z0 = 50 
RL = 50 
VDD_MEM_IO/2
Figure 34. DDR AC test load
3.22.2
IEEE 1149.1 (JTAG) interface timing
Table 62. JTAG pin AC electrical characteristics
No.
Symbol
Parameter
Conditions
Min Max Unit
1
tJCYC
D TCK cycle time 1
—
100
—
ns
2
tJDC
D TCK clock pulse width (measured at VDDE/2)
—
40
60
ns
3
tTCKRISE
D TCK rise and fall times (40%–70%)
—
—
3
ns
4
tTMSS, tTDIS
D TMS, TDI data setup time
—
5
—
ns
5
tTMSH, tTDIH D TMS, TDI data hold time
—
25
—
ns
6
tTDOV
D TCK low to TDO data valid
—
—
20
ns
7
tTDOI
D TCK low to TDO data invalid
—
0
—
ns
8
tTDOHZ
D TCK low to TDO high impedance
—
—
20
ns
11
tBSDV
D TCK falling edge to output valid
—
—
50
ns
12
tBSDVZ
D TCK falling edge to output valid out of high impedance
—
—
50
ns
13
tBSDHZ
D TCK falling edge to output high impedance
—
—
50
ns
14
tBSDST
D Boundary scan input valid to TCK rising edge
—
50
—
ns
15
tBSDHT
D TCK rising edge to boundary scan input invalid
—
50
—
ns
PXS30 Microcontroller Data Sheet, Rev. 1
112
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
NOTES:
1
fTCK = 1/tTCK. fTCK needs to be smaller than or equal to the system clock (SYS_CLK).
TCK
2
3
2
1
3
Figure 35. JTAG test clock input timing
TCK
4
5
TMS, TDI
6
7
8
TDO
Figure 36. JTAG test access port timing
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
113
Electrical characteristics
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 37. JTAG boundary scan timing
3.22.3
Nexus timing
Table 63. Nexus debug port timing1
No.
Symbol
Parameter
Conditions
Min
Max
Unit
1
tMCKO
CC MCKO cycle time
—
15.75
—
ns
2
tMDC
CC MCKO duty cycle
—
33
66
%
3
tMDOV
CC MCKO Low to MDO, MSEO, EVTO data valid2
—
4
tEVTIPW
CC EVTI pulse width
—
4.0
—
tTCYC
5
tEVTOPW
CC EVTO pulse width
—
1
—
tMCYC
6
tTCYC
CC TCK cycle time3
—
60
—
ns
7
tTDC
CC TCK duty cycle
—
40
60
%
(–0.1)tMCKO (0.2)tMCKO
ns
8
tNTDIS, tNTMSS CC TDI, TMS data setup time
—
12
—
ns
9
tNTDIH, tNTMSH CC TDI, TMS data hold time
—
6
—
ns
10
tJOV
CC TCK low to TDO data valid
—
0
18
ns
11
tJOIV
CC TCK low to TDO data invalid
—
6
—
ns
PXS30 Microcontroller Data Sheet, Rev. 1
114
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
NOTES:
1
JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is
measured from 50% of MCKO and 50% of the respective signal.
2
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
3
The system clock frequency needs to be three times faster than the TCK frequency.
1
2
MCKO
3
MDO
MSEO
EVTO
Output Data Valid
5
4
EVTI
Figure 38. Nexus output timing
3.22.4
External interrupt timing (IRQ pins)
Table 64. External interrupt timing (NMI IRQ)
No.
Symbol
Parameter
Conditions
Min Max Unit
1
tIPWL
SR IRQ pulse width low
—
TBD
—
ns
2
tIPWH
SR IRQ pulse width high
—
TBD
—
ns
—
TBD
—
ns
3
tICYC
SR IRQ edge to edge
time1
NOTES:
1 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
Table 65. External interrupt timing (GPIO IRQ)
No.
Symbol
Parameter
Conditions
Min Max Unit
1
tIPWL
SR IRQ pulse width low
—
TBD
—
ns
2
tIPWH
SR IRQ pulse width high
—
TBD
—
ns
3
tICYC
SR IRQ edge to edge time1
—
TBD
—
ns
NOTES:
1 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
115
Electrical characteristics
CLKOUT
IRQ
1
2
3
Figure 39. External interrupt timing
3.22.5
FlexCAN timing
Table 66. FlexCAN timing
No.
