Cypress CY7C68013-56PVC Ez-usb fx2 usb microcontroller Datasheet

CY7C68013
EZ-USB FX2™ USB Microcontroller
1.0
EZ-USB FX2 Features
• Single-chip integrated USB 2.0 Transceiver, SIE, and
Enhanced 8051 Microprocessor
• Software: 8051 code runs from:
— Internal RAM, which is downloaded via USB
— Internal RAM, which is loaded from EEPROM
— External memory device (128 pin package
• Four programmable BULK/INTERRUPT/
ISOCHRONOUS endpoints
— Buffering options: double, triple and quad
• 8- or 16-bit external data interface
• GPIF
• Supports bus-powered applications by using renumeration
• 3.3V operation
• Smart Serial Interface Engine
• Vectored USB interrupts
• Separate data buffers for the SETUP and DATA portions
of a CONTROL transfer
• Integrated I2C-compatible controller, runs at 100 or 400
kHz
• 48-MHz, 24-MHz, or 12-MHz 8051 operation
• Four integrated FIFOs
— Brings glue and FIFOs inside for lower system cost
— Automatic conversion to and from 16-bit buses
— Allows direct connection to most parallel interface
— Master or slave operation
— Programmable waveform descriptors and configuration registers to define waveforms
— FIFOs can use externally supplied clock or asynchronous strobes
— Supports multiple Ready (RDY) inputs and Control
(CTL) outputs
• Integrated, industry standard enhanced 8051:
— Up to 48-MHz clock rate
— Four clocks per instruction cycle
— Two USARTS
— Easy interface to ASIC and DSP ICs
• Special autovectors for FIFO and GPIF interrupts
• Up to 40 general-purpose I/Os
• Four package options—128-pin TQFP, 100-pin TQFP,
56-pin QFN and 56-pin SSOP
• Four packages are defined for the family: 56 SSOP, 56
QFN, 100 TQFP, and 128 TQFP
— Three counter/timers
— Expanded interrupt system
— Two data pointers
High-performance micro
using standard tools
with lower-power options
VCC
x20
PLL
/0.5
/1.0
/2.0
Data (8)
Address (16)
FX2
8051 Core
12/24/48 MHz,
four clocks/cycle
1.5k
connected for
full speed
D+
D–
USB
2.0
XCVR
Integrated
full- and high-speed
XCVR
CY
Smart
USB
1.1/2.0
Engine
8.5 kB
RAM
I2C
Compatible
Master
Address (16) / Data Bus (8)
24-MHz
Ext. XTAL
ADDR (9)
GPIF
RDY (6)
CTL (6)
4 kB
FIFO
Enhanced USB core
Simplifies 8051 core
Abundant I/O
including two USARTS
Additional I/Os (24)
“Soft Configuration”
Easy firmware changes
8/16
General
programmable I/F
to ASIC/DSP or bus
standards such as
ATAPI, EPP, etc.
Up to 96 MBytes/s
burst rate
FIFO and endpoint memory
(master or slave operation)
Figure 1-1. Block Diagram
Cypress Semiconductor Corporation
Document #: 38-08012 Rev. *E
•
3901 North First Street
•
San Jose, CA 95134
•
408-943-2600
Revised February 8, 2005
CY7C68013
Cypress’s EZ-USB FX2 is the world’s first USB 2.0
integrated microcontroller. By integrating the USB 2.0 transceiver, SIE, enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has
created a very cost-effective solution that provides superior
time-to-market advantages. The ingenious architecture of FX2
results in data transfer rates of 56 Mbytes per second, the
maximum allowable USB 2.0 bandwidth, while still using a lowcost 8051 microcontroller in a package as small as a 56 SSOP.
Because it incorporates the USB 2.0 transceiver, the FX2 is
more economical, providing a smaller footprint solution than
USB 2.0 SIE or external transceiver implementations. With
EZ-USB FX2, the Cypress Smart SIE handles most of the USB
1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing
development time to ensure USB compatibility. The General
Programmable Interface (GPIF) and Master/Slave Endpoint
FIFO (8- or 16-bit data bus) provides an easy and glueless
interface to popular interfaces such as ATA, UTOPIA, EPP,
PCMCIA, and most DSP/processors.
2.0
3.2
8051 Microprocessor
The 8051 microprocessor embedded in the FX2 family has
256 bytes of register RAM, an expanded interrupt system,
three timer/counters, and two USARTs.8051 Clock Frequency
FX2 has an on-chip oscillator circuit that uses an external
24-MHz (±100 ppm) crystal with the following characteristics:
• Parallel resonant
• Fundamental mode
• 500-µW drive level
• 20–33 pF (5% tolerance) load capacitors.
An on-chip PLL multiplies the 24-MHz oscillator up to
480 MHz, as required by the transceiver/PHY, and internal
counters divide it down for use as the 8051 clock. The default
8051 clock frequency is 12 MHz. The clock frequency of the
8051 can be changed by the 8051 through the CPUCS
register, dynamically.
The CLKOUT pin, which can be tri-stated and inverted using
internal control bits, outputs the 50% duty cycle 8051 clock, at
the selected 8051 clock frequency—48, 24, or 12 MHz.
Applications
• DSL modems
• ATA interface
• Memory card readers
• Legacy conversion devices
• Cameras
• Scanners
• Home PNA
• Wireless LAN
• MP3 players
• Networking.
The “Reference Designs” section of the cypress website
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. Please visit
http://www.cypress.com for more information.
3.0
Functional Overview
3.1
USB Signaling Speed
FX2 operates at two of the three rates defined in the Universal
Serial Bus Specification Revision 2.0, dated April 27, 2000:
• Full speed, with a signaling bit rate of 12 Mbps
• High speed, with a signaling bit rate of 480 Mbps
FX2 does not support the low-speed signaling mode of
1.5 Mbps.
Document #: 38-08012 Rev. *E
3.2.1
USARTS
FX2 contains two standard 8051 USARTs, addressed via
Special Function Register (SFR) bits. The USART interface
pins are available on separate I/O pins, and are not multiplexed with port pins.
UART0 and UART1 can operate using an internal clock at 230
KBaud with no more than 1% baud rate error. 230-KBaud
operation is achieved by an internally derived clock source that
generates overflow pulses at the appropriate time. The
internal clock adjusts for the 8051 clock rate (48, 24, 12 MHz)
such that it always presents the correct frequency for
230-KBaud operation.
Note. 115-KBaud operation is also possible by programming
the 8051 SMOD0 or SMOD1 bits to a “1” for UART0 and/or
UART1, respectively.
3.2.2
Special Function Registers
Certain 8051 SFR addresses are populated to provide fast
access to critical FX2 functions. These SFR additions are
shown in Table 3-1. Bold type indicates non-standard,
enhanced 8051 registers.
The two SFR rows that end with “0” and “8” contain bit-addressable registers. The four I/O ports A–D use the SFR addresses
used in the standard 8051 for ports 0–3, which are not implemented in FX2.
Because of the faster and more efficient SFR addressing, the
FX2 I/O ports are not addressable in external RAM space
(using the MOVX instruction).
Page 2 of 48
CY7C68013
Table 3-1. Special Function Registers
x
8x
9x
Ax
Bx
Cx
Dx
Ex
Fx
0
IOA
1
SP
IOB
IOC
IOD
SCON1
PSW
ACC
B
EXIF
INT2CLR
IOE
SBUF1
2
DPL0
MPAGE
INT4CLR
OEA
3
DPH0
OEB
4
DPL1
OEC
5
DPH1
OED
6
DPS
OEE
7
PCON
EICON
EIE
EIP
8
TCON
SCON0
9
TMOD
SBUF0
IE
IP
T2CON
A
TL0
AUTOPTRH1
EP2468STAT
EP01STAT
RCAP2L
B
TL1
AUTOPTRL1
EP24FIFOFLGS
GPIFTRIG
RCAP2H
C
D
TH0
reserved
EP68FIFOFLGS
TH1
AUTOPTRH2
GPIFSGLDATH
TH2
E
CKCON
AUTOPTRL2
GPIFSGLDATLX
F
3.3
reserved
AUTOPTRSETUP
I2C-compatible Bus
FX2 supports the I2C-compatible bus as a master only at
100/400 kbps. SCL and SDA pins have open-drain outputs
and hysteresis inputs. These signals must be pulled up to
3.3V, even if no I2C-compatible device is connected.
3.4
Buses
All packages: 8- or 16-bit “FIFO” bidirectional data bus, multiplexed on I/O ports B and D. 128-pin package: adds 16-bit
output-only 8051 address bus, 8-bit bidirectional data bus.
3.5
USB Boot Methods
During the power-up sequence, internal logic checks the I2Ccompatible port for the connection of an EEPROM whose first
byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID
values in the EEPROM in place of the internally stored values
(0xC0), or it boot-loads the EEPROM contents into internal
RAM (0xC2). If no EEPROM is detected, FX2 enumerates
using internally stored descriptors. The default ID values for
FX2 are VID/PID/DID (0x04B4, 0x8613, 0xxxyy).
Table 3-2. Default ID Values for FX2
Default VID/PID/DID
Vendor ID
0x04B4
Cypress Semiconductor
Prod ID
0x8613
EZ-USB FX2
Device release
0xXXYY
Depends on revision
(0x04 for Rev E)
TL2
GPIFSGLDATLNOX
3.6
ReNumeration™
Because the FX2’s configuration is soft, one chip can take on
the identities of multiple distinct USB devices.
When first plugged into USB, the FX2 enumerates automatically and downloads firmware and USB descriptor tables over
the USB cable. Next, the FX2 enumerates again, this time as
a device defined by the downloaded information. This
patented two-step process, called ReNumeration™, happens
instantly when the device is plugged in, with no hint that the
initial download step has occurred.
Two control bits in the USBCS (USB Control and Status)
register control the ReNumeration process: DISCON and
RENUM. To simulate a USB disconnect, the firmware sets
DISCON to 1. To reconnect, the firmware clears DISCON to 0.
Before reconnecting, the firmware sets or clears the RENUM
bit to indicate whether the firmware or the Default USB Device
will handle device requests over endpoint zero: if RENUM = 0,
the Default USB Device will handle device requests; if RENUM
= 1, the firmware will.
3.7
Bus Powered Applications
Bus powered applications require the FX2 to enumerate in a
unconfigured mode with less then 100 mA. To do this, the FX2
must enumerate in the full speed mode and then, when
configured, renumerate in high speed mode. For an example
of the benefits and limitations of this renumeration process see
the application note titled “Bus Powered Enumeration with
FX2”.
Note. The I2C-compatible bus SCL and SDA pins must be
pulled up, even if an EEPROM is not connected. Otherwise
this detection method does not work properly.
Document #: 38-08012 Rev. *E
Page 3 of 48
CY7C68013
3.8
Interrupt System
3.8.1
INT2 Interrupt Request and Enable Registers
FX2 implements an autovector feature for INT2 and INT4.
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)
vectors. See FX2 TRM for more details.
3.8.2
USB-Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To
save the code and processing time that normally would be
required to identify the individual USB interrupt source, the
FX2 provides a second level of interrupt vectoring, called
Autovectoring. When a USB interrupt is asserted, the FX2
pushes the program counter onto its stack then jumps to
address 0x0043, where it expects to find a “jump” instruction
to the USB Interrupt service routine.
The FX2 jump instruction is encoded as shown in Table 3-3.
If Autovectoring is enabled (AV2EN = 1 in the INTSETUP
register), the FX2 substitutes its INT2VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at
location 0x0044, the automatically-inserted INT2VEC byte at
0x0045 will direct the jump to the correct address out of the 27
addresses within the page.
Table 3-3. INT2 USB Interrupts
USB Interrupt Table for INT2
Priority
INT2VEC Value
Source
Notes
1
00
SUDAV
SETUP Data Available
2
04
SOF
Start of Frame (or microframe)
3
08
SUTOK
Setup Token Received
4
0C
SUSPEND
USB Suspend request
5
10
USB RESET
Bus reset
6
14
HISPEED
Entered high-speed operation
7
18
EP0ACK
FX2 ACK’d the CONTROL Handshake
8
1C
reserved
9
20
EP0-IN
EP0-IN ready to be loaded with data
10
24
EP0-OUT
EP0-OUT has USB data
11
28
EP1-IN
EP1-IN ready to be loaded with data
12
2C
EP1-OUT
EP1-OUT has USB data
13
30
EP2
IN: buffer available. OUT: buffer has data
14
34
EP4
IN: buffer available. OUT: buffer has data
15
38
EP6
IN: buffer available. OUT: buffer has data
16
3C
EP8
IN: buffer available. OUT: buffer has data
17
40
IBN
IN-Bulk-NAK (any IN endpoint)
18
44
reserved
19
48
EP0PING
EP0 OUT was Pinged and it NAK’d
20
4C
EP1PING
EP1 OUT was Pinged and it NAK’d
21
50
EP2PING
EP2 OUT was Pinged and it NAK’d
22
54
EP4PING
EP4 OUT was Pinged and it NAK’d
23
58
EP6PING
EP6 OUT was Pinged and it NAK’d
24
5C
EP8PING
EP8 OUT was Pinged and it NAK’d
25
60
ERRLIMIT
26
64
reserved
27
68
reserved
28
6C
reserved
29
70
EP2ISOERR
ISO EP2 OUT PID sequence error
30
74
EP4ISOERR
ISO EP4 OUT PID sequence error
31
78
EP6ISOERR
ISO EP6 OUT PID sequence error
32
7C
EP8ISOERR
ISO EP8 OUT PID sequence error
Document #: 38-08012 Rev. *E
Bus errors exceeded the programmed limit
Page 4 of 48
CY7C68013
Table 3-4. Individual FIFO/GPIF Interrupt Sources
Priority
INT4VEC Value
1
80
EP2PF
Endpoint 2 Programmable Flag
2
84
EP4PF
Endpoint 4 Programmable Flag
3.8.3
Source
Notes
3
88
EP6PF
Endpoint 6 Programmable Flag
4
8C
EP8PF
Endpoint 8 Programmable Flag
5
90
EP2EF
Endpoint 2 Empty Flag
6
94
EP4EF
Endpoint 4 Empty Flag
7
98
EP6EF
Endpoint 6 Empty Flag
8
9C
EP8EF
Endpoint 8 Empty Flag
9
A0
EP2FF
Endpoint 2 Full Flag
10
A4
EP4FF
Endpoint 4 Full Flag
11
A8
EP6FF
Endpoint 6 Full Flag
12
AC
EP8FF
Endpoint 8 Full Flag
13
B0
GPIFDONE
14
B4
GPIFWF
GPIF Operation Complete
GPIF Waveform
FIFO/GPIF Interrupt (INT4)
Just as the USB Interrupt is shared among 27 individual USBinterrupt sources, the FIFO/GPIF interrupt is shared among 14
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like
the USB Interrupt, can employ autovectoring. Table 3-4 shows
the priority and INT4VEC values for the 14 FIFO/GPIF
interrupt sources.
If Autovectoring is enabled (AV4EN = 1 in the INTSETUP
register), the FX2 substitutes its INT4VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at
location 0x0054, the automatically-inserted INT4VEC byte at
0x0055 will direct the jump to the correct address out of the 14
addresses within the page. When the ISR occurs, the FX2
pushes the program counter onto its stack then jumps to
address 0x0053, where it expects to find a “jump” instruction
to the ISR Interrupt service routine.
The second wakeup pin, WU2, can also be configured as a
general purpose I/O pin. This allows a simple external R-C
network to be used as a periodic wakeup source.
3.10
Program/Data RAM
3.10.1
Size
The FX2 has eight kbytes of internal program/data RAM,
where PSEN#/RD# signals are internally ORed to allow the
8051 to access it as both program and data memory. No USB
control registers appear in this space.
Two memory maps are shown in the following diagrams:
Figure 3-1 Internal Code Memory, EA = 0
Figure 3-2 External Code Memory, EA = 1.
3.10.2
3.9
Reset and Wakeup
3.9.1
Reset Pin
An input pin (RESET#) resets the chip. This pin has hysteresis
and is active LOW. The internal PLL stabilizes approximately
200 µs after VCC has reached 3.3V. Typically, an external RC
network (R = 100k, C = 0.1 µF) is used to provide the RESET#
signal.
3.9.2
Wakeup Pins
The 8051 puts itself and the rest of the chip into a power-down
mode by setting PCON.0 = 1. This stops the oscillator and
PLL. When WAKEUP is asserted by external logic, the oscillator restarts and after the PLL stabilizes, and the 8051
receives a wakeup interrupt. This applies whether or not FX2
is connected to the USB.
The FX2 exits the power down (USB suspend) state using one
of the following methods:
• USB bus signals resume
• External logic asserts the WAKEUP pin
• External logic asserts the PA3/WU2 pin.
