IS42S32200E IS45S32200E 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM FEATURES • Clock frequency: 200, 166, 143, 133 MHz • Fully synchronous; all signals referenced to a positive clock edge • Internal bank for hiding row access/precharge • Single 3.3V power supply AUGUST 2009 OVERVIEW ISSI's 64Mb Synchronous DRAM IS42/45S32200E is organized as 524,288 bits x 32-bit x 4-bank for improved performance. The synchronous DRAMs achieve highspeed data transfer using pipeline architecture. All inputs and outputs signals refer to the rising edge of the clock input. • LVTTL interface • Programmable burst length: (1, 2, 4, 8, full page) • Programmable burst sequence: Sequential/Interleave • Self refresh modes • 4096 refresh cycles every 16ms (A2 grade) or 64ms (Commercia, Industrial, A1 grade) • Random column address every clock cycle • Programmable CAS latency (2, 3 clocks) • Burst read/write and burst read/single write operations capability KEY TIMING PARAMETERS Parameter Clk Cycle Time CAS Latency = 3 CAS Latency = 2 Clk Frequency CAS Latency = 3 CAS Latency = 2 Access Time from Clock CAS Latency = 3 CAS Latency = 2 -5 -6 -7 -75E Unit 5 10 6 10 7 10 – 7.5 ns ns 200 100 166 100 143 100 – 133 Mhz Mhz 5 8 5.5 8 5.5 8 – 5.5 ns ns • Burst termination by burst stop and precharge command OPTIONS • Packages: 86-pin TSOP-II 90-ball TF-BGA • Operating temperature range: Commercial (0oC to + 70oC) Industrial (-40oC to + 85oC) Automotive Grade, A1 (-40oC to + 85oC) Automotive Grade, A2: (-40oC to +105oC) Copyright © 2006 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 1 IS42S32200E, IS45S32200E GENERAL DESCRIPTION The 64Mb SDRAM is a high speed CMOS, dynamic random-access memory designed to operate in 3.3V memory systems containing 67,108,864 bits. Internally configured as a quad-bank DRAM with a synchronous interface. Each 16,777,216-bit bank is organized as 2,048 rows by 256 columns by 32 bits. The 64Mb SDRAM includes an AUTO REFRESH MODE, and a power-saving, power-down mode. All signals are registered on the positive edge of the clock signal, CLK. All inputs and outputs are LVTTL compatible. The 64Mb SDRAM has the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during burst access. A self-timed row precharge initiated at the end of the burst sequence is available with the AUTO PRECHARGE function enabled. Precharge one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation. SDRAM read and write accesses are burst oriented starting at a selected location and continuing for a programmed number of locations in a programmed sequence. The registration of an ACTIVE command begins accesses, followed by a READ or WRITE command. The ACTIVE command in conjunction with address bits registered are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A10 select the row). The READ or WRITE commands in conjunction with address bits registered are used to select the starting column location for the burst access. Programmable READ or WRITE burst lengths consist of 1, 2, 4 and 8 locations or full page, with a burst terminate option. FUNCTIONAL BLOCK DIAGRAM DQM0-3 DATA IN BUFFER COMMAND DECODER & CLOCK GENERATOR 32 11 DQ 0-31 SELF REFRESH A10 CONTROLLER A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 BA0 BA1 32 REFRESH CONTROLLER MODE REGISTER 32 VDD/VDDQ DATA OUT BUFFER GND/GNDQ 32 11 MULTIPLEXER REFRESH COUNTER ROW ADDRESS LATCH 11 11 COLUMN ADDRESS LATCH ROW ADDRESS BUFFER ROW DECODER CLK CKE CS RAS CAS WE 2048 2048 2048 2048 MEMORY CELL ARRAY BANK 0 SENSE AMP I/O GATE 256 (x 32) BANK CONTROL LOGIC BURST COUNTER COLUMN ADDRESS BUFFER 2 COLUMN DECODER Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E PIN CONFIGURATIONS 86 pin TSOP - Type II for x32 VDD 1 86 VSS DQ0 2 85 DQ15 VDDQ 3 84 VSSQ DQ1 4 83 DQ14 DQ2 5 82 DQ13 VSSQ 6 81 VDDQ DQ3 7 80 DQ12 DQ4 8 79 DQ11 VDDQ 9 78 VSSQ DQ5 10 77 DQ10 DQ6 11 76 DQ9 VSSQ 12 75 VDDQ DQ7 13 74 DQ8 NC 14 73 NC VDD 15 72 VSS DQM0 16 71 DQM1 WE 17 70 NC CAS 18 69 NC RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VSSQ DQ23 42 45 DQ24 VDD 43 44 VSS PIN DESCRIPTIONS A0-A10 A0-A7 BA0, BA1 DQ0 to DQ31 CLK CKE Row Address Input Column Address Input Bank Select Address Data I/O System Clock Input Clock Enable CS Chip Select RAS Row Address Strobe Command CAS Column Address Strobe Command Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 WE DQM0-DQM3 Vdd Vss Vddq Vssq NC Write Enable x32 Input/Output Mask Power Ground Power Supply for I/O Pin Ground for I/O Pin No Connection 3 IS42S32200E, IS45S32200E PIN CONFIGURATION package code: B 90 bALL Tf-bga (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch) 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P R DQ26 DQ24 VSS VDD DQ23 DQ21 DQ28 VDDQ VSSQ VDDQ VSSQ DQ19 VSSQ DQ27 DQ25 DQ22 DQ20 VDDQ VSSQ DQ29 DQ30 DQ17 DQ18 VDDQ VDDQ DQ31 NC NC DQ16 VSSQ VSS DQM3 A3 A2 DQM2 VDD A4 A5 A6 A10 A0 A1 A7 A8 NC NC BA1 NC CLK CKE A9 BA0 CS RAS DQM1 NC NC CAS WE DQM0 VSS VDD DQ7 VSSQ VSSQ DQ10 DQ9 DQ6 DQ5 VDDQ VSSQ DQ12 DQ14 DQ1 DQ3 VDDQ VDDQ DQ8 DQ11 VDDQ VSSQ DQ13 DQ15 VSS VDDQ VSSQ DQ4 VDD DQ0 DQ2 PIN DESCRIPTIONS 4 A0-A10 A0-A7 BA0, BA1 DQ0 to DQ31 CLK CKE Row Address Input Column Address Input Bank Select Address Data I/O System Clock Input Clock Enable CS Chip Select RAS Row Address Strobe Command CAS Column Address Strobe Command WE DQM0-DQM3 Vdd Vss Vddq Vssq NC Write Enable x32 Input/Output Mask Power Ground Power Supply for I/O Pin Ground for I/O Pin No Connection Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E PIN FUNCTIONS Symbol A0-A10 Pin No. (TSOP) 25 to 27 60 to 66 24 Type Input Pin BA0, BA1 22,23 Input Pin CAS 18 Input Pin CKE 67 Input Pin CLK 68 Input Pin CS 20 Input Pin DQ0 to 2, 4, 5, 7, 8, 10,11,13 DQ31 74,76,77,79,80,82,83,85 45,47,48,50,51,53,54,56 31,33,34,36,37,39,40,42 DQM0 16,28,59,71 DQM3 DQ Pin Input Pin RAS 19 Input Pin WE 17 Input Pin Vddq Vdd GNDq GND 3,9,35,41,49,55,75,81 1,15,29,43 6,12,32,38,46,52,78,84 44,58,72,86 Supply Pin Supply Pin Supply Pin Supply Pin Function (In Detail) Address Inputs: A0-A10 are sampled during the ACTIVE command (row-address A0-A10) and READ/WRITE command (A0-A7 with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command. Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. CAS, in conjunction with the RAS and WE, forms the device command. See the "Command Truth Table" for details on device commands. The CKE input determines whether the CLK input is enabled. The next rising edge of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE is LOW, the device will be in either power-down mode, clock suspend mode, or self refresh mode. CKE is an asynchronous input. CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin. The CS input determines whether command input is enabled within the device. Command input is enabled when CS is LOW, and disabled with CS is HIGH. The device remains in the previous state when CS is HIGH. DQ0 to DQ15 are DQ pins. DQ through these pins can be controlled in byte units using the DQM0-DQM3 pins DQMx control thel ower and upper bytes of the DQ buffers. In read mode, the output buffers are place in a High-Z state. During a WRITE cycle the input data is masked. When DQMx is sampled HIGH and is an input mask signal for write accesses and an output enable signal for read accesses. DQ0 through DQ7 are controlled by DQM0. DQ8 throughDQ15 are controlled by DQM1. DQ16 through DQ23 are controlled by DQM2. DQ24 through DQ31 are controlled by DQM3. RAS, in conjunction with CAS and WE, forms the device command. See the "Command Truth Table" item for details on device commands. WE, in conjunction with RAS and CAS, forms the device command. See the "Command Truth Table" item for details on device commands. Vddq is the output buffer power supply. Vdd is the device internal power supply. GNDq is the output buffer ground. GND is the device internal ground. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 5 IS42S32200E, IS45S32200E READ AUTO PRECHARGE does not apply except in full-page burst mode. Upon completion of the READ or WRITE burst, a precharge of the bank/row that is addressed is automatically performed. The READ command selects the bank from BA0, BA1 inputs and starts a burst read access to an active row. Inputs A0-A7 provides the starting column location. When A10 is HIGH, this command functions as an AUTO PRECHARGE command. When the auto precharge is selected, the row being accessed will be precharged at the end of the READ burst. The row will remain open for subsequent accesses when AUTO PRECHARGE is not selected. DQ’s read data is subject to the logic level on the DQM inputs two clocks earlier. When a given DQM signal was registered HIGH, the corresponding DQ’s will be High-Z two clocks later. DQ’s will provide valid data when the DQM signal was registered LOW. This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period (trc) is required for a single refresh operation, and no other commands can be executed during this period. This command is executed at least 4096 times every tref. During an AUTO REFRESH command, address bits are “Don’t Care”. This command corresponds to CBR Auto-refresh. WRITE SELF REFRESH A burst write access to an active row is initiated with the WRITE command. BA0, BA1 inputs selects the bank, and the starting column location is provided by inputs A0-A7. Whether or not AUTO-PRECHARGE is used is determined by A10. The row being accessed will be precharged at the end of the WRITE burst, if AUTO PRECHARGE is selected. If AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses. A memory array is written with corresponding input data on DQ’s and DQM input logic level appearing at the same time. Data will be written to memory when DQM signal is LOW. When DQM is HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location. During the SELF REFRESH operation, the row address to be refreshed, the bank, and the refresh interval are generated automatically internally. SELF REFRESH can be used to retain data in the SDRAM without external clocking, even if the rest of the system is powered down. The SELF REFRESH operation is started by dropping the CKE pin from HIGH to LOW. During the SELF REFRESH operation all other inputs to the SDRAM become “Don’t Care”.The device must remain in self refresh mode for a minimum period equal to tras or may remain in self refresh mode for an indefinite period beyond that.The SELF-REFRESH operation continues as long as the CKE pin remains LOW and there is no need for external control of any other pins. The next command cannot be executed until the device internal recovery period (trc) has elapsed. Once CKE goes HIGH, the NOP command must be issued (minimum of two clocks) to provide time for the completion of any internal refresh in progress. After the self-refresh, since it is impossible to determine the address of the last row to be refreshed, an AUTO-REFRESH should immediately be performed for all addresses. PRECHARGE The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. BA0, BA1 can be used to select which bank is precharged or they are treated as “Don’t Care”. A10 determined whether one or all banks are precharged. After executing this command, the next command for the selected banks(s) is executed after passage of the period tRP, which is the period required for bank precharging. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. AUTO REFRESH COMMAND BURST TERMINATE The BURST TERMINATE command forcibly terminates the burst read and write operations by truncating either fixed-length or full-page bursts and the most recently registered READ or WRITE command prior to the BURST TERMINATE. AUTO PRECHARGE COMMAND INHIBIT The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst. This function allows for individual-bank precharge without requiring an explicit command. A10 to enables the AUTO PRECHARGE function in conjunction with a specific READ or WRITE command. For each individual READ or WRITE command, auto precharge is either enabled or disabled. NO OPERATION 6 COMMAND INHIBIT prevents new commands from being executed. Operations in progress are not affected, apart from whether the CLK signal is enabled When CS is low, the NOP command prevents unwanted commands from being registered during idle or wait states. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E LOAD MODE REGISTER During the LOAD MODE REGSITER command the mode register is loaded from A0-A10. This command can only be issued when all banks are idle. ACTIVE COMMAND When the ACTIVE COMMAND is activated, BA0, BA1 inputs selects a bank to be accessed, and the address inputs on A0-A10 selects the row. Until a PRECHARGE command is issued to the bank, the row remains open for accesses. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 7 IS42S32200E, IS45S32200E TRUTH TABLE – COMMANDS AND DQM OPERATION(1) FUNCTION COMMAND INHIBIT (NOP) NO OPERATION (NOP) ACTIVE (Select bank and activate row)(3) READ (Select bank/column, start READ burst)(4) WRITE (Select bank/column, start WRITE burst)(4) BURST TERMINATE PRECHARGE (Deactivate row in bank or banks)(5) AUTO REFRESH or SELF REFRESH(6,7) (Enter self refresh mode) LOAD MODE REGISTER(2) Write Enable/Output Enable(8) Write Inhibit/Output High-Z(8) CS H L L L L L L L RAS X H L H H H L L CAS X H H L L H H L WE X H H H L L L H DQM X X X L/H(8) L/H(8) X X X ADDR X X Bank/Row Bank/Col Bank/Col X Code X DQs X X X X Valid Active X X L — L — L — L — X L Op-Code — X Active — — — — H — High-Z NOTES: 1. CKE is HIGH for all commands except SELF REFRESH. 2. A0-A10 define the op-code written to the mode register. 3. A0-A10 provide row address, and BA0, BA1 determine which bank is made active. 4. A0-A7 (x32) provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW disables auto precharge; BA0, BA1 determine which bank is being read from or written to. 5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are “Don’t Care.” 6. AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. 7. Internal refresh counter controls row addressing; all inputs and DQs are “Don’t Care” except for CKE. 8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay). 8 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E TRUTH TABLE – CKE (1-4) CURRENT STATE Power-Down Self Refresh Clock Suspend Power-Down(5) Self Refresh(6) Clock Suspend(7) All Banks Idle All Banks Idle Reading or Writing COMMANDn X X X COMMAND INHIBIT or NOP COMMAND INHIBIT or NOP X COMMAND INHIBIT or NOP AUTO REFRESH VALID ACTIONn Maintain Power-Down Maintain Self Refresh Maintain Clock Suspend Exit Power-Down Exit Self Refresh Exit Clock Suspend Power-Down Entry Self Refresh Entry Clock Suspend Entry See TRUTH TABLE – CURRENT STATE BANK n, COMMAND TO BANK n CKEn-1 L L L L L L H H H CKEn L L L H H H L L L H H NOTES: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. 2. Current state is the state of the SDRAM immediately prior to clock edge n. 3. COMMANDn is the command registered at clock edge n, and ACTONn is a result of COMMANDn. 4. All states and sequences not shown are illegal or reserved. 5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n+1 (provided that tcks is met). 6. Exiting self refresh at clock edge n will put the device in all banks idle state once txsr is met. COMMAND INHIBIT or NOP commands should be issued on clock edges occurring during the txsr period. A minimum of two NOP commands must be sent during txsr period. 