Symbol
Parameter
Conditions
Min
Max
Unit
1
fCAN_TX CC FlexCAN design target transmit data rate
—
10
—
MBit/s
2
fCAN_RX CC FlexCAN design target receive data rate
—
10
—
MBit/s
3.22.6
DSPI timing
Table 67. DSPI timing
No.
1
Symbol
tSCK
Parameter
CC DSPI cycle time
Conditions
Master (MTFE = 0)
Slave (MTFE = 0)
Slave receive only mode
1
Min
Max
Unit
62
—
ns
62
—
16
—
2
tCSC
CC PCS to SCK delay
—
16
—
ns
3
tASC
CC After SCK delay
—
16
—
ns
4
tSDC
CC SCK duty cycle
—
5
tA
6
tDIS
0.4 × tSCK 0.6 × tSCK ns
CC Slave access time
SS active to SOUT valid
—
40
ns
CC Slave SOUT disable time
SS inactive to SOUT High-Z or invalid
—
10
ns
7
tPCSC CC PCSx to PCSS time
—
13
—
ns
8
tPASC CC PCSS to PCSx time
—
13
—
ns
PXS30 Microcontroller Data Sheet, Rev. 1
116
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 67. DSPI timing (continued)
No.
9
10
11
12
13
Symbol
tSUI
tHI
tSUO
tHO
tDT
Parameter
CC Data setup time for inputs
CC Data hold time for inputs
CC Data valid (after SCK edge)
CC Data hold time for outputs
CC Delay after Transfer
(minimum CS negation time)
Conditions
Min
Max
Unit
Master (MTFE = 0)
20
—
ns
Slave
2
—
Master (MTFE = 1, CPHA = 0)
5
—
Master (MTFE = 1, CPHA = 1)
20
—
Master (MTFE = 0)
–5
—
Slave
4
—
Master (MTFE = 1, CPHA = 0)
11
—
Master (MTFE = 1, CPHA = 1)
–5
—
Master (MTFE = 0)
—
4
Slave
—
23
Master (MTFE = 1, CPHA = 0)
—
11
Master (MTFE = 1, CPHA = 1)
—
5
Master (MTFE = 0)
–2
—
Slave
6
—
Master (MTFE = 1, CPHA = 0)
6
—
Master (MTFE = 1, CPHA = 1)
–2
—
Continuous mode
Non-continuos mode2
62
134
—
—
ns
ns
ns
ns
NOTES:
1 Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. Note that in this mode, the DSPI can
receive data on SIN, but no valid data is transmitted on SOUT.
2 In non-continuous mode, this value is always t
SCK × DSPI_CTARn[DT] × DSPI_CTARn[PDT]. The minimum
permissible value of DT is 2 and the minimum permissible value of PDT is 1. See the DSPI chapter of the PXS30
Reference Manual (PXS30RM) for more information.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
117
Electrical characteristics
2
3
PCSx
1
4
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
10
9
SIN
First Data
Last Data
Data
12
SOUT
First Data
11
Data
Last Data
Figure 40. DSPI classic SPI timing—master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
10
SCK Output
(CPOL=1)
9
SIN
Data
First Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Figure 41. DSPI classic SPI timing—master, CPHA = 1
PXS30 Microcontroller Data Sheet, Rev. 1
118
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3
2
SS
1
4
SCK Input
(CPOL=0)
4
SCK Input
(CPOL=1)
5
First Data
SOUT
9
6
Data
Last Data
Data
Last Data
10
First Data
SIN
11
12
Figure 42. DSPI classic SPI timing—slave, CPHA = 0
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 43. DSPI classic SPI timing—slave, CPHA = 1
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
119
Electrical characteristics
3
PCSx
4
1
2
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
11
First Data
Last Data
Data
Figure 44. DSPI modified transfer format timing—master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
SCK Output
(CPOL=1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Figure 45. DSPI modified transfer format timing—master, CPHA = 1
PXS30 Microcontroller Data Sheet, Rev. 1
120
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3
2
SS
1
SCK Input
(CPOL=0)
4
4
SCK Input
(CPOL=1)
First Data
SOUT
Data
6
Last Data
10
9
Data
First Data
SIN
12
11
5
Last Data
Figure 46. DSPI modified transfer format timing—slave, CPHA = 0
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
First Data
SOUT
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 47. DSPI modified transfer format timing—slave, CPHA = 1
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
121
Electrical characteristics
SCK (CPOL = 0)
SCK (CPOL = 1)
Master SOUT
Master SIN
PCSx
3
2
2
13
Figure 48. Example of non-continuous format (CPHA = 1, CONT = 0)
SCK (CPOL = 0)
SCK (CPOL = 1)
Master SOUT
Master SIN
PCS
2
3
2
Figure 49. Example of continuous transfer (CPHA = 1, CONT = 1)
8
7
PCSS
PCSx
Figure 50. DSPI PCS strobe (PCSS) timing
3.22.7
PDI timing
Table 68. PDI electrical characteristics
No.
