COVER DATA SHEET 4G bits DDR3L SDRAM EDJ4204EFBG (1024M words × 4 bits) EDJ4208EFBG (512M words × 8 bits) EDJ4216EFBG (256M words × 16 bits) Specifications Features • Density: 4G bits • Organization — 128M words × 4 bits × 8 banks (EDJ4204EFBG) — 64M words × 8 bits × 8 banks (EDJ4208EFBG) — 32M words × 16 bits × 8 banks (EDJ4216EFBG) • Package — 78-ball FBGA (EDJ4204EFBG, EDJ4208EFBG) — 96-ball FBGA (EDJ4216EFBG) — Lead-free (RoHS compliant) and Halogen-free • Power supply: 1.35V (typ) — VDD = 1.283V to 1.45V — Backward compatible for VDD, VDDQ = 1.5V ± 0.075V • Data rate — 1600Mbps/1333Mbps (max) • 1KB page size — Row address: A0 to A15 — Column address: A0 to A9, A11 (EDJ4204EFBG) A0 to A9 (EDJ4208EFBG) • 2KB page size (EDJ4216EFBG) — Row address: A0 to A14 — Column address: A0 to A9 • Eight internal banks for concurrent operation • Burst length (BL): 8 and 4 with Burst Chop (BC) • Burst type (BT): — Sequential (8, 4 with BC) — Interleave (8, 4 with BC) • /CAS Latency (CL): 5, 6, 7, 8, 9, 10, 11 • /CAS Write Latency (CWL): 5, 6, 7, 8 • Precharge: auto precharge option for each burst access • Driver strength: RZQ/7, RZQ/6 (RZQ = 240Ω) • Refresh: auto-refresh, self-refresh • Refresh cycles — Average refresh period 7.8μs at 0°C ≤ TC ≤ +85°C 3.9μs at +85°C < TC ≤ +95°C • Operating case temperature range — TC = 0°C to +95°C • Double-data-rate architecture: two data transfers per clock cycle • The high-speed data transfer is realized by the 8 bits prefetch pipelined architecture • Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver • DQS is edge-aligned with data for READs; centeraligned with data for WRITEs • Differential clock inputs (CK and /CK) • DLL aligns DQ and DQS transitions with CK transitions • Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS • Data mask (DM) for write data • Posted /CAS by programmable additive latency for better command and data bus efficiency • On-Die Termination (ODT) for better signal quality — Synchronous ODT — Dynamic ODT — Asynchronous ODT • Multi Purpose Register (MPR) for pre-defined pattern read out • ZQ calibration for DQ drive and ODT • Programmable Partial Array Self-Refresh (PASR) • /RESET pin for Power-up sequence and reset function • SRT range: — Normal/extended • Programmable Output driver impedance control Document. No. E1922E20 (Ver. 2.0) Date Published May 2013 (K) Japan Printed in Japan URL: http://www.elpida.com Elpida Memory, Inc. 2012-2013 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Ordering Information Die revision Part number Organization (words × bits) Internal banks JEDEC speed bin (CL-tRCD-tRP) 78-ball FBGA Package EDJ4204EFBG-GN-F EDJ4204EFBG-DJ-F F 1024M × 4 8 DDR3L-1600K (11-11-11) DDR3L-1333H (9-9-9) EDJ4208EFBG-GN-F EDJ4208EFBG-DJ-F F 512M × 8 8 DDR3L-1600K (11-11-11) DDR3L-1333H (9-9-9) 78-ball FBGA EDJ4216EFBG-GN-F EDJ4216EFBG-DJ-F F 256M × 16 8 DDR3L-1600K (11-11-11) DDR3L-1333H (9-9-9) 96-ball FBGA Note: 1. Please refer to the EDJ4204BFBG, EDJ4208BFBG, EDJ4216BFBG datasheet (E1923E) when using this device at 1.5V operation, unless stated otherwise. Part Number E D J 42 04 E F BG - GN - F Environment code F: Lead Free (RoHS compliant) and Halogen Free Elpida Memory Type D: Packaged Device Product Family J: DDR3 Speed GN: DDR3L-1600K (11-11-11) DJ: DDR3L-1333H (9-9-9) Density / Bank 42: 4Gb / 8-bank Package BG: FBGA Organization 04: x4 08: x8 16: x16 Revision Power Supply E: 1.35V Detailed Information For detailed electrical specification and further information, please refer to the DDR3L SDRAM General Functionality and Electrical Condition data sheet (E1927E). Data Sheet E1922E20 (Ver. 2.0) 2 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Pin Configurations Pin Configurations (×4/×8 configuration) /xxx indicates active low signal. 78-ball FBGA (×4 configuration) 2 1 78-ball FBGA (×8 configuration) 3 7 8 9 NC NC VSS VDD 1 A 2 3 7 8 9 A VSS VDD VSS B VDD NC NU/(/TDQS) VSS VDD B VSS VSSQ DQ0 DM VSSQ VDDQ VSS VSSQ C DQ0 DM/TDQS VSSQ VDDQ C VDDQ DQ2 DQS DQ1 DQ3 VSSQ D VDDQ DQ2 DQS DQ1 DQ3 VSSQ VSSQ DQ6 /DQS VDD VSS VSSQ VREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ D VSSQ NC /DQS VDD VSS VSSQ E E VREFDQ VDDQ NC NC NC VDDQ F F NC VSS /RAS CK VSS NC G ODT VDD /CAS /CK VDD CKE H VSS /RAS CK VSS NC ODT VDD /CAS /CK VDD CKE NC /CS /WE A10(AP) ZQ NC VSS BA0 BA2 A15 VDD A3 A0 VSS A5 A2 A1 A4 VSS VDD A7 A9 A11 A6 VDD VSS /RESET A13 A14 A8 VSS H NC /CS A10(AP) /WE ZQ NC J J VSS BA0 BA2 A15 VREFCA VSS K VREFCA VSS K A3 VDD A0 A12(/BC) BA1 VDD L A12(/BC) BA1 VDD L VSS M NC G A5 VDD A7 A2 A1 A9 A11 A4 A6 VSS M VDD N N VSS /RESET A13 A14 A8 VSS (Top view) (Top view) Pin name Function Pin name Function A0 to A15*3 Address inputs A10(AP): Auto precharge A12(/BC): Burst chop /RESET*3 Active low asynchronous reset BA0 to BA2*3 Bank select VDD Supply voltage for internal circuit DQ0 to DQ7 Data input/output VSS Ground for internal circuit DQS, /DQS Differential data strobe VDDQ Supply voltage for DQ circuit TDQS, /TDQS Termination data strobe VSSQ Ground for DQ circuit /CS*3 Chip select VREFDQ Reference voltage for DQ Command input VREFCA Reference voltage for CA Clock enable ZQ Reference pin for ZQ calibration Differential clock input NC*1 /RAS, /CAS, /WE*3 CKE* 3 CK, /CK DM Write data mask ODT*3 ODT control Notes: 1. 2. 3. 2 NU* No connection Not usable Not internally connected with die. Don't connect. Internally connected. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination. Data Sheet E1922E20 (Ver. 2.0) 3 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Pin Configurations (× 16 configuration) /xxx indicates active low signal. 96-ball FBGA 2 1 3 7 8 9 A VDDQ DQU5 DQU7 DQU4 VDDQ VSS VSSQ /DQSU DQU6 VSSQ B VDD VSS C D VDDQ DQU3 DQU1 DQSU DQU2 VDDQ VSSQ VDDQ DMU DQU0 VSSQ VDD E VSS VSSQ DQL0 DML VSSQ VDDQ F VDDQ DQL2 DQSL DQL1 DQL3 VSSQ VSSQ DQL6 /DQSL VDD G VSS VSSQ H DQL7 DQL5 VDDQ VREFDQ VDDQ DQL4 J NC VSS /RAS CK VSS NC ODT VDD /CAS /CK VDD CKE NC /CS /WE A10(AP) ZQ NC VSS BA0 BA2 NC VDD A3 A0 VSS A5 A2 A1 A4 VSS VDD A7 A9 A11 A6 VDD VSS /RESET A13 A14 A8 VSS K L M VREFCA VSS N A12(/BC) BA1 VDD P R T (Top view) Pin name Function Pin name Function A0 to A14*2 Address inputs A10(AP): Auto precharge A12(/BC): Burst chop /RESET*2 Active low asynchronous reset BA0 to BA2*2 Bank select VDD Supply voltage for internal circuit DQU0 to DQU7 DQL0 to DQL7 Data input/output VSS Ground for internal circuit DQSU, /DQSU DQSL, /DQSL Differential data strobe VDDQ Supply voltage for DQ circuit Chip select VSSQ Ground for DQ circuit /CS*2 2 /RAS, /CAS, /WE* Command input VREFDQ Reference voltage for DQ CKE*2 Clock enable VREFCA Reference voltage for CA CK, /CK Differential clock input ZQ Reference pin for ZQ calibration DMU, DML Write data mask NC*1 No connection ODT*2 ODT control Notes: 1. 2. Not internally connected with die. Input only pins (address, command, CKE, ODT and /RESET) do not supply termination. Data Sheet E1922E20 (Ver. 2.0) 4 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG CONTENTS Specifications ........................................................................................................................................ 1 Features ................................................................................................................................................ 1 Ordering Information ............................................................................................................................. 2 Part Number .......................................................................................................................................... 2 Detailed Information .............................................................................................................................. 2 Pin Configurations ................................................................................................................................. 3 1. Electrical Conditions ...................................................................................................................... 6 1.1 1.2 1.3 1.4 2. Electrical Specifications ............................................................................................................... 19 2.1 2.2 2.3 3. DC Characteristics .......................................................................................................................... 19 Pin Capacitance .............................................................................................................................. 20 Standard Speed Bins ......................................................................................................................21 Package Drawing ......................................................................................................................... 25 3.1 3.2 4. Absolute Maximum Ratings ..............................................................................................................6 Operating Temperature Condition ....................................................................................................6 Recommended DC Operating Conditions ........................................................................................7 IDD and IDDQ Measurement Conditions ..........................................................................................8 78-ball FBGA .................................................................................................................................. 25 96-ball FBGA .................................................................................................................................. 26 Recommended Soldering Conditions .......................................................................................... 27 Data Sheet E1922E20 (Ver. 2.0) 5 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 1. Electrical Conditions • All voltages are referenced to VSS (GND) • Execute power-up and Initialization sequence before proper device operation is achieved. 1.1 Absolute Maximum Ratings Table 1: Absolute Maximum Ratings Parameter Symbol Rating Unit Notes Power supply voltage VDD −0.4 to +1.975 V 1, 3 Power supply voltage for output VDDQ −0.4 to +1.975 V 1, 3 Input voltage VIN −0.4 to +1.975 V 1 Output voltage VOUT −0.4 to +1.975 V 1 Reference voltage VREFCA −0.4 to 0.6 × VDD V 3 Reference voltage for DQ VREFDQ −0.4 to 0.6 × VDDQ V 3 Storage temperature Tstg −55 to +100 °C 1, 2 Power dissipation PD 1.0 W 1 Short circuit output current IOUT 50 mA 1 Notes: 1. 2. 3. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Storage temperature is the case surface temperature on the center/top side of the DRAM. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be no greater than 0.6 × VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. Caution: Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. 