Document #: 38-08012 Rev. *E
Internal Code Memory, EA = 0
This mode implements the internal eight-kbyte block of RAM
(starting at 0) as combined code and data memory. When
external RAM or ROM is added, the external read and write
strobes are suppressed for memory spaces that exist inside
the chip. This allows the user to connect a 64-kbyte memory
without requiring address decodes to keep clear of internal
memory spaces.
Only the internal eight kbytes and scratch pad 0.5 kbytes
RAM spaces have the following access:
• USB download
• USB upload
• Setup data pointer
• I2C-compatible interface boot load.
3.10.3
External Code Memory, EA = 1
The bottom eight kbytes of program memory is external, and
therefore the bottom eight kbytes of internal RAM is accessible
only as data memory.
Page 5 of 48
CY7C68013
Inside FX2
Outside FX2
FFFF
7.5 kbytes
US B regs and
4k EP buffers
(RD#,WR#)
E200
E1FF
0.5 kbytes RAM
E000 Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
56 kbytes
External
Code
Memory
(PSEN#)
48 kbytes
External
Data
Memory
(RD#,WR#)
1FFF
Eight kbytes RAM
Code and Data
(PSEN#,RD#,WR#)*
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
(OK to populate
program
memory here—
PSEN# strobe
is not active)
0000
Data
Code
*SUDPTR, USB upload/download, I2C-compatible interface boot access
Figure 3-1. Internal Code Memory, EA = 0
Inside FX2
Outside FX2
FFFF
7.5 kbytes
USB regs and
4k EP buffers
(RD#,WR#)
E200
E1FF
0.5 kbytes RAM
E000 Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
48 kbytes
External
Data
Memory
(RD#,WR#)
64 kbytes
External
Code
Memory
(PSEN#)
1FFF
Eight kbytes
RAM
Data
(RD#,WR#)*
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
0000
Data
*SUDPTR, USB upload/download,
I2C-compatible
Code
interface boot access
Figure 3-2. External Code Memory, EA = 1
Document #: 38-08012 Rev. *E
Page 6 of 48
CY7C68013
3.11
Register Addresses
FFFF
4 kbytes EP2-EP8 buffers
(8 × 512)
F000
EFFF
2 kbytes RESERVED
E800
E7FF
E7C0
E7BF
E780
E77F
E740
E73F
E700
E6FF
E600
E5FF
E480
E47F
E400
E3FF
64 bytes EP1IN
64 bytes EP1OUT
64 bytes EP0 IN/OUT
64 bytes RESERVED
256 bytes Registers
384 bytes RESERVED
128 bytes GPIF Waveforms
512 bytes RESERVED
E200
E1FF
E000
3.12
Endpoint RAM
3.12.1 Size
• 3 × 64 bytes
• 8 × 512 bytes
512 bytes
8051 xdata RAM
3.12.3
Set-up Data Buffer
A separate eight-byte buffer at 0xE6B8-0xE6BF holds the
SETUP data from a CONTROL transfer.
(Endpoints 0 and 1)
(Endpoints 2, 4, 6, 8)
3.12.2 Organization
• EP0
Bidirectional endpoint zero, 64-byte buffer
• EP1IN, EP1OUT
64-byte buffers, bulk or interrupt
• EP2,4,6,8
Eight 512-byte buffers, bulk, interrupt, or isochronous. EP2
and 6 can be either double, triple, or quad buffered. For highspeed endpoint configuration options, see Figure 3-3.
Document #: 38-08012 Rev. *E
3.12.4
Endpoint Configuration (High-speed Mode)
Endpoints 0 and 1 are the same for every configuration.
Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can
be either BULK or INTERRUPT. To the left of the vertical line,
the user may pick different configurations for EP2&4 and
EP6&8, since none of the 512-byte buffers are combined
between these endpoint groups. An example endpoint configuration would be:
EP2—1024 double buffered; EP6—512 quad buffered.
To the right of the vertical line, buffers are shared between
EP2–8, and therefore only entire columns may be chosen.
Page 7 of 48
CY7C68013
EP0 IN&OUT
64
64
64
64
64
64
EP1 IN
64
64
64
64
64
64
EP1 OUT
64
64
64
64
64
64
512
512
512
EP2
512
1024
512
EP2
512
EP2
EP2
512
512
512
512
1024
1024
1024
1024
512
1024
EP4
512
EP2
EP2
512
EP6
512
EP6
512
512
EP6
512
1024
512
1024
EP6
512
1024
EP8
512
512
1024
512
512
EP8
1024
EP8
512
512
512
Figure 3-3. Endpoint Configuration
3.12.5
Default Full-Speed Alternate Settings
Table 3-5. Default Full-Speed Alternate Settings[1,2]
Alternate Setting
ep0
0
1
64
64
2
64
3
64
ep1out
0
64 bulk
64 int
64 int
ep1in
0
64 bulk
64 int
64 int
ep2
0
64 bulk out (2×)
64 int out (2×)
64 iso out (2×)
ep4
0
64 bulk out (2×)
64 bulk out (2×)
64 bulk out (2×)
ep6
0
64 bulk in (2×)
64 int in (2×)
64 iso in (2×)
ep8
0
64 bulk in (2×)
64 bulk in (2×)
64 bulk in (2×)
3.12.6
Default High-Speed Alternate Settings
Table 3-6. Default High-Speed Alternate Settings[1, 2]
Alternate Setting
0
1
2
3
ep0
64
64
64
64
ep1out
0
512 bulk[3]
64 int
64 int
ep1in
0
512 bulk[3]
64 int
64 int
ep2
0
512 bulk out (2×)
512 int out (2×)
512 iso out (2×)
ep4
0
512 bulk out (2×)
512 bulk out (2×)
512 bulk out (2×)
ep6
0
512 bulk in (2×)
512 int in (2×)
512 iso in (2×)
ep8
0
512 bulk in (2×)
512 bulk in (2×)
512 bulk in (2×)
Notes:
1. “0” means “not implemented.”
2. “2x” means “double buffered.”
3. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.
Document #: 38-08012 Rev. *E
Page 8 of 48
CY7C68013
3.13
External FIFO interface
3.13.1
Architecture
The FX2 slave FIFO architecture has eight 512-byte blocks in
the endpoint RAM that directly serve as FIFO memories, and
are controlled by FIFO control signals (such as IFCLK, SLCS#,
SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from
the SIE, while the others are connected to the I/O transfer
logic. The transfer logic takes two forms, the GPIF for internally
generated control signals, or the slave FIFO interface for
externally controlled transfers.
3.13.2
Master/Slave Control Signals
The FX2 endpoint FIFOS are implemented as eight physically
distinct 256 x 16 RAM blocks. The 8051/SIE can switch any of
the RAM blocks between two domains, the USB (SIE) domain
and the 8051-I/O Unit domain. This switching is done virtually
instantaneously, giving essentially zero transfer time between
“USB FIFOS” and “Slave FIFOS.” Since they are physically the
same memory, no bytes are actually transferred between
buffers.
At any given time, some RAM blocks are filling/emptying with
USB data under SIE control, while other RAM blocks are
available to the 8051 and/or the I/O control unit. The RAM
blocks operate as single-port in the USB domain, and dualport in the 8051-I/O domain. The blocks can be configured as
single, double, triple, or quad buffered as previously shown.
The I/O control unit implements either an internal-master (M
for master) or external-master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls
FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56pin package, six in the 100-pin and 128-pin packages) can be
used as flag inputs from an external FIFO or other logic if
desired. The GPIF can be run from either an internally derived
clock or externally supplied clock (IFCLK), at a rate that
transfers data up to 96 Megabytes/s (48 MHz).
In Slave (S) mode, the FX2 accepts either an internally derived
clock or externally supplied clock (IFCLK, max. frequency 48
MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals
from external logic. Each endpoint can individually be selected
for byte or word operation by an internal configuration bit, and
a Slave FIFO Output Enable signal SLOE enables data of the
selected width. External logic must insure that the output
enable signal is inactive when writing data to a slave FIFO.
The slave interface can also operate asynchronously, where
the SLRD and SLWR signals act directly as strobes, rather
than a clock qualifier as in synchronous mode. The signals
SLRD, SLWR, SLOE and PKTEND are gated by the signal
SLCS#.
3.13.3
GPIF and FIFO Clock Rates
An 8051 register bit selects one of two frequencies for the
internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz
feeding the IFCLK pin can be used as the interface clock.
IFCLK can be configured to function as an output clock when
the GPIF and FIFOs are internally clocked. An output enable
bit in the IFCONFIG register turns this clock output off, if
desired. Another bit within the IFCONFIG register will invert
the IFCLK signal whether internally or externally sourced.
3.14
GPIF
The GPIF is a flexible 8- or 16-bit parallel interface driven by a
user-programmable finite state machine. It allows the
CY7C68013 to perform local bus mastering, and can
implement a wide variety of protocols such as ATA interface,
printer parallel port, and Utopia.
The GPIF has six programmable control outputs (CTL), nine
address outputs (GPIFADRx), and six general-purpose ready
inputs (RDY). The data bus width can be 8 or 16 bits. Each
GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be
before proceeding. The GPIF vector can be programmed to
advance a FIFO to the next data value, advance an address,
etc. A sequence of the GPIF vectors make up a single
waveform that will be executed to perform the desired data
move between the CY7C68013 and the external design.
3.14.1
Six Control OUT Signals
The 100- and 128-pin packages bring out all six Control Output
pins (CTL0-CTL5). The 8051 programs the GPIF unit to define
the CTL waveforms. The 56-pin package brings out three of
these signals, CTL0–CTL2. CTLx waveform edges can be
programmed to make transitions as fast as once per clock
(20.8 ns using a 48-MHz clock).
3.14.2
Six Ready IN Signals
The 100- and 128-pin packages bring out all six Ready inputs
(RDY0–RDY5). The 8051 programs the GPIF unit to test the
RDY pins for GPIF branching. The 56-pin package brings out
two of these signals, RDY0–1.
3.14.3
Nine GPIF Address OUT signals
Nine GPIF address lines are available in the 100- and 128-pin
packages, GPIFADR[8..0]. The GPIF address lines allow
indexing through up to a 512-byte block of RAM. If more
address lines are needed, I/O port pins can be used.
3.14.4
Long Transfer Mode
In master mode, the 8051 appropriately sets GPIF transaction
count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or
GPIFTCB0) for unattended transfers of up to 4,294,967,296
bytes. The GPIF automatically throttles data flow to prevent
under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these
registers to represent the current status of the transaction.
3.15
USB Uploads and Downloads
The core has the ability to directly edit the data contents of the
internal 8-kbyte RAM and of the internal 512-byte scratch pad
RAM via a vendor-specific command. This capability is
normally used when “soft” downloading user code and is
available only to and from internal RAM, whether the 8051 is
held in reset or running. The available RAM spaces are 8
kbytes from 0x0000–0x1FFF (code/data) and 512 bytes from
0xE000–0xE1FF (scratch pad RAM).
Note: A “loader” running in internal RAM can be used to
transfer downloaded data to external memory.
Document #: 38-08012 Rev. *E
Page 9 of 48
CY7C68013
3.16
3.17.2
Autopointer Access
FX2 provides two identical autopointers. They are similar to
the internal 8051 data pointers, but with an additional feature:
they can optionally increment a pointer address after every
memory access. This capability is available to and from both
internal and external RAM. The autopointers are available in
external FX2 registers, under control of a mode bit (AUTOPTRSETUP.0). Using the external FX2 autopointer access (at
0xE67B – 0xE67C) allows the autopointer to access all RAM,
internal and external to the part. Also, the autopointers can
point to any FX2 register or endpoint buffer space. When
autopointer access to external memory is enabled, location
0xE67B and 0xE67C in XDATA and PDATA space cannot be
used.
FX2 has one I2C-compatible port that is driven by two internal
controllers, one that automatically operates at boot time to
load VID/PID/DID and configuration information, and another
that the 8051, once running, uses to control external I2Ccompatible devices. The I2C-compatible port operates in
master mode only.
3.17.1
At power-on reset the I2C-compatible interface boot loader will
load the VID/PID/DID/a configuration byte and up to eight
kbytes of program/data. The available RAM spaces are eight
kbytes from 0x0000–0x1FFF and 512 bytes from
0xE000–0xE1FF. The 8051 will be in reset. I2C-compatible
interface boot loads only occur after power-on reset.
3.17.3
I2C-compatible Port Pins
2C-compatible
pins SCL and SDA must have external
The I
2.2-kΩ pull-up resistors. External EEPROM device address
pins must be configured properly. See Table 3-7 for configuring the device address pins.
Table 3-7. Strap Boot EEPROM Address Lines to These
Values
Bytes
Example EEPROM
A2
A1
A0
16
24LC00[4]
N/A
N/A
N/A
128
24LC01
0
0
0
256
24LC02
0
0
0
4K
24LC32
0
0
1
8K
24LC64
0
0
1
I2C-compatible Interface General Purpose Access
The 8051 can control peripherals connected to the I2Ccompatible bus using the I2CTL and I2DAT registers. FX2
provides I2C compatible master control only, it is never an I2Ccompatible slave.
4.0
I2C-compatible Controller
3.17
I2C-compatible Interface Boot Load Access
Pin Assignments
Figure 4-1 identifies all signals for the four package types. The
following pages illustrate the individual pin diagrams, plus a
combination diagram showing which of the full set of signals
are available in the 128-, 100-, and 56-pin packages.
The 56-pin package is the lowest-cost version. The signals on
the left edge of the 56-pin package in Figure 4-1 are common
to all versions in the FX2 family. Three modes are available in
all package versions: Port, GPIF master, and Slave FIFO.
These modes define the signals on the right edge of the
diagram. The 8051 selects the interface mode using the
IFCONFIG[1:0] register bits. Port mode is the power-on default
configuration.
The 100-pin package adds functionality to the 56-pin package
by adding these pins:
• PORTC or alternate GPIFADR[7...0] address signals
• PORTE or alternate GPIFADR8 address signals and 7 more
8051 signals
• Three GPIF Control signals
• Four GPIF Ready signals
• Nine 8051 signals (two USARTs, three timer inputs,
INT4,and INT5#)
• BKPT, RD#, WR#
The 128-pin package is the full version, adding the 8051
address and data buses plus control signals. Note that two of
the required signals, RD# and WR#, are present in the 100-pin
version. In the 100-pin and 128-pin versions, an 8051 control
bit can be set to pulse the RD# and WR# pins when the 8051
reads from/writes to PORTC.
Note:
4.
This EEPROM does not have address pins.