1
Symbol
Parameter
Conditions
Min
Max
Unit
—
15
—
ns
tPDI_CLOCK SR PDI clock period
PXS30 Microcontroller Data Sheet, Rev. 1
122
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 68. PDI electrical characteristics (continued)
No.
2
Symbol
tPDI_IS
3
tPDI_IH
Parameter
Conditions
Min
Max
Unit
—
3
—
ns
—
3
—
ns
SR Input setup time1
SR Input hold
time1
NOTES:
1
Data can be captured at both launching and capturing edge of PDI_CLK.
PDI_CLOCK
1
2
3
PDI_DATA[15:0]
PDI_LINE_V
Input Data Valid
PDI_FRAME_V
PDI timing
3.22.8
Fast ethernet interface
MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals
are not TTL compatible. They follow the CMOS electrical characteristics.
3.22.8.1
MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the system clock frequency must exceed four times the
RX_CLK frequency.
Table 69. MII receive signal timing
No.
Parameter
Min
Max
Unit
1
RXD[3:0], RX_DV, RX_ER to RX_CLK setup
5
—
ns
2
RX_CLK to RXD[3:0], RX_DV, RX_ER hold
5
—
ns
3
RX_CLK pulse width high
40%
60%
RX_CLK period
4
RX_CLK pulse width low
40%
60%
RX_CLK period
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
123
Electrical characteristics
3
RX_CLK (input)
4
RXD[3:0] (inputs)
RX_DV
RX_ER
2
1
Figure 51. MII receive signal timing diagram
3.22.8.2
MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the system clock frequency must exceed four times the
TX_CLK frequency.
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising
or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of
non-compliant MII PHYs.
Refer to the Ethernet chapter for details of this option and how to enable it.
Table 70. MII transmit signal timing1
No.
Parameter
Min
Max
Unit
5
TX_CLK to TXD[3:0], TX_EN, TX_ER invalid
5
—
ns
6
TX_CLK to TXD[3:0], TX_EN, TX_ER valid
—
25
ns
7
TX_CLK pulse width high
40%
60%
TX_CLK period
8
TX_CLK pulse width low
40%
60%
TX_CLK period
NOTES:
1
Output pads configured with SRC = 0b11.
7
TX_CLK (input)
5
8
TXD[3:0] (outputs)
TX_EN
TX_ER
6
Figure 52. MII transmit signal timing diagram
PXS30 Microcontroller Data Sheet, Rev. 1
124
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
3.22.8.3
MII async inputs signal timing (CRS and COL)
Table 71. MII async inputs signal timing1
No.
9
Parameter
CRS, COL minimum pulse width
Min
Max
Unit
1.5
—
TX_CLK period
NOTES:
1
Output pads configured with SRC = 0b11.
CRS, COL
9
Figure 53. MII async inputs timing diagram
3.22.8.4
MII serial management channel timing (MDIO and MDC)
The FEC functions correctly with a maximum MDC frequency of 5 MHz.
Table 72. MII serial management channel timing1
No.
