TI1 CDC2582PAHG4 3.3v phase-lock loop clock driver Datasheet

SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
D Low Output Skew for Clock-Distribution
D
D
D
D
D
D Application for Synchronous DRAMs
D Outputs Have Internal 26-Ω Series
and Clock-Generation Applications
Operates at 3.3-V VCC
Distributes Differential LVPECL Clock
Inputs to 12 TTL-Compatible Outputs
Two Select Inputs Configure Up to Nine
Outputs to Operate at One-Half or Double
the Input Frequency
No External RC Network Required
External Feedback Input (FBIN) Is Used to
Synchronize the Outputs With the Clock
Inputs
D
D
D
Resistors to Dampen Transmission-Line
Effects
State-of-the-Art EPIC-ΙΙB  BiCMOS Design
Significantly Reduces Power Dissipation
Distributed VCC and Ground Pins Reduce
Switching Noise
Packaged in 52-Pin Quad Flatpack
GND
SEL1
SEL0
AGND
FBIN
AGND
AVCC
CLKIN
CLKIN
AVCC
OE
TEST
CLR
PAH PACKAGE
(TOP VIEW)
1
52 51 50 49 48 47 46 45 44 43 42 41 40
39
2
38
3
37
4
36
5
35
6
34
7
33
8
32
9
31
10
30
11
29
12
28
13
27
14 15 16 17 18 19 20 21 22 23 24 25 26
VCC
4Y3
GND
VCC
4Y2
GND
VCC
4Y1
GND
GND
VCC
3Y3
GND
GND
2Y2
VCC
GND
2Y3
VCC
GND
GND
3Y1
VCC
GND
3Y2
VCC
GND
1Y1
VCC
GND
1Y2
VCC
GND
1Y3
VCC
GND
GND
2Y1
VCC
description
The CDC2582 is a high-performance, low-skew, low-jitter clock driver. It uses a phase-lock loop (PLL) to
precisely align the frequency and phase of the clock output signals to the differential LVPECL clock (CLKIN,
CLKIN) input signals. It is specifically designed to operate at speeds from 50 MHz to 100 MHz or down to 25 MHz
on outputs configured as half-frequency outputs. Each output has an internal 26-Ω series resistor that improves
the signal integrity at the load. The CDC2582 operates at 3.3-V VCC.
The feedback input (FBIN) synchronizes the frequency of the output clocks with the input clock (CLKIN, CLKIN)
signals. One of the twelve output clocks must be fed back to FBIN for the PLL to maintain synchronization
between the differential CLKIN and CLKIN inputs and the outputs. The output used as feedback is synchronized
to the same frequency as the clock (CLKIN and CLKIN) inputs.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC-ΙΙB is a trademark of Texas Instruments Incorporated.
Copyright  1996, Texas Instruments Incorporated
! " #$%! " &$'(#! )!%
)$#!" # ! "&%##!" &% !*% !%" %+" "!$%!"
"!)) ,!- )$#! &#%"". )%" ! %#%""(- #($)%
!%"!. (( &%!%"
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
1
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
description (continued)
The Y outputs can be configured to switch in phase and at the same frequency as differential clock inputs (CLKIN
and CLKIN). Select (SEL1, SEL0) inputs configure up to nine Y outputs, in banks of three, to operate at one-half
or double the differential clock input frequency, depending upon the feedback configuration (see Tables 1
and 2). All output signal duty cycles are adjusted to 50% independent of the duty cycle at the input clocks.
Output-enable (OE) is provided for output control. When OE is high, the outputs are in the low state. When OE
is low, the outputs are active. CLR is negative-edge triggered and can be used to reset the outputs operating
at half frequency. TEST is used for factory testing of the device and can be used to bypass the PLL. TEST should
be strapped to GND for normal operation.
Unlike many products containing a PLL, the CDC2582 does not require external RC networks. The loop filter
for the PLL is included on chip, minimizing component count, board space, and cost.