1.2 Operating Temperature Condition Table 2: Operating Temperature Condition Parameter Symbol Rating Unit Notes Operating case temperature TC 0 to +95 °C 1, 2, 3 Notes: 1. 2. 3. Operating temperature is the case surface temperature on the center/top side of the DRAM. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0°C to +85°C under all operating conditions. Some applications require operation of the DRAM in the Extended Temperature Range between +85°C and +95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9μs. (This double refresh requirement may not apply for some devices.) b) If Self-refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 bit [A6, A7] = [0, 1]) or enable the optional Auto Self-Refresh mode (MR2 bit [A6, A7] = [1, 0]). Data Sheet E1922E20 (Ver. 2.0) 6 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 1.3 Recommended DC Operating Conditions Table 3: Recommended DC Operating Conditions (TC = 0°C to +85°C), DDR3L Operation Parameter Symbol min. typ. max. Unit Notes Supply voltage VDD 1.283 1.35 1.45 V 1, 2, 3, 4 Supply voltage for DQ VDDQ 1.283 1.35 1.45 V 1, 2, 3, 4 Notes: 1. 2. 3. 4. 5. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ(t) over a very long period of time (e.g. 1 sec). If maximum limit is exceeded, input levels shall be governed by DDR3 specifications. Under these supply voltages, the device operates to this DDR3L specifcation. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation shown as following timing wave form. Table 4: Recommended DC Operating Conditions (TC = 0°C to +85°C), DDR3 Operation Parameter Symbol min typ max Supply voltage VDD 1.425 1.5 1.575 V 1, 2, 3 Supply voltage for DQ VDDQ 1.425 1.5 1.575 V 1, 2, 3 Notes: 1. 2. 3. Unit Notes If minimum limit is exceeded, input levels shall be governed by DDR3L specifications. Under 1.5V operation, this DDR3L device operates to the DDR3 specifcations under the same speedtimings as defined for this device. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation shown as below. Ta Tb Tc Td Te Tf Tg Th Ti Tj Tk CK, /CK tCKSRX T(min) = 10ns VDD, VDDQ (DDR3) VDD, VDDQ (DDR3L) T(min) = 10ns T(min) = 200μs T = 500μs /RESET tIS T(min) = 10ns CKE Valid tDLLK tXPR tIS Command *1 BA tMRD tMRD tMRD tMOD MRS MRS MRS MRS MR2 MR3 MR1 MR0 tZQinit ZQCL *1 Valid Valid tIS ODT tIS Static low in case RTT_Nore is enabled at time Tg, otherwise static high or low Valid RTT : VIH or VIL Note: 1. From time point Td until Tk, NOP or DES commands must be applied between MRS and ZQCL commands. Figure 1: VDD/VDDQ Voltage Switch between DDR3L and DDR3 Data Sheet E1922E20 (Ver. 2.0) 7 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 1.4 IDD and IDDQ Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. The figure Measurement Setup and Test Load for IDD and IDDQ Measurements shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Note:IDDQ values cannot be directly used to calculate I/O power of the DDR3 SDRAM. They can be used to support correlation of simulated I/O power to actual I/O power as outlined in correlation from simulated channel I/O power to actual channel I/O power supported by IDDQ measurement. For IDD and IDDQ measurements, the following definitions apply: • L and 0: VIN ≤ VIL(AC)max • H and 1: VIN ≥ VIH(AC)min • MID-LEVEL: defined as inputs are VREF = VDDQ / 2 • FLOATING: don't care or floating around VREF. • Timings used for IDD and IDDQ measurement-loop patterns are provided in Timings used for IDD and IDDQ Measurement-Loop Patterns table. • Basic IDD and IDDQ measurement conditions are described in Basic IDD and IDDQ Measurement Conditions table. Note:The IDD and IDDQ measurement-loop patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Detailed IDD and IDDQ measurement-loop patterns are described in IDD0 Measurement-Loop Pattern table through IDD7 Measurement-Loop Pattern table. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting. RON = RZQ/7 (34Ω in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40Ω in MR1); RTT_WR = RZQ/2 (120Ω in MR2); TDQS Feature disabled in MR1 • Define D = {/CS, /RAS, /CAS, /WE} : = {H, L, L, L} • Define /D = {/CS, /RAS, /CAS, /WE} : = {H, H, H, H} Data Sheet E1922E20 (Ver. 2.0) 8 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG IDDQ IDD VDD /RESET CK, /CK CKE /CS /RAS, /CAS, /WE VDDQ DDR3 SDRAM Address, BA ODT ZQ VSS DQS, /DQS, DQ, DM, TDQS, /TDQS RTT = 25Ω VDDQ/2 VSSQ Figure 2: Measurement Setup and Test Load for IDD and IDDQ Measurements Application specific memory channel environment Channel I/O power simulation IDDQ Test load IDDQ simulation IDDQ measurement Correlation Correction Channel I/O power number Figure 3: Correlation from Simulated Channel I/O Power to Actual Channel I/O Power Supported by IDDQ Measurement Data Sheet E1922E20 (Ver. 2.0) 9 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 1.4.1 Timings Used for IDD and IDDQ Measurement-Loop Patterns Table 5: Timings Used for IDD and IDDQ Measurement-Loop Patterns DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Parameter 6-6-6 7-7-7 9-9-9 11-11-11 Unit CL 6 7 9 11 nCK tCK(min) 2.5 1.875 1.5 1.25 ns nRCD(min) 6 7 9 11 nCK nRC(min) 21 27 33 39 nCK nRAS(min) 15 20 24 28 nCK nRP(min) 6 7 9 11 nCK nFAW (1KB) 16 20 20 24 nCK nFAW (2KB, 4KB) 20 27 30 32 nCK nRRD (1KB) 4 4 4 5 nCK nRRD (2KB, 4KB) 4 6 5 6 nCK nRFC (1Gb) 44 59 