Parameter
Min
Max
Unit
10
MDC falling edge to MDIO output invalid (minimum propagation delay)
0
—
ns
11
MDC falling edge to MDIO output valid (max prop delay)
—
25
ns
12
MDIO (input) to MDC rising edge setup
10
—
ns
13
MDIO (input) to MDC rising edge hold
0
—
ns
14
MDC pulse width high
40%
60%
MDC period
15
MDC pulse width low
40%
60%
MDC period
NOTES:
1 Output pads configured with SRC = 0b11.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
125
Electrical characteristics
14
15
MDC (output)
10
MDIO (output)
11
MDIO (input)
12
13
Figure 54. MII serial management channel timing diagram
3.22.9
External Bus Interface (EBI) timing
Table 73. EBI timing
45 MHz (Ext. Bus Freq)1
No.
Symbol
Parameter
Unit
Notes
—
ns
Signals are measured
at 50% VDDE.
45%
55%
tC
—
Min
Max
CC D_CLKOUT period
22.2
1
tC
2
tCDC
CC D_CLKOUT duty cycle
3
tCRT
CC D_CLKOUT rise time
—
—
ns
—
4
tCFT
CC D_CLKOUT fall time
—
—
ns
—
5
tCOH
CC D_CLKOUT posedge to output
signal invalid or high Z (hold time)
1.0
—
ns
—
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
PXS30 Microcontroller Data Sheet, Rev. 1
126
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
Table 73. EBI timing (continued)
45 MHz (Ext. Bus Freq)1
No.
6
Symbol
tCOV
Parameter
CC D_CLKOUT posedge to output
signal valid (output delay)
Unit
Notes
10
ns
—
7.5
—
ns
—
1.0
—
ns
—
Min
Max
—
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
7
tCIS
CC Input signal valid to D_CLKOUT
posedge (setup time)
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
8
tCIH
CC D_CLKOUT posedge to input signal
invalid (hold time)
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
9
tAPW
CC D_ALE pulse width
6.5
—
ns
The timing is for
Asynchronous
external memory
system.
10
tAAI
CC D_ALE negated to address invalid
1.5
—
ns
The timing is for
Asynchronous
external memory
system.
ALE is measured at
50% of VDDE.
NOTES:
1 Speed is the nominal maximum frequency. Maximum core speed allowed is 180 MHz plus frequency modulation
(FM).
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
127
Electrical characteristics
VOH_F
VDDE / 2
D_CLKOUT
VOL_F
2
3
2
4
1
Figure 55. D_CLKOUT timing
VDDE / 2
D_CLKOUT
6
5
5
Output
Bus
VDDE / 2
6
5
5
Output
Signal
VDDE / 2
6
Output
Signal
VDDE / 2
Figure 56. Synchronous output timing
PXS30 Microcontroller Data Sheet, Rev. 1
128
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
D_CLKOUT
VDDE / 2
7
8
Input
Bus
VDDE / 2
7
8
Input
Signal
VDDE / 2
Figure 57. Synchronous input timing
ipg_clk
D_CLKOUT
D_ALE
D_TS
D_ADD/D_DAT
DATA
ADDR
9
10
Figure 58. ALE signal timing
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
129
Electrical characteristics
3.22.10 I2C Timing
Table 74. I2C SCL and SDA input timing specifications
Value
No.
Symbol
Parameter
Unit
Min
Max
1
—
D Start condition hold time
2
—
IP bus cycle1
2
—
D Clock low time
8
—
IP bus cycle1
4
—
D Data hold time
0.0
—
ns
6
—
D Clock high time
4
—
IP bus cycle1
7
—
D Data setup time
0.0
—
ns
8
—
D Start condition setup time (for repeated start condition only)
2
—
IP bus cycle1
9
—
D Stop condition setup time
2
—
IP bus cycle1
NOTES:
1 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.
Table 75. I2C SCL and SDA output timing specifications
Value
No.
Symbol
Parameter
Unit
Min Max
11
—
D Start condition hold time
6
—
IP bus cycle2
21
—
D Clock low time
10
—
IP bus cycle1
33
—
D SCL/SDA rise time
—
99.6
ns
1
4
—
D Data hold time
7
—
IP bus cycle1
51
—
D SCL/SDA fall time
—
99.5
ns
61
—
D Clock high time
10
—
IP bus cycle1
71
—
D Data setup time
2
—
IP bus cycle1
81
—
D Start condition setup time (for repeated start condition only)
20
—
IP bus cycle1
91
—
D Stop condition setup time
10
—
IP bus cycle1
NOTES:
1 Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings
listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.