Document #: 38-08012 Rev. *E
Page 10 of 48
CY7C68013
Port
XTALIN
XTALOUT
RESET#
WAKEUP#
GPIF Master
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
56
SCL
SDA
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
IFCLK
CLKOUT
DPLUS
DMINUS
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
Slave FIFO
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
RDY0
RDY1
SLRD
SLWR
CTL0
CTL1
CTL2
FLAGA
FLAGB
FLAGC
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
INT0#/ PA0
INT1#/ PA1
SLOE
WU2/PA3
FIFOADR0
FIFOADR1
PKTEND
PA7/FLAGD/SLCS#
CTL3
CTL4
CTL5
RDY2
RDY3
RDY4
RDY5
100
BKPT
PORTC7/GPIFADR7
PORTC6/GPIFADR6
PORTC5/GPIFADR5
PORTC4/GPIFADR4
PORTC3/GPIFADR3
PORTC2/GPIFADR2
PORTC1/GPIFADR1
PORTC0/GPIFADR0
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT
RD#
WR#
CS#
OE#
PSEN#
D7
D6
D5
D4
D3
D2
D1
D0
128
EA
RxD0
TxD0
RxD1
TxD1
INT4
INT5#
TIMER2
TIMER1
TIMER0
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Figure 4-1. Signals
Document #: 38-08012 Rev. *E
Page 11 of 48
CY7C68013
27
28
29
30
31
32
33
34
35
36
37
38
103
26
104
25
105
24
106
23
107
22
108
21
109
20
110
19
111
18
112
17
113
16
114
15
115
14
116
13
117
12
118
11
119
10
120
9
121
8
122
7
123
6
124
5
125
4
126
3
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10
2
127
128
1
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
VCC
DPLUS
DMINUS
GND
A11
A12
A13
A14
A15
VCC
GND
INT4
T0
T1
T2
IFCLK
RESERVED
BKPT
EA
SCL
SDA
OE#
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
A3
A2
A1
A0
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
D7
D6
D5
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
GND
CY7C68013
128-pin TQFP
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VCC
D4
D3
D2
D1
D0
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RxD1
TxD1
RxD0
TxD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
CS#
WR#
RD#
PSEN#
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
Figure 4-2. CY7C68013 128-pin TQFP Pin Assignment
* denotes programmable polarity
Document #: 38-08012 Rev. *E
Page 12 of 48
CY7C68013
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
VCC
DPLUS
DMINUS
GND
VCC
GND
INT4
T0
T1
T2
IFCLK
RESERVED
BKPT
SCL
SDA
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
CY7C68013
100-pin TQFP
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RxD1
TxD1
RxD0
TxD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
WR#
RD#
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
Figure 4-3. CY7C68013 100-pin TQFP Pin Assignment
* denotes programmable polarity
Document #: 38-08012 Rev. *E
Page 13 of 48
CY7C68013
CY7C68013
56-pin SSOP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PD5/FD13
PD4/FD12
PD6/FD14
PD3/FD11
PD7/FD15
PD2/FD10
GND
PD1/FD9
CLKOUT
PD0/FD8
VCC
*WAKEUP
GND
VCC
RDY0/*SLRD
RESET#
RDY1/*SLWR
GND
AVCC
PA7/*FLAGD/SLCS#
XTALOUT
PA6/PKTEND
XTALIN
PA5/FIFOADR1
AGND
PA4/FIFOADR0
VCC
PA3/*WU2
DPLUS
PA2/*SLOE
DMINUS
PA1/INT1#
GND
PA0/INT0#
VCC
VCC
GND
CTL2/*FLAGC
IFCLK
CTL1/*FLAGB
RESERVED
CTL0/*FLAGA
SCL
GND
SDA
VCC
VCC
GND
PB0/FD0
PB7/FD7
PB1/FD1
PB6/FD6
PB2/FD2
PB5/FD5
PB3/FD3
PB4/FD4
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
Figure 4-4. CY7C68013 56-pin SSOP Pin Assignment
* denotes programmable polarity
Document #: 38-08012 Rev. *E
Page 14 of 48
CY7C68013
GND
VCC
CLKOUT
GND
PD7/FD15
PD6/FD14
PD5/FD13
PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
56
55
54
53
52
51
50
49
48
47
46
45
44
43
RDY0/*SLRD
1
42
RESET#
RDY1/*SLWR
2
41
GND
AVCC
3
40
PA7/*FLAGD/SLCS#
XTALOUT
4
39
PA6/*PKTEND
XTALIN
5
38
PA5/FIFOADR1
AGND
6
37
PA4/FIFOADR0
36
PA3/*WU2
CY7C68013
VCC
7
DPLUS
8
35
PA2/*SLOE
DMINUS
9
34
PA1/INT1#
GND
10
33
PA0/INT0#
VCC
11
32
VCC
GND
12
31
CTL2/*FLAGC
*IFCLK
13
30
CTL1/*FLAGB
RESERVED
14
29
CTL0/*FLAGA
56-pin QFN
21
22
23
24
25
26
27
28
PB3/FD3
PB4/FD4
PB5/FD5
PB6/FD6
PB7/FD7
GND
VCC
GND
PB0/FD0
PB2/FD2
18
VCC
20
17
SDA
PB1/FD1
16
SCL
19
15
Figure 4-5. CY7C68013 56-pin QFN Pin Assignment
* denotes programmable polarity
Document #: 38-08012 Rev. *E
Page 15 of 48
CY7C68013
4.1
CY7C68013 Pin Descriptions
Table 4-1. FX2 Pin Descriptions [5]
128
100
56
56
TQFP TQFP SSOP QFN
Type
Default
Description
10
9
10
3
AVCC
Name
Power
N/A
Analog VCC. This signal provides power to the analog section of
the chip.
13
12
13
6
AGND
Power
N/A
Analog Ground. Connect to ground with as short a path as
possible.
19
18
16
9
DMINUS
I/O/Z
Z
USB D– Signal. Connect to the USB D– signal.
18
17
15
8
DPLUS
I/O/Z
Z
USB D+ Signal. Connect to the USB D+ signal.
94
A0
Output
L
95
A1
Output
L
8051 Address Bus. This bus is driven at all times. When the
8051 is addressing internal RAM it reflects the internal address.
96
A2
Output
L
97
A3
Output
L
117
A4
Output
L
118
A5
Output
L
119
A6
Output
L
120
A7
Output
L
126
A8
Output
L
127
A9
Output
L
128
A10
Output
L
21
A11
Output
L
22
A12
Output
L
23
A13
Output
L
24
A14
Output
L
25
A15
Output
L
59
D0
I/O/Z
Z
60
D1
I/O/Z
Z
61
D2
I/O/Z
Z
62
D3
I/O/Z
Z
63
D4
I/O/Z
Z
86
D5
I/O/Z
Z
87
D6
I/O/Z
Z
8051 Data Bus. This bidirectional bus is high-impedance when
inactive, input for bus reads, and output for bus writes. The data
bus is used for external 8051 program and data memory. The data
bus is active only for external bus accesses, and is driven LOW in
suspend.
88
D7
I/O/Z
Z
39
PSEN#
Output
H
Program Store Enable. This active-LOW signal indicates an 8051
code fetch from external memory. It is active for program memory
fetches from 0x2000–0xFFFF when the EA pin is LOW, or from
0x0000–0xFFFF when the EA pin is HIGH.
BKPT
Output
L
Breakpoint. This pin goes active (HIGH) when the 8051 address
bus matches the BPADDRH/L registers and breakpoints are
enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit
in the BREAKPT register is HIGH, this signal pulses HIGH for eight
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal
remains HIGH until the 8051 clears the BREAK bit (by writing 1 to
it) in the BREAKPT register.
Input
N/A
Active LOW Reset. Resets the entire chip. This pin is normally
tied to VCC through a 100K resistor, and to GND through a 0.1-µF
capacitor.
34
28
99
77
49
42
RESET#
Note:
5. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and
in standby.
Document #: 38-08012 Rev. *E
Page 16 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
35
Name
Type
Default
Description
EA
Input
N/A
External Access. This pin determines where the 8051 fetches
code between addresses 0x0000 and 0x1FFF. If EA = 0 the 8051
fetches this code from its internal RAM. IF EA = 1 the 8051 fetches
this code from external memory.
Input
N/A
Crystal Input. Connect this signal to a 24-MHz parallel-resonant,
fundamental mode crystal and load capacitor to GND.
It is also correct to drive XTALIN with an external 24 MHz square
wave derived from another clock source.
N/A
Crystal Output. Connect this signal to a 24-MHz parallelresonant, fundamental mode crystal and load capacitor to GND.
If an external clock is used to drive XTALIN, leave this pin open.
12
11
12
5
XTALIN
11
10
11
4
XTALOUT
Output
1
100
5
54
CLKOUT
O/Z
12 MHz 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input clock.
The 8051 defaults to 12-MHz operation. The 8051 may tri-state
this output by setting CPUCS.1 = 1.
82
67
40
33
PA0 or
INT0#
I/O/Z
I
Multiplexed pin whose function is selected by:
(PA0) PORTACFG.0
PA0 is a bidirectional IO port pin.
INT0# is the active-LOW 8051 INT0 interrupt input signal, which
is either edge triggered (IT0 = 1) or level triggered (IT0 = 0).
83
68
41
34
PA1 or
INT1#
I/O/Z
I
Multiplexed pin whose function is selected by:
(PA1) PORTACFG.1
PA1 is a bidirectional IO port pin.
INT1# is the active-LOW 8051 INT1 interrupt input signal, which
is either edge triggered (IT1 = 1) or level triggered (IT1 = 0).
84
69
42
35
PA2 or
SLOE
I/O/Z
I
Multiplexed pin whose function is selected by two bits:
(PA2) IFCONFIG[1:0].
PA2 is a bidirectional IO port pin.
SLOE is an input-only output enable with programmable polarity
(FIFOPOLAR.4) for the slave FIFOs connected to FD[7..0] or
FD[15..0].
85
70
43
36
PA3 or
WU2
I/O/Z
I
Multiplexed pin whose function is selected by:
(PA3) WAKEUP.7 and OEA.3
PA3 is a bidirectional I/O port pin.
WU2 is an alternate source for USB Wakeup, enabled by WU2EN
bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the
8051 is in suspend and WU2EN = 1, a transition on this pin starts
up the oscillator and interrupts the 8051 to allow it to exit the
suspend mode. Asserting this pin inhibits the chip from
suspending, if WU2EN=1.
89
71
44
37
PA4 or
FIFOADR0
I/O/Z
I
Multiplexed pin whose function is selected by:
(PA4) IFCONFIG[1..0].
PA4 is a bidirectional I/O port pin.
FIFOADR0 is an input-only address select for the slave FIFOs
connected to FD[7..0] or FD[15..0].
90
72
45
38
PA5 or
FIFOADR1
I/O/Z
I
Multiplexed pin whose function is selected by:
(PA5) IFCONFIG[1..0].
PA5 is a bidirectional I/O port pin.
FIFOADR1 is an input-only address select for the slave FIFOs
connected to FD[7..0] or FD[15..0].
91
73
46
39
PA6 or
PKTEND
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]
(PA6) bits.
PA6 is a bidirectional I/O port pin.
PKTEND is an input-only packet end with programmable polarity
(FIFOPOLAR.5) for the slave FIFOs connected to FD[7..0] or
FD[15..0].
Port A
Document #: 38-08012 Rev. *E
Page 17 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
Name
Type
Default
Description
74
47
40
PA7 or
FLAGD or
SLCS#
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]
(PA7) and PORTACFG.7 bits.
PA7 is a bidirectional I/O port pin.
FLAGD is a programmable slave-FIFO output status flag signal.
SLCS# gates all other slave FIFO enable/strobes
44
34
25
18
PB0 or
FD[0]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB0) IFCONFIG[1..0].
PB0 is a bidirectional I/O port pin.
FD[0] is the bidirectional FIFO/GPIF data bus.
45
35
26
19
PB1 or
FD[1]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB1) IFCONFIG[1..0].
PB1 is a bidirectional I/O port pin.
FD[1] is the bidirectional FIFO/GPIF data bus.
46
36
27
20
PB2 or
FD[2]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB2) IFCONFIG[1..0].
PB2 is a bidirectional I/O port pin.
FD[2] is the bidirectional FIFO/GPIF data bus.
47
37
28
21
PB3 or
TXD1 or
FD[3]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB3) IFCONFIG[1..0].
PB3 is a bidirectional I/O port pin.
FD[3] is the bidirectional FIFO/GPIF data bus.
54
44
29
22
PB4 or
FD[4]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB4) IFCONFIG[1..0].
PB4 is a bidirectional I/O port pin.
FD[4] is the bidirectional FIFO/GPIF data bus.
55
45
30
23
PB5 or
FD[5]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB5) IFCONFIG[1..0].
PB5 is a bidirectional I/O port pin.
FD[5] is the bidirectional FIFO/GPIF data bus.
56
46
31
24
PB6 or
FD[6]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB6) IFCONFIG[1..0].
PB6 is a bidirectional I/O port pin.
FD[6] is the bidirectional FIFO/GPIF data bus.
57
47
32
25
PB7 or
FD[7]
I/O/Z
I
Multiplexed pin whose function is selected by the following bits:
(PB7) IFCONFIG[1..0].
PB7 is a bidirectional I/O port pin.
FD[7] is the bidirectional FIFO/GPIF data bus.
92
Port B
PORT C
72
57
PC0 or
GPIFADR0
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.0
(PC0) PC0 is a bidirectional I/O port pin.
GPIFADR0 is a GPIF address output pin.
73
58
PC1 or
GPIFADR1
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.1
(PC1) PC1 is a bidirectional I/O port pin.
GPIFADR1 is a GPIF address output pin.
74
59
PC2 or
GPIFADR2
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.2
(PC2) PC2 is a bidirectional I/O port pin.
GPIFADR2 is a GPIF address output pin.
75
60
PC3 or
GPIFADR3
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.3
(PC3) PC3 is a bidirectional I/O port pin.
GPIFADR3 is a GPIF address output pin.
76
61
PC4 or
GPIFADR4
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.4
(PC4) PC4 is a bidirectional I/O port pin.
GPIFADR4 is a GPIF address output pin.
Document #: 38-08012 Rev. *E
Page 18 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
Name
Type
Default
Description
77
62
PC5 or
GPIFADR5
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.5
(PC5) PC5 is a bidirectional I/O port pin.
GPIFADR5 is a GPIF address output pin.
78
63
PC6 or
GPIFADR6
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.6
(PC6) PC6 is a bidirectional I/O port pin.
GPIFADR6 is a GPIF address output pin.
79
64
PC7 or
GPIFADR7
I/O/Z
I
Multiplexed pin whose function is selected by PORTCCFG.7
(PC7) PC7 is a bidirectional I/O port pin.
GPIFADR7 is a GPIF address output pin.
PORT D
102
80
52
45
PD0 or
FD[8]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD0) and EPxFIFCFG.0 (wordwide) bits.
FD[8] is the bidirectional FIFO/GPIF data bus.
103
81
53
46
PD1 or
FD[9]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD1) and EPxFIFCFG.0 (wordwide) bits.
FD[9] is the bidirectional FIFO/GPIF data bus.
104
82
54
47
PD2 or
FD[10]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD2) and EPxFIFCFG.0 (wordwide) bits.
FD[10] is the bidirectional FIFO/GPIF data bus.
105
83
55
48
PD3 or
FD[11]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD3) and EPxFIFCFG.0 (wordwide) bits.
FD[11] is the bidirectional FIFO/GPIF data bus.
121
95
56
49
PD4 or
FD[12]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD4) and EPxFIFCFG.0 (wordwide) bits.
FD[12] is the bidirectional FIFO/GPIF data bus.
122
96
1
50
PD5 or
FD[13]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD5) and EPxFIFCFG.0 (wordwide) bits.
FD[13] is the bidirectional FIFO/GPIF data bus.
123
97
2
51
PD6 or
FD[14]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD6) and EPxFIFCFG.0 (wordwide) bits.
FD[14] is the bidirectional FIFO/GPIF data bus.
124
98
3
52
PD7 or
FD[15]
I/O/Z
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]
(PD7) and EPxFIFCFG.0 (wordwide) bits.
FD[15] is the bidirectional FIFO/GPIF data bus.
Port E
108
86
PE0 or
T0OUT
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.0
(PE0) bit.
PE0 is a bidirectional I/O port pin.
T0OUT is an active-HIGH signal from 8051 Timer-counter0.
T0OUT outputs a high level for one CLKOUT clock cycle when
Timer0 overflows. If Timer0 is operated in Mode 3 (two separate
timer/counters), T0OUT is active when the low byte timer/counter
overflows.
109
87
PE1 or
T1OUT
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.1
(PE1) bit.
PE1 is a bidirectional I/O port pin.
T1OUT is an active-HIGH signal from 8051 Timer-counter1.
T1OUT outputs a high level for one CLKOUT clock cycle when
Timer1 overflows. If Timer1 is operated in Mode 3 (two separate
timer/counters), T1OUT is active when the low byte timer/counter
overflows.
Document #: 38-08012 Rev. *E
Page 19 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
Name
Type
Default
Description
110
88
PE2 or
T2OUT
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.2
(PE2) bit.
PE2 is a bidirectional I/O port pin.
T2OUT is the active-HIGH output signal from 8051 Timer2.
T2OUT is active (HIGH) for one clock cycle when Timer/Counter
2 overflows.
111
89
PE3 or
RXD0OUT
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.3
(PE3) bit.
PE3 is a bidirectional I/O port pin.
RXD0OUT is an active-HIGH signal from 8051 UART0. If
RXD0OUT is selected and UART0 is in Mode 0, this pin provides
the output data for UART0 only when it is in sync mode. Otherwise
it is a 1.
112
90
PE4 or
RXD1OUT
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.4
(PE4) bit.
PE4 is a bidirectional I/O port pin.
RXD1OUT is an active-HIGH output from 8051 UART1. When
RXD1OUT is selected and UART1 is in Mode 0, this pin provides
the output data for UART1 only when it is in sync mode. In Modes
1, 2, and 3, this pin is HIGH.
113
91
PE5 or
INT6
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.5
(PE5) bit.
PE5 is a bidirectional I/O port pin.
INT6 is the 8051 INT5 interrupt request input signal. The INT6 pin
is edge-sensitive, active HIGH.
114
92
PE6 or
T2EX
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.6
(PE6) bit.
PE6 is a bidirectional I/O port pin.
T2EX is an active-high input signal to the 8051 Timer2. T2EX
reloads timer 2 on its falling edge. T2EX is active only if the EXEN2
bit is set in T2CON.
115
93
PE7 or
GPIFADR8
I/O/Z
I
Multiplexed pin whose function is selected by the PORTECFG.7
(PE7) bit.
PE7 is a bidirectional I/O port pin.
GPIFADR8 is a GPIF address output pin.
4
3
8
1
RDY0 or
SLRD
Input
N/A
Multiplexed pin whose function is selected by the following bits:
IFCONFIG[1..0].
RDY0 is a GPIF input signal.
SLRD is the input-only read strobe with programmable polarity
(FIFOPOLAR.3) for the slave FIFOs connected to FDI[7..0] or
FDI[15..0].
5
4
9
2
RDY1 or
SLWR
Input
N/A
Multiplexed pin whose function is selected by the following bits:
IFCONFIG[1..0].
RDY1 is a GPIF input signal.
SLWR is the input-only write strobe with programmable polarity
(FIFOPOLAR.2) for the slave FIFOs connected to FDI[7..0] or
FDI[15..0].