74 88 nCK nRFC (2Gb) 64 86 107 128 nCK nRFC (4Gb) 104 139 174 208 nCK Data Sheet E1922E20 (Ver. 2.0) 10 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 1.4.2 Basic IDD and IDDQ Measurement Conditions Table 6: Basic IDD and IDDQ Measurement Conditions Parameter Symbol Description IDD0 CKE: H; External clock: on; tCK, nRC, nRAS, CL: see Table 5; BL: 8*1; AL: 0; /CS: H between ACT and PRE; Command, address, bank address inputs: partially toggling according to Table 7; Data I/O: MID-LEVEL; DM: stable at 0; Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 7); Output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; Pattern details: see Table 7 IDD1 CKE: H; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 5; BL: 8*1, *6; AL: 0; /CS: H between ACT, RD and PRE; Command, address, bank address inputs, data I/O: partially toggling according to Table 8; DM: stable at 0; Bank activity: cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 8); Output buffer and RTT: enabled in MR*2; ODT Signal: stable at 0; Pattern details: see Table 8 IDD2N CKE: H; External clock: on; tCK, CL: see Table 5 BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address Inputs: partially toggling according to Table 9; data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks closed; output buffer and RTT: enabled in mode registers*2; ODT signal: stable at 0; pattern details: see Table 9 Precharge standby ODT current IDD2NT CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address Inputs: partially toggling according to Table 10; data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT signal: toggling according to Table 10; pattern details: see Table 10 Precharge standby ODT IDDQ current IDDQ2NT Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current IDD2P0 CKE: L; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address inputs: stable at 0; data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks closed; output buffer and RTT: EMR*2; ODT signal: stable at 0; precharge power down mode: slow exit*3 IDD2P1 CKE: L; External clock: on; tCK, CL: see Table 6; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address Inputs: stable at 0; data I/O: MID-LEVEL; DM:stable at 0; bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; precharge power down mode: fast exit*3 IDD2Q CKE: H; External clock: On; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address Inputs: stable at 0; data I/O: MID-LEVEL; DM: stable at 0;bank activity: all banks closed; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0 IDD3N CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address Inputs: partially toggling according to Table 9; data I/O: MID-LEVEL; DM: stable at 0; bank activity: all banks open; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see Table 9 IDD3P CKE: L; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: stable at 1; Command, address, bank address inputs: stable at 0; data I/O: MID-LEVEL; DM:stable at 0; bank activity: all banks open; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0 Operating burst read current IDD4R CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1, *6; AL: 0; /CS: H between RD; Command, address, bank address Inputs: partially toggling according to Table 11; data I/O: seamless read data burst with different data between one burst and the next one according to Table 11; DM: stable at 0; bank activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 11); Output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see Table 11 Operating burst read IDDQ current IDDQ4R Same definition like for IDD4R, however measuring IDDQ current instead of IDD current Operating one bank active precharge current Operating one bank active-read-precharge current Precharge standby current Precharge power-down current slow exit Precharge power-down current fast exit Precharge quiet standby current Active standby current Active power-down current Data Sheet E1922E20 (Ver. 2.0) 11 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 6: Basic IDD and IDDQ Measurement Conditions (cont’d) Parameter Operating burst write current Burst refresh current Self-refresh current: normal temperature range Symbol Description IDD4W CKE: H; External clock: on; tCK, CL: see Table 5; BL: 8*1; AL: 0; /CS: H between WR; command, address, bank address inputs: partially toggling according to Table 12; data I/O: seamless write data burst with different data between one burst and the next one according to IDD4W Measurement-Loop Pattern table; DM: stable at 0; bank activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,.. (see Table 12); Output buffer and RTT: enabled in MR*2; ODT signal: stable at H; pattern details: see Table 12 IDD5B CKE: H; External clock: on; tCK, CL, nRFC: see Table 5; BL: 8*1; AL: 0; /CS: H between REF; Command, address, bank address Inputs: partially toggling according to Table 13; data I/O: MID-LEVEL; DM: stable at 0; bank activity: REF command every nRFC (Table 13); output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see Table 13 IDD6 TC: 0 to 85°C; ASR: disabled*4; SRT: Normal*5; CKE: L; External clock: off; CK and /CK: L; CL: see Table 5; BL: 8*1; AL: 0; /CS, command, address, bank address, data I/O: MID-LEVEL; DM: stable at 0; bank activity: Self-refresh operation; output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL Self-refresh current: extended IDD6ET temperature