Because it is based on PLL circuitry, the CDC2582 requires a stabilization time to achieve phase lock of the
feedback signal to the reference signal. This stabilization time is required following power up and application
of a fixed-frequency, fixed-phase signal at CLKIN and CLKIN, as well as following any changes to the PLL
reference or feedback signal. Such changes occur upon change of SEL1 and SEL0, enabling the PLL via TEST,
and upon enable of all outputs via OE.
The CDC2582 is characterized for operation from 0°C to 70°C.
detailed description of output configurations
The voltage-controlled oscillator (VCO) used in the CDC2582 has a frequency range of 100 MHz to 200 MHz,
twice the operating frequency range of the CDC2582 outputs. The output of the VCO is divided by 2 and by 4
to provide reference frequencies with a 50% duty cycle of one-half and one-fourth the VCO frequency. SEL0
and SEL1 determine which of the two signals are buffered to each bank of device outputs.
One device output must be externally wired to FBIN to complete the PLL. The VCO operates such that the
frequency of this output matches that of the CLKIN/CLKIN signals. In the case that a VCO/2 output is wired to
FBIN, the VCO must operate at twice the CLKIN/CLKIN frequency, resulting in device outputs that operate at
the same or one-half the CLKIN/CLKIN frequency. If a VCO/4 output is wired to FBIN, the device outputs operate
at the same or twice the CLKIN/CLKIN frequency.
output configuration A
Output configuration A is valid when any output configured as a 1× frequency output in Table 1 is fed back to
FBIN. The frequency range for the differential clock input is 50 MHz to 100 MHz when using output configuration
A. Outputs configured as 1/2× outputs operate at half the input clock frequency, while outputs configured as 1×
outputs operate at the same frequency as the differential clock input.
Table 1. Output Configuration A
INPUTS
OUTPUTS
SEL0
1/2×
FREQUENCY
L
L
None
All
L
H
1Yn
2Yn, 3Yn, 4Yn
H
L
1Yn, 2Yn
3Yn, 4Yn
H
H
1Yn, 2Yn, 3Yn
4Yn
SEL1
1×
FREQUENCY
NOTE: n = 1, 2, 3
2
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
output configuration B
Output configuration B is valid when any output configured as a 1× frequency output in Table 2 is fed back to
FBIN. The frequency range for the differential clock inputs is 25 MHz to 50 MHz when using output configuration
B. Outputs configured as 1× outputs operate at the input clock frequency, while outputs configured as 2× outputs
operate at double the frequency of the differential clock inputs.
Table 2. Output Configuration B
INPUTS
OUTPUTS
SEL1
SEL0
1×
FREQUENCY
2×
FREQUENCY
L
L
All
None
L
H
1Yn
2Yn, 3Yn, 4Yn
H
L
1Yn, 2Yn
3Yn, 4Yn
H
H
1Yn, 2Yn, 3Yn
4Yn
NOTE: n = 1, 2, 3
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
3
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
functional block diagram
OE
CLR
FBIN
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÁÁÁÁÁÁÁÁÁÁ
ÎÎÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎÎÎÎ
Phase-Lock Loop
CLKIN
CLKIN
CLR
ÁÁÁÁ
B2
B2
TEST
SEL0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
One of Three Identical
Outputs − 1Yn
Select
Logic
SEL1
1Y1 −1Y3
One of Three Identical
Outputs − 2Yn
2Y1 −2Y3
One of Three Identical
Outputs − 3Yn
3Y1 −3Y3
One of Three Identical
Outputs − 4Yn
4Y1 −4Y3
4
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
CLKIN
CLKIN
44, 45
I
Clock input. CLKIN and CLKIN are the differential clock signals to be distributed by the CDC2582
clock-driver circuit. These inputs are used to provide the reference signal to the integrated PLL that
generates the clock-output signals. CLKIN and CLKIN must have a fixed frequency and fixed phase for the
PLL to obtain phase lock. Once the circuit is powered up and valid CLKIN and CLKIN signals are applied,
a stabilization time is required for the PLL to phase lock the feedback signal to its reference signal.