6
5
RDY2
Input
N/A
RDY2 is a GPIF input signal.
7
6
RDY3
Input
N/A
RDY3 is a GPIF input signal.
8
7
RDY4
Input
N/A
RDY4 is a GPIF input signal.
9
8
RDY5
Input
N/A
RDY5 is a GPIF input signal.
Document #: 38-08012 Rev. *E
Page 20 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
Name
Type
Default
Description
69
54
36
29
CTL0 or
FLAGA
Output
H
Multiplexed pin whose function is selected by the following bits:
IFCONFIG[1..0].
CTL0 is a GPIF control output.
FLAGA is a programmable slave-FIFO output status flag signal.
Defaults to programmable for the FIFO selected by the
FIFOADR[1:0] pins.
70
55
37
30
CTL1 or
FLAGB
Output
H
Multiplexed pin whose function is selected by the following bits:
IFCONFIG[1..0].
CTL1 is a GPIF control output.
FLAGB is a programmable slave-FIFO output status flag signal.
Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
71
56
38
31
CTL2 or
FLAGC
Output
H
Multiplexed pin whose function is selected by the following bits:
IFCONFIG[1..0].
CTL2 is a GPIF control output.
FLAGC is a programmable slave-FIFO output status flag signal.
Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0]
pins.
66
51
CTL3
Output
H
CTL3 is a GPIF control output.
67
52
CTL4
Output
H
CTL4 is a GPIF control output.
98
76
CTL5
Output
H
CTL5 is a GPIF control output.
32
26
IFCLK
I/O/Z
Z
Interface Clock, used for synchronously clocking data into or out
of the slave FIFOs. IFCLK also serves as a timing reference for all
slave FIFO control signals and GPIF. When internal clocking,
IFCONFIG.7 = 1, is used the IFCLK pin can be configured to
output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK
may be inverted, whether internally or externally sourced, by
setting the bit
IFCONFIG.4 =1.
28
22
INT4
Input
N/A
INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin
is edge-sensitive, active HIGH.
106
84
INT5#
Input
N/A
INT5# is the 8051 INT5 interrupt request input signal. The INT5
pin is edge-sensitive, active LOW.
31
25
T2
Input
N/A
T2 is the active-HIGH T2 input signal to 8051 Timer2, which
provides the input to Timer2 when C/T2 = 1. When C/T2 = 0,
Timer2 does not use this pin.
30
24
T1
Input
N/A
T1 is the active-HIGH T1 signal for 8051 Timer1, which provides
the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does
not use this bit.
29
23
T0
Input
N/A
T0 is the active-HIGH T0 signal for 8051 Timer0, which provides
the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does
not use this bit.
53
43
RXD1
Input
N/A
RXD1is an active-HIGH input signal for 8051 UART1, which
provides data to the UART in all modes.
52
42
TXD1
Output
H
51
41
RXD0
Input
N/A
50
40
TXD0
Output
H
TXD0 is the active-HIGH TXD0 output from 8051 UART0, which
provides the output clock in sync mode, and the output data in
async mode.
CS#
Output
H
CS# is the active-LOW chip select for external memory.
WR#
Output
H
WR# is the active-LOW write strobe output for external memory.
42
41
32
20
13
Document #: 38-08012 Rev. *E
TXD1is an active-HIGH output pin from 8051 UART1, which
provides the output clock in sync mode, and the output data in
async mode.
RXD0 is the active-HIGH RXD0 input to 8051 UART0, which
provides data to the UART in all modes.
Page 21 of 48
CY7C68013
Table 4-1. FX2 Pin Descriptions (continued)[5]
128
100
56
56
TQFP TQFP SSOP QFN
40
31
38
Name
Type
Default
Description
RD#
Output
H
RD# is the active-LOW read strobe output for external memory.
OE#
Output
H
OE# is the active-LOW output enable for external memory.
33
27
21
14
Reserved
Input
N/A
Reserved. Connect to ground.
101
79
51
44
WAKEUP
Input
N/A
USB Wakeup. If the 8051 is in suspend, asserting this pin starts
up the oscillator and interrupts the 8051 to allow it to exit the
suspend mode. Holding WAKEUP asserted inhibits the EZ-USB
chip from suspending. This pin has programmable polarity
(WAKEUP.4).
36
29
22
15
SCL
OD
Z
Clock for the I2C-compatible interface. Connect to VCC with a
2.2K resistor, even if no I2C-compatible peripheral is attached.
37
30
23
16
SDA
OD
Z
Data for I2C-compatible interface. Connect to VCC with a 2.2K
resistor, even if no I2C-compatible peripheral is attached.
2
1
6
55
VCC
Power
N/A
VCC. Connect to 3.3V power source.
17
16
14
7
VCC
Power
N/A
VCC. Connect to 3.3V power source.
26
20
18
11
VCC
Power
N/A
VCC. Connect to 3.3V power source.
43
33
24
17
VCC
Power
N/A
VCC. Connect to 3.3V power source.
48
38
34
27
VCC
Power
N/A
VCC. Connect to 3.3V power source.
64
49
39
32
VCC
Power
N/A
VCC. Connect to 3.3V power source.
68
53
50
43
VCC
Power
N/A
VCC. Connect to 3.3V power source.
81
66
VCC
Power
N/A
VCC. Connect to 3.3V power source.
100
78
VCC
Power
N/A
VCC. Connect to 3.3V power source.
107
85
VCC
Power
N/A
VCC. Connect to 3.3V power source.
3
2
4
53
GND
Ground
N/A
Ground.
20
19
7
56
GND
Ground
N/A
Ground.
27
21
17
10
GND
Ground
N/A
Ground.
49
39
19
12
GND
Ground
N/A
Ground.
58
48
33
26
GND
Ground
N/A
Ground.
65
50
35
28
GND
Ground
N/A
Ground.
80
65
48
41
GND
Ground
N/A
Ground.
93
75
GND
Ground
N/A
Ground.
116
94
GND
Ground
N/A
Ground.
125
99
GND
Ground
N/A
Ground.
14
13
NC
N/A
N/A
No-connect. This pin must be left open.
15
14
NC
N/A
N/A
No-connect. This pin must be left open.
16
15
NC
N/A
N/A
No-connect. This pin must be left open.
Document #: 38-08012 Rev. *E
Page 22 of 48
CY7C68013
5.0
Register Summary
FX2 register bit definitions are described in the FX2 TRM in
greater detail.
Table 5-1. FX2 Register Summary
Hex Size Name
Description
GPIF Waveform Memories
E400 128 WAVEDATA
GPIF Waveform Descriptor
0, 1, 2, 3 data
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
0
IFCLKSRC
0
3048MHZ
PORTCSTB
IFCLKOE
CLKSPD1
IFCLKPOL
CLKSPD0
ASYNC
CLKINV
GSTATE
CLKOE
IFCFG1
8051RES
IFCFG0
00000010 rrbbbbbr
11000000
RW
E480 384 reserved
GENERAL CONFIGURATION
E600
E601
1
1
CPUCS
IFCONFIG
CPU Control & Status
Interface Configuration
(Ports, GPIF, slave FIFOs)
E602
1
PINFLAGSAB[6]
E603
1
PINFLAGSCD [6]
Slave FIFO FLAGA and
FLAGB Pin Configuration
Slave FIFO FLAGC and
FLAGD Pin Configuration
E604
1
FIFORESET[6]
E605
1
BREAKPT
Restore FIFOS to default
state
Breakpoint Control
E606
E607
1
1
BPADDRH
BPADDRL
Breakpoint Address H
Breakpoint Address L
E608
1
UART230
E609
1
E60A
1
REVID
Chip Revision
E60B
1
REVCTL[6]
1
UDMA
GPIFHOLDTIME
3
reserved
E60C
FLAGB3
FLAGB2
FLAGB1
FLAGB0
FLAGA3
FLAGA2
FLAGA1
FLAGA0
00000000
RW
FLAGD3
FLAGD2
FLAGD1
FLAGD0
FLAGC3
FLAGC2
FLAGC1
FLAGC0
01000000
RW
NAKALL
0
0
0
EP3
EP2
EP1
EP0
xxxxxxxx
W
0
0
0
0
BREAK
BPPULSE
BPEN
0
A15
A7
A14
A6
A13
A5
A12
A4
A11
A3
A10
A2
A9
A1
A8
A0
0
0
0
0
0
0
230UART1
0
0
PKTEND
SLOE
SLRD
SLWR
EF
FF
00000000 rrbbbbbb
rv7
rv6
rv5
rv4
rv3
rv2
rv1
rv0
Chip Revision Control
0
0
0
0
0
0
dyn_out
enh_pkt
Rev A, B 00000000
Rev C, D 00000010
Rev E 00000100
00000000
rrrrrrbb
MSTB Hold Time (for UDMA)
0
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000
rrrrrrbb
230 Kbaud internally
generated ref. clock
FIFOPINPOLAR[6] Slave FIFO Interface pins
polarity
00000000 rrrrbbbr
xxxxxxxx
xxxxxxxx
230UART0 00000000
RW
RW
rrrrrrbb
R
ENDPOINT CONFIGURATION
E610
1
EP1OUTCFG
0
TYPE1
TYPE0
0
0
0
0
10100000 brbbrrrr
1
EP1INCFG
Endpoint 1-OUT Configuration
Endpoint 1-IN Configuration
VALID
E611
VALID
0
TYPE1
TYPE0
0
0
0
0
10100000 brbbrrrr
E612
E613
1
1
EP2CFG
EP4CFG
Endpoint 2 Configuration
Endpoint 4 Configuration
VALID
VALID
DIR
DIR
TYPE1
TYPE1
TYPE0
TYPE0
SIZE
0
0
0
BUF1
0
BUF0
0
10100010 bbbbbrbb
10100000 bbbbrrrr
E614
E615
1
1
EP6CFG
EP8CFG
Endpoint 6 Configuration
Endpoint 8 Configuration
VALID
VALID
DIR
DIR
TYPE1
TYPE1
TYPE0
TYPE0
SIZE
0
0
0
BUF1
0
BUF0
0
11100010 bbbbbrbb
11100000 bbbbrrrr
E618
2
1
reserved
EP2FIFOCFG[6]
Endpoint 2 / slave FIFO configuration
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN
0
WORDWIDE 00000101 rbbbbbrb
Endpoint 4 / slave FIFO configuration
Endpoint 6 / slave FIFO configuration
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN
0
WORDWIDE 00000101 rbbbbbrb
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN
0
WORDWIDE 00000101 rbbbbbrb
Endpoint 8 / slave FIFO configuration
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN
0
WORDWIDE 00000101 rbbbbbrb
0
0
0
0
0
PL10
PL9
PL8
00000010 rrrrrbbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000
RW
E619
1
EP4FIFOCFG[6]
E61A
1
EP6FIFOCFG[6]
E61B
1
EP8FIFOCFG[6]
4
reserved
E620
1
E621
1
EP2AUTOINLENH Endpoint 2 AUTOIN Packet
[6]
Length H
EP2AUTOINLENL Endpoint 2 AUTOIN Packet
[6]
Length L
E622
1
E623
1
E624
1
E625
1
E626
1
E627
1
E630
H.S.
E630
F.S.
E631
H.S.
EP4AUTOINLENH Endpoint 4 AUTOIN Packet
[6]
Length H
EP4AUTOINLENL Endpoint 4 AUTOIN Packet
[6]
Length L
EP6AUTOINLENH Endpoint 6 AUTOIN Packet
[6]
Length H
EP6AUTOINLENL Endpoint 6 AUTOIN Packet
[6]
Length L
EP8AUTOINLENH Endpoint 8 AUTOIN Packet
[6]
Length H
EP8AUTOINLENL Endpoint 8 AUTOIN Packet
[6]
Length L
8
1
reserved
EP2FIFOPFH[6]
1
EP2FIFOPFH[6]
1
[6]
EP2FIFOPFL
0
0
0
0
0
0
PL9
PL8
00000010
rrrrrrbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000
RW
0
0
0
0
0
PL10
PL9
PL8
00000010 rrrrrbbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000
RW
0
0
0
0
0
0
PL9
PL8
00000010
rrrrrrbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000
RW
Endpoint 2 / slave FIFO Programmable Flag H
DECIS
PKTSTAT
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]
OUT:PFC12 OUT:PFC11 OUT:PFC10
0
PFC9
PFC8
Endpoint 2 / slave FIFO Programmable Flag H
Endpoint 2 / slave FIFO Programmable Flag L
DECIS
PKTSTAT
OUT:PFC12 OUT:PFC11 OUT:PFC10
0
PFC9
PFC7
PFC6
PFC2
PFC1
PFC5
PFC4
PFC3
10001000 bbbbbrbb
IN:PKTS[2] 10001000 bbbbbrbb
OUT:PFC8
PFC0
00000000
RW
Note:
6. Read and writes to these register may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”
Document #: 38-08012 Rev. *E
Page 23 of 48
CY7C68013
Table 5-1. FX2 Register Summary (continued)
Hex Size Name
Description
E631
F.S
E632
H.S.
1
EP2FIFOPFL[6]
1
EP4FIFOPFH[6]
E632
F.S
E633
H.S.
1
EP4FIFOPFH[6]
1
EP4FIFOPFL[6]
E633
F.S
E634
H.S.
1
EP4FIFOPFL[6]
1
EP6FIFOPFH[6]
E634
F.S
E635
H.S.
1
EP6FIFOPFH[6]
1
EP6FIFOPFL[6]
E635
F.S
E636
H.S.
1
EP6FIFOPFL[6]
1
EP8FIFOPFH[6]
E636
F.S
E637
H.S.