7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next command at clock edge n+1. TRUTH TABLE – CURRENT STATE BANK n, COMMAND TO BANK n (1-6) CURRENT STATE Any Idle Row Active Read (Auto Precharge Disabled) Write (Auto Precharge Disabled) COMMAND (ACTION) COMMAND INHIBIT (NOP/Continue previous operation) NO OPERATION (NOP/Continue previous operation) ACTIVE (Select and activate row) AUTO REFRESH(7) LOAD MODE REGISTER(7) PRECHARGE(11) READ (Select column and start READ burst)(10) WRITE (Select column and start WRITE burst)(10) PRECHARGE (Deactivate row in bank or banks)(8) READ (Select column and start new READ burst)(10) WRITE (Select column and start WRITE burst)(10) PRECHARGE (Truncate READ burst, start PRECHARGE)(8) BURST TERMINATE(9) READ (Select column and start READ burst)(10) WRITE (Select column and start new WRITE burst)(10) PRECHARGE (Truncate WRITE burst, start PRECHARGE)(8) BURST TERMINATE(9) CS RAS CAS WE H X X X L H H H L L H H L L L H L L L L L L H L L H L H L H L L L L H L L H L H L H L L L L H L L H H L L H L H L H L L L L H L L H H L NOTE: 1. This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Truth Table - CKE) and after txsr has been met (if the previous state was self refresh). 2. This table is bank-specific, except where noted; i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 9 IS42S32200E, IS45S32200E 3. Current state definitions: Idle: The bank has been precharged, and trp has been met. Row Active: A row in the bank has been activated, and trcd has been met. No data bursts/accesses and no register accesses are in progress. Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. 4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and CURRENT STATE BANK n truth tables. Precharging: Starts with registration of a PRECHARGE command and ends when trp is met. Once trp is met, the bank will be in the idle state. Row Activating: Starts with registration of an ACTIVE command and ends when trcd is met. Once trcd is met, the bank will be in the row active state. Read w/Auto Precharge Enabled: Starts with registration of a READ command with auto precharge enabled and ends when trp has been met. Once trp is met, the bank will be in the idle state. Write w/Auto Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when trp has been met. Once trp is met, the bank will be in the idle state. 5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an AUTO REFRESH command and ends when trc is met. Once trc is met, the SDRAM will be in the all banks idle state. Accessing Mode Register: Starts with registration of a LOAD MODE REGISTER command and ends when tmrd has been met. Once tmrd is met, the SDRAM will be in the all banks idle state. Precharging All: Starts with registration of a PRECHARGE ALL command and ends when trp is met. Once trp is met, all banks will be in the idle state. 6. All states and sequences not shown are illegal or reserved. 7. Not bank-specific; requires that all banks are idle. 8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for precharging. 9. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank. 10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled. 11. Does not affect the state of the bank and acts as a NOP to that bank. 10 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E TRUTH TABLE – CURRENT STATE BANK n, COMMAND TO BANK m (1-6) CURRENT STATE Any Idle Row Activating, Active, or Precharging Read (Auto Precharge Disabled) Write (Auto Precharge Disabled) Read (With Auto Precharge) Write (With Auto Precharge) COMMAND (ACTION) COMMAND INHIBIT (NOP/Continue previous operation) NO OPERATION (NOP/Continue previous operation) Any Command Otherwise Allowed to Bank m ACTIVE (Select and activate row) READ (Select column and start READ burst)(7) WRITE (Select column and start WRITE burst)(7) PRECHARGE ACTIVE (Select and activate row) READ (Select column and start new READ burst)(7,10) WRITE (Select column and start WRITE burst)(7,11) PRECHARGE(9) ACTIVE (Select and activate row) READ (Select column and start READ burst)(7,12) WRITE (Select column and start new WRITE burst) PRECHARGE(9) ACTIVE (Select and activate row) READ (Select column and start new READ burst)(7,8,14) WRITE (Select column and start WRITE burst)(7,8,15) PRECHARGE(9) ACTIVE (Select and activate row) READ (Select column and start READ burst)(7,8,16) WRITE (Select column and start new WRITE burst)(7,8,17) PRECHARGE(9) (7,13) CS RAS CAS WE H X X X L H H H X X X X L L H H L H L H L H L L L L H L L L H H L H L H L H L L L L H L L L H H L L L L L L L L L L L H H L L H H L L H H L L L H H L L H H L L H H L L H H L L H H L L NOTE: 1. This table applies when CKE n-1 was HIGH and CKE n is HIGH (Truth Table - CKE) and after txsr has been met (if the previous state was self refresh). 2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3. Current state definitions: Idle: The bank has been precharged, and trp has been met. Row Active: A row in the bank has been activated, and trcd has been met. No data bursts/accesses and no register accesses are in progress. Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or been terminated. Read w/Auto Precharge Enabled: Starts with registration of a READ command with auto precharge enabled, and ends when trp has been met. Once trp is met, the bank will be in the idle state. Write w/Auto Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled, and ends when trp has been met. Once trp is met, the bank will be in the idle state. 4. AUTO REFRESH, SELF REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle. 5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6. All states and sequences not shown are illegal or reserved. 7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 11 IS42S32200E, IS45S32200E 8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the AUTO PRECHARGE command when its burst has been interrupted by bank m’s burst. 9. Burst in bank n continues as initiated. 10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the READ on bank n, CAS latency later (Consecutive READ Bursts). 11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the READ on bank n when registered (READ to WRITE). DQM should be used one clock prior to the WRITE command to prevent bus contention. 12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the WRITE on bank n when registered (WRITE to READ), with the data-out appearing CAS latency later. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m. 13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the WRITE on bank n when registered (WRITE to WRITE). The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m. 14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is registered (Fig CAP 1). 15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (Fig CAP 2). 16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to bank n will begin after tWR is met, where twr begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m (Fig CAP 3). 17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after twr is met, where t WR begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock prior to the WRITE to bank m (Fig CAP 4). 12 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E FUNCTIONAL DESCRIPTION Initialization The 64Mb SDRAMs 512K x 32 x 4 banks) are quad-bank DRAMs which operate at 3.3V and include a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 16,777,216-bit banks is organized as 2,048 rows by 256 columns by 32bits. Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-A10 select the row).The address bits (A0-A7) registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation. SDRAMs must be powered up and initialized in a predefined manner. The 64M SDRAM is initialized after the power is applied to Vdd and Vddq (simultaneously) and the clock is stable. A 100µs delay is required prior to issuing any command other than a COMMAND INHIBIT or a NOP. The COMMAND INHIBIT or NOP may be applied during the 100us period and continue should at least through the end of the period. With at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied once the 100µs delay has been satisfied. All banks must be precharged. This will leave all banks in an idle idle state where two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SRDRAM is then ready for mode register programming. The mode register should be loaded prior to applying any operational command because it will power up in an unknown state. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 13 IS42S32200E, IS45S32200E Register Definition Mode Register Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4- M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10 and M11 and M12 are reserved for future use. The mode register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation.Violating either of these requirements will result in unspecified operation. The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS\ latency, an operating mode and a write burst mode, as shown in MODE REGISTER DEFINITION. The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power. MODE REGISTER DEFINITION BA0,1 0 (1) A10/AP 0 A9 A8 A7 A6 A5 A4 (1) A3 A2 A1 A0 Address Bus Burst Type M3Type 0 1 Sequential Interleaved Burst Length M2 M1 M0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Sequential Interleave 1 2 4 8 Reserved Reserved Reserved Full Page 1 2 4 8 Reserved Reserved Reserved Reserved Latency Mode M6 M5 M4 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 CAS Latency Reserved Reserved 2 3 Reserved Reserved Reserved Reserved MRS M8 M7 MRS 0 — Mode Register Set All Other States Reserved 0 — Write Burst Mode M9 0 1 14 Mode Burst Write Single-Bit Write Note: 1. Maintain low during Mode Register Set. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E Burst Length Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in MODE REGISTER DEFINITION. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, mean- ing that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-A7 (x32) when the burst length is set to two; by A2-A7 (x32) when the burst length is set to four; and by A3-A7 (x32) when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached. Burst Type Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in BURST DEFINITION table. Burst Definition BurstStarting Column Order of Accesses Within a Burst Length Address Type = Sequential Type = Interleaved A0 2 0 0-1 0-1 1 1-0 1-0 A1 A0 0 0 0-1-2-3 0-1-2-3 4 0 1 1-2-3-0 1-0-3-2 1 0 2-3-0-1 2-3-0-1 1 1 3-0-1-2 3-2-1-0 A2 A1 A0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 8 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 Full n = A0-A7 Cn, Cn + 1, Cn + 2 Not Supported Page Cn + 3, Cn + 4... (y) (location 0-y) …Cn - 1, Cn… Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 15 IS42S32200E, IS45S32200E CAS Latency Operating Mode The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in CAS Latency diagrams. The Allowable Operating Frequency table indicates the operating frequencies at which each CAS latency setting can be used. Reserved states should not be used as unknown operation or incompatibility with future versions may result. The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts. Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result. Write Burst Mode When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses. CAS Latency Allowable Operating Frequency (MHz) Speed -5 -6 -7 -75E CAS Latency = 2 100 100 100 133 CAS Latency = 3 200 166 143 – CAS Latency T0 T1 T2 T3 READ NOP NOP CLK COMMAND tAC DOUT DQ tOH tLZ CAS Latency - 2 T0 T1 T2 T3 T4 READ NOP NOP NOP CLK COMMAND tAC DOUT DQ tLZ tOH CAS Latency - 3 DON'T CARE UNDEFINED 16 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E Operation Activating Specific Row Within Specific Bank BANK/ROW ACTIVATION Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be “opened.” This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated (see Activating Specific Row Within Specific Bank). After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the trcd specification. Minimum trcd should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a trcd specification of 20ns with a 125 MHz clock (8ns period) results in 2.5 clocks, rounded to 3. This is reflected in the following example, which covers any case where 2 < [trcd (MIN)/tck] ≤ 3. (The same procedure is used to convert other specification limits from time units to clock cycles). A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been “closed” (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by trc. CLK CKE HIGH - Z CS RAS CAS WE A0-A10 ROW ADDRESS BA0, BA1 BANK ADDRESS A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by trrd. Example: Meeting trcd (MIN) when 2 < [trcd (min)/tck] ≤ 3 T0 T1 T2 ACTIVE NOP NOP T3 T4 CLK COMMAND READ or WRITE tRCD DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 17 IS42S32200E, IS45S32200E READs READ bursts are initiated with a READ command, as shown in the READ COMMAND diagram. The starting column and bank addresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, auto precharge is disabled. During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. The CAS Latency diagram shows general timing for each possible CAS latency setting. Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.) Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length READ burst may be immediately followed by data from a READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new READ command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in Consecutive READ Bursts for CAS latencies of two and three; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. The 64Mb SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle following a previous READ command. Full-speed random read accesses can be performed to the same bank, as shown in Random READ Accesses, or each subsequent READ may be performed to a different bank. Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length READ burst may be immediately followed by data from a WRITE command (subject to bus turnaround limitations). The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that DQ contention can be avoided. In a given system design, there may be a possibility that the device driving the input data will go Low-Z before the SDRAM DQs go High-Z. In this case, at least a single-cycle delay should occur between the last read data and the WRITE command. 18 READ COMMAND CLK CKE HIGH-Z CS RAS CAS WE A0-A7 COLUMN ADDRESS A8, A9 AUTO PRECHARGE A10 NO PRECHARGE BA0, BA1 BANK ADDRESS The DQM input is used to avoid DQ contention, as shown in Figures RW1 and RW2. The DQM signal must be asserted (HIGH) at least two clocks prior to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or remain High-Z), regardless of the state of the DQM signal, provided the DQM was active on the clock just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during T4 in Figure RW2, then the WRITEs at T5 and T7 would be valid, while the WRITE at T6 would be invalid. The DQM signal must be de-asserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data is not masked. Figure RW1 shows the case where the clock frequency allows for bus contention to be avoided without adding a NOP cycle, and Figure RW2 shows the case where the additional NOP is needed. A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page burst may be truncated with a PRECHARGE command to the Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E same bank.The PRECHARGE command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in the READ to PRECHARGE diagram for each possible CAS latency; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until trp is met. Note that part of the row precharge time is hidden during the access of the last data element(s). In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRE- CHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts. Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts may be truncated with a BURST TERMINATE command, provided that auto precharge was not activated.The BURST TERMINATE command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in the READ Burst Termination diagram for each possible CAS latency; data element n + 3 is the last desired data element of a longer burst. CAS Latency T0 T1 T2 T3 READ NOP NOP CLK COMMAND tAC DOUT DQ tOH tLZ CAS Latency - 2 T0 T1 T2 T3 T4 READ NOP NOP NOP CLK COMMAND tAC DOUT DQ tLZ tOH CAS Latency - 3 DON'T CARE UNDEFINED Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 19 IS42S32200E, IS45S32200E Consecutive READ Bursts T0 T1 T2 T3 T4 T5 T6 READ NOP NOP NOP READ NOP NOP DOUT n+3 DOUT b CLK COMMAND x =1 cycle BANK, COL n ADDRESS BANK, COL b DQ DOUT n DOUT n+1 DOUT n+2 CAS Latency - 2 DON'T CARE T0 T1 T2 T3 T4 READ NOP NOP NOP READ T5 T6 T7 NOP NOP NOP DOUT n+3 DOUT b CLK COMMAND x = 2 cycles ADDRESS BANK, COL n BANK, COL b DQ DOUT n DOUT n+1 DOUT n+2 CAS Latency - 3 DON'T CARE 20 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E Random READ Accesses T0 T1 T2 T3 T4 T5 COMMAND READ READ READ READ NOP NOP ADDRESS BANK, COL n BANK, COL b BANK, COL m BANK, COL x CLK DQ DOUT n DOUT b DOUT m DOUT x CAS Latency - 2 DON'T CARE T0 T1 T2 T3 T4 T5 T6 COMMAND READ READ READ READ NOP NOP NOP ADDRESS BANK, COL n BANK, COL b BANK, COL m BANK, COL x CLK DQ DOUT n DOUT b DOUT m DOUT x CAS Latency - 3 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 21 IS42S32200E, IS45S32200E RW1 - READ to WRITE T0 T1 T2 T3 T4 COMMAND READ NOP NOP NOP ADDRESS BANK, COL n CLK DQM WRITE BANK, COL b tHZ DOUT n DQ DIN b tDS CAS Lantency 3 DON'T CARE RW2 - READ to WRITE With Extra Clock Cycle T0 T1 T2 T3 T4 T5 COMMAND READ NOP NOP NOP NOP WRITE ADDRESS BANK, COL n CLK DQM BANK, COL b tHZ DOUT n DQ DIN b tDS CAS Lantency 3 22 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E READ to PRECHARGE T0 T1 T2 T3 T4 T5 T6 T7 CLK tRP COMMAND READ NOP NOP NOP NOP PRECHARGE NOP ACTIVE x = 1 cycle ADDRESS BANK a, COL n BANK (a or all) DQ DOUT n DOUT n+1 BANK a, ROW DOUT n+2 DOUT n+3 CAS Latency - 2 DON'T CARE T0 T1 T2 T3 T4 T5 T6 T7 CLK tRP COMMAND READ NOP NOP NOP NOP PRECHARGE NOP ACTIVE x = 2 cycles ADDRESS BANK, COL n BANK, COL b DQ DOUT n DOUT n+1 BANK a, ROW DOUT n+2 DOUT n+3 CAS Latency - 3 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 23 IS42S32200E, IS45S32200E READ Burst Termination T0 T1 T2 T3 T4 READ NOP NOP NOP T5 T6 NOP NOP CLK COMMAND BURST TERMINATE x = 1 cycle BANK a, COL n ADDRESS DQ DOUT n DOUT n+1 DOUT n+2 DOUT n+3 CAS Latency - 2 DON'T CARE T0 T1 T2 T3 READ NOP NOP NOP T4 T5 T6 T7 NOP NOP NOP CLK COMMAND BURST TERMINATE x = 2 cycles ADDRESS BANK, COL n DQ DOUT n DOUT n+1 DOUT n+2 DOUT n+3 CAS Latency - 3 DON'T CARE 24 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E WRITEs WRITE bursts are initiated with a WRITE command, as shown in WRITE Command diagram. WRITE Command CLK CKE HIGH - Z CS RAS CAS WE A0-A7 COLUMN ADDRESS A8, A9 AUTO PRECHARGE A10 NO PRECHARGE BA0, BA1 BANK ADDRESS The starting column and bank addresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following illustrations, auto precharge is disabled. During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored (see WRITE Burst). A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.) Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 An example is shown in WRITE to WRITE diagram. Data n + 1 is either the last of a burst of two or the last desired of a longer burst. The 64Mb SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A WRITE command can be initiated on any clock cycle following a previous WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Random WRITE Cycles, or each subsequent WRITE may be performed to a different bank. Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE burst may be immediately followed by a subsequent READ command. Once the READ com mand is registered, the data inputs will be ignored, and WRITEs will not be executed. An example is shown in WRITE to READ. Data n + 1 is either the last of a burst of two or the last desired of a longer burst. Data for a fixed-length WRITE burst may be fol lowed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued twr after the clock edge at which the last desired input data element is registered. The auto precharge mode requires a twr of at least one clock plus time, regardless of frequency. In addition, when truncating a WRITE burst, the DQM signal must be used to mask input data for the clock edge prior to, and the clock edge coincident with, the PRECHARGE command. An example is shown in the WRITE to PRECHARGE diagram. Data n+1 is either the last of a burst of two or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until trp is met. In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge.The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts. Fixed-length or full-page WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with the BURST TERMINATE command will be ignored. The last data written (provided that DQM is LOW at that time) will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in WRITE Burst Termination, where data n is the last desired data element of a longer burst. 25 IS42S32200E, IS45S32200E WRITE Burst T0 T1 T2 T3 COMMAND WRITE NOP NOP NOP ADDRESS BANK, COL n CLK DQ DIN n DIN n+1 Burst length = 2 DQM ix low. DON'T CARE WRITE to WRITE T0 T1 T2 COMMAND WRITE NOP WRITE ADDRESS BANK, COL n CLK DQ BANK, COL b DIN n DIN n+1 DIN b DQMx is low. Each Write Command DON'T CARE may be to any bank. Random WRITE Cycles T0 T1 T2 T3 COMMAND WRITE WRITE WRITE WRITE ADDRESS BANK, COL n BANK, COL b BANK, COL m BANK, COL x DIN b DIN m DIN x CLK DQ DIN n DQMx is low. Each Write Command may be to any bank. 26 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E WRITE to READ T0 T1 T2 T3 T4 T5 COMMAND WRITE NOP READ NOP NOP NOP ADDRESS BANK, COL n DOUT b DOUT b+1 CLK DQ BANK, COL b DIN n DIN n+1 DON'T CARE WRITE to PRECHARGE (twr = 1 CLK (tck ≥ twr) T0 T1 T2 T3 T4 T5 T6 CLK DQM tRP COMMAND WRITE ADDRESS BANK a, COL n NOP PRECHARGE BANK (a or all) NOP NOP ACTIVE NOP BANK a, ROW tWR DQ DIN n DIN n+1 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 27 IS42S32200E, IS45S32200E WRITE to PRECHARGE (twr = 2 CLK (twr > tck) T0 T1 T2 T3 T4 T5 T6 CLK DQM tRP COMMAND WRITE ADDRESS BANK a, COL n NOP NOP PRECHARGE NOP BANK (a or all) NOP ACTIVE BANK a, ROW tWR DQ DIN n DIN n+1 DON'T CARE WRITE Burst Termination T0 T1 T2 COMMAND WRITE BURST TERMINATE NEXT COMMAND ADDRESS BANK, COL n CLK DQ DIN n (ADDRESS) (DATA) DON'T CARE 28 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E PRECHARGE Command PRECHARGE The PRECHARGE command (see figure) is used to deactivate the open row in a particular bank or the open row in all banks.The bank(s) will be available for a subsequent row access some specified time (trp) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are treated as “Don’t Care.” Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. CLK CKE HIGH - Z CS RAS CAS WE A0-A9 ALL BANKS A10 POWER-DOWN Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in either bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device may not remain in the power-down state longer than the refresh period (tref) since no refresh operations are performed in this mode. The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE HIGH at the desired clock edge (meeting tcks). See figure below. BANK SELECT BA0, BA1 BANK ADDRESS POWER-DOWN CLK ≥ tCKS tCKS CKE COMMAND NOP All banks idle NOP Input buffers gated off Enter power-down mode Exit power-down mode ACTIVE tRCD tRAS tRC DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 29 IS42S32200E, IS45S32200E CLOCK SUSPEND Clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend mode, the internal clock is deactivated, “freezing” the synchronous logic. For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is suspended. Any command or data present on the input pins at the time of a suspended internal clock edge is ignored; any data present on the DQ pins remains driven; and burst counters are not incremented, as long as the clock is suspended. (See following examples.) Clock suspend mode is exited by registering CKE HIGH; the internal clock and related operation will resume on the subsequent positive clock edge. Clock Suspend During WRITE Burst T0 T1 NOP WRITE T2 T3 T4 T5 NOP NOP DIN n+1 DIN n+2 CLK CKE INTERNAL CLOCK COMMAND BANK a, COL n ADDRESS DQ DIN n Burst Length 4 or greater DQM is low. DON'T CARE Clock Suspend During READ Burst T0 T1 T2 COMMAND READ NOP NOP ADDRESS BANK a, COL n T3 T4 T5 T6 NOP NOP NOP CLK CKE INTERNAL CLOCK DQ DOUT n CAS Latency=2. Burst Length =4 or greater. DQM is low. 30 DOUT n+1 DOUT n+2 DOUT n+3 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E BURST READ/SINGLE WRITE SDRAMs support CONCURRENT AUTO PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below. The burst read/single write mode is entered by programming the write burst mode bit (M9) in the mode register to a logic 1. In this mode, all WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0). READ with Auto Precharge 1. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is registered. 2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered. CONCURRENT AUTO PRECHARGE An access command (READ or WRITE) to another bank while an access command with auto precharge enabled is executing is not allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. ISSI Fig CAP 1 - READ With Auto Precharge interrupted by a READ T0 T1 T2 T3 T4 T5 T6 T7 NOP NOP NOP NOP CLK NOP COMMAND BANK n READ - AP BANK n Page Active NOP READ - AP BANK m READ with Burst of 4 Interrupt Burst, Precharge Idle tRP - BANK n Internal States BANK m Page Active READ with Burst of 4 BANK n, COL a ADDRESS tRP - BANK m Precharge BANK m, COL b DQ DOUT a DOUT a+1 DOUT b DOUT b+1 CAS Latency - 3 (BANK n) DON'T CARE CAS Latency - 3 (BANK m) Fig CAP 2 - READ With Auto Precharge interrupted by a WRITE T0 T1 T2 T3 NOP NOP NOP T4 T5 T6 T7 NOP NOP NOP CLK COMMAND Read - AP BANK n BANK n Internal States READ with Burst of 4 Interrupt Burst, Precharge Page Active BANK m ADDRESS WRITE - AP BANK m tRP - BANK n Page Active tRP - BANK m WRITE with Burst of 4 BANK n, COL a Idle Write-Back BANK m, COL b DQM DOUT a DQ CAS Latency - 3 (BANK n) Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 DIN b DIN b+1 DIN b+2 DIN b+3 DON'T CARE 31 IS42S32200E, IS45S32200E WRITE with Auto Precharge 4. Interrupted by a WRITE (with or without auto precharge): AWRITE to bank m will interrupt a WRITE on bank n when registered. The PRECHARGE to bank n will begin after twr is met, where twr begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank m. 3. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to bank n will begin after twr is met, where twr begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m. Fig CAP 3 - WRITE With Auto Precharge interrupted by a READ T0 T1 T2 T3 T4 T5 T6 T7 NOP NOP NOP NOP CLK NOP COMMAND BANK n WRITE - AP BANK n Page Active NOP READ - AP BANK m WRITE with Burst of 4 Interrupt Burst, Write-Back Precharge tWR - BANK n tRP - BANK n Internal States BANK m Page Active READ with Burst of 4 BANK n, COL a ADDRESS DQ DIN a tRP - BANK m Precharge BANK m, COL b DIN a+1 DOUT b DOUT b+1 CAS Latency - 3 (BANK m) DON'T CARE Fig CAP 4 - WRITE With Auto Precharge interrupted by a WRITE T0 T1 T2 T3 NOP NOP T4 T5 T6 T7 NOP NOP NOP CLK NOP COMMAND BANK n WRITE - AP BANK n Page Active WRITE with Burst of 4 WRITE - AP BANK m Interrupt Burst, Write-Back tWR - BANK n Internal States BANK m ADDRESS DQ Page Active WRITE with Burst of 4 BANK n, COL a DIN a Precharge tRP - BANK n tRP - BANK m Write-Back BANK m, COL b DIN a+1 DIN a+2 DIN b DIN b+1 DIN b+2 DIN b+3 DON'T CARE 32 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E ABSOLUTE MAXIMUM RATINGS(1) Symbol Parameters Vdd max Maximum Supply Voltage Vddq max Maximum Supply Voltage for Output Buffer Vin Input Voltage Vout Output Voltage Pd max Allowable Power Dissipation IcsOutput Shorted Current Topr Operating Temperature Com. Ind. A1: A2: Tstg Storage Temperature Rating –1.0 to +4.6 –1.0 to +4.6 –1.0 to +4.6 –1.0 to +4.6 1 50 0 to +70 –40 to +85 –40 to +85 –40 to +105 –55 to +150 Unit V V V V W mA °C °C DC RECOMMENDED OPERATING CONDITIONS(2,5) (Ta = 0°C to +70°C for Com. grade. Ta = -40°C to +85°C for Ind. and A1 grade, Ta = -40°C to +105°C for A2 grade) Symbol Vdd, Vddq Vih Vil Parameter Supply Voltage Input High Voltage(3) Input Low Voltage(4) Min. 3.0 2.0 -0.3 Typ. 3.3 — — Max. 3.6 Vdd + 0.3 +0.8 Unit V V V CAPACITANCE CHARACTERISTICS(1,2) (At Ta = 0 to +25°C, Vdd = Vddq = 3.3 ± 0.3V, f = 1 MHz) Symbol Cin1 Cin2 CI/O Parameter Input Capacitance: A0-A10, BA0, BA1 Input Capacitance: (CLK, CKE, CS, RAS, CAS, WE, LDQM, UDQM) Data Input/Output Capacitance: DQ0-DQ31 Typ. — — — Max. 4 4 5 Unit pF pF pF Notes: 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. All voltages are referenced to GND. 3. Vih (max) = Vddq + 1.2V with a pulse width ≤ 3 ns. The pluse width cannot be greater than one third of the cycle rate. 4. Vil (min) = GND – 1.2V with a pulse < 3 ns. The pluse width cannot be greater than one third of the cycle rate. 5. An initial pause of 100us is required after power up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (Vdd and VddQ must be powered up simultaneously. GND and GNDQ must be at same potential.) The two AUTO REFRESH command wake-ups should be repeated anytime the tref refresh requirement is exceeded. Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 33 IS42S32200E, IS45S32200E DC ELECTRICAL CHARACTERISTICS 1 (Recommended Operation Conditions unless otherwise noted.) Symbol Parameter Test Condition (1) Idd1 Operating Current One bank active, CL = 3, BL = 1, tclk = tclk (min), trc = trc (min) Idd2p Precharge Standby Current CKE ≤ Vil (max), tck = 15ns (In Power-Down Mode) Idd2ps Precharge Standby Current CKE ≤ Vil (max), CLK ≤ Vil (max) (In Power-Down Mode) (2) Idd2n Precharge Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) (In Non Power-Down Mode) tck = 15ns Idd2ns Precharge Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) or (In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable (2) Idd3n Active Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) (In Non Power-Down Mode) tck = 15ns Idd3ns Active Standby Current CS ≥ Vdd - 0.2V, CKE ≥ Vih (min) or (In Non Power-Down Mode) CKE ≤ Vil (max), All inputs stable Idd3p Active Standby Current CKE ≤ Vil (max), tck = 15ns (Power-Down Mode) Idd3ps Active Standby Current CKE ≤ Vil (max), CLK ≤ Vil (max) (Power-Down Mode) Idd4 Operating Current All banks active, BL = 4, CL = 3, tck = tck (min) Idd5 Auto-Refresh Current trc = trc (min), tclk = tclk (min) Idd6 Self-Refresh Current CKE ≤ 0.2V -5 180 -6 150 -7 130 -75E 130 Unit mA 2 2 2 2 mA 2 2 45 45 2 2 mA 45 45 mA 30 30 30 30 mA 55 55 55 55 mA 30 30 30 30 mA 8 8 8 8 mA 8 8 8 8 mA 200 160 140 160 mA 150 2 130 2 120 2 130 2 mA mA Notes: 1. Idd (max) is specified at the output open condition. 