range TC: 0 to 95°C; ASR: Disabled*4; SRT: Extended*5; CKE: L; External clock: off; CK and /CK: L; CL: Table 5; BL: 8*1; AL: 0; /CS, command, address, bank address, data I/O: MID-LEVEL; DM: stable at 0; bank activity: Extended temperature self-refresh operation; output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL Auto self-refresh current (Optional) IDD6TC TC: 0 to 95°C; ASR: Enabled*4; SRT: Normal*5; CKE: L; External clock: off; CK and /CK: L; CL: Table 5; BL: 8*1; AL: 0; /CS, command, address, bank address, data I/O: MID-LEVEL; DM: stable at 0; bank activity: Auto self-refresh operation; output buffer and RTT: enabled in MR*2; ODT signal: MID-LEVEL IDD7 CKE: H; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 5; BL: 8*1, *6; AL: CL-1; /CS: H between ACT and RDA; Command, address, bank address Inputs: partially toggling according to Table 14; data I/O: read data bursts with different data between one burst and the next one according to Table 14; DM: stable at 0; bank activity: two times interleaved cycling through banks (0, 1, …7) with different addressing, see Table 14; output buffer and RTT: enabled in MR*2; ODT signal: stable at 0; pattern details: see Table 14 IDD8 /RESET: low; External clock: off; CK and /CK: low; CKE: FLOATING; /CS, command, address, bank address, Data IO: FLOATING; ODT signal: FLOATING RESET low current reading is valid once power is stable and /RESET has been low for at least 1ms. Operating bank interleave read current RESET low current Notes: 1. 2. 3. 4. 5. 6. Burst Length: BL8 fixed by MRS: MR0 bits [1,0] = [0,0]. MR: Mode Register Output buffer enable: set MR1 bit A12 = 1 and MR1 bits [5, 1] = [0,1]; RTT_Nom enable: set MR1 bits [9, 6, 2] = [0, 1, 1]; RTT_WR enable: set MR2 bits [10, 9] = [1,0]. Precharge power down mode: set MR0 bit A12= 0 for Slow Exit or MR0 bit A12 = 1 for fast exit. Auto self-refresh (ASR): set MR2 bit A6 = 0 to disable or 1 to enable feature. Self-refresh temperature range (SRT): set MR0 bit A7= 0 for normal or 1 for extended temperature range. Read burst type: nibble sequential, set MR0 bit A3 = 0 Data Sheet E1922E20 (Ver. 2.0) 12 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 7: IDD0 Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number 0 Toggling Static H Notes: 1. 2. 3. 4. Command /CS /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 0 ACT 0 0 1 1 0 0 0 0 0 0 0 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 3, 4 /D, /D 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 … Repeat pattern 1…4 until nRAS − 1, truncate if necessary nRAS PRE … Repeat pattern 1...4 until nRC − 1, truncate if necessary 1 × nRC +0 ACT 0 0 1 1 0 0 0 0 0 F 0 1 × nRC +1, 2 D, D 1 0 0 0 0 0 0 0 0 F 0 1 × nRC + 3, 4 /D, /D 1 1 1 1 0 0 0 0 0 F 0 0 0 1 0 0 0 0 … Repeat pattern nRC + 1,...,4 until 1 × nRC + nRAS − 1, truncate if necessary 1 × nRC + nRAS PRE 0 0 1 0 0 0 0 0 … Repeat nRC + 1,...,4 until 2 × nRC − 1, truncate if necessary 1 2 × nRC Repeat Sub-Loop 0, use BA= 1 instead 2 4 × nRC Repeat Sub-Loop 0, use BA= 2 instead 3 6 × nRC Repeat Sub-Loop 0, use BA= 3 instead 4 8 × nRC Repeat Sub-Loop 0, use BA= 4 instead 5 10 × nRC Repeat Sub-Loop 0, use BA= 5 instead 6 12 × nRC Repeat Sub-Loop 0, use BA= 6 instead 7 14 × nRC Repeat Sub-Loop 0, use BA= 7 instead DM must be driven low all the time. DQS, /DQS are MID-LEVEL. DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 13 0 F 0 Data*2 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 8: IDD1 Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number 0 Toggling Static H Notes: 1. 2. 3. 4. Command /CS /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 A3 A0 -A9 -A6 -A2 Data*2 0 ACT 0 0 1 1 0 0 0 0 0 0 0 ⎯ 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 ⎯ 3, 4 /D, /D 1 1 1 1 0 0 0 0 0 0 0 ⎯ 0 0 0 0 00000000 0 0 0 0 ⎯ … Repeat pattern 1...4 until nRCD − 1, truncate if necessary nRCD RD … Repeat pattern 1...4 until nRAS − 1, truncate if necessary nRAS PRE … Repeat pattern 1...4 until nRC − 1, truncate if necessary 1 × nRC +0 ACT 0 0 1 1 0 0 0 0 0 F 0 ⎯ 1 × nRC + 1, 2 D, D 1 0 0 0 0 0 0 0 0 F 0 ⎯ 1 × nRC + 3, 4 /D, /D 1 1 1 1 0 0 0 0 0 F 0 ⎯ … Repeat pattern nRC + 1,..., 4 until nRC + nRCD − 1, truncate if necessary 1 × nRC + nRCD RD 0 00110011 … Repeat pattern nRC + 1,..., 4 until nRC +nRAS − 1, truncate if necessary 1 × nRC + nRAS PRE 0 ⎯ 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … Repeat pattern nRC + 1,..., 4 until 2 × nRC − 1, truncate if necessary 1 2 × nRC Repeat Sub-Loop 0, use BA= 1 instead 2 4 × nRC Repeat Sub-Loop 0, use BA= 2 instead 3 6 × nRC Repeat Sub-Loop 0, use BA= 3 instead 4 8 × nRC Repeat Sub-Loop 0, use BA= 4 instead 5 10 × nRC Repeat Sub-Loop 0, use BA= 5 instead 6 12 × nRC Repeat Sub-Loop 0, use BA= 6 instead 7 14 × nRC Repeat Sub-Loop 0, use BA= 7 instead F F DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 14 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 9: IDD2N and IDD3N Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number 0 /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 0 D 1 0 0 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 0 0 0 0 0 0 2 /D 1 1 1 1 0 0 0 0 0 F 0 1 1 1 1 0 0 0 0 0 F 0 3 /D 4 to 7 Repeat Sub-Loop 0, use BA= 1 instead 8 to 11 Repeat Sub-Loop 0, use BA= 2 instead 3 12 to 15 Repeat Sub-Loop 0, use BA= 3 instead 4 16 to 19 Repeat Sub-Loop 0, use BA= 4 instead 5 20 to 23 Repeat Sub-Loop 0, use BA= 5 instead 6 24 to 27 Repeat Sub-Loop 0, use BA= 6 instead 7 28 to 31 Repeat Sub-Loop 0, use BA= 7 instead 1 Toggling Static H 2 Notes: 1. 