1
EP8FIFOPFH[6]
1
EP8FIFOPFL
[6]
1
EP8FIFOPFL[6]
8
reserved
E640
1
EP2ISOINPKTS
E641
1
EP4ISOINPKTS
E642
1
EP6ISOINPKTS
E643
1
EP8ISOINPKTS
4
reserved
E648
E649
1
7
INPKTEND[6]
OUTPKTEND[6]
E650
1
INTERRUPTS
EP2FIFOIE[6]
E651
1
EP2FIFOIRQ[6]
E652
1
EP4FIFOIE[6]
1
EP4FIFOIRQ[6]
E637
F.S
E653
E654
[6]
1
EP6FIFOIE
E655
1
EP6FIFOIRQ[6]
E656
1
EP8FIFOIE[6]
E657
1
EP8FIFOIRQ[6]
E658
1
IBNIE
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
IN:PKTS[0]
OUT:PFC6
PKTSTAT
PFC5
PFC4
PFC3
PFC2
PFC1
PFC0
00000000
RW
0
IN: PKTS[1] IN: PKTS[0]
OUT:PFC10 OUT:PFC9
0
0
PFC8
10001000 bbrbbrrb
DECIS
PKTSTAT
0
OUT:PFC10 OUT:PFC9
0
0
PFC8
10001000 bbrbbrrb
PFC7
PFC6
PFC5
PFC2
PFC1
PFC0
00000000
RW
PFC2
PFC1
PFC0
00000000
RW
0
PFC9
PFC8
00001000 bbbbbrbb
0
PFC9
Endpoint 2 / slave FIFO Pro- IN:PKTS[1]
grammable Flag L
OUT:PFC7
Endpoint 4 / slave FIFO ProDECIS
grammable Flag H
Endpoint 4 / slave FIFO Programmable Flag H
Endpoint 4 / slave FIFO Programmable Flag L
PFC4
PFC3
Endpoint 4 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0]
PFC5
PFC4
PFC3
grammable Flag L
OUT:PFC7 OUT:PFC6
Endpoint 6 / slave FIFO ProDECIS
PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]
grammable Flag H
OUT:PFC12 OUT:PFC11 OUT:PFC10
Endpoint 6 / slave FIFO Programmable Flag H
Endpoint 6 / slave FIFO Programmable Flag L
DECIS
PKTSTAT
PFC7
PFC6
PFC5
IN:PKTS[0]
OUT:PFC6
PKTSTAT
PFC5
0
IN: PKTS[1] IN: PKTS[0]
OUT:PFC10 OUT:PFC9
DECIS
PKTSTAT
0
OUT:PFC10 OUT:PFC9
PFC7
PFC6
PFC5
PFC4
PFC5
Endpoint 6 / slave FIFO Pro- IN:PKTS[1]
grammable Flag L
OUT:PFC7
Endpoint 8 / slave FIFO ProDECIS
grammable Flag H
Endpoint 8 / slave FIFO Programmable Flag H
Endpoint 8 / slave FIFO Programmable Flag L
Endpoint 8 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0]
grammable Flag L
OUT:PFC7 OUT:PFC6
OUT:PFC12 OUT:PFC11 OUT:PFC10
IN:PKTS[2] 00001000 bbbbbrbb
OUT:PFC8
PFC0
00000000
RW
PFC4
PFC3
PFC2
PFC1
PFC4
PFC3
PFC2
PFC1
PFC0
00000000
0
0
PFC8
00001000 bbrbbrrb
0
0
PFC8
00001000 bbrbbrrb
PFC3
PFC2
PFC1
PFC0
00000000
RW
PFC4
PFC3
PFC2
PFC1
PFC0
00000000
RW
RW
EP2 (if ISO) IN Packets per
frame (1-3)
EP4 (if ISO) IN Packets per
frame (1-3)
0
0
0
0
0
0
INPPF1
INPPF0
00000001
rrrrrrbb
0
0
0
0
0
0
INPPF1
INPPF0
00000001
rrrrrrbb
EP6 (if ISO) IN Packets per
frame (1-3)
EP8 (if ISO) IN Packets per
frame (1-3)
0
0
0
0
0
0
INPPF1
INPPF0
00000001
rrrrrrbb
0
0
0
0
0
0
INPPF1
INPPF0
00000001
rrrrrrbb
Skip
Skip
0
0
0
0
0
0
EP3
EP3
EP2
EP2
EP1
EP1
EP0
EP0
xxxxxxxx
xxxxxxxx
R/W
W
Endpoint 2 slave FIFO Flag
Interrupt Enable
Endpoint 2 slave FIFO Flag
Interrupt Request
0
0
0
0
EDGEPF
PF
EF
FF
00000000
RW
0
0
0
0
0
PF
EF
FF
00000xxx
RW
Endpoint 4 slave FIFO Flag
Interrupt Enable
Endpoint 4 slave FIFO Flag
Interrupt Request
0
0
0
0
EDGEPF
PF
EF
FF
00000000
RW
0
0
0
0
0
PF
EF
FF
00000xxx
RW
Endpoint 6 slave FIFO Flag
Interrupt Enable
Endpoint 6 slave FIFO Flag
Interrupt Request
0
0
0
0
EDGEPF
PF
EF
FF
00000000
RW
0
0
0
0
0
PF
EF
FF
00000xxx
RW
Endpoint 8 slave FIFO Flag
Interrupt Enable
Endpoint 8 slave FIFO Flag
Interrupt Request
0
0
0
0
EDGEPF
PF
EF
FF
00000000
RW
0
0
0
0
0
PF
EF
FF
00000xxx
RW
IN-BULK-NAK Interrupt Enable
IN-BULK-NAK interrupt Request
0
0
EP8
EP6
EP4
EP2
EP1
EP0
00000000
RW
0
0
EP8
EP6
EP4
EP2
EP1
EP0
00xxxxxx
RW
Endpoint Ping-NAK / IBN Interrupt Enable
Endpoint Ping-NAK / IBN Interrupt Request
EP8
EP6
EP4
EP2
EP1
EP0
0
IBN
00000000
RW
EP8
EP6
EP4
EP2
EP1
EP0
0
IBN
xxxxxxxx
RW
0
0
EP0ACK
EP0ACK
HSGRANT
HSGRANT
URES
URES
SUSP
SUSP
SUTOK
SUTOK
SOF
SOF
SUDAV
SUDAV
00000000
0xxxxxxx
RW
RW
EP8
EP8
EP6
EP6
EP4
EP4
EP2
EP2
EP1OUT
EP1OUT
EP1IN
EP1IN
EP0OUT
EP0OUT
EP0IN
EP0IN
00000000
xxxxxxxx
RW
RW
0
0
0
0
0
0
0
0
0
0
0
0
GPIFWF
GPIFWF
GPIFDONE 00000000
GPIFDONE 000000xx
RW
RW
RW
RW
Force IN Packet End
Force OUT Packet End
E659
1
IBNIRQ
E65A
1
NAKIE
E65B
1
NAKIRQ
E65C
E65D
1
1
USBIE
USBIRQ
USB Int Enables
USB Interrupt Requests
E65E
E65F
1
1
EPIE
EPIRQ
Endpoint Interrupt Enables
Endpoint Interrupt Requests
E660
E661
1
1
GPIFIE[6]
GPIFIRQ[6]
GPIF Interrupt Enable
GPIF Interrupt Request
E662
E663
1
1
USBERRIE
USBERRIRQ
USB Error Interrupt Enables
USB Error Interrupt Requests
ISOEP8
ISOEP8
ISOEP6
ISOEP6
ISOEP4
ISOEP4
ISOEP2
ISOEP2
0
0
0
0
0
0
ERRLIMIT
ERRLIMIT
E664
E665
1
1
ERRCNTLIM
CLRERRCNT
USB Error counter and limit
Clear Error Counter EC3:0
EC3
x
EC2
x
EC1
x
EC0
x
LIMIT3
x
LIMIT2
x
LIMIT1
x
LIMIT0
x
E666
E667
1
1
INT2IVEC
INT4IVEC
Interrupt 2 (USB) Autovector
Interrupt 4 (slave FIFO &
GPIF) Autovector
0
1
I2V4
0
I2V3
I4V3
I2V2
I4V2
I2V1
I4V1
I2V0
I4V0
0
0
0
0
00000000
10000000
R
R
E668
1
INTSETUP
Interrupt 2&4 Setup
0
0
0
0
AV2EN
0
INT4SRC
AV4EN
00000000
RW
Document #: 38-08012 Rev. *E
00000000
xxxx000x
xxxx0100 rrrrbbbb
xxxxxxxx
W
Page 24 of 48
CY7C68013
Table 5-1. FX2 Register Summary (continued)
Hex Size Name
E669
7
reserved
INPUT / OUTPUT
E670
1
PORTACFG
E671
1
PORTCCFG
E672
1
PORTECFG
E673
5
reserved
E678
1
I2CS
E679
1
I2DAT
E67A
1
I2CTL
E67B
1
XAUTODAT1
E67C
1
XAUTODAT2
Description
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
FLAGD
SLCS
0
0
0
0
INT1
INT0
00000000
RW
GPIFA7
GPIFA6
GPIFA5
GPIFA4
GPIFA3
GPIFA2
GPIFA1
GPIFA0
00000000
RW
I/O PORTE Alternate Configuration
GPIFA8
T2EX
INT6
RXD1OUT
RXD0OUT
T2OUT
T1OUT
T0OUT
00000000
RW
I²C-Compatible Bus
Control & Status
I²C-Compatible Bus
Data
START
STOP
LASTRD
ID1
ID0
BERR
ACK
DONE
000xx000
bbbrrrrr
d7
d6
d5
d4
d3
d2
d1
d0
xxxxxxxx
RW
0
0
0
0
0
0
STOPIE
400KHZ
00000000
RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
CRC15
CRC7
CRC14
CRC6
CRC13
CRC5
CRC12
CRC4
CRC11
CRC3
CRC10
CRC2
CRC9
CRC1
CRC8
CRC0
01001010
10111010
RW
RW
I/O PORTA Alternate Configuration
I/O PORTC Alternate Configuration
I²C-Compatible Bus
Control
Autoptr1 MOVX access,
when APTREN=1
Autoptr2 MOVX access,
when APTREN=1
UDMA CRC
E67D
E67E
1
1
UDMACRCH [6]
UDMACRCL[6]
UDMA CRC MSB
UDMA CRC LSB
E67F
1
UDMACRCQUALIFIER
USB CONTROL
UDMA CRC Qualifier
QENABLE
0
0
0
QSTATE
QSIGNAL2
QSIGNAL1
QSIGNAL0 00000000 brrrbbbb
E680
E681
1
1
USBCS
SUSPEND
USB Control & Status
Put chip into suspend
HSM
x
0
x
0
x
0
x
DISCON
x
NOSYNSOF
x
RENUM
x
SIGRSUME x0000000 rrrrbbbb
x
xxxxxxxx
W
E682
E683
1
1
WAKEUPCS
TOGCTL
Wakeup Control & Status
Toggle Control
WU2
Q
WU
S
WU2POL
R
WUPOL
IO
0
EP3
DPEN
EP2
WU2EN
EP1
WUEN
EP0
E684
E685
1
1
USBFRAMEH
USBFRAMEL
USB Frame count H
USB Frame count L
0
FC7
0
FC6
0
FC5
0
FC4
0
FC3
FC10
FC2
FC9
FC1
FC8
FC0
00000xxx
xxxxxxxx
R
R
E686
E687
1
1
MICROFRAME
FNADDR
Microframe count, 0-7
USB Function address
0
0
0
FA6
0
FA5
0
FA4
0
FA3
MF2
FA2
MF1
FA1
MF0
FA0
00000xxx
0xxxxxxx
R
R
E688
2
reserved
E68A
E68B
1
1
EP0BCH[6]
EP0BCL[6]
Endpoint 0 Byte Count H
Endpoint 0 Byte Count L
(BC15)
(BC7)
(BC14)
BC6
(BC13)
BC5
(BC12)
BC4
(BC11)
BC3
(BC10)
BC2
(BC9)
BC1
(BC8)
BC0
xxxxxxxx
xxxxxxxx
RW
RW
E68C
E68D
1
1
reserved
EP1OUTBC
Endpoint 1 OUT Byte Count
0
BC6
BC5
BC4
BC3
BC2
BC1
BC0
0xxxxxxx
RW
E68E
E68F
1
1
reserved
EP1INBC
Endpoint 1 IN Byte Count
0
BC6
BC5
BC4
BC3
BC2
BC1
BC0
0xxxxxxx
RW
E690
E691
1
1
EP2BCH[6]
EP2BCL[6]
Endpoint 2 Byte Count H
Endpoint 2 Byte Count L
0
BC7/SKIP
0
BC6
0
BC5
0
BC4
0
BC3
BC10
BC2
BC9
BC1
BC8
BC0
00000xxx
xxxxxxxx
RW
RW
E692
E694
2
1
reserved
EP4BCH[6]
Endpoint 4 Byte Count H
0
0
0
0
0
0
BC9
BC8
000000xx
RW
E695
E696
1
2
EP4BCL[6]
reserved
Endpoint 4 Byte Count L
BC7/SKIP
BC6
BC5
BC4
BC3
BC2
BC1
BC0
xxxxxxxx
RW
E698
E699
1
1
EP6BCH[6]
EP6BCL[6]
Endpoint 6 Byte Count H
Endpoint 6 Byte Count L
0
BC7/SKIP
0
BC6
0
BC5
0
BC4
0
BC3
BC10
BC2
BC9
BC1
BC8
BC0
00000xxx
xxxxxxxx
RW
RW
E69A
E69C
2
1
reserved
EP8BCH[6]
Endpoint 8 Byte Count H
0
0
0
0
0
0
BC9
BC8
000000xx
RW
E69D
E69E
1
2
EP8BCL[6]
reserved
Endpoint 8 Byte Count L
BC7/SKIP
BC6
BC5
BC4
BC3
BC2
BC1
BC0
xxxxxxxx
RW
E6A0
1
EP0CS
HSNAK
0
0
0
0
0
BUSY
STALL
10000000 bbbbbbrb
E6A1
1
EP1OUTCS
Endpoint 0 Control and Status
Endpoint 1 OUT Control and
Status
0
0
0
0
0
0
BUSY
STALL
00000000 bbbbbbrb
E6A2
1
EP1INCS
0
0
0
0
0
0
BUSY
STALL
00000000 bbbbbbrb
E6A3
1
EP2CS
Endpoint 1 IN Control and
Status
Endpoint 2 Control and Status
0
NPAK2
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00101000
rrrrrrrb
E6A4
1
EP4CS
0
0
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00101000
rrrrrrrb
E6A5
1
EP6CS
Endpoint 4 Control and Status
Endpoint 6 Control and Status
0
NPAK2
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00000100
rrrrrrrb
E6A6
1
EP8CS
0
0
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00000100
rrrrrrrb
E6A7
1
EP2FIFOFLGS
Endpoint 8 Control and Status
Endpoint 2 slave FIFO Flags
0
0
0
0
0
PF
EF
FF
00000010
R
E6A8
E6A9
1
1
EP4FIFOFLGS
EP6FIFOFLGS
Endpoint 4 slave FIFO Flags
Endpoint 6 slave FIFO Flags
0
0
0
0
0
0
0
0
0
0
PF
PF
EF
EF
FF
FF
00000010
00000110
R
R
E6AA
E6AB
1
1
EP8FIFOFLGS
EP2FIFOBCH
Endpoint 8 slave FIFO Flags
Endpoint 2 slave FIFO total
byte count H
0
0
0
0
0
0
0
BC12
0
BC11
PF
BC10
EF
BC9
FF
BC8
00000110
00000000
R
R
xx000101 bbbbrbbb
xxxxxxxx rbbbbbbb
ENDPOINTS
Document #: 38-08012 Rev. *E
Page 25 of 48
CY7C68013
Table 5-1. FX2 Register Summary (continued)
Hex Size Name
Description
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
E6A
C
E6A
D
1
EP2FIFOBCL
BC7
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000
R
1
EP4FIFOBCH
Endpoint 2 slave FIFO total
byte count L
Endpoint 4 slave FIFO total
byte count H
0
0
0
0
0
BC10
BC9
BC8
00000000
R
E6AE
1
EP4FIFOBCL
BC7
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000
R
E6AF
1
EP6FIFOBCH
Endpoint 4 slave FIFO total
byte count L
Endpoint 6 slave FIFO total
byte count H
0
0
0
0
BC11
BC10
BC9
BC8
00000000
R
E6B0
1
EP6FIFOBCL
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000
R
1
EP8FIFOBCH
Endpoint 6 slave FIFO total
byte count L
Endpoint 8 slave FIFO total
byte count H
BC7
E6B1
0
0
0
0
0
BC10
BC9
BC8
00000000
R
E6B2
1
EP8FIFOBCL
BC7
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000
R
E6B3
1
SUDPTRH
Endpoint 8 slave FIFO total
byte count L
Setup Data Pointer high address byte
A15
A14
A13
A12
A11
A10
A9
A8
xxxxxxxx
RW
E6B4
1
SUDPTRL
A6
A5
A4
A3
A2
A1
0
1
SUDPTRCTL
Setup Data Pointer low address byte
Setup Data Pointer Auto
Mode
A7
E6B5
0
0
0
0
0
0
0
SDPAUTO
00000001
RW
E6B8
2
8
reserved
SETUPDAT
8 bytes of SETUP data
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
R
FIFOWR0
0
FIFORD1
0
FIFORD0
IDLEDRV
11100100
10000000
RW
RW
xxxxxxx0 bbbbbbbr
SETUPDAT[0] =
bmRequestType
SETUPDAT[1] = bmRequest
SETUPDAT[2:3] = wValue
SETUPDAT[4:5] = wIndex
SETUPDAT[6:7] = wLength
GPIF
E6C0
E6C1
1
1
GPIFWFSELECT Waveform Selector
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1
GPIFIDLECS
GPIF Done, GPIF IDLE drive
DONE
0
0
0
0
mode
E6C2
E6C3
1
1
GPIFIDLECTL
GPIFCTLCFG
Inactive Bus, CTL states
CTL Drive Type
0
TRICTL
0
0
CTL5
CTL5
CTL4
CTL4
CTL3
CTL3
CTL2
CTL2
CTL1
CTL1
CTL0
CTL0
11111111
00000000
RW
RW
E6C4
E6C5
1
1
GPIFADRH [6]
GPIF Address H
GPIF Address L
0
GPIFA7
0
GPIFA6
0
GPIFA5
0
GPIFA4
0
GPIFA3
0
GPIFA2
0
GPIFA1
GPIFA8
GPIFA0
00000000
00000000
RW
RW
E6C6
1
FLOWSTATE
FLOWSTATE
FSE
0
0
0
0
FS2
FS1
FS0
E6C7
1
FLOWLOGIC
Flowstate Logic
LFUNC1
LFUNC0
TERMA2
TERMA1
TERMA0
TERMB2
TERMB1
TERMB0
00000000
RW
E6C8
1
FLOWEQ0CTL
CTL0E3
CTL0E2
CTL1
CTL0
00000000
RW
FLOWEQ1CTL
CTL0E3
CTL0E2
CTL0E0/
CTL4
CTL0E0/
CTL4
CTL2
1
CTL0E1/
CTL5
CTL0E1/
CTL5
CTL3
E6C9
CTL-Pin States in Flowstate
(when Logic = 0)
CTL-Pin States in Flowstate
(when Logic = 1)
E6C
A
E6C
B
1
FLOWHOLDOFF Holdoff Configuration
1
FLOWSTB
E6C
C
E6C
D
1
FLOWSTBEDGE Flowstate Rising/Falling
Edge Configuration
FLOWSTBPERI- Master-Strobe Half-Period
OD
E6C
E
E6CF
1
GPIFTCB3[6]
1
GPIFTCB2[6]
1
GPIFTCB1
[6]
1
GPIFTCB0[6]
2
reserved
reserved
E6D0
E6D1
1
E6D2
1
E6D3
1
E6D4
1
3
E6D
A
1
E6D
B
E6D
C
1
GPIFADRL[6]
Flowstate Enable and Selector
Flowstate Strobe Configuration
CTL3
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD0 HOSTATE