The actual position is affected by the prescale and division values programmed in IFDR.
2
Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.
3 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.
PXS30 Microcontroller Data Sheet, Rev. 1
130
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Electrical characteristics
2
5
6
SCL
3
1
7
4
8
9
SDA
Figure 59. I2C input/output timing
3.22.11 LINFlex timing
The maximum bit rate is 1.875 MBit/s.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
131
Package characteristics
4
Package characteristics
4.1
Package mechanical data
4.1.1
257 MAPBGA
Figure 60. 257 MAPBGA mechanical data (1 of 2)
PXS30 Microcontroller Data Sheet, Rev. 1
132
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package characteristics
Figure 61. 257 MAPBGA mechanical data (2 of 2)
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
133
Package characteristics
4.1.2
473 MAPBGA
Figure 62. 473 MAPBGA package mechanical data (1 of 3)
PXS30 Microcontroller Data Sheet, Rev. 1
134
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Package characteristics
Figure 63. 473 MAPBGA package mechanical data (2 of 3)
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
135
Package characteristics
Figure 64. 473 MAPBGA package mechanical data (3 of 3)
PXS30 Microcontroller Data Sheet, Rev. 1
136
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Orderable parts
5
Orderable parts
M PX S 30 20 V MS 2 R
Qualification status
Brand
Family
Class
Flash memory size
Temperature range
Package identifier
Operating frequency
Tape and reel indicator
Qualification status
P = Pre-qualification (engineering samples)
M = Fully spec. qualified, general market flow
S = Fully spec. qualified, automotive flow
Temperature range
V = –40 °C to 105 °C
(ambient)
Family
D = Display Graphics
N = Connectivity/Network
R = Performance/Real Tiime Control
S = Safety
Package identifier
MM = 257 BGA
MS = 473 BGA
Operating frequency
1 = 150 MHz
2 = 180 MHz
Flash Memory Size
10 = 1 MB
15 = 1.5 MB
20 = 2 MB
Tape and reel status
R = Tape and reel
(blank) = Trays
Note: Not all options are available on all devices. See Table 76 for more information.
Figure 65. PXS30 orderable part number description
Table 76. PXS30 orderable part number summary
Flash/SRAM
Package
Speed
(MHz)
MPXS3010VMM150
1 MB/256 KB
257 MAPBGA (14 mm x 14 mm)
150
MPXS3015VMS180
1.5 MB/384 KB
473 MAPBGA (19 mm x 19 mm)
180
MPXS3020VMS180
2 MB/512 KB
473 MAPBGA (19 mm x 19 mm)
180
Part number
6
Reference documents
1.
2.
3.
4.
5.
Nexus (IEEE-ISTO 5001™—2008)
Measurement of emission of ICs—IEC 61967-2
Measurement of emission of ICs—IEC 61967-4
Measurement of immunity of ICs—IEC 62132-4
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134 USA
(408) 943-6900
6. JEDEC specifications are available at http://www.jedec.org
7. MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering
Documents at 800-854-7179 or 303-397-7956.
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
137
Document revision history
8. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
9. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled
Applications,” Electronic Packaging and Production, pp. 53–58, March 1998.
10. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance
and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp.
212–220.
7
Document revision history
Table 77 summarizes revisions to this document.
Table 77. Revision history
Revision
1
Date
Description of Changes
30 Sep 2011 Initial release.
PXS30 Microcontroller Data Sheet, Rev. 1
138
Preliminary—Subject to Change Without Notice
Freescale Semiconductor
Document revision history
How to Reach Us:
Home Page:
www.freescale.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express
or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits or integrated circuits based on the information in this
document.
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does not
convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in
which the failure of the Freescale Semiconductor product could create a situation
where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Freescale Semiconductor and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.
© Freescale Semiconductor, Inc. 2011. All rights reserved.
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: PXS30
Rev. 1
October 3, 2011 1:35 pm
PXS30 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
139
Similar pages