CLR
40
I
Clear. CLR is used to reset the VCO/4 reference frequency. CLR is negative-edge triggered and should be
strapped to VCC or GND for normal operation.
FBIN
48
I
Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be hardwired to one of
the twelve clock outputs to provide frequency and phase lock. The internal PLL adjusts the output clocks
to obtain zero-phase delay between the FBIN and the differential clock input (CLKIN and CLKIN).
OE
42
I
Output enable. OE is the output enable for all outputs. When OE is low, all outputs are enabled. When OE
is high, all outputs are in the high-impedance state. Since the feedback signal for the PLL is taken directly
from an output terminal, placing the outputs in the high-impedance state interrupts the feedback loop;
therefore, when a high-to-low transition occurs at OE, enabling the output buffers, a stabilization time is
required before the PLL obtains phase lock.
SEL1, SEL0
51, 50
I
Output configuration select. SEL0 and SEL1 select the output configuration for each output bank
(e.g., 1×, 1/2×, or 2×) (see Tables 1 and 2).
TEST
41
I
TEST is used to bypass the PLL circuitry for factory testing of the device. When TEST is low, all outputs
operate using the PLL circuitry. When TEST is high, the outputs are placed in a test mode that bypasses
the PLL circuitry. TEST should be strapped to GND for normal operation.
1Y1 −1Y3
2Y1 −2Y3
3Y1 −3Y3
2, 5, 8
12, 15, 18
22, 25, 28
O
These outputs are configured by SEL1 and SEL0 to transmit one-half or one-fourth the frequency of the
VCO. The relationship between the input clock frequency and the output frequency is dependent on SEL1
and SEL0 and the frequency of the output being fed back to FBIN. The duty cycle of the Y outputs is
nominally 50% independent of the duty cycle of the input clock signals. Each output has an internal series
resistor to dampen transmission-line effects and improve the signal integrity at the load.
O
These outputs transmit one-half the frequency of the VCO. The relationship between the input clock
frequency and the output frequency is dependent on the frequency of the output being fed back to FBIN.
The duty cycle of the Y outputs is nominally 50% independent of the duty cycle of CLKIN. Each output has
an internal series resistor to dampen transmission-line effects and improve the signal integrity at the load.
4Y1 −4Y3
32, 35, 38
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO (see Note 1) . . . −0.5 V to 5.5 V
Current into any output in the low state, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Maximum power dissipation at TA = 55°C (in still air) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data
Book, literature number SCBD002.
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
5
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
recommended operating conditions (see Note 3)
VCC
Supply voltage
CLKIN, CLKIN
VIH
High-level input voltage
VIL
Low-level input voltage
VI
IOH
Input voltage
IOL
TA
MIN
MAX
3
3.6
UNIT
V
VCC −1.025
2
Other inputs
CLKIN, CLKIN
V
VCC −1.62
0.8
Other inputs
0
V
5.5
V
High-level output current
−12
mA
Low-level output current
12
mA
70
°C
Operating free-air temperature
0
NOTE 3: Unused inputs must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
VCC = 3 V,
VCC = MIN to MAX†,
II = −18 mA
IOH = − 100 µA
VCC = 3 V,
IOH = − 12 mA
IOL = 100 µA
VOL
VCC = 3 V
II
VCC = 0 or MAX†,
VCC = 3.6 V,
ICC
VCC = 3.6 V,
VI = VCC or GND
Ci
Co
TA = 25°C
MIN
MAX
TEST CONDITIONS
−1.2
VCC −0.2
2
V
0.8
±10
±1
VI = VCC or GND
IO = 0,
Outputs high
5
Outputs low
5
VI = 3 V or 0
VO = 3 V or 0
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
V
0.2
IOL = 12 mA
VI = 3.6 V
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