00000000 brrrrbbb
CTL2
CTL1
CTL0
00000000
RW
HOCTL2
HOCTL1
HOCTL0
00010010
RW
SLAVE
RDYASYNC
CTLTOGL
SUSTAIN
0
MSTB2
MSTB1
MSTB0
00100000
RW
0
0
0
0
0
0
FALLING
RISING
00000001
rrrrrrbb
D7
D6
D5
D4
D3
D2
D1
D0
00000010
RW
GPIF Transaction Count
Byte 3
GPIF Transaction Count
Byte 2
TC31
TC30
TC29
TC28
TC27
TC26
TC25
TC24
00000000
RW
TC23
TC22
TC21
TC20
TC19
TC18
TC17
TC16
00000000
RW
GPIF Transaction Count
Byte 1
GPIF Transaction Count
Byte 0
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
00000000
RW
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
00000001
RW
00000000
RW
00000000
RW
FIFO2FLAG 00000000
RW
reserved
EP2GPIFFLGSEL Endpoint 2 GPIF Flag select
[6]
EP2GPIFPFSTOP Endpoint 2 GPIF stop transaction on prog. flag
EP2GPIFTRIG[6] Endpoint 2 GPIF Trigger
0
0
0
0
0
0
FS1
0
0
0
0
0
0
0
x
x
x
x
x
x
x
0
0
0
0
0
0
FS1
0
0
0
0
0
0
0
x
x
x
x
x
x
x
FS0
x
xxxxxxxx
W
FS0
00000000
RW
FIFO4FLAG 00000000
RW
reserved
reserved
reserved
EP4GPIFFLGSEL Endpoint 4 GPIF Flag select
[6]
1
EP4GPIFPFSTOP Endpoint 4 GPIF stop transaction on GPIF Flag
EP4GPIFTRIG[6] Endpoint 4 GPIF Trigger
3
reserved
Document #: 38-08012 Rev. *E
x
xxxxxxxx
W
Page 26 of 48
CY7C68013
Table 5-1. FX2 Register Summary (continued)
Hex Size Name
Description
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
FS0
00000000
RW
FIFO6FLAG 00000000
RW
reserved
reserved
E6E2
1
EP6GPIFFLGSEL Endpoint 6 GPIF Flag select
0
0
0
0
0
0
FS1
E6E3
1
EP6GPIFPFSTOP Endpoint 6 GPIF stop transaction on prog. flag
0
0
0
0
0
0
0
1
3
EP6GPIFTRIG[6]
x
x
x
x
x
x
x
E6E4
[6]
Endpoint 6 GPIF Trigger
x
xxxxxxxx
W
FS0
00000000
RW
FIFO8FLAG 00000000
RW
reserved
reserved
reserved
E6EA
1
EP8GPIFFLGSEL Endpoint 8 GPIF Flag select
0
0
0
0
0
0
FS1
E6EB
1
EP8GPIFPFSTOP Endpoint 8 GPIF stop transaction on prog. flag
0
0
0
0
0
0
0
E6E
C
1
EP8GPIFTRIG[6]
x
x
x
x
x
x
x
x
xxxxxxxx
W
3
reserved
E6F0
1
D15
D14
D13
D12
D11
D10
D9
D8
xxxxxxxx
RW
E6F1
1
XGPIFSGLDATH GPIF Data H (16-bit mode
only)
XGPIFSGLDATLX Read/Write GPIF Data L &
trigger transaction
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
E6F2
1
xxxxxxxx
R
E6F3
1
E6F4
1
E6F5
E6F6
1
2
[6]
Endpoint 8 GPIF Trigger
XGPIFSGLDATL- Read GPIF Data L, no transNOX
action trigger
GPIFREADYCFG Internal RDY, Sync/Async,
RDY pin states
D7
D6
D5
D4
D3
D2
D1
D0
INTRDY
SAS
TCXRDY5
0
0
0
0
0
GPIFREADYSTAT GPIF Ready Status
0
0
RDY5
RDY4
RDY3
RDY2
RDY1
RDY0
00xxxxxx
R
GPIFABORT
reserved
x
x
x
x
x
x
x
x
xxxxxxxx
W
ENDPOINT BUFFERS
E740 64 EP0BUF
EP0-IN/-OUT buffer
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
E780 64 EP10UTBUF
E7C0 64 EP1INBUF
EP1-OUT buffer
EP1-IN buffer
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
xxxxxxxx
xxxxxxxx
RW
RW
512/1024-byte EP 2 / slave
FIFO buffer (IN or OUT)
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
RW
512 byte EP 4 / slave FIFO
buffer (IN or OUT)
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
F800 1024 EP6FIFOBUF
512/1024-byte EP 6 / slave
FIFO buffer (IN or OUT)
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
FC00 512 EP8FIFOBUF
512 byte EP 8 / slave FIFO
buffer (IN or OUT)
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
0
DISCON
0
0
0
0
0
400KHZ
xxxxxxxx
n/a
2048 reserved
F000 1024 EP2FIFOBUF
F400 512 EP4FIFOBUF
Abort GPIF Waveforms
00000000 bbbrrrrr
F600 512 reserved
FE00 512 reserved
xxxx
I²C Compatible Configuration Byte
[8]
Special Function Registers (SFRs)
80
81
1
1
IOA[7]
SP
Port A (bit addressable)
Stack Pointer
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
xxxxxxxx
00000111
RW
RW
82
83
1
1
DPL0
DPH0
Data Pointer 0 L
Data Pointer 0 H
A7
A15
A6
A14
A5
A13
A4
A12
A3
A11
A2
A10
A1
A9
A0
A8
00000000
00000000
RW
RW
84
85
1
1
DPL1[7]
DPH1 [7]
Data Pointer 1 L
Data Pointer 1 H
A7
A15
A6
A14
A5
A13
A4
A12
A3
A11
A2
A10
A1
A9
A0
A8
00000000
00000000
RW
RW
86
87
1
1
DPS[7]
PCON
Data Pointer 0/1 select
Power Control
0
SMOD0
0
x
0
1
0
1
0
GF1
0
GF0
0
STOP
SEL
IDLE
00000000
00110000
RW
RW
88
1
TCON
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
00000000
RW
89
1
TMOD
Timer/Counter Control (bit
addressable)
Timer/Counter Mode Control
GATE
CT
M1
M0
GATE
CT
M1
M0
00000000
RW
8A
8B
1
1
TL0
TL1
Timer 0 reload L
Timer 1 reload L
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
00000000
00000000
RW
RW
8C
8D
1
1
TH0
TH1
Timer 0 reload H
Timer 1 reload H
D15
D15
D14
D14
D13
D13
D12
D12
D11
D11
D10
D10
D9
D9
D8
D8
00000000
00000000
RW
RW
8E
8F
1
1
CKCON[7]
reserved
Clock Control
x
x
T2M
T1M
T0M
MD2
MD1
MD0
00000001
RW
90
91
1
1
IOB[7]
EXIF[7]
Port B (bit addressable)
External Interrupt Flag(s)
D7
IE5
D6
IE4
D5
I²CINT
D4
USBNT
D3
1
D2
0
D1
0
D0
0
xxxxxxxx
00001000
RW
RW
92
1
MPAGE[7]
Upper Addr Byte of MOVX
using @R0 / @R1
A15
A14
A13
A12
A11
A10
A9
A8
00000000
RW
93
5
reserved
98
1
SCON0
SM0_0
SM1_0
SM2_0
REN_0
TB8_0
RB8_0
TI_0
RI_0
00000000
RW
99
1
SBUF0
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
Serial Port 0 Control (bit addressable)
Serial Port 0 Data Buffer
Notes:
7. SFRs not part of the standard 8051 architecture.
8. If no EEPROM is detected by the SIE then the default is 00000000.
Document #: 38-08012 Rev. *E
Page 27 of 48
CY7C68013
Table 5-1. FX2 Register Summary (continued)
Hex Size Name
Description
b7
b6
b5
b4
b3
b2
b1
b0
Default
Access
9A
9B
1
1
AUTOPTRH1[7]
AUTOPTRL1[7]
Autopointer 1 Address H
Autopointer 1 Address L
A15
A7
A14
A6
A13
A5
A12
A4
A11
A3
A10
A2
A9
A1
A8
A0
00000000
00000000
RW
RW
9C
9D
1
1
reserved
AUTOPTRH2[7]
Autopointer 2 Address H
A15
A14
A13
A12
A11
A10
A9
A8
00000000
RW
9E
9F
1
1
AUTOPTRL2[7]
reserved
Autopointer 2 Address L
A7
A6
A5
A4
A3
A2
A1
A0
00000000
RW
A0
A1
1
1
IOC[7]
Port C (bit addressable)
Interrupt 2 clear
D7
x
D6
x
D5
x
D4
x
D3
x
D2
x
D1
x
D0
x
xxxxxxxx
xxxxxxxx
RW
W
A2
A3
1
5
INT4CLR[7]
reserved
Interrupt 4 clear
x
x
x
x
x
x
x
x
xxxxxxxx
W
A8
1
IE
Interrupt Enable (bit addressable)
EA
ES1
ET2
ES0
ET1
EX1
ET0
EX0
00000000
RW
INT2CLR[7]
A9
1
reserved
AA
AB
1
1
EP2468STAT[7]
Endpoint 2,4,6,8 status flags
EP24FIFOFLGS[7] Endpoint 2,4 slave FIFO status flags
EP8F
0
EP8E
EP4PF
EP6F
EP4EF
EP6E
EP4FF
EP4F
0
EP4E
EP2PF
EP2F
EP2EF
EP2E
EP2FF
01011010
00100010
R
R
AC
1
0
EP8PF
EP8EF
EP8FF
0
EP6PF
EP6EF
EP6FF
01100110
R
AD
2
EP68FIFOFLGS[7] Endpoint 6,8 slave FIFO status flags
reserved
AF
1
Autopointer 1&2 Setup
0
0
0
0
0
APTR2INC
APTR1INC
APTREN
00000110
RW
B0
1
AUTOPTRSETUP[7]
IOD[7]
Port D (bit addressable)
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx
RW
B1
B2
1
1
IOE[7]
OEA[7]
Port E (NOT bit addressable)
Port A Output Enable
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
xxxxxxxx
00000000
RW
RW
B3
B4
1
1
OEB[7]
OEC[7]
Port B Output Enable
Port C Output Enable
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
00000000
00000000
RW
RW
B5
B6
1
1
OED[7]
Port D Output Enable
Port E Output Enable
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
00000000
00000000
RW
RW
B7
B8
1
1
reserved
IP
1
PS1
PT2
PS0
PT1
PX1
PT0
PX0
10000000
RW
B9
BA
1
1
reserved
EP01STAT[7]
EP0BSY
00000000
R
BB
1
GPIFTRIG[7] [6]
BC
1
reserved
BD
1
GPIFSGLDATH[7] GPIF Data H (16-bit mode
only)
OEE[7]
Interrupt Priority (bit addressable)
Endpoint 0&1 Status
0
0
0
0
0
DONE
0
0
0
0
RW
EP1
EP0
D15
D14
D13
D12
D11
D10
D9
D8
xxxxxxxx
RW
D7
D7
D6
D6
D5
D5
D4
D4
D3
D3
D2
D2
D1
D1
D0
D0
xxxxxxxx
xxxxxxxx
RW
R
Serial Port 1 Control (bit addressable)
Serial Port 1 Data Buffer
SM0_1
SM1_1
SM2_1
REN_1
TB8_1
RB8_1
TI_1
RI_1
00000000
RW
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
Timer/Counter 2 Control (bit
addressable)
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
CT2
CPRL2
00000000
RW
Capture for Timer 2, auto-reload, up-counter
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
Capture for Timer 2, auto-reload, up-counter
Timer 2 reload L
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
Endpoint 2,4,6,8 GPIF slave
FIFO Trigger
[7]
GPIF Data L w/ Trigger
GPIF Data L w/ No Trigger
EP1INBSY EP1OUTBSY
10000xxx brrrrbbb
BE
BF
1
1
GPIFSGLDATLX
GPIFSGLDATLNOX[7]
C0
1
SCON1[7]
C1
1
SBUF1[7]
C2
C8
6
1
reserved
T2CON
C9
CA
1
1
reserved
RCAP2L
CB
1
RCAP2H
CC
1
TL2
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
CD
CE
1
2
TH2
reserved
Timer 2 reload H
D15
D14
D13
D12
D11
D10
D9
D8
00000000
RW
D0
1
PSW
Program Status Word (bit addressable)
CY
AC
F0
RS1
RS0
OV
F1
P
00000000
RW
D1
7
reserved
D8
D9
1
7
EICON[7]
reserved
External Interrupt Control
SMOD1
1
ERESI
RESI
INT6
0
0
0
01000000
RW
E0
1
ACC
Accumulator (bit addressable)
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
E1
7
reserved
E8
E9
1
7
EIE[7]
reserved
External Interrupt Enable(s)
1
1
1
EX6
EX5
EX4
EI²C
EUSB
11100000
RW
F0
F1
1
7
B
reserved
B (bit addressable)
D7
D6
D5
D4
D3
D2
D1
D0
00000000
RW
F8
1
EIP[7]
External Interrupt Priority
Control
1
1
1
PX6
PX5
PX4
PI²C
PUSB
11100000
RW
F9
7
reserved
Document #: 38-08012 Rev. *E
Page 28 of 48
CY7C68013
6.0
Absolute Maximum Ratings
7.0
Operating Conditions
Storage Temperature .................................. –65°C to +150°C
TA (Ambient Temperature Under Bias) ............. 0°C to +70°C
Ambient Temperature with Power Supplied ...... 0°C to +70°C
Supply Voltage ...............................................+3.0V to +3.6V
Supply Voltage to Ground Potential ............... –0.5V to +4.0V
Ground Voltage ................................................................. 0V
DC Input Voltage to Any Input Pin ............................... 5.25V
FOSC (Oscillator or Crystal Frequency) ... 24 MHz ± 100 ppm
Parallel Resonant
DC Voltage Applied to Outputs
in High Z State ...................................... –0.5V to VCC + 0.5V
Power Dissipation .................................................... 936 mW
Static Discharge Voltage .......................................... > 2000V
Max Output Current, per I/O port ................................ 10 mA
Max Output Current, all five
I/O ports (128- and 100-pin packages) ....................... 50 mA
8.0
DC Characteristics
Table 8-1. DC Characteristics
Parameter
Description
Conditions
VCC
Supply Voltage
VIH
Input HIGH Voltage
VIL
Input LOW Voltage
II
Input Leakage Current
0< VIN < VCC
VOH
Output Voltage HIGH
IOUT = 4 mA
VOL
Output LOW Voltage
IOUT = –4 mA
Min.
Typ.
3.0
3.3
2
–0.5
Max.
Unit
3.6
V
5.25
V
0.8
V
±10
µA
0.4
V
2.4
V
IOH
Output Current HIGH
4
mA
IOL
Output Current LOW
4
mA
CIN
Input Pin Capacitance
ISUSP
ICC
TRESET
8.1
Suspend Current
Supply Current
Reset Time after valid power
Except D+/D–
10
pF
D+/D–
15
pF
Connected
250
400
µA
Disconnected
30
180
µA
8051 running, connected to USB HS
200
260
mA
8051 running, connected to USB FS
90
150
mA
VCC min. = 3.0V
1.91
ms
USB Transceiver
USB 2.0-certified in full- and high-speed modes.
Note:
9. Connected to the USB includes 1.5k-ohm internal pull-up. Disconnected has the 1.5k-ohm internal pull-up excluded.
Document #: 38-08012 Rev. *E
Page 29 of 48
CY7C68013
9.0
AC Electrical Characteristics
9.1
USB Transceiver
USB 2.0-certified in full- and high-speed modes.
9.2
Program Memory Read
tCL
CLKOUT[10]
tAV
tAV
A[15..0]
tSTBH
tSTBL
PSEN#
[11]
tACC1
D[7..0]
tDH
data in
tSOEL
OE#
tSCSL
CS#
Figure 9-1. Program Memory Read Timing Diagram
Table 9-1. Program Memory Read Parameters
Parameter
tCL
Description
Min.
1/CLKOUT Frequency
Typ.
Max.
Notes
20.83
ns
48 MHz
41.66
ns
24 MHz
ns
12 MHz
83.2
0
Unit
tAV
Delay from Clock to Valid Address
10.7
ns
tSTBL
Clock to PSEN Low
0
8
ns
tSTBH
Clock to PSEN High
0
8
ns
tSOEL
Clock to OE Low
11.1
ns
tSCSL
Clock to CS Low
13
ns
tDSU
Data Set-up to Clock
tDH
Data Hold Time
9.6
ns
0
ns
Notes:
10. CLKOUT is shown with positive polarity.
11. tACC1 is computed from the above parameters as follows:
tACC1(24 MHz) = 3*tCL – t AV –tDSU = 106 ns
tACC1(48 MHz) = 3*tCL – t AV – tDSU = 43 ns.