2. 3. 4. Command /CS Data*2 DM must be driven low all the time. DQS, /DQS are MID-LEVEL. DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Table 10: IDD2NT and IDDQ2NT Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number 0 /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 0 D 1 0 0 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 0 0 0 0 0 0 2 /D 1 1 1 1 0 0 0 0 0 F 0 1 1 1 1 0 0 0 0 0 F 0 3 /D 4 to 7 Repeat Sub-Loop 0, but ODT = 0 and BA= 1 8 to 11 Repeat Sub-Loop 0, but ODT = 1 and BA= 2 3 12 to 15 Repeat Sub-Loop 0, but ODT = 1 and BA= 3 4 16 to 19 Repeat Sub-Loop 0, but ODT = 0 and BA= 4 5 20 to 23 Repeat Sub-Loop 0, but ODT = 0 and BA= 5 6 24 to 27 Repeat Sub-Loop 0, but ODT = 1 and BA= 6 7 28 to 31 Repeat Sub-Loop 0, but ODT = 1 and BA= 7 1 Toggling Static H 2 Notes: 1. 2. 3. 4. Command /CS DM must be driven low all the time. DQS, /DQS are MID-LEVEL. DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 15 Data*2 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 11: IDD4R and IDDQ4R Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number Command /CS /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 Data*2 RD 0 1 0 1 0 0 0 0 0 0 0 00000000 1 D 1 0 0 0 0 0 0 0 0 0 0 ⎯ 2,3 /D, /D 1 1 1 1 0 0 0 0 0 0 0 ⎯ 4 RD 0 1 0 1 0 0 0 0 0 F 0 00110011 5 D 1 0 0 0 0 0 0 0 0 F 0 ⎯ 6,7 /D, /D 1 1 1 1 0 0 0 0 0 F 0 ⎯ 0 0 Toggling Static H 1 Notes: 1. 2. 3. 4. 8 to 15 Repeat Sub-Loop 0, but BA= 1 2 16 to 23 Repeat Sub-Loop 0, but BA= 2 3 24 to 31 Repeat Sub-Loop 0, but BA= 3 4 32 to 39 Repeat Sub-Loop 0, but BA= 4 5 40 to 47 Repeat Sub-Loop 0, but BA= 5 6 48 to 55 Repeat Sub-Loop 0, but BA= 6 7 56 to 63 Repeat Sub-Loop 0, but BA= 7 DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 16 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 12: IDD4W Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number Command /CS /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 Data*2 WR 0 1 0 0 1 0 0 0 0 0 0 00000000 1 D 1 0 0 0 1 0 0 0 0 0 0 ⎯ 2,3 /D, /D 1 1 1 1 1 0 0 0 0 0 0 ⎯ 4 WR 0 1 0 0 1 0 0 0 0 F 0 00110011 5 D 1 0 0 0 1 0 0 0 0 F 0 ⎯ 6,7 /D, /D 1 1 1 1 1 0 0 0 0 F 0 ⎯ 0 0 Toggling Static H 1 Notes: 1. 2. 3. 4. 8 to 15 Repeat Sub-Loop 0, but BA= 1 2 16 to 23 Repeat Sub-Loop 0, but BA= 2 3 24 to 31 Repeat Sub-Loop 0, but BA= 3 4 32 to 39 Repeat Sub-Loop 0, but BA= 4 5 40 to 47 Repeat Sub-Loop 0, but BA= 5 6 48 to 55 Repeat Sub-Loop 0, but BA= 6 7 56 to 63 Repeat Sub-Loop 0, but BA= 7 DM must be driven low all the time. DQS, /DQS are used according to write commands, otherwise MID-LEVEL. Burst sequence driven on each DQ signal by write command. Outside burst operation, DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Table 13: IDD5B Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number Command /CS /RAS /CAS /WE ODT A11 BA*3 -Am A10 A7 -A9 A3 -A6 A0 -A2 Data*2 REF 0 0 0 1 0 0 0 0 0 0 0 ⎯ 1, 2 D 1 0 0 0 0 0 0 0 0 0 0 ⎯ 3,4 /D, /D 1 1 1 1 0 0 0 0 0 F 0 ⎯ 5 to 8 Repeat cycles 1...4, but BA= 1 9 to 12 Repeat cycles 1...4, but BA= 2 13 to 16 Repeat cycles 1...4, but BA= 3 17 to 20 Repeat cycles 1...4, but BA= 4 21 to 24 Repeat cycles 1...4, but BA= 5 25 to 28 Repeat cycles 1...4, but BA= 6 29 to 32 Repeat cycles 1...4, but BA= 7 0 0 Toggling Static H 1 2 Notes: 1. 2. 3. 4. 33 to Repeat Sub-Loop 1, until nRFC − 1. Truncate, if necessary. nRFC − 1 DM must be driven low all the time. DQS, /DQS are MID-LEVEL. DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 17 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 14: IDD7 Measurement-Loop Pattern CK, /CK CKE Sub Cycle -Loop number 0 Command /CS /RAS /CAS /WE ODT A11 A7 A3 A0 BA*3 -Am A10 -A9 -A6 -A2 Data*2 0 ACT 0 0 1 1 0 0 0 0 0 0 0 ⎯ 1 RDA 0 1 0 1 0 0 0 1 0 0 0 00000000 2 D 1 0 0 0 0 0 0 0 0 0 0 ⎯ … Repeat above D Command until nRRD − 1 nRRD ACT 0 0 1 1 0 1 0 0 0 F 0 ⎯ nRRD + 1 RDA 0 1 0 1 0 1 0 1 0 F 0 00110011 nRRD + 2 D 1 0 0 0 0 1 0 0 0 F 0 ⎯ … Repeat above D Command until 2 × nRRD − 1 2 2 × nRRD Repeat Sub-Loop 0, but BA= 2 3 3 × nRRD 0 0 0 F 0 ⎯ 0 ⎯ 1 1 0 0 0 0 3 4 4 × nRRD 5 nFAW Repeat Sub-Loop 0, but BA= 4 6 nFAW + nRRD Repeat Sub-Loop 1, but BA= 5 7 nFAW Repeat Sub-Loop 0, but BA= 6 + 2 × nRRD 8 nFAW Repeat Sub-Loop 1, but BA= 7 + 3 × nRRD 9 D 1 0 0 0 0 7 0 0 0 F nFAW + 4 × nRRD Assert and repeat above D Command until 2 × nFAW − 1, if necessary Toggling Static H 10 ACT 0 0 1 1 0 0 0 0 0 F 0 ⎯ 2 × nFAW +1 RDA 0 1 0 1 0 0 0 1 0 F 0 00110011 D 1 0 0 0 0 0 0 0 0 F 0 ⎯ 2 × nFAW + nRRD 11 Assert and repeat above D Command until nFAW − 1, if necessary 2 × nFAW +0 2 × nFAW +2 Notes: 1. 2. 3. 4. Repeat Sub-Loop 1, but BA= 3 D Repeat above D Command until 2 × nFAW + nRRD − 1 ACT 0 0 1 1 0 1 0 0 0 0 0 ⎯ 2 × nFAW RDA + nRRD + 1 0 1 0 1 0 1 0 1 0 0 0 00000000 1 0 0 0 0 1 0 0 2 × nFAW D + nRRD + 2 Repeat above D Command until 2 × nFAW + 2 × nRRD − 1 0 0 0 ⎯ 0 ⎯ 0 ⎯ 12 2 × nFAW Repeat Sub-Loop 10, but BA= 2 +2 × nRRD 13 2 × nFAW Repeat Sub-Loop 11, but BA= 3 + 3 × nRRD 14 1 0 0 0 0 3 0 0 0 0 2 × nFAW D + 4 × nRRD Assert and repeat above D Command until 3 × nFAW − 1, if necessary 15 3 × nFAW Repeat Sub-Loop 10, but BA= 4 16 3 × nFAW +nRRD Repeat Sub-Loop 11, but BA= 5 17 3 × nFAW Repeat Sub-Loop 10, but BA= 6 + 2 × nRRD 18 3 × nFAW Repeat Sub-Loop 11, but BA= 7 + 3 × nRRD 19 1 0 0 0 0 7 0 0 0 0 3 × nFAW D + 4 × nRRD Assert and repeat above D Command until 4 × nFAW − 1, if necessary DM must be driven low all the time. DQS, /DQS are used according to read commands, otherwise MID-LEVEL. Burst sequence driven on each DQ signal by read command. Outside burst operation, DQ signals are MID-LEVEL. BA: BA0 to BA2. Am: m means Most Significant Bit (MSB) of Row address. Data Sheet E1922E20 (Ver. 2.0) 18 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 2. 