2. Input signals are changed one time during 30ns. 3. Test condition for -75E is CL = 2. DC ELECTRICAL CHARACTERISTICS 2 (Recommended Operation Conditions unless otherwise noted.) Symbol Iil Parameter Input Leakage Current Iol Voh Vol Output Leakage Current Output High Voltage Level Output Low Voltage Level 34 Test Condition 0V ≤ Vin ≤ Vdd, with pins other than the tested pin at 0V Output is disabled, 0V ≤ Vout ≤ Vdd, Ioh = -2mA Iol = 2mA Min -5 Max 5 Unit µA -5 2.4 — 5 — 0.4 µA V V Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E AC ELECTRICAL CHARACTERISTICS (1,2,3) Symbol Parameter Condition tck3 Clock Cycle Time CAS Latency = 3 tck2 CAS Latency = 2 tac3 Access Time From CLK(4) CAS Latency = 3 tac2 CAS Latency = 2 tch CLK HIGH Level Width tcl CLK LOW Level Width toh Output Data Hold Time tlz Output LOW Impedance Time thz3 Output HIGH Impedance Time(5) CAS Latency = 3 thz2 CAS Latency = 2 tds Input Data Setup Time tdh Input Data Hold Time tas Address Setup Time tah Address Hold Time tcks CKE Setup Time tckh CKE Hold Time tcka CKE to CLK Recovery Delay Time tcs Command Setup Time (CS, RAS, CAS, WE, DQM) tch Command Hold Time (CS, RAS, CAS, WE, DQM) trc Command Period (REF to REF / ACT to ACT) tras Command Period (ACT to PRE) trp Command Period (PRE to ACT) trcd Active Command To Read / Write Command Delay Time trrd Command Period (ACT [0] to ACT[1]) Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 -5 -6 -7-75E Min. Max. Min.Max. Min. Max. Min. Max. Units 5 — 6 — 7 — — — ns 10 — 10 — 10 — 7.5 — ns — 5 — 5.5 — 5.5 — — ns — 8 — 8 — 8 — 5.5 ns 2 — 2.5 — 2.5 — 2.5 — ns 2 — 2.5 — 2.5 — 2.5 — ns 2.5 — 2.5 — 2.5 — 2.5 — ns 0 — 0 — 0 — 0 — ns — 5 — 5.5 — 5.5 — — ns — 8 — 8 — 8 — 5.5 ns 1.5 — 1.5 — 1.5 — 1.5 — ns 0.8 — 0.8 — 0.8 — 0.8 — ns 1.5 — 1.5 — 1.5 — 1.5 — ns 0.8 — 0.8 — 0.8 — 0.8 — ns 1.5 — 1.5 — 1.5 — 1.5 — ns 0.8 — 0.8 — 0.8 — 0.8 — ns 1CLK+3 — 1CLK+3 — 1CLK+3 — 1CLK+3 — ns 1.5 — 1.5 — 1.5 — 1.5 — ns 0.8 — 0.8 — 0.8 — 0.8 — ns 55 — 60 — 70 — 67.5 — ns 40 120K 42 120K 42 120K 45 120K ns 15 — 18 — 20 — 15 — ns 15 — 18 — 20 — 15 — ns 10 — 12 — 14 — 15 — ns 35 IS42S32200E, IS45S32200E AC ELECTRICAL CHARACTERISTICS (1,2,3) -5 -6 -7 -75E Symbol Parameter Condition Min. Max. Min. Max. Min. Max. Min. Max. Units tdpl3 Input Data To Precharge CAS Latency = 3 2CLK — 2CLK — 2CLK — — — ns Command Delay time tdpl2 CAS Latency = 2 2CLK — 2CLK — 2CLK — 2CLK — ns tdal3 Input Data To Active / Refresh CAS Latency = 3 2CLK+trp — 2CLK+trp — 2CLK+trp — — — ns Command Delay time (During Auto-Precharge) tdal2 CAS Latency = 2 2CLK+trp — 2CLK+trp — 2CLK+trp — 2CLK+trp — ns tt Transition Time(2) 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 ns twr Write Recovery Time 1CLK+5ns — 1CLK+6ns — 1CLK+7ns — 1CLK+7.5ns — tck txsr Exit Self Refresh and Active Command(6) 60 — 66 — 77 — 75 — ns o tref Refresh Cycle Time (4096) Ta ≤ 70 C Com, Ind, — 64 — 64 — 64 — 64 ms A1, A2 Ta ≤ 85oC Ind,A1,A2 — — — 64 — 64 — 64 ms Ta > 85oC A2 — — — — — 16 — — ms Notes: 1. An initial pause of 100us is required after power up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (Vdd and Vddq must be powered up simultaneously. GND and GNDQ must be at same potential.) The two AUTO REFRESH command wake-ups should be repeated anytime the tref refresh requirement is exceeded. 2. Measured with tt = 0.5 ns. 3. The reference level is 1.5V when measuring input signal timing. Rise/fall times are measured between Vih (min.) and Vil (max.). 4. Access time is measured at 1.5V with the load shown in the figure below. 5. The time thz (max.) is defined as the time required for the output voltage to transition by ± 200 mV from Voh (min.) or Vol (max.) when the output is in the high impedance state. 6. CLK must be toggled a minimum of two times during this period. 36 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E OPERATING FREQUENCY / LATENCY RELATIONSHIPS(1) Symbol — — tccd tcked tped tdqd tdqm tdqz tdwd tdal Parametercondition Clock Cycle Time Operating Frequency CL=3 READ/WRITE command to READ/WRITE command CKE to clock disable or power-down entry mode CKE to clock enable or power-down exit setup mode DQM to input data delay DQM to data mask during WRITEs DQM to data high-impedance during READs WRITE command to input data delay Data-in to ACTIVE command CL=3 CL=2 tdpl Data-in to PRECHARGE command Last data-in to burst STOP command Last data-in to new READ/WRITE command Last data-in to PRECHARGE command LOAD MODE REGISTER command to ACTIVE or REFRESH command Data-out to high-impedance from CL = 3 PRECHARGE command CL = 2 tbdl tcdl trdl tmrd troh -5 5 2001 1 1 1 0 0 2 0 5 4 -6 6 1661 1 1 1 0 0 2 0 5 4 -7 7 1431 1 1 1 0 0 2 0 5 4 -75E 7.5 1332 1 1 1 0 0 2 0 — 4 Units ns MHz cycle cycle cycle cycle cycle cycle cycle cycle 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 cycle cycle cycle cycle cycle 3 2 3 2 3 2 — 2 cycle Note: 1. If CL = 2, the minimum tck2 is 10ns for -5, -6 and -7. 2. For -75E. CAS Latency = 2. AC TEST CONDITIONS (Input/Output Reference Level: 1.4V) Input Load Output Load tCK tCHI tCL 3V 50 Ω CLK 1.4V 0V tCS I/O tCH +1.4V 3V 30 pF INPUT 1.4V 0V tAC tOH OUTPUT 1.4V 1.4V Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 37 IS42S32200E, IS45S32200E Initialize and Load Mode Register T0 CLK T1 tCK Tn+1 tCH To+1 tCL Tp+1 Tp+2 Tp+3 tCKS tCKH CKE tCMH tCMS tCMH tCMS tCMH tCMS NOP PRECHARGE AUTO REFRESH COMMAND NOP AUTO REFRESH NOP Load MODE REGISTER NOP ACTIVE DQM0-DQM3 tAS tAH A0-A9 ALL BANKS A10 CODE tAS tAH ROW CODE ROW SINGLE BANK BA0, BA1 BANK ALL BANKS DQ T Power-up: VCC and CLK stable T = 100µs Min. 38 tRP Precharge all banks tRFC AUTO REFRESH tRFC AUTO REFRESH tMRD Program MODE REGISTER DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E Power-Down Mode Cycle T0 T1 tCK CLK tCKS tCKH T2 tCL Tn+1 Tn+2 tCH tCKS tCKS CKE tCMS tCMH COMMAND PRECHARGE NOP NOP NOP ACTIVE DQM0-DQM3 A0-A9 A10 BA0, BA1 DQ ROW ALL BANKS ROW SINGLE BANK tAS tAH BANK BANK High-Z Two clock cycles Precharge all active banks All banks idle, enter power-down mode Input buffers gated off while in power-down mode All banks idle Exit power-down mode DON'T CARE CAS latency = 2, 3 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 39 IS42S32200E, IS45S32200E Clock Suspend Mode T0 CLK tCK T1 tCKS tCKH tCL T2 tCH T3 T4 T5 T6 NOP NOP NOP T7 T8 T9 tCKS tCKH CKE tCMS tCMH COMMAND READ NOP NOP WRITE NOP tCMS tCMH DQM0-DQM3 A0-A9 A10 BA0, BA1 tAS tAH COLUMN m(2) tAS tAH COLUMN n tAS tAH BANK BANK tAC DQ tAC DOUT m tLZ tHZ DOUT m+1 tDS tDH DIN N DIN N +1 tOH DON'T CARE UNDEFINED CAS latency = 2, burst length = 2 40 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E Auto-Refresh Cycle T0 CLK tCK T1 tCL T2 Tn+1 tCH To+1 tCKS tCKH CKE tCMS tCMH PRECHARGE COMMAND NOP Auto Refresh NOP Auto Refresh NOP ACTIVE DQM0-DQM3 A0-A9 ROW ALL BANKS A10 ROW SINGLE BANK BA0, BA1 DQ BANK BANK(s) tAS tAH High-Z tRP tRFC tRFC DON'T CARE CAS latency = 2, 3 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 41 IS42S32200E, IS45S32200E Self-Refresh Cycle T0 T1 tCK CLK T2 tCH tCKS tCKH Tn+1 To+1 To+2 tCL tCKS ≥ tRAS CKE tCKS tCMS tCMH COMMAND PRECHARGE NOP Auto Refresh NOP NOP Auto Refresh DQM0-DQM3 A0-A9 A10 BA0, BA1 DQ ALL BANKS SINGLE BANK tAS tAH BANK High-Z tXSR tRP Precharge all active banks Enter self refresh mode CLK stable prior to exiting Exit self refresh mode self refresh mode (Restart refresh time base) DON'T CARE Note: 1. Self-Refresh Mode is not supported for A2 grade with Ta > 85oC. 42 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E READ WITHOUT AUTO PRECHARGE T0 tCK CLK T1 tCL T2 tCH T3 T4 T5 T6 T7 T8 NOP ACTIVE tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ NOP NOP NOP PRECHARGE tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 ROW tAS tAH A10 ROW tAS tAH DISABLE AUTO PRECHARGE SINGLE BANK BANK BANK BANK BA0, BA1 ROW COLUMN m ALL BANKS ROW tAC DQ tRCD tLZ CAS Latency tRAS tRC BANK tAC DOUT m tAC DOUT m+1 tAC DOUT m+2 tHZ DOUT m+3 tOH tOH tOH tOH DON'T CARE tRP UNDEFINED CAS latency = 2, Burst Length = 4 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 43 IS42S32200E, IS45S32200E READ WITH AUTO PRECHARGE T0 tCK CLK T1 tCL T2 T3 tCH T4 T5 T6 T7 T8 NOP ACTIVE tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ NOP NOP NOP NOP tCMS tCMH DQM0-DQM3 tAS A0-A9 tAH COLUMN m) ROW tAS tAH A10 ROW tAS tAH BA0, BA1 BANK ROW ENABLE AUTO PRECHARGE ROW BANK BANK tAC DQ tRCD tRAS tRC tLZ CAS Latency tAC DOUT m tAC DOUT m+1 tAC DOUT m+2 tHZ DOUT m+3 tOH tOH tOH tOH tRP DON'T CARE UNDEFINED CAS latency = 2, Burst Length = 4 44 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E SINGLE READ WITHOUT AUTO PRECHARGE T0 tCK CLK T1 tCL T2 tCH T3 T4 T5 T6 T7 T8 ACTIVE NOP tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ NOP NOP PRECHARGE NOP tCMS tCMH DQM0-DQM3 tAS A0-A9 A10 BA0, BA1 tAH ROW tAS tAH ROW COLUMN m ALL BANKS ROW ROW tAS tAH DISABLE AUTO PRECHARGE BANK BANK SINGLE BANK