6
UNIT
V
µA
A
mA
4
pF
8
pF
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
timing requirements over recommended ranges of supply voltage and operating free-air
temperature
fclock
Clock frequency
MIN
MAX
VCO is operating at four times the CLKIN/CLKIN frequency
25
50
VCO is operating at double the CLKIN/CLKIN frequency
50
100
40%
60%
Input clock duty cycle
Stabilization time†
After SEL1, SEL0
50
After OE↓
50
After power up
50
UNIT
MHz
µs
† Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a
fixed-frequency, fixed-phase reference signal must be present at CLKIN. Until phase lock is obtained, the specifications for propagation delay
and skew parameters given in the switching characteristics table are not applicable.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 15 pF (see Note 4 and Figures 1, 2, and 3)
FROM
(INPUT)
PARAMETER
TO
(OUTPUT)
MIN
MAX
Y
45%
55%
Duty cycle
fmax
Jitter(pk-pk)
100
tphase error‡
tsk(o)‡
CLKIN↑
Y↑
CLKIN↑
Y
tsk(pr)‡
tr
UNIT
MHz
−500
200
ps
500
ps
Y
0.5
ns
Y
1
ns
1.4
ns
tf
1.4
ns
‡ The propagation delay, tphase error, is dependent on the feedback path from any output to FBIN. The tphase error, tsk(o), and tsk(pr) specifications
are only valid for equal loading of all outputs.
NOTE 4: The specifications for parameters in this table are applicable only after any appropriate stabilization time has elapsed.
PARAMETER MEASUREMENT INFORMATION
2.4 V
CLKIN
2V
2V
CLKIN
tphase error
Output
From Output
Under Test
500 Ω
CL = 15 pf
(see Note A)
1.6 V
2V
0.8 V
tr
1.5 V
2V
0.8 V
VOH
VOL
tf
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
LOAD CIRCUIT FOR OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. The outputs are measured one at a time with one transition per measurement.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
Figure 1. Load Circuit and Voltage Waveforms
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
7
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
PARAMETER MEASUREMENT INFORMATION
CLKIN
CLKIN
tphase error 1
Outputs
Operating
at 1/2 CLKIN
Frequency
tphase error 2
tphase error 3
Outputs
Operating
at CLKIN
Frequency
tphase error 4
tphase error 7
tphase error 5
tphase error 8
tphase error 6
tphase error 9
NOTES: A. Output skew, tsk(o), is calculated as the greater of:
− The difference between the fastest and slowest of tphase error n (n = 1, 2, . . . 6)
− The difference between the fastest and slowest of tphase error n (n = 7, 8, 9)
B. Process skew, tsk(pr), is calculated as the greater of:
− The difference between the maximum and minimum tphase error n (n = 1, 2, . . . 6) across multiple devices under identical
operating conditions
− The difference between the maximum and minimum tphase error n (n = 7, 8, 9) across multiple devices under identical
operating conditions
Figure 2. Skew Waveforms and Calculations
8
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
SCAS379B − FEBRUARY 1993 − REVISED FEBRUARY 1996
PARAMETER MEASUREMENT INFORMATION
CLKIN
CLKIN
tphase error 10
Outputs
Operating
at CLKIN
Frequency
tphase error 11
tphase error 12
tphase error 13
Outputs
Operating
at 2X CLKIN
Frequency
tphase error 14
tphase error 15
NOTES: A. Output skew, tsk(o), is calculated as the greater of:
− The difference between the fastest and slowest of tphase error n (n = 10, 11, . . . 15)
B. Process skew, tsk(pr), is calculated as the greater of:
− The difference between the maximum and minimum tphase error n (n = 10, 11, . . . 15) across multiple devices under identical
operating conditions
Figure 3. Waveforms for Calculation of tsk(o) and tsk(pr)
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
9
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated
Similar pages