2.1 Electrical Specifications DC Characteristics Table 15: DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.283V to 1.45V) Data rate ×4 ×8 × 16 Parameter Symbol (Mbps) max max max Unit Operating current (ACT-PRE) IDD0 1333 1600 40 45 40 45 50 55 mA Operating current (ACT-RD-PRE) IDD1 1333 1600 55 60 55 60 70 75 mA IDD2P1 1333 1600 17 18 17 18 17 18 mA Fast PD Exit IDD2P0 1333 1600 12 12 12 12 12 12 mA Slow PD Exit Precharge standby current IDD2N 1333 1600 25 25 25 25 25 25 mA Precharge standby ODT current IDD2NT 1333 1600 30 30 30 30 30 30 mA Precharge quiet standby current IDD2Q 1333 1600 25 25 25 25 25 25 mA Active power-down current IDD3P (Always fast exit) 1333 1600 20 20 20 20 22 22 mA Active standby current IDD3N 1333 1600 30 30 30 30 30 32 mA Operating current (Burst read operating) IDD4R 1333 1600 80 90 90 100 120 135 mA Operating current (Burst write operating) IDD4W 1333 1600 85 95 95 105 135 150 mA Burst refresh current IDD5B 1333 1600 160 160 160 160 160 160 mA All bank interleave read current IDD7 1333 1600 145 150 145 150 175 195 mA RESET low current IDD8 12 12 12 mA Precharge power-down standby current Notes Table 16: Self-Refresh Current (TC = 0°C to +85°C, VDD, VDDQ = 1.283V to 1.45V) Parameter Symbol max Unit Self-refresh current normal temperature range IDD6 12 mA Self-refresh current extended temperature range IDD6ET 17 mA Auto self-refresh current (Optional) IDD6TC ⎯ mA Data Sheet E1922E20 (Ver. 2.0) 19 Notes EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 2.2 Pin Capacitance Table 17: Pin Capacitance [DDR3-800 to 1600] (TC = 25°C, VDD, VDDQ = 1.283V to 1.45V) DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 Min Max Min Max Min Max Min Max Units Notes Input/output capacitance CIO 1.4 2.5 1.4 2.5 1.4 2.3 1.4 2.2 pF 1, 2 Input capacitance, CK and /CK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF 2 Input capacitance delta, CDCK CK and /CK 0 0.15 0 0.15 0 0.15 0 0.15 pF 2, 3 Input/output capacitance delta, CDDQS DQS and /DQS 0 0.2 0 0.2 0 0.15 0 0.15 pF 2, 4 Input capacitance, (control, address, command, input-only pins) 0.75 1.3 0.75 1.3 0.75 1.3 0.75 1.2 pF 2, 5 Input capacitance delta, (All control input-only CDI_CTRL −0.5 pins) 0.3 −0.5 0.3 −0.4 0.2 −0.4 0.2 pF 2, 6, 7 Input capacitance delta, CDI_ADD_ −0.5 (All addres/command CMD input-only pins) 0.5 −0.5 0.5 −0.4 0.4 −0.4 0.4 pF 2, 8, 9 Input/output capacitance delta, DQ,DM, DQS, CDIO /DQS, TDQS, /TDQS −0.5 0.3 −0.5 0.3 −0.5 0.3 −0.5 0.3 pF 2, 10 Input/output capacitance CZQ of ZQ pin ⎯ 3 ⎯ 3 ⎯ 3 ⎯ 3 pF 2, 11 Parameter Symbol CCK CI Notes: 1. 2. Although the DM, TDQS and /TDQS pins have different functions, the loading matches DQ and DQS. VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, /RESET and ODT as necessary). VDD = VDDQ = 1.35V, VBIAS=VDD/2 and ondie termination off. 3. Absolute value of CCK-C/CK. 4. Absolute value of CIO(DQS)-CIO(/DQS). 5. CI applies to ODT, /CS, CKE, A0-A15, BA0-BA2, /RAS, /CAS and /WE. 6. CDI_CTRL applies to ODT, /CS and CKE. 7. CDI_CTRL = CI(CTRL) − 0.5 × (CI(CK)+CI(/CK)). 8. CDI_ADD_CMD applies to A0-A15, BA0-BA2, /RAS, /CAS and /WE. 9. CDI_ADD_CMD = CI(ADD_CMD) − 0.5 × (CI(CK)+CI(/CK)). 10. CDIO=CIO(DQ,DM) − 0.5 × (CIO(DQS)+CIO(/DQS)). 11. Maximum external load capacitance on ZQ pin: 5pF. Data Sheet E1922E20 (Ver. 2.0) 20 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 2.3 Standard Speed Bins Table 18: DDR3-800 Speed Bins Speed Bin DDR3-800E CL-tRCD-tRP 6-6-6 Symbol min max Unit Notes tAA /CAS write latency 15 20 ns 9 tRCD 15 ⎯ ns 9 tRP 15 ⎯ ns 9 tRC 52.5 ⎯ ns 9 37.5 9 × tREFI ns 8 tCK(avg) @CL=5 CWL = 5 3.0 3.3 ns 1, 2, 3, 10 tCK(avg) @CL=6 CWL = 5 2.5 3.3 ns 1, 2, 3, 10 tRAS Supported CL settings Supported CWL settings 5, 6 nCK 5 nCK Table 19: DDR3-1066 Speed Bins Speed Bin DDR3-1066F CL-tRCD-tRP 7-7-7 Symbol /CAS write latency min max Unit Notes 13.125 20 ns 9 tRCD 13.125 ⎯ ns 9 tRP 13.125 ⎯ ns 9 tRC 50.625 ⎯ ns 9 tAA 37.5 9 × tREFI ns 8 CWL = 5 3.0 3.3 ns 1, 2, 3, 4, 5, 10 CWL = 6 Reserved Reserved ns 4 CWL = 5 2.5 3.3 ns 1, 2, 3, 5 CWL = 6 Reserved Reserved ns 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3, 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3 tRAS tCK(avg) @CL=5 tCK(avg) @CL=6 tCK(avg) @CL=7 tCK(avg) @CL=8 Supported CL settings Supported CWL settings Data Sheet E1922E20 (Ver. 2.0) 21 5, 6, 7, 8 nCK 5, 6 nCK EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 20: DDR3-1333 Speed Bins Speed Bin DDR3-1333H CL-tRCD-tRP 9-9-9 Symbol min max Unit Notes tAA 13.5 (13.125) 20 ns 9 tRCD 13.5 (13.125) ⎯ ns 9 tRP 13.5 (13.125) ⎯ ns 9 tRC 49.5 (49.125) ⎯ ns 9 tRAS 36 9 × tREFI ns 8 CWL = 5 3.0 3.3 ns 1, 2, 3, 4, 6, 10 CWL = 6, 7 Reserved Reserved ns 4 CWL = 5 2.5 3.3 ns 1, 2, 3, 6 CWL = 6 Reserved Reserved ns 4 CWL = 7 Reserved Reserved ns 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3, 4, 6 CWL = 7 Reserved Reserved ns 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3, 