BANK tAC DQ BANK tOH DOUT m tRCD tLZ CAS Latency tRAS tRC tHZ DON'T CARE tRP UNDEFINED CAS latency = 2, Burst Length = 1 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 45 IS42S32200E, IS45S32200E SINGLE READ WITH AUTO PRECHARGE T0 tCK CLK T1 tCL T2 tCH T3 T4 T5 T6 T7 NOP NOP T8 tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP NOP NOP READ ACTIVE NOP tCMS tCMH DQM0-DQM3 tAS A0-A9, A10 BA0, BA1 tAH ROW tAS tAH ROW COLUMN m ENABLE AUTO PRECHARGE ROW ROW tAS tAH BANK BANK BANK tOH tAC DQ DOUT m tRCD tRAS tRC tHZ CAS Latency tRP DON'T CARE UNDEFINED CAS latency = 2, Burst Length = 1 46 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E ALTERNATING BANK READ ACCESSES T0 CLK tCK T1 tCL T2 tCH T3 T4 T5 T6 T7 T8 NOP READ NOP tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ NOP ACTIVE ACTIVE tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 A10 BA0, BA1 ROW tAS tAH COLUMN m COLUMN b(2) ROW ENABLE AUTO PRECHARGE ROW ENABLE AUTO PRECHARGE ROW tAS tAH ROW BANK 0 BANK 0 ROW BANK 3 tLZ DQ BANK 3 tOH tOH DOUT m tAC tRCD - BANK 0 tOH DOUT m+1 tAC tAC tOH DOUT m+2 tOH DOUT m+3 tAC tAC tRP - BANK 0 CAS Latency - BANK 0 tRRD BANK 0 tRCD - BANK 3 DOUT b tAC tRCD - BANK 0 CAS Latency - BANK 3 tRAS - BANK 0 tRC - BANK 0 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 47 IS42S32200E, IS45S32200E READ - FULL-PAGE BURST T0 tCK CLK T1 tCL T2 tCH T3 T4 T5 T6 Tn+1 NOP NOP NOP Tn+2 Tn+3 Tn+4 NOP NOP tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ NOP NOP BURST TERM tCMS tCMH DQM0-DQM3 A0-A9, A10 BA0, BA1 tAS tAH ROW tAS tAH COLUMN m ROW tAS tAH BANK BANK tAC DQ tLZ tRCD CAS Latency tAC DOUT m tOH tAC DOUT m+1 tAC DOUT m+2 tOH each row (x32) has 256 locations tOH Full page completion 48 tAC DOUT m-1 tAC DOUT m tHZ DOUT m+1 tOH tOH tOH DON'T CARE Full-page burst not self-terminating. Use BURST TERMINATE command. UNDEFINED Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E READ - DQM OPERATION T0 tCK CLK T1 tCL T2 T3 T4 T5 T6 T7 T8 NOP NOP NOP NOP NOP NOP tCH tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP READ tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 ROW tAS tAH A10 ROW tAS tAH DISABLE AUTO PRECHARGE BANK BANK BA0, BA1 COLUMN m ENABLE AUTO PRECHARGE tAC DQ tLZ tRCD CAS Latency tOH DOUT m tHZ tAC tLZ tOH DOUT m+2 tAC tOH DOUT m+3 tHZ DON'T CARE UNDEFINED CAS Latency = 2, Burst Length = 4 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 49 IS42S32200E, IS45S32200E WRITE - WITHOUT AUTO PRECHARGE T0 CLK tCK T1 tCL T2 tCH T3 T4 T5 T6 NOP NOP NOP T7 T8 tCKS tCKH CKE tCMS tCMH ACTIVE COMMAND NOP WRITE PRECHARGE NOP ACTIVE tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 A10 ROW tAS tAH COLUMN m ROW tAS tAH BA0, BA1 ROW ALL BANKS ROW SINGLE BANK DISABLE AUTO PRECHARGE BANK BANK tDS DQ tDH DIN m tRCD tRAS tRC BANK tDS tDH DIN m+1 tDS tDH DIN m+2 tDS BANK tDH DIN m+3 tWR tRP DON'T CARE Burst Length = 4 50 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E WRITE - WITH AUTO PRECHARGE T0 CLK tCK T1 T2 tCL tCH T3 T4 T5 T6 T7 T8 T9 NOP NOP NOP NOP NOP NOP ACTIVE tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP WRITE tCMS tCMH DQM0-DQM3 A0-A9 A10 BA0, BA1 tAS tAH ROW tAS tAH ROW COLUMN m ENABLE AUTO PRECHARGE ROW tAS tAH ROW BANK BANK tDS DQ tDH DIN m BANK tDS tDH DIN m+1 tRCD tRAS tRC tDS tDH DIN m+2 tDS tDH DIN m+3 tWR tRP DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 51 IS42S32200E, IS45S32200E SINGLE WRITE - WITHOUT AUTO PRECHARGE T0 tCK CLK T1 tCL T2 tCH T3 T4 NOP NOP T5 T6 T7 T8 tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP WRITE PRECHARGE NOP ACTIVE NOP tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 A10 BA0, BA1 ROW tAS tAH COLUMN m ROW ALL BANKS ROW tAS tAH ROW SINGLE BANK DISABLE AUTO PRECHARGE BANK BANK BANK BANK tDS tDH DQ DIN m tRCD tRAS tRC 52 tWR tRP DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E SINGLE WRITE - WITH AUTO PRECHARGE T0 tCK CLK T1 tCL T2 tCH T3 T4 T5 T6 T7 NOP NOP NOP T8 T9 tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP NOP NOP WRITE ACTIVE NOP tCMS tCMH DQM0-DQM3 A0-A9 A10 BA0, BA1 tAS tAH ROW tAS tAH COLUMN m ROW tAS tAH ROW BANK BANK tDS DQ BANK tDH DIN m tRCD tRAS tRC Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 ROW ENABLE AUTO PRECHARGE tWR tRP DON'T CARE 53 IS42S32200E, IS45S32200E ALTERNATING BANK WRITE ACCESS T0 tCK CLK T1 T2 tCL tCH T3 T4 T5 T6 T7 T8 T9 NOP NOP tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP WRITE NOP ACTIVE NOP WRITE ACTIVE tCMS tCMH DQM0-DQM3 A0-A9 A10 BA0, BA1 tAS tAH ROW tAS tAH COLUMN m COLUMN b ROW ENABLE AUTO PRECHARGE ROW tAS tAH ROW ENABLE AUTO PRECHARGE ROW BANK 0 BANK 0 tDS DQ tDH DIN m tRCD - BANK 0 tRRD tRAS - BANK 0 tRC - BANK 0 ROW BANK 1 tDS tDH DIN m+1 BANK 1 tDS tDS tDH DIN m+2 tDH DIN m+3 tDS tDH DIN b tWR - BANK 0 tRCD - BANK 1 BANK 0 tDS tDH DIN b+1 tDS tDH DIN b+2 tRP - BANK 0 tDS tDH DIN b+3 tRCD - BANK 0 tWR - BANK 1 DON'T CARE 54 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E write - full page burst T0 T1 tCK CLK T2 tCL T3 T4 T5 Tn+1 Tn+2 NOP NOP NOP NOP BURST TERM tCH tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP WRITE NOP tCMS tCMH DQM0-DQM3 tAS A0-A9 A10 BA0, BA1 tAH ROW tAS tAH COLUMN m ROW tAS tAH BANK BANK tDS DQ tDH DIN m tRCD tDS tDH DIN m+1 tDS tDH DIN m+2 tDS tDH DIN m+3 tDS tDH tDS tDH DIN m-1 256 locations within same row Full page completed Full-page burst does not self-terminate. Can use BURST TERMINATE to stop. DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 55 IS42S32200E, IS45S32200E WRITE - DQM OPERATION T0 T1 T2 tCK CLK tCL T3 T4 T5 T6 T7 NOP NOP NOP NOP NOP tCH tCKS tCKH CKE tCMS tCMH COMMAND ACTIVE NOP WRITE tCMS tCMH DQM0-DQM3 tAS tAH A0-A9 A10 BA0, BA1 ROW tAS tAH COLUMN m ENABLE AUTO PRECHARGE ROW tAS tAH DISABLE AUTO PRECHARGE BANK BANK tDS DQ DIN m tRCD 56 tDH tDS tDH tDS tDH DIN m+2 DIN m+3 DON'T CARE Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 IS42S32200E, IS45S32200E ORDERING INFORMATION Commercial Range: 0°C to +70°C Frequency 200 MHz Speed (ns) 5 166 MHz 6 143 MHz 7 Order Part No. IS42S32200E-5TL IS42S32200E-5BL IS42S32200E-6TL IS42S32200E-6BL IS42S32200E-6B IS42S32200E-7TL IS42S32200E-7BL IS42S32200E-7B Package 400-mil TSOP II, Lead-free 90-ball BGA, Lead-free 400-mil TSOP II, Lead free 90-ball BGA, Lead-free 90-ball BGA 400-mil TSOP II, Lead free 90-ball BGA, Lead-free 90-ball BGA Order Part No. IS42S32200E-6TLI IS42S32200E-6BLI IS42S32200E-6BI IS42S32200E-7TLI IS42S32200E-7BLI Package 400-mil TSOP II, Lead free 90-ball BGA, Lead-free 90-ball BGA 400-mil TSOP II, Lead free 90-ball BGA, Lead-free Order Part No. IS45S32200E-6TLA1 IS45S32200E-6BLA1 IS45S32200E-7TLA1 IS45S32200E-7BLA1 IS45S32200E-7BA1 IS45S32200E-75ETLA1 IS45S32200E-75EBLA1 Package 400-mil TSOP II, Lead free 90-ball BGA, Lead-free 400-mil TSOP II, Lead free 90-ball BGA, Lead-free 90-ball BGA 400-mil TSOP II, Lead free 90-ball BGA, Lead-free Order Part No. IS45S32200E-7TLA2 IS45S32200E-7BLA2 Package 400-mil TSOP II, Lead free 90-ball BGA, Lead-free Industrial Range: -40°C to +85°C Frequency 166 MHz Speed (ns) 6 143 MHz 7 ORDERING INFORMATION Automotive Range: -40°C to +85°C Frequency 166 MHz Speed (ns) 6 143 MHz 7 133 MHz 7.5 Automotive Range: -40°C to +105°C Frequency 143 MHz Speed (ns) 7 Integrated Silicon Solution, Inc. — www.issi.com Rev. B 07/23/09 57 IS42S32200E, IS45S32200E Θ NOTE : 1. Controlling dimension : mm Θ 2. Dimension D and E1 do not include mold protrusion . 3. Dimension b does not include dambar protrusion/intrusion. 09/26/2006 4. Formed leads shall be planar with respect to one another within 0.1mm at the seating plane after final test. Package Outline Rev. B 07/23/09 Integrated Silicon Solution, Inc. — www.issi.com 58 IS42S32200E, IS45S32200E D1 0.80 Package Outline 0.45 NOTE : Rev. B 07/23/09 1. CONTROLLING DIMENSION : MM . 2. Reference document : JEDEC MO-207 08/14/2008 59 Integrated Silicon Solution, Inc. — www.issi.com