Document #: 38-08012 Rev. *E
Page 30 of 48
CY7C68013
9.3
Data Memory Read
tCL
Stretch = 0
CLKOUT[10]
tAV
tAV
A[15..0]
t STBH
t STBL
RD#
tSCSL
CS#
tSOEL
OE#
tDSU
[12]
tDH
tACC1
D[7..0]
data in
Stretch = 1
tCL
CLKOUT[10]
tAV
A[15..0]
RD#
CS#
tDSU
[12]
tACC1
D[7..0]
tDH
data in
Figure 9-2. Data Memory Read Timing Diagram
Parameter
Description
Min.
1/CLKOUT Frequency
tCL
tAV
Delay from Clock to Valid Address
tSTBL
Clock to RD LOW
tSTBH
tSCSL
tSOEL
Clock to OE LOW
tDSU
Data Set-up to Clock
tDH
Data Hold Time
Typ.
Max.
20.83
Unit
Notes
ns
48 MHz
41.66
ns
24 MHz
83.2
ns
12 MHz
10.7
ns
11
ns
Clock to RD HIGH
11
ns
Clock to CS LOW
13
ns
11.1
ns
9.6
ns
0
ns
Note:
12. tACC2 and tACC3 are computed from the above parameters as follows:
tACC2(24 MHz) = 3*tCL – tAV –t DSU = 106 ns
tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns
tACC3(24 MHz) = 5*tCL – tAV –t DSU = 190 ns
tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns.
Document #: 38-08012 Rev. *E
Page 31 of 48
CY7C68013
9.4
Data Memory Write
tCL
CLKOUT
tAV
tSTBL
tSTBH
tAV
A[15..0]
WR#
tSCSL
CS#
tON1
tOFF1
data out
D[7..0]
Stretch = 1
tCL
CLKOUT
tAV
A[15..0]
WR#
CS#
tON1
tOFF1
data out
D[7..0]
Figure 9-3. Data Memory Write Timing Diagram
Table 9-2. Data Memory Write Parameters
Parameter
Description
Min.
Max.
Unit
0
10.7
ns
tAV
Delay from Clock to Valid Address
tSTBL
Clock to WR Pulse LOW
0
11.2
ns
tSTBH
Clock to WR Pulse HIGH
0
11.2
ns
tSCSL
Clock to CS Pulse LOW
13.0
ns
tON1
Clock to Data Turn-on
0
13.1
ns
tOFF1
Clock to Data Hold Time
0
13.1
ns
Document #: 38-08012 Rev. *E
Notes
Page 32 of 48
CY7C68013
9.5
GPIF Synchronous Signals
tIFCLK
IFCLK
tSGA
GPIFADR[8:0]
RDYX
tSRY
tRYH
DATA(input)
valid
tSGD
tDAH
CTLX
tXCTL
DATA(output)
N
N+1
tXGD
Figure 9-4. GPIF Synchronous Signals Timing Diagram [13]
Table 9-3. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[14, 15]
Parameter
Description
tIFCLK
IFCLK Period
Min.
Max.
20.83
tSRY
RDYX to Clock Set-up Time
tRYH
Clock to RDYX
Unit
ns
8.9
ns
0
ns
tSGD
GPIF Data to Clock Set-up Time
tDAH
GPIF Data Hold Time
9.2
ns
0
ns
tSGA
Clock to GPIF Address Propagation Delay
7.5
ns
tXGD
Clock to GPIF Data Output Propagation Delay
11
ns
tXCTL
Clock to CTLX Output Propagation Delay
6.7
ns
Min.
Max.
Unit
20.83
200
ns
Table 9-4. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK [15]
Parameter
Description
tIFCLK
IFCLK Period
tSRY
RDYX to Clock Set-up Time
2.9
ns
tRYH
Clock to RDYX
3.7
ns
tSGD
GPIF Data to Clock Set-up Time
3.2
ns
tDAH
GPIF Data Hold Time
4.5
tSGA
Clock to GPIF Address Propagation Delay
tXGD
Clock to GPIF Data Output Propagation Delay
tXCTL
Clock to CTLX Output Propagation Delay
ns
11.5
ns
15
ns
10.7
ns
Notes:
13. Dashed lines denote signals with programmable polarity.
14. GPIF asynchronous RDYx signals have a minimum set-up time of 50 ns when using internal 48-MHz IFCLK.
15. IFCLK must not exceed 48 MHz.
Document #: 38-08012 Rev. *E
Page 33 of 48
CY7C68013
9.6
Slave FIFO Synchronous Read
tIFCLK
IFCLK
tSRD
tRDH
SLRD
tXFLG
FLAGS
DATA
N
tOEon
N+1
tXFD
tOEoff
SLOE
Figure 9-5. Slave FIFO Synchronous Read Timing Diagram[13]
Table 9-5. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK [15]
Parameter
Description
Min.
Max.
Unit
tIFCLK
IFCLK Period
20.83
ns
tSRD
SLRD to Clock Set-up Time
18.7
ns
tRDH
Clock to SLRD Hold Time
tOEon
SLOE Turn-on to FIFO Data Valid
10.5
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
tXFLG
Clock to FLAGS Output Propagation Delay
9.5
ns
tXFD
Clock to FIFO Data Output Propagation Delay
11
ns
Min.
Max.
Unit
200
0
ns
ns
Table 9-6. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[15]
Parameter
Description
tIFCLK
IFCLK Period
20.83
tSRD
SLRD to Clock Set-up Time
12.7
ns
tRDH
Clock to SLRD Hold Time
3.7
tOEon
SLOE Turn-on to FIFO Data Valid
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
tXFLG
Clock to FLAGS Output Propagation Delay
13.5
ns
tXFD
Clock to FIFO Data Output Propagation Delay
15
ns
ns
ns
10.5
ns
R = all bits read-only
W = all bits write-only
r = read-only bit
w = write-only bit
b = both read/write bit
Document #: 38-08012 Rev. *E
Page 34 of 48
CY7C68013
9.7
Slave FIFO Asynchronous Read
tRDpwh
SLRD
tRDpwl
FLAGS
tXFD
tXFLG
DATA
N+1
N
tOEon
tOEoff
SLOE
Figure 9-6. Slave FIFO Asynchronous Read Timing Diagram[13]
Table 9-7. Slave FIFO Asynchronous Read Parameters[16]
Parameter
Description
Min.
Max.
Unit
tRDpwl
SLRD Pulse Width LOW
50
tRDpwh
SLRD Pulse Width HIGH
50
tXFLG
SLRD to FLAGS Output Propagation Delay
tXFD
SLRD to FIFO Data Output Propagation Delay
15
ns
tOEon
SLOE Turn-on to FIFO Data Valid
10.5
ns
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
Max.
Unit
ns
ns
ns
ns
ns
ns
9.8
ns
ns
70
ns
Slave FIFO Synchronous Write
tIFCLK
IFCLK
SLWR
DATA
tSWR
tWRH
N
Z
tSFD
Z
tFDH
FLAGS
tXFLG
Figure 9-7. Slave FIFO Synchronous Write Timing Diagram [13]
Table 9-8. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK [15]
Parameter
tIFCLK
tSWR
tWRH
tSFD
tFDH
tXFLG
Description
IFCLK Period
SLWR to Clock Set-up Time
Clock to SLWR Hold Time
FIFO Data to Clock Set-up Time
Clock to FIFO Data Hold Time
Clock to FLAGS Output Propagation Time
Min.
20.83
18.1
0
9.2
0
9.5
Note:
16. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.
Document #: 38-08012 Rev. *E
Page 35 of 48
CY7C68013
Table 9-9. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[15]
Parameter
tIFCLK
tSWR
tWRH
tSFD
tFDH
tXFLG
9.9
Description
IFCLK Period
SLWR to Clock Set-up Time
Clock to SLWR Hold Time
FIFO Data to Clock Set-up Time
Clock to FIFO Data Hold Time
Clock to FLAGS Output Propagation Time
Min.
20.83
12.1
3.6
3.2
4.5
Max.
200
13.5
Unit
ns
ns
ns
ns
ns
ns
Max.
Unit
Slave FIFO Asynchronous Write
tWRpwh
SLWR/SLCS#
tWRpwl
tSFD
tFDH
DATA
tXFD
FLAGS
Figure 9-8. Slave FIFO Asynchronous Write Timing Diagram[13]
Table 9-10. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [16]
Parameter
Description
Min.
tWRpwl
SLWR Pulse LOW
50
ns
tWRpwh
SLWR Pulse HIGH
70
ns
tSFD
SLWR to FIFO DATA Set-up Time
10
ns
tFDH
FIFO DATA to SLWR Hold Time
10
ns
tXFD
SLWR to FLAGS Output Propagation Delay
9.10
70
ns
Slave FIFO Synchronous Packet End Strobe
IFCLK
tPEH
PKTEND
tSPE
FLAGS
tXFLG
Figure 9-9. Slave FIFO Synchronous Packet End Strobe Timing Diagram[13]
Table 9-11. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK [15]
Parameter
Description
Min.
Max.
Unit
tIFCLK
IFCLK Period
20.83
tSPE
PKTEND to Clock Set-up Time
14.6
ns
tPEH
Clock to PKTEND Hold Time
0
ns
tXFLG
Clock to FLAGS Output Propagation Delay
Document #: 38-08012 Rev. *E
ns
9.5
ns
Page 36 of 48
CY7C68013
Table 9-12. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK [15]
Parameter
Description
Min.
Max.
20.83
200
tIFCLK
IFCLK Period
tSPE
PKTEND to Clock Set-up Time
8.6
tPEH
Clock to PKTEND Hold Time
2.5
tXFLG
Clock to FLAGS Output Propagation Delay
Unit
ns
ns
ns
13.5
ns
There is no specific timing requirement that needs to be met
for asserting PKTEND pin with regards to asserting SLWR.
PKTEND can be asserted with the last data value clocked into
the FIFOs or thereafter. The only consideration is the set-up
time tSPE and the hold time tPEH must be met.
clock cycle after the rising edge that caused the last byte/word
to be clocked into the previous auto committed packet.
Figure 9-10 below shows this scenario. X is the value the
AUTOINLEN register is set to when the IN endpoint is
configured to be in auto mode.
Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition
that needs attention while using the PKTEND to commit a one
byte/word packet. There is an additional timing requirement
that need to be met when the FIFO is configured to operate in
auto mode and it is desired to send two packets back to back:
a full packet (full defined as the number of bytes in the FIFO
meeting the level set in AUTOINLEN register) committed
automatically followed by a short one byte/word packet
committed manually using the PKTEND pin. In this particular
scenario, user must make sure to assert PKTEND at least one
Figure 9-10 shows a scenario where two packets are being
committed. The first packet gets committed automatically
when the number of bytes in the FIFO reaches X (value set in
AUTOINLEN register) and the second one byte/word short
packet being committed manually using PKTEND. Note that
there is at least one IFCLK cycle timing between the assertion
of PKTEND and clocking of the last byte of the previous packet
(causing the packet to be committed automatically). Failing to
adhere to this timing, will result in the FX2 failing to send the
one byte/word short packet.
tIFCLK
IFCLK
tSFA
tFAH
FIFOADR
>= tWRH
>= tSWR
SLWR
tSFD
X-4
DATA
tFDH
tSFD
X-3
tFDH
tSFD
X-2
tFDH
tSFD
X-1
tFDH
tSFD
X
tFDH
tSFD
tFDH
1
At least one IFCLK cycle
tSPE
tPEH
PKTEND
Figure 9-10. Slave FIFO Synchronous Write Sequence and Timing Diagram
Document #: 38-08012 Rev. *E
Page 37 of 48
CY7C68013
9.11
Slave FIFO Asynchronous Packet End Strobe
tPEpwh
PKTEND
tPEpwl
FLAGS
tXFLG
Figure 9-11. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[13]
Table 9-13. Slave FIFO Asynchronous Packet End Strobe Parameters[16]
Parameter
Description
Min.
Max.
Unit
tPEpwl
PKTEND Pulse Width LOW
50
ns
tPWpwh
PKTEND Pulse Width HIGH
50
ns
tXFLG
PKTEND to FLAGS Output Propagation Delay
9.12
115
ns
Max.
Unit
Slave FIFO Output Enable
SLOE
tOEon
DATA
tOEoff
Figure 9-12. Slave FIFO Output Enable Timing Diagram[13]
Table 9-14. Slave FIFO Output Enable Parameters
Parameter
Description
Min.
tOEon
SLOE Assert to FIFO DATA Output
10.5
ns
tOEoff
SLOE Deassert to FIFO DATA Hold
10.5
ns
Max.
Unit
9.13
Slave FIFO Address to Flags/Data
FIFOADR [1.0]
tXFLG
FLAGS
tXFD
DATA
N
N+1
Figure 9-13. Slave FIFO Address to Flags/Data Timing Diagram [13]
Table 9-15. Slave FIFO Address to Flags/Data Parameters
Parameter
Description
Min.
tXFLG
FIFOADR[1:0] to FLAGS Output Propagation Delay
10.7
ns
tXFD
FIFOADR[1:0] to FIFODATA Output Propagation Delay
14.3
ns
Document #: 38-08012 Rev. *E
Page 38 of 48
CY7C68013
9.14
Slave FIFO Synchronous Address
IFCLK
SLCS/FIFOADR [1:0]
tSFA
tFAH
Figure 9-14. Slave FIFO Synchronous Address Timing Diagram
Table 9-16. Slave FIFO Synchronous Address Parameters [15]
Parameter
Description
Min.
Max.
Unit
20.83
200
ns
tIFCLK
Interface Clock Period
tSFA
FIFOADR[1:0] to Clock Set-up Time
25
ns
tFAH
Clock to FIFOADR[1:0] Hold Time
10
ns
9.15
Slave FIFO Asynchronous Address
SLCS/FIFOADR [1:0]
tSFA
tFAH
SLRD/SLWR/PKTEND
Figure 9-15. Slave FIFO Asynchronous Address Timing Diagram[13]
Table 9-17. Slave FIFO Asynchronous Address Parameters[16]
Parameter
Description
Min.
Max.
Unit
tSFA
FIFOADR[1:0] to RD/WR/PKTEND Set-up Time
10
ns
tFAH
SLRD/PKTEND to FIFOADR[1:0] Hold Time
20
ns
tFAH
SLWR/PKTEND to FIFOADR[1:0] Hold Time
70
ns
Document #: 38-08012 Rev. *E
Page 39 of 48
CY7C68013
9.16
Sequence Diagram
9.16.1
Single and Burst Synchronous Read Example
tIFCLK
IFCLK
tSFA
tSFA
tFAH
tFAH
FIFOADR
t=0
tSRD
T=0
tRDH
>= tSRD
>= tRDH
SLRD
t=3
t=2
T=3
T=2
SLCS
tXFLG
FLAGS
tXFD
tXFD
Data Driven: N
DATA
N+1
N+1
N+2
N+3
tOEon
tOEoff
tOEon
tXFD
tXFD
N+4
tOEoff
SLOE
t=4
t=1
T=4
T=1
Figure 9-16. Slave FIFO Synchronous Read Sequence and Timing Diagram
IFCLK
FIFO POINTER
N
IFCLK
IFCLK
N
N+1
SLOE
FIFO DATA BUS Not Driven
IFCLK
N+1
N+1
SLOE
SLRD
SLRD
Driven: N
IFCLK
N+1
SLOE
Not Driven
IFCLK
N+2
IFCLK
N+3
IFCLK
N+4
SLRD
N+1
IFCLK
SLRD
N+2
N+3
N+4
IFCLK
N+4
N+4
SLOE
N+4
Not Driven
Figure 9-17. Slave FIFO Synchronous Sequence of Events Diagram
Figure 9-16 shows the timing relationship of the SLAVE FIFO
signals during a synchronous FIFO read using IFCLK as the
synchronizing clock. The diagram illustrates a single read
followed by a burst read.
• At t = 0 the FIFO address is stable and the signal SLCS is
asserted (SLCS may be tied low in some applications).
Note: tSFA has a minimum of 25 ns. This means when IFCLK
is running at 48 MHz, the FIFO address set-up time is more
than one IFCLK cycle.
• At = 1, SLOE is asserted. SLOE is an output enable only,
whose sole function is to drive the data bus. The data that
is driven on the bus is the data that the internal FIFO pointer
is currently pointing to. In this example it is the first data
value in the FIFO. Note: the data is pre-fetched and is driven
on the bus when SLOE is asserted.
• At t = 2, SLRD is asserted. SLRD must meet the setup time
of tSRD (time from asserting the SLRD signal to the rising
edge of the IFCLK) and maintain a minimum hold time of
tRDH (time from the IFCLK edge to the de-assertion of the
SLRD signal). If the SLCS signal is used, it must be asserted
Document #: 38-08012 Rev. *E
with SLRD, or before SLRD is asserted (i.e. the SLCS and
SLRD signals must both be asserted to start a valid read
condition).