6 CWL = 7 Reserved Reserved ns 4 CWL = 5, 6 Reserved Reserved ns 4 CWL= 7 1.5 < 1.875 ns 1, 2, 3, 4 CWL = 5, 6 Reserved Reserved ns 4 CWL= 7 1.5 < 1.875 ns 1, 2, 3 tCK(avg) @CL=5 tCK(avg) @CL=6 tCK(avg) @CL=7 tCK(avg) @CL=8 tCK(avg) @CL=9 tCK(avg) @CL=10 /CAS write latency Supported CL settings Supported CWL settings Data Sheet E1922E20 (Ver. 2.0) 22 5, 6, 7, 8, 9, 10 nCK 5, 6, 7 nCK EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Table 21: DDR3-1600 Speed Bins Speed Bin DDR3-1600K CL-tRCD-tRP Symbol 11-11-11 min max Unit Notes tAA 13.75 (13.125) 20 ns 9 tRCD 13.75 (13.125) ⎯ ns 9 tRP 13.75 (13.125) ⎯ ns 9 tRC 48.75 (48.125) ⎯ ns 9 tRAS 35 9 × tREFI ns 8 tCK(avg) @CL=5 tCK(avg) @CL=6 tCK(avg) @CL=7 tCK(avg) @CL=8 tCK(avg) @CL=9 tCK(avg) @CL=10 tCK(avg) @CL=11 /CAS write latency CWL = 5 3.0 3.3 ns 1, 2, 3, 4, 7, 10 CWL = 6, 7, 8 Reserved Reserved ns 4 CWL = 5 2.5 3.3 ns 1, 2, 3, 7 CWL = 6 Reserved Reserved ns 4 CWL = 7, 8 Reserved Reserved ns 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3, 4, 7 CWL = 7 Reserved Reserved ns 4 CWL = 8 Reserved Reserved ns 4 CWL = 5 Reserved Reserved ns 4 CWL = 6 1.875 < 2.5 ns 1, 2, 3, 7 CWL = 7 Reserved Reserved ns 4 CWL = 8 Reserved Reserved ns 4 CWL = 5, 6 Reserved Reserved ns 4 CWL= 7 1.5 < 1.875 ns 1, 2, 3, 4, 7 CWL= 8 Reserved Reserved ns 4 CWL = 5, 6 Reserved Reserved ns 4 CWL= 7 1.5 < 1.875 ns 1, 2, 3, 7 CWL= 8 Reserved Reserved ns 4 CWL = 5, 6, 7 Reserved Reserved ns 4 CWL= 8 1.25 < 1.5 ns 1, 2, 3 Supported CL settings Supported CWL settings Data Sheet E1922E20 (Ver. 2.0) 23 5, 6, 7, 8, 9, 10, 11 nCK 5, 6, 7, 8 nCK EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG Notes: 1. The CL setting and CWL setting result in tCK(avg)min and tCK(avg)max requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(avg)min limits: Since /CAS latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(avg) value (3.0, 2.5, 1.875, 1.5, or 1.25ns) when calculating CL(nCK) = tAA(ns) / tCK(avg)(ns), rounding up to the next ‘Supported CL’. 3. tCK(avg)max limits: Calculate tCK(avg) + tAA(max)/CL selected and round the resulting tCK(avg) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875ns or 1.25ns). This result is tCK(avg)max corresponding to CL selected. 4. Reserved’ settings are not allowed. User must program a different value. 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1066 Speed Bins which are not subject to production tests but verified by design/characterization. 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1333 Speed Bins which is not subject to production tests but verified by design/characterization. 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table DDR3-1600 Speed Bins which is not subject to production tests but verified by design/characterization. 8. tREFI depends on operating case temperature (TC). 9. For devices supporting optional down binning to CL = 7 and CL = 9, tAA/tRCD/tRP(min) must be 13.125 ns or lower. SPD settings must be programmed to match. 10. DDR3-800 AC timing apply if DRAM operates at lower than 800 MT/s data rate. Data Sheet E1922E20 (Ver. 2.0) 24 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 3. 3.1 Package Drawing 78-ball FBGA Solder ball: Lead free (Sn-Ag-Cu) Unit: mm 9.0 0.1 0.20 S B 10.6 0.1 INDEX MARK 0.20 S A 0.20 S 1.20 max. S 0.35 0.05 0.10 S 78-0.45 0.05 0.15 M S A B 0.8 B INDEX MARK 9.6 A 1.6 6.4 0.8 ECA-TS2-0421-01 Data Sheet E1922E20 (Ver. 2.0) 25 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 3.2 96-ball FBGA Solder ball: Lead free (Sn-Ag-Cu) Unit: mm 9.0 0.1 0.20 S B 13.5 0.1 INDEX MARK 0.20 S A 0.20 S 1.20 max. S 0.35 0.05 0.10 S B 0.15 M S A B 0.8 96-0.45 0.05 0.4 12.0 A INDEX MARK 1.6 0.8 6.4 ECA-TS2-0422-01 Data Sheet E1922E20 (Ver. 2.0) 26 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG 4. Recommended Soldering Conditions Please consult with our sales offices for soldering conditions of the 4G bits DDR3 SDRAM. Type of Surface Mount Device EDJ4204EFBG, EDJ4208EFBG: 78-ball FBGA < Lead free (Sn-Ag-Cu) > EDJ4216EFBG: 96-ball FBGA < Lead free (Sn-Ag-Cu) > Data Sheet E1922E20 (Ver. 2.0) 27 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 Data Sheet E1922E20 (Ver. 2.0) 28 EDJ4204EFBG, EDJ4208EFBG, EDJ4216EFBG The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Be aware that this product is for use in typical electronic equipment for general-purpose applications. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to contact Elpida Memory's sales office before using this product for such applications. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] Usage in environments with special characteristics as listed below was not considered in the design. Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in environments with the special characteristics listed below. Example: 1) Usage in liquids, including water, oils, chemicals and organic solvents. 2) Usage in exposure to direct sunlight or the outdoors, or in dusty places. 3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 , SO 2 , and NO x . 4) Usage in environments with static electricity, or strong electromagnetic waves or radiation. 5) Usage in places where dew forms. 6) Usage in environments with mechanical vibration, impact, or stress. 7) Usage near heating elements, igniters, or flammable items. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E1007 Data Sheet E1922E20 (Ver. 2.0) 29