• The FIFO pointer is updated on the rising edge of the IFCLK,
while SLRD is asserted. This starts the propagation of data
from the newly addressed location to the data bus. After a
propagation delay of tXFD (measured from the rising edge
of IFCLK) the new data value is present. N is the first data
value read from the FIFO. In order to have data on the FIFO
data bus, SLOE MUST also be asserted.
The same sequence of events are shown for a burst read and
are marked with the time indicators of T = 0 through 5. Note:
For the burst mode, the SLRD and SLOE are left asserted
during the entire duration of the read. In the burst read mode,
when SLOE is asserted, data indexed by the FIFO pointer is
on the data bus. During the first read cycle, on the rising edge
of the clock the FIFO pointer is updated and increments to
point to address N+1. For each subsequent rising edge of
IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.
Page 40 of 48
CY7C68013
9.16.2
Single and Burst Synchronous Write
tIFCLK
IFCLK
tSFA
tSFA
tFAH
tFAH
FIFOADR
t=0
tSWR
tWRH
>= tWRH
>= tSWR
T=0
SLWR
t=2
T=2
t=3
T=5
SLCS
tXFLG
tXFLG
FLAGS
tSFD
tFDH
tSFD
N+1
N
DATA
t=1
tFDH
T=1
tSFD
tSFD
tFDH
N+3
N+2
T=3
tFDH
T=4
tSPE
tPEH
PKTEND
Figure 9-18. Slave FIFO Synchronous Write Sequence and Timing Diagram[13]
The Figure 9-18 shows the timing relationship of the SLAVE
FIFO signals during a synchronous write using IFCLK as the
synchronizing clock. The diagram illustrates a single write
followed by burst write of three bytes and committing all four
bytes as a short packet using the PKTEND pin.
• At t = 0 the FIFO address is stable and the signal SLCS is
asserted. (SLCS may be tied low in some applications)
Note: tSFA has a minimum of 25 ns. This means when IFCLK
is running at 48 MHz, the FIFO address setup time is more
than one IFCLK cycle.
• At t = 1, the external master/peripheral must outputs the
data value onto the data bus with a minimum set up time of
tSFD before the rising edge of IFCLK.
• At t = 2, SLWR is asserted. The SLWR must meet the setup
time of tSWR (time from asserting the SLWR signal to the
rising edge of IFCLK) and maintain a minimum hold time of
tWRH (time from the IFCLK edge to the deassertion of the
SLWR signal). If SLCS signal is used, it must be asserted
with SLWR or before SLWR is asserted. (i.e., the SLCS and
SLWR signals must both be asserted to start a valid write
condition).
• While the SLWR is asserted, data is written to the FIFO and
on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag will also be updated after a delay of
tXFLG from the rising edge of the clock.
The same sequence of events are also shown for a burst write
and are marked with the time indicators of T = 0 through 5.
Note: For the burst mode, SLWR and SLCS are left asserted
for the entire duration of writing all the required data values. In
this burst write mode, once the SLWR is asserted, the data on
the FIFO data bus is written to the FIFO on every rising edge
Document #: 38-08012 Rev. *E
of IFCLK. The FIFO pointer is updated on each rising edge of
IFCLK. In Figure 9-18, once the four bytes are written to the
FIFO, SLWR is de-asserted. The short 4-byte packet can be
committed to the host by asserting the PKTEND signal.
There is no specific timing requirement that needs to be met
for asserting PKTEND signal with regards to asserting the
SLWR signal. PKTEND can be asserted with the last data
value or thereafter. The only requirement is that the set-up time
tSPE and the hold time tPEH must be met. In the scenario of
Figure 9-18, the number of data values committed includes the
last value written to the FIFO. In this example, both the data
value and the PKTEND signal are clocked on the same rising
edge of IFCLK. PKTEND can also be asserted in subsequent
clock cycles. The FIFOADDR lines should be held constant
during the PKTEND assertion.
Although there is no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition
that needs attention while using the PKTEND to commit a one
byte/word packet. Additional timing requirements exists when
the FIFO is configured to operate in auto mode and it is desired
to send two packets: a full packet (full defined as the number
of bytes in the FIFO meeting the level set in AUTOINLEN
register) committed automatically followed by a short one
byte/word packet committed manually using the PKTEND pin.
In this case, the external master must make sure to assert the
PKTEND pin at least one clock cycle after the rising edge that
caused the last byte/word to be clocked into the previous auto
committed packet (the packet with the number of bytes equal
to what is set in the AUTOINLEN register). Refer to Figure 910 for further details on this timing.
Page 41 of 48
CY7C68013
9.16.3
Sequence Diagram of a Single and Burst Asynchronous Read
tSFA
tFAH
tSFA
tFAH
FIFOADR
t=0
tRDpwl
tRDpwh
tRDpwl
T=0
tRDpwl
tRDpwh
tRDpwl
tRDpwh
tRDpwh
SLRD
t=2
t=3
T=2
T=3
T=5
T=4
T=6
SLCS
tXFLG
tXFLG
FLAGS
tXFD
Data (X)
Driven
DATA
tXFD
tXFD
N
N
N+3
N+2
tOEon
tOEoff
tOEon
tXFD
N+1
tOEoff
SLOE
t=4
t=1
T=1
T=7
Figure 9-19. Slave FIFO Asynchronous Read Sequence and Timing Diagram
SLOE
FIFO POINTER
SLRD
FIFO DATA BUS Not Driven
SLRD
SLOE
SLOE
SLRD
SLRD
SLRD
SLRD
SLOE
N
N
N+1
N+1
N+1
N+1
N+2
N+2
N+3
N+3
Driven: X
N
N
Not Driven
N
N+1
N+1
N+2
N+2
Not Driven
N
Figure 9-20. Slave FIFO Asynchronous Read Sequence of Events Diagram
Figure 9-19 diagrams the timing relationship of the SLAVE
FIFO signals during an asynchronous FIFO read. It shows a
single read followed by a burst read.
• At t = 0 the FIFO address is stable and the SLCS signal is
asserted.
• At t = 1, SLOE is asserted. This results in the data bus being
driven. The data that is driven on to the bus is previous data,
it data that was in the FIFO from a prior read cycle.
• At t = 2, SLRD is asserted. The SLRD must meet the
minimum active pulse of tRDpwl and minimum de-active
pulse width of tRDpwh. If SLCS is used then, SLCS must be
in asserted with SLRD or before SLRD is asserted (i.e., the
SLCS and SLRD signals must both be asserted to start a
valid read condition).
Document #: 38-08012 Rev. *E
• The data that will be driven, after asserting SLRD, is the
updated data from the FIFO. This data is valid after a propagation delay of tXFD from the activating edge of SLRD. In
Figure 9-19, data N is the first valid data read from the FIFO.
For data to appear on the data bus during the read cycle
(i.e., SLRD is asserted), SLOE MUST be in an asserted
state. SLRD and SLOE can also be tied together.
The same sequence of events is also shown for a burst read
marked with T = 0 through 5. Note: In burst read mode, during
SLOE is assertion, the data bus is in a driven state and outputs
the previous data. Once SLRD is asserted, the data from the
FIFO is driven on the data bus (SLOE must also be asserted)
and then the FIFO pointer is incremented.
Page 42 of 48
CY7C68013
9.16.4
Sequence Diagram of a Single and Burst Asynchronous Write
tSFA
tFAH
tSFA
tFAH
FIFOADR
t=0
tWRpwl
tWRpwh
T=0
tWRpwl
tWRpwl
tWRpwh
tWRpwl
tWRpwh
tWRpwh
SLWR
t =1
t=3
T=1
T=3
T=4
T=6
T=7
T=9
SLCS
tXFLG
tXFLG
FLAGS
tSFD tFDH
tSFD tFDH
tSFD tFDH
tSFD tFDH
N+1
N+2
N+3
N
DATA
t=2
T=2
T=5
T=8
tPEpwl
tPEpwh
PKTEND
Figure 9-21. Slave FIFO Asynchronous Write Sequence and Timing Diagram [13]
Figure 9-21 diagrams the timing relationship of the SLAVE
FIFO write in an asynchronous mode. The diagram shows a
single write followed by a burst write of three bytes and
committing the 4-byte-short packet using PKTEND.
• At t = 0 the FIFO address is applied, insuring that it meets
the setup time of tSFA. If SLCS is used, it must also be
asserted (SLCS may be tied low in some applications).
• At t = 1 SLWR is asserted. SLWR must meet the minimum
active pulse of tWRpwl and minimum de-active pulse width
of tWRpwh. If the SLCS is used, it must be in asserted with
SLWR or before SLWR is asserted.
• At t = 2, data must be present on the bus tSFD before the
deasserting edge of SLWR.
• At t = 3, deasserting SLWR will cause the data to be written
from the data bus to the FIFO and then increments the FIFO
pointer. The FIFO flag is also updated after tXFLG from the
deasserting edge of SLWR.
Document #: 38-08012 Rev. *E
The same sequence of events is shown for a burst write and
is indicated by the timing marks of T = 0 through 5. Note: In
the burst write mode, once SLWR is deasserted, the data is
written to the FIFO and then the FIFO pointer is incremented
to the next byte in the FIFO. The FIFO pointer is post incremented.
In Figure 9-21 once the four bytes are written to the FIFO and
SLWR is deasserted, the short 4-byte packet can be
committed to the host using the PKTEND. The external device
should be designed to not assert SLWR and the PKTEND
signal at the same time. It should be designed to assert the
PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines are to be held
constant during the PKTEND assertion.
Page 43 of 48
CY7C68013
10.0
Ordering Information
Table 10-1. Ordering Information
Ordering Code
Package Type
RAM Size
# Prog I/Os
8051 Address/Data Buses
CY7C68013-128AC
128 TQFP
8K
40
16/8 bit
CY7C68013-100AC
100 TQFP
8K
40
–
CY7C68013-56PVC
56 SSOP
8K
24
–
CY7C68013-56LFC
56 QFN
8K
24
–
CY7C68013-128AXC
128 TQFP Lead-Free Package
8K
40
16/8 bit
CY7C68013-100AXC
100 TQFP Lead-Free Package
8K
40
–
CY7C68013-56PVXC
56 SSOP Lead-Free Package
8K
24
–
CY7C68013-56LFXC
56 QFN Lead-Free Package
8K
24
–
CY3681
EZ-USB FX2 Xcelerator Development Kit
Document #: 38-08012 Rev. *E
Page 44 of 48
CY7C68013
11.0
Package Diagrams
The FX2 is available in four packages:
• 56-pin SSOP
• 56-pin QFN
• 100-pin TQFP
• 128-pin TQFP.
51-85062-*C
Figure 11-1. 56-lead Shrunk Small Outline Package O56
TOP VIEW
BOTTOM VIEW
SIDE VIEW
0.08[0.003]
C
1.00[0.039] MAX.
7.90[0.311]
8.10[0.319]
A
0.05[0.002] MAX.
0.80[0.031] MAX.
7.70[0.303]
7.80[0.307]
0.18[0.007]
0.28[0.011]
0.20[0.008] REF.
0.80[0.031]
DIA.
PIN1 ID
0.20[0.008] R.
N
N
1
1
2
2
0.45[0.018]
6.45[0.254]
6.55[0.258]
7.90[0.311]
8.10[0.319]
7.70[0.303]
7.80[0.307]
E-PAD
(PAD SIZE VARY
BY DEVICE TYPE)
0.30[0.012]
0.50[0.020]
0°-12°
0.50[0.020]
C
SEATING
PLANE
0.24[0.009]
0.60[0.024]
(4X)
6.45[0.254]
6.55[0.258]
51-85144-*D
Figure 11-2. 56-Lead QFN 8 x 8 MM LF56A
Document #: 38-08012 Rev. *E
Page 45 of 48
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
CY7C68013
51-85050-*A
Figure 11-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101
51-85101-*B
Figure 11-4. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128
Document #: 38-08012 Rev. *E
Page 46 of 48
CY7C68013
12.0
PCB Layout Recommendations[17]
The following recommendations should be followed to ensure
reliable high-performance operation.
• At least a four-layer impedance controlled boards are required to maintain signal quality.
• Specify impedance targets (ask your board vendor what
they can achieve).
• To control impedance, maintain trace widths and trace spacing.
• Minimize stubs to minimize reflected signals.
• Connections between the USB connector shell and signal
ground must be done near the USB connector.
• Bypass/flyback caps on VBus, near connector, are recommended.
• DPLUS and DMINUS trace lengths should be kept to within
two mm of each other in length, with preferred length of 2030 mm.
• Maintain a solid ground plane under the DPLUS and DMINUS traces. Do not allow the plane to be split under these
traces.
• It is preferred is to have no vias placed on the DPLUS or
DMINUS trace routing.
• Isolate the DPLUS and DMINUS traces from all other signal
traces by no less than 10 mm.
13.0
Quad Flat Package No Leads (QFN)
Package Design Notes
Electrical contact of the part to the Printed Circuit Board (PCB)
is made by soldering the leads on the bottom surface of the
package to the PCB. Hence, special attention is required to the
heat transfer area below the package to provide a good
thermal bond to the circuit board. A Copper (Cu) fill is to be
designed into the PCB as a thermal pad under the package.
Heat is transferred from the FX2 through the device’s metal
paddle on the bottom side of the package. Heat from here, is
conducted to the PCB at the thermal pad. It is then conducted
from the thermal pad to the PCB inner ground plane by a 5 x
5 array of via. A via is a plated through hole in the PCB with a
finished diameter of 13 mil. The QFN’s metal die paddle must
be soldered to the PCB’s thermal pad. Solder mask is placed
on the board top side over each via to resist solder flow into
the via. The mask on the top side also minimizes outgassing
during the solder reflow process.
For further information on this package design please refer to
the application note “Surface Mount Assembly of AMKOR’s
MicroLeadFrame (MLF) Technology.” This application note
can be downloaded from AMKOR’s website from the following
URL:
“www.amkor.com/products/notes_papers/MLF_AppNote_090
2.pdf”. The application note provides detailed information on
board mounting guidelines, soldering flow, rework process,
etc.
Figure 13-1 below display a cross-sectional area underneath
the package. The cross section is of only one via. The solder
paste template needs to be designed to allow at least 50%
solder coverage. The thickness of the solder paste template
should be 5 mil. It is recommended that “No Clean”, type 3
solder paste is used for mounting the part. Nitrogen purge is
recommended during reflow.
Figure 13-2 is a plot of the solder mask pattern and Figure 133 displays an X-Ray image of the assembly (darker areas
indicate solder.).
0.017” dia
Solder Mask
Cu Fill
Cu Fill
PCB Material
Via hole for thermally connecting the
QFN to the circuit board ground plane.
0.013” dia
PCB Material
This figure only shows the top three layers of the circuit board:
Top Solder, PCB Dielectric, and the Ground Plane
Figure 13-1. Cross-section of the Area Underneath the QFN Package
Figure 13-2. Plot of the Solder Mask (White Area)
Figure 13-3. X-ray Image of the Assembly
Note:
17. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http:///www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High
Speed USB Platform Design Guidelines, http://www.usb.org/developers/data/hs_usb_pdg_r1_0.pdf.
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips
2
2
2
I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification
as defined by Philips. EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress
Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.
Document #: 38-08012 Rev. *E
Page 47 of 48
CY7C68013
Document History Page
Document Title: CY7C68013 EZ-USB FX2™ USB Microcontroller High-speed USB Peripheral Controller
Document Number: 38-08012
REV.
ECN NO.
Issue Date
Orig. of
Change
Description of Change
**
111753
11/15/01
DSG
Changed from Spec number: 38-00929 to 38-08012
*A
111802
02/20/02
KKU
Updated functional changes between revision D part and revision E part
Changed timing data from simulation data to revision E characterization data
*B
115480
06/26/02
KKU
Added new 56-pin Quad Flatpack No Lead package and pinout
Revised pin description table to reflect new package
Corrected Figure 9-8 by moving tsfd parameter location
Corrected labels on Dplus and Dminus in Table 4-1
Removed Preliminary from spec title
*C
120776
01/06/03
KKU
Added bus powered references and PCB layout recommendations and QFN
package design notes
Updated QFN package drawing 51-85144 to current revision
*D
288810
See ECN
MON
Added lead-free packages
Added timing sequence diagrams for slave FIFO read and write
Changed PKTEND to FLAGS output propagation delay (asynchronous
interface) in Table 9-13from a max value of 70 ns to 115 ns
Changed FIFOADR[2:0] Hold Time (tFAH) for Asynchronous FIFO Interface as
follows:
SLRD/PKTEND to FIFOADR[2:0] Hold Time: 20 ns
SLWR to FIFOADR[2:0] Hold Time: 70 ns
*E
317674
See ECN
MON
Provided additional timing restrictions and requirement regarding the use of
PKTEND pin to commit a short one byte/word packet subsequent to committing
a packet automatically (when in auto mode).
Document #: 38-08012 Rev. *E
Page 48 of 48
Similar pages